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quet shares the same room with me and is a mathematical dictionary when I
can not solve an integral or a differential equation. I hope being in the same
room with me is not boring for him. The little bottle of Ricard with the
signature of Dennis Chevallier is a nice souvenir. And thanks to Lih-King
Lim, Albert Mathias, François Crépin, Doru Sticlet, Raphaël de Gail, Emilio
Winograd, Clément Dutreix, and Nicolas Thiébaut, whose company fills the
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Chapter 1
Introduction

Spin waves are the elementary excitations of coupled spin systems with finite
magnetization or staggered magnetization. Long before the advent of cold
atoms, the physics of spin waves has been an active field of research, and was
found in a large variety of systems. It has been studied in ferromagnets and
antiferromagnets[1], in paramagnetic systems[2, 3, 4, 5], and in dilute gases
such as spin-polarized 3He gas and solution of 3He in 4He[6, 7, 8, 9, 10, 11].
After the first realization of Bose-Einstein condensation (BEC)[12, 13, 14,
15], the study of spin waves in quantum atomic gases[16, 17, 18, 19, 20, 21,
22, 23] has renewed the area bymaking possible both the study of spin waves
far from equilibrium and the direct observation of dynamical behaviors. In
this thesis, we study a model based on the experimental observations of spin
waves in cold atomic gases.

1.1 Synchronization transition on atomic chips

The motivation of this thesis originates from a series of experiments on sn
atomic chip performed in 2010[24]. The atomic chip works as follows. First,
a magnetic potential is set up which traps two internal states of rubidium
atoms (denoted as |0〉 and |1〉). The magnetic trapping potential takes the
form of an elongated cigar-shape harmonic potential, usually with an axial-
frequency much lower than the radial-frequencies, and can be considered
as a quasi one-dimensional harmonic potential if we average out the radial
movement. The temperature of the system is typically close to but above
the BEC temperature so that the system is weakly degenerate. The time
between two collisions for an atom is usually large compared to the period
of its orbital movement in the harmonic potential. Thus the system is in the



Chapter 1. Introduction

Figure 1.1: Schematic illustration of the map between the two level system
and the spin 1/2 system.

Knudsen (collisionless) regime. Each rubidium atom can be considered as a
pseudo-spin 1/2 particle[25], with (see Fig. 1.1)

|0〉 → | ↑〉,
|1〉 → | ↓〉.

(1.1)

Hereafter, we use the spin language to denote the internal states of rubidium
atoms in describing the Ramsey contrast experiment (see Fig. 1.2). Initially,
all the atoms are prepared in the | ↑〉 state. Then a radio-frequency pulse of
π/2 around the y-axis rotates the atom into the state

1√
2
(| ↑〉+ | ↓〉) , (1.2)

which is the coherent state pointing in the x-direction. The transition matrix
of this radio-frequency pulse takes the form

Ry(π/2) =
1√
2
(| ↑〉〈↑ | − | ↑〉〈↓ |+ | ↓〉〈↑ |+ | ↓〉〈↓ |) . (1.3)

The atoms are left to evolve freely in the harmonic trapping potential. During
this evolution, the atoms experience an external magnetic field and interact
with each other through collisions. After a delay of TR, the Ramsey time,
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1.1. Synchronization transition on atomic chips

another π/2 pulse around the y-axis is applied to the atoms and the popula-
tion of atoms in the two states (N0 and N1 for the population in the state |0〉
and |1〉) are measured. The probability to find the atom in the |1〉 state is

P1 ≡
N1

N0 +N1

(1.4)

If an atom at the end of the free evolution is in the state

|ψ(t)〉 = 1√
2

(
e−iφ/2| ↑〉+ eiφ/2| ↓〉

)
, (1.5)

which is the coherent state pointing in the direction (cosφ, sinφ, 0)T , then
after the second pulse, it will be in the state

|ψ〉f = Ry(π/2)|ψ(t)〉 = −i sin (φ/2)| ↑〉+ cos (φ/2)| ↓〉. (1.6)

If the system consists of N atoms in the same state, then the populations of
the two states are

N0 = N |〈↑ |ψ〉f |2 = N sin2 (φ/2),

N1 = N |〈↓ |ψ〉f |2 = N cos2 (φ/2).
(1.7)

From the above expression, we can deduce that

P1 =
N1

N0 +N1

=
1

2
(1 + cosφ) . (1.8)

This probability is thus related to the relative angle φ of the atoms in the xy-
plane gained in the free evolution process. We can extract the information of
the spin configuration z = eiφ in the xy-plane from this relation. However,
in the above argument, we have assumed that all atoms are in the same state,
and thus coherent. In real experiments, this coherence can be broken down
due to the inhomogeneity of the magnetic field and collisions during the free
evolution, which is called inhomogeneous broadening. We can define the
Ramsey fringe contrast to describe this decoherence. The Ramsey fringe
contrast is defined as

CRamsey ≡
∣∣∣∣ z(t)z(0)

∣∣∣∣ = |z(t)|
N

, (1.9)

where

z =
∑
i

zi (1.10)

3



Chapter 1. Introduction

Figure 1.2: Schematic illustration of the Ramsey procedure. a) A first
π/2 pulse is applied to rotate the spin from (0, 0, 1)T to (1, 0, 0)T . b) Free
evolution period, where the spin gains a phase φ in the xy-plane. c) The
second π/2 pulse is applied. The spin is rotated from (cosφ, sinφ, 0)T to
(0, sinφ,− cosφ)T . The red arrows are the initial positions of the spin and
the blue arrows the end positions in each process.

is the total spin configuration. Let us consider an inhomogeneous broad-
ening uniformly distributed between [0,∆0] for all atoms, where ∆0 is the
characteristic inhomogeneity. Then after a free evolution of t, each atom
obtains a spin configuration zi = ei∆it. The Ramsey contrast is

CRamsey =

∣∣∣∣ 1∆0

∫ ∆0

0

ei∆td∆

∣∣∣∣ = 2

∆0t
| sin (∆0t

2
)|. (1.11)

The contrast vanishes at t = π/∆0 and then oscillates with small amplitude
close to zero.

In 2010, this kind of experiment was performedwithN ≈ 104 87Rb atoms.
In this system, each atom experiences an external inhomogeneous magnetic
field in the z-direction which tends to dephase the atoms. The atoms also in-
teract with each other through collisions. The contributions of collisions can
be categorized into three groups. The first group is the density mean-field
which acts as an additional inhomogeneous field due to the inhomogeneous
density profile. The second is the spin mean-field which gives rise to the ex-
change interaction with a rate ωex ∝ an, where n is the local density and a
the s-wave scattering length. This effect is called identical spin rotation ef-
fect(ISRE). These two groups originate from the forward/backward scatter-
ing. The third one is the lateral collision which randomizes the system, and
brings the atoms into local equilibrium with a rate γc ∝ an2. The effective
inhomogeneity ∆0 is the sum of the external field and the density mean-field

4



1.2. Interpretations of the experimental results

Figure 1.3: Experimental results of the Ramsey contrast as a function of
time. From bottom to top, the symbols with different colors represent ex-
perimental results for increasing interaction strengths. The solid lines are
numerical simulations of the kinetic equation. The top dashed line shows
that a strong interaction can lead to an almost complete synchronization.
This figure is taken from [24].

term which acts as an inhomogeneous magnetic field. In the experiment, the
time scales are such that

2π

ωx,y,z

(t) � 2π

∆0

∼ 2π

ωex

(or
2π

∆0

� 2π

ωex

) � 1

γc
, (1.12)

where ωx,y,z is the frequency of the harmonic potential.
The experimental results show that if the interaction is superior to a crit-

ical value, the Ramsey contrast stops decaying and even shows revivals (see
the dashed line in 1.3), indicating that the spins of the atoms are synchro-
nized. For certain experimental conditions, the coherence time is larger by
an order of magnitude than the previous prediction which has not taken into
the ISRE effect[26].

1.2 Interpretations of the experimental results

The surprising result of the experiment was explained with the kinetic theory
of spin waves, where the distribution in energy space was employed since the
system is in the Knudsen regime. This idea originates from previous work

5



Chapter 1. Introduction

on fermionic systems[22, 23], which are naturally in the collisionless regime
at low temperature due to Pauli blocking. The equation of motion for the
spin density reads[24]

∂t~S(E, t) + γC [~S(E, t)− ~̄S(t)]

≈
[
∆(E)êz + ωex

∫ ∞

0

dE ′E
′2

2
e−E′

K(E,E ′)~S(E ′, t)

]
× ~S(E, t),

(1.13)

where ∆(E) = ∆0E, ~̄S(t) is the average spin, E2/2 the density of states, and
K(E,E ′) the interaction kernel. The above equation has been brought to a
dimensionless form where the energy is measured in units of kBT . In this
equation, the interacting kernel is a point-wise contact term in real space.
In the energy space, as we average over many orbital movements in the har-
monic potential, which is justified because of the condition in Eq. 1.12, the
interacting term becomes long ranged. Thus the above equation describes
the collective dynamics of the spins.

In the above equation, we have used

~S(E, t) = 〈 ~̂S(E, t)〉, (1.14)

where ~̂S is quantum operator of spin and 〈 ~̂S(E, t)〉 the quantum expectation
value. When writing the interaction term in Eq. 1.13, we have assumed that

〈~S(E ′, t)× ~S(E, t)〉 ≈ 〈~S(E ′, t)〉 × 〈~S(E, t)〉. (1.15)

Therefore the quantum correlations between two spins are neglected and the
spins are treated as classical objects.

A different point of view is to consider just two quantum spins 1/2[27]
(see Fig. 1.4). The Hamiltonian takes the form

H = B0S
z
1 + (B0 +D)Sz

2 + ωex
~S1 · ~S2. (1.16)

In this Hamiltonian, the two spins experience an inhomogeneous magnetic
field with the inhomogeneity D (equivalent to ∆0 used in demonstrating the
Ramsey fringe contrast), and they interact with each other through an ex-
change term of strength ωex. Initially, the two spins point in the x-direction,
i.e. |ψ(0)〉 = (1/

√
2)(| ↑↓〉+ | ↓↑〉). Using the singlet-triplet basis defined as

|u〉 =| ↑↑〉,
|d〉 =| ↓↓〉,

|t〉 = 1√
2
(| ↑↓〉+ | ↓↑〉),

|d〉 = 1√
2
(| ↑↓〉+ | ↓↑〉),

(1.17)

6



1.3. Proposition of the simplified two-spin model

Figure 1.4: Qualitative picture with the singlet-triplet basis (taken from
[27]). The dephasing is the transition between |t〉 and |s〉 caused by the
inhomogeneous torque D. The interaction creates a gap of ωex between the
two states. If the interaction is large, the transition between the two states
is difficult and the two spins are kept synchronized for a long time.

the Hamiltonian reads

H =


1
2
(2B0 +D) + ωex

4
0 0 0

0 −1
2
(2B0 +D) + ωex

4
0 0

0 0 ωex

4
−D

2

0 0 −D
2

−3ωex

4

 . (1.18)

From the structure of the Hamiltonian, it is clear that the two states |t〉 and
|s〉 are coupled (see the 2×2 block of the right bottom). The dephasing is due
to the transition between |t〉 and |s〉 with a transition element proportional
to D. The two states are separated by an energy gap ωex. If this gap is very
large, then it is difficult for the transition to happen. However, the coherence
time is only pushed far away but not to infinity by the large interaction.

1.3 Proposition of the simplified two-spin model

The kinetic theory has taken into account the collective nature of the dy-
namics but has neglected the quantum correlations between pairs of spins.
The two spins 1/2 picture has considered the quantum correlations but has
neglected the collective behavior. Therefore, we want to consider a model

7



Chapter 1. Introduction

which treats the quantum correlations and the collective behavior. An intu-
itive choice would be to consider a system of N quantum spins 1/2. But the
dimension of the Hilbert space is too large (= 2N ). Simplification is neces-
sary. A simplified picture is to split the N atoms into two classes, each con-
sisting of N/2 atoms, based on their orbital energies[22] (see Fig.1.5). Each
class can be considered as a quantum macro-spin of size S = N/4. Since
the atoms in each class have different trajectories in the harmonic trapping
potential, they experience a different mean magnetic field which has a de-
phasing effect on the two macro-spins. The ISRE, on the other hand, tries to
synchronize them. Besides, since we are in the Knudsen regime, the energy-
changing lateral collisions are rare. The atoms in the two groups remain in
their groups for a long time. This justifies the separation of atoms into two
stable groups. Thus we consider a strongly simplified Hamiltonian for this
picture which reads

H =
δS
2
(Sz

1 − Sz
2) + JS ~S1 · ~S2. (1.19)

In the above Hamiltonian, the inhomogeneity of the mean magnetic field on
the two spins is denoted by δS (This is equivalent to 2∆S in [28]). The inter-
action between the two macro-spins is taken to be a Heisenberg exchange
interaction with the strength JS. In writing the above Hamiltonian, we have
used the rotating reference frame with the same angular velocity as that of
the mean precession of the two macro-spins. The ration JS/δS can be fixed
by equating it to ωex/∆0 in the experiments. Initially, the two spins are in
the x-direction. The quantity of interest is the total spin defined as

~St ≡ ~S1 + ~S2. (1.20)

The contrast of this toy model is defined as

C(t) ≡

∣∣∣∣∣ 〈~St(t)〉
〈~St(0)〉

∣∣∣∣∣ . (1.21)

The definition of synchronization in this two-spin model is that the contrast
should never reach zero, i. e. the norm of the total spin is always finite. There
are other definitions of synchronization. Our model can also be applied to
other domains, such as two interacting quantum dots[29, 30], two nanodisks
with large magnetic moments[31], and two coupled molecular magnets[32].

In this thesis, we want to answer the following questions. Is there a syn-
chronization transition in the model of two spins? What is the effect of
quantum correlations neglected in the kinetic theory? The latter question

8



1.3. Proposition of the simplified two-spin model

Figure 1.5: Schematic illustration of the toy model. In the upper part, the
cloud of atoms are shown. Each atom is represented by a blue ball with a
red arrow indicating the spin state. The inhomogeneous magnetic field in
the z-direction is labeled by Ω(x), where x is the direction along the axis of
the cigar-shaped cloud. In the middle part, the orbitals are split into two
groups. The red ones signify the fast moving atoms, and the blue ones the
slow moving atoms. In the lower part, we consider each of the two groups
of atoms as a macro-spin of size S = N/4. The blue arrow denotes the slow
atoms and the red arrow the fast atoms.

is equivalent to: what is the difference between the classical dynamics and
quantum dynamics of two spins? Finally, what is the effect of the spin size
S on the synchronization?

The thesis is organized as follows. In chapter 2, we study the classical
dynamics of the two-spin model to see if there is a synchronization. Then in
chapter 3 the quantum dynamics of the two-spin model is studied, with the
goal of finding out the influence of the quantum correlations on the dynam-
ics. We also study systems with different spin sizes to understand how the
classical limit emerges. In chapter 4, we study spin squeezing in the two-spin
model. We conclude in chapter 5 and outline some perspectives. In chapter
6, an appendix is presented on preliminary results on the related model of a
finite one-dimensional spin 1/2 chain.

9
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Chapter 2
Classical dynamics and
Synchronization

In this chapter, we consider the classical dynamics of the two-spin sytem. We
consider the following question: under what condition would our system
with the specific initial state be synchronized?

2.1 Description of the model and solution

2.1.1 Model

The model consists of two spins initially lying parallel in the transverse plane
of an inhomogeneous magnetic field, interacting with each other through an
exchange interaction (see Fig. 2.1). Initially, the system is in the state

Sx
i =S,

Sy
i =0,

Sz
i =0.

i = 1, 2 (2.1)

The Hamiltonian of the system takes the form

H =
δS
2
(Sz

1 − Sz
2) + JS ~S1 · ~S2 (2.2)

The first term describes the inhomogeneity of the magnetic field, and the sec-
ond term is the usual SU(2) invariant Heisenberg exchange interaction be-
tween the two spins. When JS is positive, the interaction is anti-ferromagnetic.
When JS is negative, the interaction is ferromagnetic. Although the two
cases seem a huge difference, the dynamics is not altered much by changing
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Figure 2.1: Schematic illustration of the model. The two spins are repre-
sented by blue and red arrow respectively. The effective magnetic field is
the combination of the external magnetic field (±δS/2) and the exchange
coupling to the other spin (JS ~S2,1).

the sign of interaction. When changing JS to −JS, we find Sy
i (t) → −Sy

i (t)
and Sz

i (t) → −Sz
i (t), while Sx

i (t) invariant. This is related to the specific
initial state that we have chosen. Another property of the system's dynamics
related to the initial state is that during the temporal evolution, we always
have Sx

1 (t) = Sx
2 (t), S

y
1 (t) = −Sy

2 (t), and S
z
1(t) = −Sz

2(t).
The equations of motion for this system can be obtained by the usual

Hamiltonian mechanical methods, using the Poisson bracket. For the spins,
the Hamiltonian is a bit different in the sense that Sx,y,z are not canonical
variables. But still the equations of motion for the two spins can be obtained
as:

d

dt
~S1 =

δS
2
êz × ~S1 + JS ~S2 × ~S1,

d

dt
~S2 = −δS

2
êz × ~S2 + JS ~S1 × ~S2.

(2.3)

In the above equations, the first terms on the right hand side are the usual
term describing the motions caused by the inhomogeneous magnetic field.
The second terms on the right hand side reflect the exchange interaction
between the two spins. The nonlinearity of the dynamics can be readily seen
from the second terms. Without this interaction term, the dynamics is simply
two independent spins moving in the magnetic field of their own, and is easy
to solve. The initial conditions are given in Eq. 2.1.

12



2.1. Description of the model and solution

The subindex S of δS and JS is used to indicate the dependence on the
size of the spin. Now we want to rescale the parameters of the system so that
the spin-dependence can be canceled out. To do this, we consider systems
of different spin sizes, but with same total energy. Incorporating the spin
dependence of the spin observable into the parameters of the Hamiltonian,
we rescale the spin operators by a factor of 1/S, the inhomogeneity of the
magnetic by a factor of S and the interaction strength by S2:

~n1,2 ≡ ~S1,2/S,

δ ≡ SδS,

J ≡ S2JS.

(2.4)

After this rescaling, the Hamiltonian reads:

H =
δ

2
(nz

1 − nz
2) + J~n1 · ~n2, (2.5)

and the equations of motion are:

S
d

dt
~n1 =

δ

2
êz × ~n1 + J~n2 × ~n1,

S
d

dt
~n2 = −δ

2
êz × ~n2 + J~n1 × ~n2.

(2.6)

Now the only spin size dependence is on the left hand side of the above equa-
tions of motion using rescaled parameters. This dependence can be elimi-
nated from our analysis by rescaling the time, i.e., t̃ ≡ t/S. After this novel
rescaling, the equations of motion take the final form:

d

dt̃
~n1 =

δ

2
êz × ~n1 + J~n2 × ~n1,

d

dt̃
~n2 = −δ

2
êz × ~n2 + J~n1 × ~n2,

(2.7)

with the initial conditions:

~n1(0) =êx,

~n2(0) =êx.
(2.8)

To obtain the final form of the equations of motion, three rescalings are em-
ployed. The first rescaling is the one of the inhomogeneity of the external
field, which is physically transparent. The second one is the one of the ex-
change interaction by a factor of S2. An additional S is the consequence of
the nonlinear nature of the interaction term, analogous to the rescaling of
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Chapter 2. Classical dynamics and sync

1/N of the interaction term in the infinite range Ising model, where N is the
total number of spins of the system. The last one is the rescaling of time,
which seems less intuitive. In summary, we have used the rescaling

t̃ =
t

ΛS

,

δ =ΛSδS,

J =Λ2
SJS,

~ni =
~Si

ΛS

,

(2.9)

with ΛS = S being the rescaling constant.

2.1.2 Dynamics

To solve the equations of motion Eq. (2.7) and to shed light on the nature
of the dynamics, it is advantageous to change the variables from the single
spin variables to the total spin and spin difference:

~nt ≡~n1 + ~n2,

~nd ≡~n1 − ~n2.
(2.10)

Then the equations of motion for these two variables read:

d

dt̃
~nt =

δ

2
êz × ~nd(t̃),

d

dt̃
~nd =

δ

2
êz × ~nt(t̃) + J~nt(t̃)× ~nd(t̃).

(2.11)

The initial conditions are:

~nt(0) =2êx,

~nd(0) =0.
(2.12)

There are some constants of motion which will help to solve the problem.
First, note that ~n1· d~n1

dt
= 0 and ~n2· d~n2

dt
= 0, indicating that the norms of ~n1 and

~n2 are conserved. Using this fact, it can be shown that ~nt and ~nd are always
perpendicular to each other because ~nt·~nd = (~n1+~n2)·(~n1−~n2) = ~n2

1−~n2
2 = 0.

In addition, the rotational symmetry of the whole system around the z-axis
leads to the observation that nz

t (t) = nz
t (0) = 0. Although the norms of ~nt

and ~nd are not constants of motion, their sum is:

~n2
t + ~n2

d = (~n1 + ~n2)
2 + (~n1 − ~n2)

2 = 2(~n2
1 + ~n2

2) = 4.
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2.1. Description of the model and solution

The facts that nz
t ≡ 0 and ~nt · ~nd ≡ 0 suggest that ~nt rotates always in

the xy-plane, while ~nd is orthogonal to it. This motivates the utilization of a
reference frame rotating with the total spin ~nt:

ê‖ ≡ cosφêx + sinφêy,
ê⊥ ≡ − sinφêx + cosφêy,
êz ≡ êz,

(2.13)

such that

~nt =n‖ê‖,

~nd =n⊥ê⊥ + nz êz.
(2.14)

In the above definition of the reference frame basis, the angle φ is a function
of time with the initial condition φ(0) = 0. And the time derivative of the
basis are:

dê‖
dt̃

= φ̇ê⊥,
dê⊥
dt̃

= −φ̇ê‖,
dêz
dt̃

= 0,

(2.15)

where the dot means derivative with respect to the rescaled time. In this
rotating reference frame, the equations of motion for ~nt and ~nd can be written
explicitly as:

ṅ‖ê‖ + n‖φ̇ê⊥ =− δ

2
n⊥ê‖,

ṅ⊥ê⊥ − n⊥φ̇ê‖ + ṅz êz =(
δ

2
n‖ − Jn‖nz)ê⊥ + Jn‖n⊥êz.

(2.16)

Equating components, we get:

φ̇ =0,

ṅ‖ =− δ

2
n⊥,

ṅ⊥ =
δ

2
n‖ − Jn‖nz,

ṅz =Jn‖n⊥.

(2.17)

The first equation in the above equation shows that ê‖ and ê⊥ do not rotate
in time and that ~nt is always along the x-axis, while ~nd in the yz-plane. Now
we can identify ê‖ = êx and ê⊥ = êy. Then the ansatz ~nt = 2 cos θ(t̃)êx, with
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Chapter 2. Classical dynamics and sync

the initial condition θ(0) = 0, yields

n⊥ =
4

δ
sin θθ̇,

nz =
4J

δ
sin2 θ.

(2.18)

Using the remaining constant of motion ~n2
t + ~n2

d = 4, we have

n2
⊥ = 4− n2

‖ − n2
z = 4 sin2 θ(1− 4J2

δ2
sin2 θ). (2.19)

But fromEq (2.18), we also have n2
⊥ = 16

δ2
sin2 θ(θ̇)2. Consequently, we obtain

the differential equations governing the temporal evolution of θ

16

δ2
sin2 θ(θ̇)2 = 4 sin2 θ(1− 4J2

δ2
sin2 θ), (2.20)

or simply:

(θ̇)2 = (
δ

2
)2(1− (

2J

δ
)2 sin2 θ) (2.21)

Assuming θ̇ > 0, we get

dθ√
1− 4J2

δ2
sin2 θ

=
δ

2
dt̃. (2.22)

The left hand side of the above equation takes the form of an elliptic integral.
The implicit solution for θ is

F (sin θ,
2J

δ
) =

δ

2
t̃, (2.23)

where the function F (sin θ, 2J
δ
) is the elliptic integral of the first kind. The

contrast defined as |~nt(t̃)|/|~nt(0)| takes the form

C(t̃) =
∣∣∣∣cn[δ2 t̃, 2Jδ ]

∣∣∣∣ , (2.24)

where we have used the Jacobi elliptic function cn. Then the solution for the
single spin components is:

nx
1 = cos θ = nx

2 ,

ny
1 = sin θ

√
1− (

2J

δ
)2 sin2 θ = −ny

2,

nz
1 =

2J

δ
sin2 θ = −nz

2,

(2.25)

where θ is the solution obtained in Eq. 2.23.
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2.2. Phase transition

Figure 2.2: The contrast as a function of time. The unit of time is taken
to be 1/δ. a) Dephased regime J = 0.1δ, b) critical point J = 0.5δ, and c)
synchronized regime J = 5δ. In the dephased and synchronized regime, the
oscillation period t̃p is indicated by an arrow.

Figure 2.3: The trajectory of spin number 1 on the Bloch sphere. The initial
position is (1, 0, 0)T , from the x-axis. The thick black line is the equator. The
red lines are the trajectories of the spin number 1.

2.2 Phase transition

After solving the equations of motion, we find that there are two regimes
in which the system behaves differently (see Fig. (2.2)). In the small inter-
action (J < δ/2) or dephased regime, the contrast reaches periodically zero
and then goes back, signifying total dephasing. In the opposite large inter-
action (J > δ/2) or synchronized regime, the contrast never goes to zero,
and there is thus spin synchronization. At the critical point (J = δ/2), it
takes an infinitely long time for the contrast to reach zero. We can also plot
the trajectory of spin number 1 (see Fig(2.3)). We see that in the dephased
regime, the spin rotates mainly around the z-axis as expected, considering
the fact that magnetic field is much stronger than the exchange interaction.
The exchange interaction causes the spin to deviate a little bit from the trans-
verse plane. In the synchronized regime, the spin rotates instead around the
x-axis, the direction of total spin, because in this regime the interaction plays
a dominant role in the dynamics.

17



Chapter 2. Classical dynamics and sync

In order to capture the physics of the two-spin model, a mapping onto
the nonlinear pendulum proves helpful. To see this, we differentiate Eq. 2.21
again with respect to time

2θ̇θ̈ = −2J2 sin θ cos θθ̇, (2.26)

or, eliminating θ̇ on both sides

θ̈ = −J
2

2
sin (2θ). (2.27)

Making a change of variable Θ = 2θ, we obtain

Θ̈ + J2 sinΘ = 0, (2.28)

the initial conditions being Θ(0) = 0 and Θ̇(0) = δ. This equation is just the
usual equation of motion for a nonlinear pendulum of angle Θ initially at its
stable fixed point, Θ(0) = 0, and with an initial angular velocity Θ̇(0) = δ.
For our model, the oscillation frequency is J while for a real pendulum, this
frequency is determined by

√
g/l with l the length of the pendulum and g

the acceleration of gravity. In this language, Contrast = |cos (Θ/2)|. In the
dephased regime, the pendulum has enough energy to go through the highest
point, the unstable fixed point, and to continue to the stable fixed point un-
derneath and move on periodically. At the critical point, there is just enough
energy for the pendulum to go to the unstable fixed point asymptotically. In
the synchronized regime, the pendulum has not enough energy to go to un-
stable fixed point. It is confined in a small region near the initial position,
where it oscillates periodically. In this regime, we can approximate the equa-
tion by a linear pendulum whose equation reads

Θ̈ + J2Θ = 0, (2.29)

with the initial condition
Θ(0) =0,

Θ̇(0) =δ.
(2.30)

The solution is Θ(t̃) = (δ/J) sin (Jt̃). The period of the contrast can be read-
ily obtained as t̃p ≈ π/J . For J � δ/2, the contrast can be approximated
as

C(t̃) ≈ 1− δ2

8J2
sin2 (Jt̃). (2.31)

Before going further into more detailed and more quantitative studies,
it is necessary to emphasize that the image of a rigid nonlinear pendulum
is just one way to understand the underlying physics. As we will see later
in this chapter, our model can be also related to a non-rigid and nonlinear
pedulum.
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2.3. Characteristic time scales

l

Θ̇(0)

Θmax

a)

l

Θ̇(0)

Θmax

b)
l

−Θmax

Θ̇(0)

Θmax

c)

Figure 2.4: Analogy with a pendulum. a) Dephased regime (J < δ/2): the
pendulum canmove along the whole circle and thus dephase completely. The
corresponding movement of the spin is also dephased around the z-axis. b)
Critical point (J = δ/2): the pendulum goes to the unstable fixed point
and stays there. The spin movement is similar in that the individual spins
go to the poles of their Bloch sphere and stay there. c) Synchronized regime
(J > δ/2): the pendulum is confined to move in a small region [−Θmax,Θmax]
near the initial position. The spins in this regime move around their initial
directions.

2.3 Characteristic time scales

The dynamics of the classical system can be characterized by some time scales
expressed in the rescaled quantities. In our system of two spins, there are
two characteristic time scales. The first one captures the initial decay, i.e.,
C(t̃) = 1− (t̃/t̃i)

2 for short times. Expanding the solution for the contrast in
Eq. 2.24 to leading order, we obtain

C(t̃) ≈ 1− δ2t̃2

8
(2.32)

Fitting this with the aforementioned expression, we get

t̃i = 2
√
2/δ. (2.33)

It is worth noting that this initial decay is independent of J , and thus does not
depend on the regime. The reason for this observation is that the initial decay
time describes the short time behavior of the two spins. During this period,
the two spins are well aligned together such that the exchange interaction
between them does not come into play. Consequently, the only factor having
influence on the dynamics is themagnetic field. Besides, as plotted in Fig. 2.5,
the fit is less satisfying in the synchronized regime. This is related to the
fact that in this regime, the interaction is large and has a greater impact on
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Chapter 2. Classical dynamics and sync

Figure 2.5: The initial decay of contrast fitted with the expression
Contrast(t̃) = 1 − (t̃/t̃i)

2 with t̃i = 2
√
2/δ. a) Dephased regime (J = 0.1δ).

b) Critical point (J = 0.5δ). c) Synchronized regime (J = 5δ). The blue line
is the contrast and the dotted red line the fit.

the initial temporal evolution of the system, causing the dynamics deviating
earlier from the simple independent rotation around the external magnetic
field.

The other time scale is the oscillation period of the contrast. Note that in
the dephased regime the period of the contrast is not equivalent to the period
of the system dynamics, but only half of it, because the contrast is defined to
be positive by a modulus. In the dephased regime (J < δ/2), this time scale
takes the form

t̃p = 2
δ

2

∫ 1

0

dx√
(1− 4J2

δ2
x2)(1− x2)

=
4

δ
K(

2J

δ
), (2.34)

where the function K(2J
δ
) is the complete elliptic integral of the first kind. If

J � δ, the period can be approximated in the following way. In this limit,
the angle Θ (see Eq. 2.28 ) varies almost linearly with time as Θ ≈ δt̃ because
the kinetic energy of pendulum is so large that during the whole period, the
change due to the gravity potential is negligible compared to it. Then the
period is t̃p ≈ 2π

δ
. When J > δ/2, the period of the dynamics is

t̃p = 2
2

δ

∫ 1

0

δ/(2J)dy√
(1− y2)(1− δ2

4J2y2)
=

2

J
K(

δ

2J
), (2.35)

where a change of variable is performed y ≡ (2J/δ) sin θ. In Table. 2.1, a
summary of the characteristic time scales in the classical model are listed.

2.4 Phase portrait

In the preceding sections, we have sticked to one specific initial condition
~n1 = ~n2 = (1, 0, 0)T . In the following, we will loosen this constraint by
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2.4. Phase portrait

Initial decay (t̃i) Period (t̃p)

Dephased regime (J < δ/2) 2
√
2/δ 4K(2J/δ)

δ
≈ 2π

δ

Critical point (J = δ/2) 2
√
2/δ 2

δ
ln δ/2

|δ/2−J | → ∞
Synchronized regime (J > δ/2) 2

√
2/δ 2K(δ/2J)

J
≈ π

J

Table 2.1: Characteristic time scales in the classical two-spin model.

considering different initial conditions and look at the global behavior of
the system under a special symmetry. The content of this symmetry, the x-
axis symmetry, states that if we start with an initial condition satisfying

nx
1(0) =n

x
2(0),

ny
1(0) =− ny

2(0),

nz
1(0) =− nz

2(0),

(2.36)

then in the following dynamics, this symmetry ise conserved. In the following
subsection, we give a heuristic proof of this statement.

In classical mechanics, phase portrait is a powerful tool to study the quali-
tative aspects of the system under consideration. Usually, the phase portraits
are done by plotting the intersection of the equi-energy surfaces with the
phase space. For our system, since there is no dissipation, the energy of the
system is determined uniquely by the initial condition

E =
δ

2
(nz

1(0)−nz
2(0))+J [nx

1(0)n
x
2(0) + ny

1(0)n
y
2(0) + nz

1(0)n
z
2(0)] . (2.37)

In phase portraits, the important geometrical properties of the systems can
be deduced from typical trajectories in the phase space, such as the nature
of fixed points, the limit circles and the separatrices. However, it is not easy
to visualize the phase portraits for more than one degree of freedom. So we
concentrate mainly on a single spin, say the spin number 1, with the phase
space coordinates (φ1, cos θ1). Then we are obliged to confine ourselves to
certain subspace of the whole phase space because we need to eliminate the
influence of the other spin by considering regions in the phase space with
some specific symmetric properties. Since the previously considered initial
state and the following temporal evolution of the system always have the
symmetry nx

1(t̃) = nx
2(t̃), n

y
1(t̃) = −ny

2(t̃), and n
z
1(t̃) = −nz

2(t̃), we plot typical
trajectories starting in phase space with this symmetry. With this symmetry,
the energy of the system is given by

E = δnz
1(0) + J

[
(nx

1(0))
2 − (ny

1(0))
2 − (nz

1(0))
2
]
. (2.38)
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Chapter 2. Classical dynamics and sync

2.4.1 x-axis symmetry

Before making the phase portrait, it is necessary to check whether this sym-
metry in the initial state will be conserved during the succeeding temporal
evolution. The origin of this symmetry should come as a surprise if we only
consider the Hamiltonian, which does not have this symmetry. Yet one can
check numerically that this symmetry is not broken in the dynamics. As
shown in the first column in Fig. 2.6, this x-axis symmetry is conserved
for initial conditions starting in the xy-plane (see Fig. 2.6.a), xz-plane (see
Fig. 2.6.b), and somewhere else (see Fig. 2.6.c) when the dynamics is de-
phased (J = 0.1δ). In the synchronized regime (J = 5δ), this symmetry still
exists (see the second row of Fig. 2.6).

From an analytical point of view, this x-axis symmetry is related to the
special initial condition, and can be obtained as follows. First, note that nz

t is
always conserved, because of the invariance under the rotation of the whole
system around z-axis. So if for initial condition we have nz

1(0) = −nz
2(0),

then for all the dynamics nz
t (t̃) ≡ 0 is guaranteed. The total spin can only

move in the xy-plane and nz
1(t̃) = −nz

2(t̃) is true in the following temporal
evolution of the system. Eqs. 2.13 and 2.14 should hold. As a result Eq. 2.16
follows and we get φ̇ ≡ 0, indicating that ny

t (t̃) ≡ 0. So we have the two
following relations

nz
1(t̃) =− nz

1(t̃),

ny
1(t̃) =− ny

1(t̃).

We need to still prove that nx
1(t̃) = nx

2(t̃). To this end, we need to show
nx
d(t̃) = 0. From Eq. 2.11, we get for the component nx

d

d

dt̃
nx
d =

δ

2
ny
t + J(~nt × ~nd)

x. (2.39)

The first term on the right hand side of the above equation is identically
zero since ny

1(t̃) = −ny
2(t̃). The second term is a vector product and thus

perpendicular to the two vectors ~nt(t̃) and ~nd(t̃). Because of the fact that
ny
1(t̃) = −ny

2(t̃) and nz
1(t̃) = −nz

2(t̃), ~nt(t̃) has only x-component. Then the
x-component of ~nt × ~nd is zero. Consequently

d

dt̃
nx
d(t̃) ≡ 0. (2.40)

With the initial condition ~nx
d(0) = 0, we have ~nx

d(t̃) ≡ 0. Therefore, it is
proven that the x-axis symmetry is preserved during the dynamics.
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2.4. Phase portrait

Interaction Initial conditions
~n1(0) = (0.6, 0.8, 0) ~n1(0) = (0.6, 0, 0.8) ~n1(0) = (0.6, 0.48, 0.64)

J = 0.1δ

J = 5δ

Figure 2.6: Trajectories of spin 1 (blue line) and spin 2 (red line) with dif-
ferent interaction strength and different initial conditions. In the first row
the trajectories in the dephased regime (J = 0.1δ) are presented. The
second row has the same initial condition but in the synchronized regime
(J = 5δ). In the first column the initial condition is: nx

1(0) = nx
2(0) = 0.6,

ny
1(0) = −ny

2(0) = 0.8, and nz
1(0) = −nz

2(0) = 0 (starting from the equator
plane). In the second column the initial condition is: nx

1(0) = nx
2(0) = 0.6,

ny
1(0) = −ny

2(0) = 0, and nz
1(0) = −nz

2(0) = 0.8 (starting from the xz-
plane). In the third column the initial condition is: nx

1(0) = nx
2(0) = 0.6,

ny
1(0) = −ny

2(0) = 0.48, and nz
1(0) = −nz

2(0) = 0.64. The blue and red arrow
denotes the initial conditions of spin number 1 and 2 respectively.
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Chapter 2. Classical dynamics and sync

2.4.2 Fixed points and stability analysis

For the sake of simplicity, we restrict ourselves to considering the phase
portrait for the single spin number 1 with the x-axis symmetry constraint
mentioned above. The Hamiltonian expressed in the canonical variables
(φi, cos θi), i = 1, 2 is

H =
δ

2
(cos θ1−cos θ2)+J [sin θ1 sin θ2 cos (φ1 − φ2)+cos θ1 cos θ2], (2.41)

where we have used:

nx
i = sin θi cosφi,

ny
i = sin θi sinφi,

nz
i = cos θi.

(2.42)

The Hamiltonian equations for the canonical variables (φ1, cos θ1) read:

d

dt̃
φ1 =

∂H

∂ cos θ1
=
δ

2
+ J

[
cos θ2 − sin θ2 cos (φ1 − φ2)

cos θ1
sin θ1

]
,

d

dt̃
cos θ1 =− ∂H

∂φ1

= J sin θ1 sin θ2 sin (φ1 − φ2).

(2.43)

Using the symmetry nx
1 = nx

2 , n
y
1 = −ny

2, or equivalently in the canonical
variables' language θ1 = π−θ2, and φ1 = −φ2, the above equations transform
into

d

dt̃
φ1 =

δ

2
− J(cos θ1 + cos θ1 cos (2φ1)),

d

dt̃
cos θ1 = J sin2 θ1 sin (2φ1).

(2.44)

To get a qualitative understanding of the dynamical system and plot the
phase portrait, it is desirable to start by finding the fixed points of the system.
Solving the equations dφ1/dt̃ ≡ 0 and d cos θ1/dt̃ ≡ 0, we get the fixed points

θ1 = 0, π,

φ1 arbitrary.
(2.45)

When J > δ/4, there are two additional fixed points

θ1 = arccos (
δ

4J
),

φ1 =0, π.
(2.46)
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2.4. Phase portrait

Figure 2.7: The two definition of angles in the stability analysis. a) Definition
of θ and φ with θ ∈ [0, π] and φ ∈ [0, 2π). b) Definition of θ′ and φ′ with
θ′ ∈ [0, π] and φ′ ∈ [0, 2π).

We then study the stability of these fixed points using linear approximation
around them. The expansion around the fixed points (θ = 0, φ) need special
attention because the coordinate we used is singular at these two points. So
we change the definition of the angles (see Fig. 2.7) and use the Hamiltonian
of the form

H =
δ

2
(sin θ′1 cosφ

′
1 − sin θ′2 cosφ

′
2) + J [sin θ′1 sin θ

′
2 cos (φ

′
1 − φ′

2)

+ cos θ′1 cos θ
′
2],

(2.47)

with the new definitions of spin variables

nx
i = sin θ′i sinφ

′
i,

ny
i = cos θ′i,
nz
i = sin θ′i cosφ

′
i.

(2.48)

The x-axis symmetry now reads

θ′1 = π − θ′2,

φ′
1 = π − φ′

2.
(2.49)

Then the equations of motion read

d

dt̃
φ′
1 =− δ

2
cosφ′

1 cot θ
′
1 + J cos θ′1[cos (2φ

′
1)− 1],

d

dt̃
cos θ′1 =

δ

2
sin θ′1 sinφ

′
1 − J sin2 θ′1 sin (2φ

′
1).

(2.50)
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For computational convenience, we use the differential equations on (φ′
1, θ

′
1)

instead of on (φ′
1, cos θ

′
1). The equations of motion for these variables read

d

dt̃
φ′
1 =− δ

2
cosφ′

1 cot θ
′
1 + J cos θ′1[cos (2φ

′
1)− 1],

d

dt̃
θ′1 =− δ

2
sinφ′

1 + J sin θ′1 sin (2φ
′
1).

(2.51)

The original fixed points are transformed to (θ′1 = π/2, φ′
1 = 0). Around this

fixed point, a linear expansion yields

d

dt̃
δφ′

1 =
δ

2
δθ′1,

d

dt̃
δθ′1 =(2J − δ

2
)δφ′

1.

(2.52)

In order to find the stability property of this fixed point, we assume that the
solution of the linearized equations takes the form(

δφ′
1

δθ′1

)
= c1 ~D1e

λ1 t̃ + c2 ~D2e
λ2 t̃, (2.53)

where the two eigenvalues of the system are denoted as λ1, and λ2, and the
two eigenvectors as ~D1, and ~D2. The eigenvalues are determined by the
equation∣∣∣∣ −λ δ

2

2J − δ
2

−λ

∣∣∣∣ = 0, (2.54)

or equivalently λ2 − δ/2(2J − δ/2) = 0. From this equation it is clear
that when J < δ/4, the fixed point (θ1 = 0, φ) is an elliptic point be-
cause the two eigenvalues of the linear expansion equations are purely imag-
inary (λ = ±i

√
δ/2(δ/2− 2J)), while this fixed point is a saddle point

when the interaction strength is strong J > δ/4 because the two eigenval-
ues λ1 = −

√
δ/2(2J − δ/2), and λ2 =

√
δ/2(2J − δ/2) satisfy λ1 < 0 < λ2.

Note that at the transition point (J = δ/4), the fixed point changes its nature
between the two regimes. For the transition point (J = δ/4), the linearized
equations read

d

dt̃
δφ′

1 =
δ

2
δθ′1,

d

dt̃
δθ′1 =0.

(2.55)
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2.4. Phase portrait

Then it is easily seen that λ1 = λ2 = 0, indicating a degenerate solution. We
assume that the general solution of the above equation takes the form

δφ′
1 =c1 + c2t̃,

δθ′1 =δθ
′
1(0).

(2.56)

Then c2 = (δ/2)δθ′1(0). This transition point is special with regard to the
fact that when passing the transition J = δ/4 from below, two additional
fixed points (cos θ1 = δ/(4J), φ1 = 0, π) emerge from the north pole (θ1 =
π, φ). This is the non-isolated fixed point in the linear analysis language and
signifies a bifurcation transition.

The same analysis can be implemented for the fixed point (θ1 = π, φ1)
using the transformed axes. In the new axes defined in Eq. 2.48, this fixed
point is transformed to (θ′1 = π/2, φ′

1 = π). We obtain the same equations
of motion as obtained in Eq. 2.51, but a linear expansion results in different
equations. The linearized equations are

d

dt̃
δφ′

1 =− δ

2
δθ′1,

d

dt̃
δθ′1 =(2J +

δ

2
)δφ′

1.

(2.57)

Using the same approach as in Eq. 2.53, the equation for the eigenvalues
reads ∣∣∣∣ −λ − δ

2

2J + δ
2

−λ

∣∣∣∣ = 0. (2.58)

For this fixed point, the eigenvalues are λ1 = i
√
δ/2(2J + δ/2) and λ2 =

−i
√
δ/2(2J + δ/2). Then the fixed point (θ1 = π, φ) is always an elliptic

fixed point no matter how the interaction strength changes.
When J > δ/4, there are two additional fixed points at (cos θ1 = δ/(4J), φ1 =

0, π). We use the original definitions of spin variables (see Eq. 2.42) since
this fixed point is not singular. Then the equations of motion for (θ1, φ1)
read

d

dt̃
δφ1 =2J

√
1− δ2

16J2
δθ1,

d

dt̃
δθ1 =− 2J

√
1− δ2

16J2
δφ1.

(2.59)

Then the eigenvalues satisfy the equation

λ2 + 4J2(1− δ2

16J2
) = 0 (2.60)
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Chapter 2. Classical dynamics and sync

J < δ/4 J > δ/4

(θ1 = 0, φ1) Elliptic Saddle
(θ1 = π, φ1) Elliptic Elliptic
(θ1 = arccos(δ/(4J)), φ1 = 0, π) non-existing Elliptic

Table 2.2: Stability of fixed points in different regimes.

with the solution λ1 = −2iJ
√

1− δ2

16J2 and λ2 = 2iJ
√
1− δ2

16J2 . This sug-
gests that the fixed point (cos θ1 = δ/(4J), φ1 = 0, π) is an elliptic point.

The above stability analysis are summarized in Tab. 2.2.

2.4.3 Qualitative picture from the phase portrait

After the fixed point analysis, we are in the position to plot the phase por-
trait of the classical two-spin system. As shown in Fig. 2.8.a, in the dephased
regime before the bifurcation (J = 0.1δ), the system has rather simple dy-
namical behaviors. In this regime, the system has two elliptic fixed points at
the north and south pole θ = 0, π when J = 0.1δ < 0.25δ. Consequently the
trajectories of spin 1would be mainly circles rotating around these two fixed
points. And we observe therefore the periodical circles around the z-axis.

If the interaction strength is increased to the transition point J ≥ δ/4,
another two elliptic fixed point emerge at ((nx

1 =
√

1− (δ/(4J))2), ny
1 =

0, nz
1 = δ/(4J)) from the north pole, and the north pole becomes a saddle

point with a negative and a positive eigenvalues for the linear expansion
equations, characterizing a separatrix which goes through it (see the green
trajectory in Fig. 2.8.b). A bifurcation transition occurs. Then the phase
space of spin 1would be separated into two regions by the separatrix passing
the north pole. In one of the two regions that contains the newly emerged
fixed points, the trajectories rotate around the newly emerged fixed points
because of the elliptic nature of these two points. In this region, the spin
number 1 can not pass the yz plane, and nx

t is always positive or negative
(depending on φi = 0 or π). We call this region synchronized region because
the movement in this region would lead to synchronization of contrast. In
the other region, the trajectories perform periodic circular movement around
the south pole as before. Moving in the region, nx

t vanishes periodically when
spin number 1 go from the front hemisphere (x > 0) to the back hemisphere
(x < 0). This region will be called dephased region hereafter. The surface
of the synchronized region has a positive correlation with the quantity J −
Jbif (= δ/4). Increasing J would induce larger synchronized region. When
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2.4. Phase portrait

Figure 2.8: The phase portrait for spin number 1 of the two-spin system
with the additional symmetry between the two spins nx

1(t̃) = nx
2(t̃), n

y
1(t̃) =

−ny
2(t̃), and nz

1(t̃) = −nz
2(t̃). a) The dephased regime before bifurcation

(J = 0.1δ), the four curves represent trajectories with different energies. The
red one depicts the trajectory with energy E = 0.1δ (coinciding with the
trajectory of the initial condition considered in the most part of this thesis),
the blue one withE = 0.5δ, the green one withE = −0.3δ and the yellow one
with E = 0.7δ. b) The dephased regime after bifurcation(J = 0.35δ). The
red curve has energy E = 0.35δ, the blue one has energy E = 0.1δ, the yellow
one has energy E = 0.7δ, and the green one has energy E = 0.65δ. c) The
critical point (J = 0.5δ). The red curve (separatrix) has energy E = 0.5δ (the
initial condition considered), the blue one (dephased) has energy E = 0.1δ,
the yellow one (synchronized) has energy E = 0.7δ, and the green one has
energy E = −0.1δ. d) The synchronized regime (J = 5δ). For the red curve
(synchronized), the energy is E = 5δ. For the yellow curve (separatrix),
the energy is E = −4δ. For the blue curve (synchronized), the energy is
E = −5δ. And for the green curve (dephased), the energy is E = −0.45δ.
The red arrow indicates the initial state of spin number 1 and the red curve
corresponds to the trajectory of the initial condition. For the meaning of
separatrix, dephased and synchronized region, see text.
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Chapter 2. Classical dynamics and sync

δ/4 < J < δ/2 (see Fig. 2.8.b), the initial condition we take is still contained
in the dephased region, so there is no synchronization observed yet.

At the critical point J = δ/2, the synchronized region is extended to such
a degree that the chosen initial state lies just on the separatrix passing the
north pole (see Fig. 2.8.c). And then it takes an infinite amount of time for
the spin 1 to reach the north pole. This corresponds to the critical behavior of
the contrast. If the interaction is further increased (see Fig. 2.8.d), the initial
condition will be contained in the synchronized region and synchronization
will be observed.

2.5 Relation to the Bose-Hubbard dimer and the
Lipkin-Meshkov-Glick model

With the x-axis symmetry

nx
1 =nx

2 ,

ny
1 =− ny

2,

nz
1 =− nz

2,

(2.61)

our Hamiltonian reduces to

Hxsym =
δ

2
(nz

1−nz
2)+J(n

x
1n

x
2+n

y
1n

y
2+n

z
1n

z
2) = δnz

1+2J(nx
1)

2+Const (2.62)

with Const = −J since (nx
1)

2 + (ny
1)

2 + (nz
1)

2 = 1 by our rescaling. This
Hamiltonian is equivalent to that of the symmetric Lipkin-Meshkov-Glick
(LMG) model[33], which intially describes a system consisting ofN interact-
ing fermions in two N -fold degenerate levels. The symmetric LMG Hamil-
tonian reads

HLMG = εSz + 2V (Sx)2. (2.63)

If we make the transformation

Sε→δ,

Si

S
→ni, for i = x, y, z

S2V →J,

(2.64)

then the symmetric LMG model is identical to the two-spin model with x-
axis symmetry.
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2.5. Relation to the BH dimmer and the LMG model

However, the two-spin model with x-axis symmetry can also describe
the classical dynamics of the Bose-Hubbard dimer (BHD) model. The BHD
model is a two-site Bose-Hubbard model with the Hamiltonian[34, 35]

HBHD = (E1a
†
1a1+E2a

†
2a2)+K(a†1a2+a

†
2a1)+[U1(a

†
1)

2a21+U2(a
†
2)

2a22], (2.65)

where Ei is the energy level or the chemical potential of the two sites, K
the tunneling rate between the two sites, and Ui the interaction strength in
the two sites. The BHD model, though describing a very different physical
system, is equivalent to the LMG model. To show this, we use the Schwinger
boson representation of spin operators[36]

Sx =
1

2
(a†1a2 + a†2a1),

Sy =
i

2
(a†1a2 − a†2a1),

Sz =
1

2
(a†1a1 − a†2a2).

(2.66)

Then substituting the above equalities into the BHDHamiltonian in Eq. 2.65,
and assuming symmetric sites, i.e. E1 = E2 = E and U1 = U2 = U , the BHD
Hamiltonian takes the form

HBHD = 2KSx + 2U(Sz)2 + Const. (2.67)

because the number of bosons N in the system is a constant. Then this
Hamiltonian is the same as the symmetric LMG Hamiltonian if we make the
transformation

2K →ε,

U →V.
(2.68)

As a result, the BHD model is equivalent to the symmetric LMG model.
Their classical limit is the same as that of the two-spin system with x-axis.
The relation between the three is shown in Fig. 2.9. The bifurcation transi-
tion has also been found in the BHD model[37, 38].

In passing, we note that in [35], it is argued that the classical dynamics
of the BHD model can be described as a non-rigid and nonlinear pendulum.
This point of view is correct but less intuitive. The phase space of the non-
rigid (z, φ) and nonlinear pendulum can be shown equivalent to that of a
spin (cos θ, φ)[39].
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Chapter 2. Classical dynamics and sync

Figure 2.9: Relations between the LMG model, BHD model, and two-spin
model with x-axis symmetry.

2.6 Summary

In this chapter, the model is defined together with the initial condition. Its so-
lution is presented with an emphasis on the experimental measurable quanti-
ties, the contrast. In this simplistic model, two regimes are found depending
on the ratio between the interaction strength and the inhomogeneity of the
magnetic field. The two regimes are separated by a dynamical phase tran-
sition which depends on the initial condition. In one regime (J < δ/2), the
dephased phase, the two spins would dephase completely, and the contrast
reaches zero periodically. In the other regime (J > δ/2), the two spins are
synchronized and rotate mainly around the total spin. There, the contrast is
always finite, with oscillation period determined mainly by the interaction
strength. Phase portraits have been used to reveal the underlying mechanism
of this phase transition: bifurcation. At the transition point (Jtr = δ/4), two
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2.6. Summary

new fixed points emerge from the north pole and a separatrix separates the
phase space into synchronized region and dephased region. At the critical
point (J = δ/2), our initial condition lies right on the separatrix, which goes
to the north pole, the saddle point.

It has also been shown that our Hamiltonian, together with the x-axis
symmetry constraint, is equivalent to the classical dynamics of the LMG
model in the context of nuclear physics and BHDmodel in the context of cold
atoms. However, it should be noted that our model consisting of two spins
has richer dynamical behaviors than the classical LMGmodel or the classical
BHD model in the sense that the phase space of our two-spin model is four
dimensional, while the LMGmodel and BHDmodel have a two dimensional
phase space. Only with the x-axis symmetry does the two-spin model reduce
to the two other models consisting of a single spin.

33



Chapter 2. Classical dynamics and sync

34



Chapter 3
Quantum dynamics and absence of
synchronization

In the previous chapter, we have solved the classical dynamics and found
that the different dynamical behaviors in the classical system are caused by a
bifurcation. Nowwe turn to the quantum systemwith the sameHamiltonian
and initial condition. It describes two quantum spins lying initially parallel
in the transverse plane of an inhomogeneous magnetic field. They interact
with each other through an exchange interaction. The Hamiltonian of the
system is

H =
δS
2
(Sz

1 − Sz
2) + JS ~S1 · ~S2, (3.1)

and the initial condition

|Ψ(0)〉 = |mx
1 = S,mx

2 = S〉, (3.2)

where we have used the eigenstate of the x-component of spin operators.
In the above Hamiltonian, the spin components should be considered as
quantum operators. The dimension of the underlying Hilbert space is deter-
mined by the size S of the spins via Dim = (2S + 1)2. A difference between
classical mechanics and quantum mechanics is the fact that the cumulant
〈Sα

i S
β
j 〉c ≡ 〈Sα

i S
β
j 〉 − 〈Sα

i 〉〈S
β
j 〉 is not zero in quantum mechanics. This has

motivated the idea of cumulant expansion[40, 41, 42], which we will apply
to our model in a later section.

We can define the single spin contrast as

Ci(t) ≡
|〈~Si〉|
S

, i = 1, 2. (3.3)
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For our special initial condition, we have C1(t) = C2(t), so we will use C1

to denote the single spin contrast for both spins. And the single spin unit
vector is defined as

~ni(t) ≡
〈~Si〉
|〈~Si〉|

=
〈~Si〉
SCi

, i = 1, 2. (3.4)

The measured Ramsey contrast in the cold atom experiments corresponds to
the contrast defined as

C(t) ≡ |〈~S1 + ~S2〉|
2S

. (3.5)

Since C1(t) = C2(t), we have

C(t) = C1(t)

√
1 + ~n1 · ~n2

2
. (3.6)

Another quantity we want to define is the effective spreading of the quantum
spins

D1(t) ≡
〈(~S1 − 〈~S1〉)2〉

S2
=
S(S + 1)− (〈~S1〉)2

S2
. (3.7)

This quantity is a measure of the deviation of the single spin contrast from
that of a coherent state through the relation

C2
1(t) = 1 +

1

S
−D1(t). (3.8)

For a coherent spin state[43], we have

D1coh =
1

S
,

C1coh = 1.
(3.9)

If S → ∞, D1coh → 0. Thus the coherent state approaches the classical state
in the semiclassical limit. For a general quantum state, C1 < 1 andD1 < 1/S.

We also rescale the systems in order to get rid of the spin-size dependence.
However, here the rescaling constant is not the same as that in the classical
systems. For the quantum system we have

t̃ =
t

ΛS

,

δ =ΛSδS,

J =Λ2
SJS,

~̂ni =
~Si

ΛS

,

(3.10)
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3.1. Spin One Half

where ΛS =
√
S(S + 1) is used instead of ΛS = S in the classical system.

And ~̂ni is the rescaled spin operator. We have used a hat here to distinguish
it from the single spin unit vector. This different constant is employed under
the consideration that the norm of a quantum spin should be defined through√

〈~S2〉 = S(S+1), which is a constant of motion during the entire dynamics
and should thus serve as a straightforward rescaling constant.

3.1 Spin One Half

The simplest case of quantum dynamics is a system consisting of two spin
S = 1/2 particles. This situation is exactly solvable because of the small
dimension of the Hilbert space. In solving the problem, we first use the
unrescaled quantities and only in the end do we transform to the rescaled
quantities so as to compare the obtained results with the classical ones. The
Hamiltonian is given in Eq. 3.1 and the initial condition is

|Ψ(0)〉 = |Sx
1 = 1/2, Sx

2 = 1/2〉 = 1√
2
(| ↑〉+ | ↓〉)⊗ 1√

2
(| ↑〉+ | ↓〉)

Using the vectors {|Sz
1 , S

z
2〉} as basis, we obtain the matrix form of the Hamil-

tonian:

H =


JS
4

0 0 0
0 δS

2
− JS

4
JS
2

0
0 JS

2
− δS

2
− JS

4
0

0 0 0 JS
4

 . (3.11)

And the initial state is |Ψ(0)〉 = 1/2(| ↑↑〉+ | ↑↓〉+ | ↓↑〉+ | ↓↓〉). Written in
column vector form, it reads:

|Ψ(0)〉 = 1/2


1
1
1
1

 (3.12)

The eigenvalues and eigenvectors of the Hamiltonian can be found as:

E1 =
JS
4
, |e1〉 = | ↑↑〉,

E2 =
JS
4
, |e2〉 = | ↓↓〉,

E3 = −JS
4

+
ω

2
, |e3〉 = sinα| ↑↓〉+ cosα| ↓↑〉,

E4 = −JS
4

− ω

2
, |e4〉 = − cosα| ↑↓〉+ sinα| ↓↑〉,

(3.13)
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where ω =
√
J2
S + δ2S and tanα = JS/(ω − JS). The contrast can be calcu-

lated as:

C(t̃) =

∣∣∣∣∣cos ( Jt̃√
3
) cos (

√
3

4
ωt̃) +

4J

3ω
sin (

Jt̃√
3
) sin (

√
3

4
ωt̃)

∣∣∣∣∣ , (3.14)

with ω =
√
J2
S + δ2S = (2/3)

√
4J2 + 3δ2. In the above expression, we have

used the rescaled quantities:

t̃ =
2t√
3
,

δ =

√
3

2
δS,

J =
3

4
JS.

(3.15)

Expanding this solution to second order in rescaled time, we find for short
time

C(t̃) ≈
∣∣∣∣1− (δt̃)2

8

∣∣∣∣ . (3.16)

Therefore, the initial decay of the contrast is still given by C(t̃) ≈ 1− (t̃/t̃i)
2,

with t̃i = 2
√
2/δ. This decay is the same as that found in the classical case.

The very short time dynamics is determined entirely by the inhomogeneous
magnetic field because during this time interval, the two spins are almost
perfectly aligned such that the interaction between them does not affect the
dynamics. As a result, the dynamics of the two spins is independent of each
other and is simply the movement of two coherent states in external magnetic
field. This movement is the same as that of two classical spins in the external
magnetic field as long as there is no interaction between them to dephase the
coherent states.

For longer time, the dynamics is not the same as the classical systems.
There is no more the regime of synchronization as in the classical system
because in the quantum S = 1/2 case the contrast always vanishes at a
certain time. But we can still distinguish two different regimes depending
on the ratio between the rescaled interaction and the inhomogeneity of the
magnetic field, in which the contrast behaves differently for large(small) in-
teraction. In the following, we stick to the terms ``dephased'' regime and
``synchronized'' regime though there is no synchronization in the strict sense
that ``the contrast should not vanish at any time''. In both regimes, there ex-
ist a fast oscillation corresponding to the classical oscillation and an envelope
modulating the contrast which is purely of quantum origin.
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3.1. Spin One Half

a) b) c)

Figure 3.1: Contrast for S = 1/2 system as a function of the rescaled time
t̃ in unit of 1/δ. a) J = 0.1δ, b) J = 0.5δ, and c)J = 5δ. The oscillating
time and envelope time have been indicated for the dephased regime a) and
synchronized regime c). The critical point b) is special in that the dynamics
is periodic and only the oscillating time is indicated.

If the interaction is small compared to the inhomogeneity (J � δ/2), the
approximate expression for the contrast

C(t̃) ≈
∣∣∣cos (δt̃/2) cos (Jt̃/√3)

∣∣∣ (3.17)

representing rapid oscillations with such large amplitude that the contrast
goes down to zero rapidly after the onset of the dynamics. The period of
the fast oscillation is t̃o = 2π/δ. This time is the equivalent of the classical
period t̃p = 4K(2J/δ)/δ ≈ 2π/δ when J � δ/2. In addition, the oscillating
amplitude is modulated by an envelope such that there is an additional time
scale, which we call the envelope time, characterizing the time at which the
envelope reaches zero. In this dephased regime, the envelope time is given
by the second term in the above approximate expression t̃e =

√
3π/J .

On the other hand, when the interaction is large (J � δ/2), the contrast
takes the following approximate form

C(t̃) ≈

∣∣∣∣∣cos (
√
3δ2

8J
t̃)

[
1− 3δ2

8J2
sin2 (

Jt̃√
3
)

]∣∣∣∣∣ . (3.18)

The contrast oscillates with small amplitude (∼ 3δ2/(8J2)) close to 1 at short
time. The period for this fast oscillation is t̃o =

√
3π/J corresponding to

the classical period in the synchronized regime t̃p = 2K(δ/(2J))/J ≈ π/J .
However, this correspondence is not exact in the sense that the oscillating
time of the S = 1/2 systems is not the same as the classical period. At longer
time, the contrast is modulated by an envelope which eventually leads to its
vanishing at an envelope time t̃e ∼ 4Jπ/(

√
3δ2). As in the dephased regime,

this characteristic time scale has no classical equivalent.
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Chapter 3. Quantum dynamics and no sync

Initial decay (t̃i) Oscillating time (t̃o) Envelope time (t̃e)

Dephased regime(J � δ/2) 2
√
2/δ 2π/δ

√
3π/J

Critical point (J = δ/2) 2
√
2/δ 2

√
3π/δ

Synchronized regime (J � δ/2) 2
√
2/δ

√
3π/J 4Jπ/

√
3δ2

Table 3.1: Characteristic time scales for S = 1/2.

At the critical point J = δ/2, the S = 1/2 case is special. The contrast is

C(t̃) =
∣∣∣∣cos3 ( Jt̃√

3
)

∣∣∣∣ = ∣∣∣∣cos3 ( δt̃

2
√
3
)

∣∣∣∣ . (3.19)

It is periodic with the period t̃p =
√
3π/J = 2

√
3π/δ. In either the dephased

or the synchronized regime, the contrast for S = 1/2 system is not peri-
odic unless J/

√
3 and

√
3ω/4 are commensurate, which is rare. Compared

to the classical system, this behavior is also quite unusual. In the classi-
cal systems, the period of the contrast diverges logarithmically as J → δ/2:
t̃p ≈ 2 log(δ/(2|J − δ/2|))/δ.

In passing, we also plot the trajectory of a single spin on the Bloch sphere
as done in the previous chapter. We designate by the trajectory the expec-
tation value of ~S1/S = C1~n1, whose norm (the single spin contrast C1) may
change in time. The expressions for the components of spin 1, normalized
to unity at initial time, read:

〈n̂x
1〉(t̃) = cos ( Jt̃√

3
) cos (

√
3
4
ωt̃) + 4J

3ω
sin ( Jt̃√

3
) sin (

√
3
4
ωt̃),

〈n̂y
1〉(t̃) = 2δ√

3ω
cos ( Jt̃√

3
) sin (

√
3
4
ωt̃),

〈n̂z
1〉(t̃) = 8Jδ

3
√
3ω

sin2 (
√
3
4
ωt̃).

(3.20)

Then in this graphical representation (see Fig. 3.2), it is clear that there are
two mechanisms in the temporal evolution changing the contrast. The first
one is the rotation of the individual spin direction (~n1), which resembles the
classical movement and thus determines the fast oscillation. The other is the
change of the single spin contrast (C1), which is now purely quantum and
prescribes the envelope time. In the dephased regime (J < δ/2, see Fig. 3.2.a)
or the synchronized regime (J > δ/2, see Fig. 3.2.c), the individual spin
would first rotate on the Bloch sphere as in the classical systems with the
fast oscillating time t̃o. Meanwhile, it diminishes in norm, spiraling inside
towards the center region of the Bloch sphere. This induces the diminishment
of the oscillating amplitude in the dephased regime, and the diminishment
of contrast in the synchronized regime. At the envelope time t̃e, the spin
reaches innermost region and the contrast is zero too. After this, the spin
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Figure 3.2: Bloch sphere representation of a single normalized spin ~n1 for
the S = 1/2 system for 0 ≤ t̃ / t̃e. a) J = 0.1δ, b) J = 0.5δ, and c) J = 5δ.

spirals outward and at about 2t̃e, it almost regains its norm though this is
not exact, due to the uncommensurability of the two frequencies. And the
trajectory is not periodic as can be seen in Fig. 3.2.c, where the spin continues
in a different path after 2t̃e, reaching the opposite part of its initial position
on the Bloch sphere. However, at J = δ/2 (see Fig. 3.2.b), the situation is
different. The dynamics becomes periodic and the rotation and the change
of single spin contrast share the same period t̃p = t̃o = 2

√
3π/δ.

3.2 Large spins: numerics

In the previous section, we have seen that the dynamics for the quantum
system S = 1/2 deviates from the classical dynamics solved in the previous
chapter. The classical dynamics demonstrates only two characteristic time
scales while the quantum S = 1/2 system has three. Besides, there is no
synchronization in the quantum S = 1/2 system no matter how large the
exchange interaction is. To understand why the quantum system is different
from the classical system and how the classical limit emerges in the quan-
tum dynamics, we carry out numerical simulations investigating the tempo-
ral evolution of the quantum systems with S larger than 1/2, ranging from 1,
3/2, to 10. The dimension of the Hilbert space of the whole system increases
with the size of spin S as (2S + 1)2 ∼ O(S2).

First, we concentrate on the contrast for S = 10 (see Fig. 3.3). There are
still two regimes where the behavior of the contrast is different, as is the case
in the S = 1/2 system. In addition, the critical point marking the transition
between the two regimes remains J = δ/2. In the dephased regime (J < δ/2,
see Fig. 3.3.a and d), fast oscillations with amplitude large enough to kill the
contrast completely are observed. This behavior is reminiscent of the corre-
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Chapter 3. Quantum dynamics and no sync

Figure 3.3: Contrast as a function of rescaled time in units of 1/δ for a sys-
tem with spin size S = 10. a)Short time behavior in the dephased regime
(J = 0.1δ), the fast oscillation time t̃o is indicated by the black arrow.
b)Short time behavior for the critical point (J = 0.5δ), the envelope time
t̃e is showed. c)Short time behavior in the synchronized regime (J = 5δ),
the fast oscillation time is indicated. d) Long time behavior in the dephased
regime (J = 0.1δ), the envelope time t̃e is indicated. e)Long time behavior
for the critical point (J = 0.5δ). f)Long time behavior in the synchronized
regime (J = 5δ), the envelope time t̃e is indicated.

sponding classical dynamics where the contrast vanish periodically because
of the large oscillation. Besides, the quantum nature of the system manifests
itself by the existence of an envelope which fixes the amplitude of these clas-
sical oscillations with the characteristic time t̃e. In the synchronized regime
(J > δ/2, see Fig. 3.3.c and f), the fast classical oscillation is not large enough
to make the contrast vanish and the contrast oscillates around its initial value
1. However, at longer time, the contrast is instead determined mainly by an
envelope modulating the dynamics, which originates from quantum effects.
At the envelope time t̃e, this envelope brings the contrast to zero. At the
critical point (J = δ/2, see Fig. 3.3.b and e), the contrast falls towards zero
and then stays close to zero oscillating with small amplitude. From these
qualitative pictures, it is evident that the dynamics for larger spin systems
(S = 10) resembles that of the classical one during short time, and reveals
quantum characters at longer times. The dynamics for the S = 10 systems
also shows richer dynamics which has not appeared in the quantum S = 1/2
systems. For example, when J > δ/2 (see Fig. 3.3.f), there is a plateau after
the envelope time t̃e where the contrast stays around zero before restoring to
almost 1 at a much larger time. The time when the contrast almost attains 1
is called approximate recurrence time t̃ar. This new temporal behavior indi-
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Figure 3.4: Contrast for spin size S = 1. The red lines are the classical
trajectories, the dotted blue lines quantum trajectories, and the thikc black
lines the equators. a) Dephased regime (J = 0.1δ), b) critical point (J =
0.5δ), and c) synchronized regime (J = 5δ).

cates two points: a) the dynamics for the quantum systems is multi-scaled,
and b) as the spin size S of the system increases, the number of characteristic
time scales also increases.

It is also constructive to compare the dynamics of quantum systems with
different spin sizes in order to show that the dynamics becomes richer with
the increasing spin size. The contrast for S = 1 system in different regimes
is shown in Fig. 3.4. Comparing Fig. 3.4 with Fig. 3.1, we can infer that
in either the dephased regime or the synchronized regime, the dynamics of
S = 1 system is richer than that of S = 1/2 system in that in addition to
the envelope with a slow modulating effect on the contrast, an envelope of
the envelope exists. The maximum of the contrast in each small envelope
changes with time. And if we look at the difference between the S = 1
(Fig. 3.4) and S = 10 (Fig. 3.3) systems, an evident difference in the be-
havior of the two systems is that there is a plateau where the contrast stays
near zero in the S = 10 system. This justifies our earlier speculation that the
dynamics becomes richer with increasing spin sizes. The critical point, how-
ever, is worth special attention. At this point, the behavior of the contrast
after first attaining zero eludes explanation. The best we can say is that the
quantum dynamics follows roughly the classical one, with a quantum fluc-
tuation, which leads to the noisy contrast after the first zero. In the S = 1/2
case, the quantum fluctuation is so strong that the contrast can restore its
full amplitude after certain time (see Fig. 3.1.b). Or the quantum recurrence
is small because of the small dimension of the Hilbert space and we can ob-
serve it. The amplitude of the quantum fluctuation diminishes when spin
size goes larger. For S = 10, the variation of contrast after the time t̃e is
smaller than 0.1 most of the time as can be seen from Fig. 3.3.e.

Following the same token as for the S = 1/2 system, we can similarly use
the Bloch sphere representation to interpret qualitatively the dynamical pro-
cess. This is done for the S = 10 systems as shown in Fig. 3.5. The behavior
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Figure 3.5: Bloch sphere representation of a single normalized spin for spin
size S = 10. a) Dephased regime (J = 0.1δ), b) critical point (J = 0.5δ), and
c) synchronized regime (J = 5δ).

is also similar to that for S = 1/2, with a more complicated trajectory on
the Bloch sphere. In the dephased regime (Fig. 3.5.a), the movement of the
spin number 1 is determined mainly by the external dephasing magnetic field
which rotates the spin around the z-axis. At the same time, the norm C1(t̃)
decreases as a manifestation of the quantum effects which can be conceived
as the spreading of the wave packet on the Bloch sphere (For a more detailed
discussion on the spreading of the wave packet, see Sec. 3.5). When the spin
approaches the central region of the Bloch sphere at the envelope time (t̃e),
it starts oscillating with small amplitude for a long time before leaving this
region and spiraling out. This long period of small oscillation can be better
understood if we look at the contrast: the plateau between two envelopes
is a clear signal of this staying near the center. The spin continues spiraling
outward until it almost fully restores the amplitude. This time is the ap-
proximate recurrence time (t̃ar). In the synchronized regime (Fig. 3.5.c), the
spin rotates mainly around the direction of the total spin, the x-axis. But
quantum effect diffuses the wave packet on the Bloch sphere, inducing the
diminishment of the norm. And the spin retreats correspondingly toward
the center. The long staying near the center also exists in this regime. And
then the spin rotates outward to−x-axis reaching almost the point (−1, 0, 0)
at the approximate recurrence time t̃ar. At the critical point (Fig. 3.5.b), the
spin first follows the classical trajectory, and then deviates from this trajec-
tory due to quantum fluctuation moving toward the z-axis. After arriving at
the center region, the spin stays there forever, oscillating because of quantum
uncertainty.

After the qualitative understanding, we now begins a more quantitative
study. Since the dynamics is more complicated and a larger number of char-
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Figure 3.6: a)Envelope time as a function of the interaction strength in the
synchronized regime (J > δ). b)Envelope time as a function of the inverse
of interaction strength in the dephased regime (J < δ/2). The blue line is for
S = 1/2, red line S = 1, yellow line S = 5, and green line S = 10.

acteristic time scales, which are essentially quantum time scales, emerge as
the spin size is increased, we confine ourselves to the smallest quantum times
scale: the envelope time t̃e. The first thing to note is that in the synchro-
nized regime (J > δ/2) the envelope time is proportional to the interaction
strength, while in the dephased regime, we have t̃e ∝ 1/J . This is best il-
lustrated with the figure of the envelope as a function of (the inverse of) the
interaction strength for a specific spin size (see Fig. 3.6). It is also obvious
from this figure that the envelope time has a spin size dependence. As S
increases, the envelope time also increases. In the synchronized regime, we
can fit the envelope time as a function of the interacting as

t̃e(J, S) = isyn(S) + fsyn(S)J, (3.21)

which gives the proportionality fsyn(S). Then we can fit this proportionality

fsyn(S) = asyn + bsynS
csyn , (3.22)

and obtain csyn = 0.500928 ≈ 1/2. Therefore, we have

t̃e ∼
√
S
J

δ2
(3.23)

in the synchronized regime. In the dephased regime, we carry out the same
fitting for envelope time

t̃e(J, S) = idep(S) + fdep(S)1/J, (3.24)

and then fit

fdep(S) = adep + bdepS
cdep (3.25)
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Figure 3.7: The slope of the envelope time as a function of spin size S.
a)Dephased regime. b)Synchronized regime. For the meaning of fdep(S) and
fsyn(S), see text.

to obtain cdeph = 0.551247 ≈ 1/2 (see Fig. 3.7). Thus we obtain

t̃e ∼
√
S
1

J
(3.26)

in the dephased regime. In the next section, we will see that t̃e ∝
√
S and

t̃ar ∝ S.

3.3 Effective models for the dynamics

In the previous section, we have seen that the dynamics of the quantum spin
system is very complicated and that there is an increasing number of char-
acteristic time scales as the spin size augments. Instead of trying to gain a
complete understanding of this complex phenomenon, we concentrate on
the two smallest quantum time scales and make some approximations in the
model to capture these two quantum time scales. In the dephased regime
(J < δ/2) and the synchronized regime (J > δ/2), we employ two differ-
ent effective Hamiltonians which give a good agreement with the numerical
results till the first approximate recurrence time. Near the critical point,
however, the underlying physics is not well understood. In this section, we
will use the unrescaled quantities for computational convenience and only
in the end restore the rescaled expressions.

3.3.1 Effective model in the dephased regime

In the dephased regime (J � δ/2), the main mechanism of the dynamics is
the inhomogeneity of the external magnetic field. The exchange interaction
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between the two spins, therefore, can be treated as a small perturbation in a
first place. The unperturbed eigenstates and eigenenergies are

δS
2
(Sz

1 − Sz
2)|m1,m2〉 =

δS
2
(m1 −m2)|m1,m2〉. (3.27)

where we have omitted the quantum number of spin size S for the sake of
simplicity, as there would be no ambiguity. In the basis of the unperturbed
Hamiltonian, the perturbation has the matrix elements

〈m′
1m

′
2|(Sx

1S
x
2 + Sy

1S
y
2 )|m1,m2〉

=
1

2

(√
(S −m1)(S +m1 + 1)(S +m2)(S −m2 + 1)δm′

1,m1+1δm′
2,m2−1

+
√
(S +m1)(S −m1 + 1)(S −m2)(S +m2 + 1)δm′

1,m1−1δm′
2,m2+1

)
(3.28)

and

〈m′
1,m

′
2|Sz

1S
z
2 |m1,m2〉

=m1,m2δm′
1,m1

δm′
2,m2

(3.29)

Then the interaction in the xy-plane has no diagonal element in this basis.
As a first order approximation, we can neglect them and get an effective
Hamiltonian

Hdep =
δS
2
(Sz

1 − Sz
2) + JSS

z
1S

z
2 . (3.30)

In this effective Hamiltonian, not only is the z-component of the total spin
conserved as a result of the rotational invariance around the z-axis, but also
that of each individual spin is also conserved as the Hamiltonian now com-
mutes with the single spin operator in the z-axis, [H,Sz

i ] = 0. The eigenval-
ues and eigenvectors of the effective Hamiltonian are

|ei〉 = |m1,m2〉, Ei =
δS
2
(m1 −m2) + JSm1m2, (3.31)

with i the ensemble of quantum number (m1,m2). These eigenvectors clearly
separate the two spins, i.e., the operator of an individual spin would not
change the state of the other spin when applied onto such an eigenvector.
The initial state is two spins each in a coherent state pointing in the x-axis
direction with the direction angle θ1 = θ2 = π/2, and φ1 = φ2 = 0. A

47



Chapter 3. Quantum dynamics and no sync

coherent state for spin S with the direction angle (θ, φ) can be written as (see
[43, 44])

|θ, φ〉 =
S∑

m=−S

√(
2S

S +m

)
(cos

θ

2
)S+m(sin

θ

2
)S−mei(S−m)φ|S,m〉, (3.32)

where we have used the binomial coefficient(
2S

S +m

)
=

(2S)!

(S +m)!(S −m)!
. (3.33)

Then the initial state can be written as

|Ψ(0)〉 =
(
1

2

)2S S∑
m1,m2=−S

√(
2S

S +m1

)(
2S

S +mm

)
|m1,m2〉. (3.34)

Then at time t, the temporal evolution of the effective Hamiltonian would
lead to the state

|Ψ(t)〉 =
(
1

2

)2S S∑
m1,m2=−S

√(
2S

S +m1

)(
2S

S +mm

)
e−iEit|m1,m2〉, (3.35)

as |m1,m2〉 is nothing but the eigenvectors of the effectiveHamiltonian. Now
we are ready to calculate the expectation of the x-component of the total spin

〈Sx
t 〉(t) = 〈Ψ(t)|Sx

t |Ψ(t)〉 = 〈Ψ(t)|Sx
1 |Ψ(t)〉+ 〈Ψ(t)|Sx

2 |Ψ(t)〉. (3.36)

Leaving the details of calculation to the appendix, we only write the result

〈Sx
1 (t)〉 =S cos (

δSt

2
) cos2S (

JSt

2
) = 〈Sx

2 (t)〉,

〈Sy
1 (t)〉 =S sin (

δSt

2
) cos2S (

JSt

2
) = −〈Sy

2 (t)〉,

〈Sz
1(t)〉 =0 = −〈Sz

2(t)〉.

(3.37)

And the contrast, written in the rescaled quantities, takes the form

Contrast =
∣∣∣∣cos(δSt2

)
cos2S

(
JSt

2

)∣∣∣∣ . (3.38)

In the above result, the first term on the right hand side cos (δSt/2) gives
the fast oscilaltion with the fast oscillation time t̃o = 2π/δ. The second term
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Figure 3.8: The contrast as a function of rescaled time in units of 1/δ
obtained by the effective model and the numerical methods for S = 10,
J = 0.1δ. The dotted blue curve is the numerical result, the thick green the
analytical contrast for the effective model. a)Long time comparison. b)Short
time comparison.

cos2S (JSt/2) gives the approximate recurrence time t̃ar and the envelope time
t̃e. For the approximate recurrence time, we have

cos2S
(
JStar
2

)
= 1 → t̃ar =

2π
√
S(S + 1)

J
. (3.39)

In the limit S � 1, J = const. and δ = const., we get

t̃ar ≈
2πS

J
. (3.40)

For the envelope time, taking the limit S → ∞, J = const., and δ = const.,
we have

cos2S (JSt/2) ≈ e2S ln (1− 1
2

J2
St2

4
) ≈ e−

SJ2
St2

4 , (3.41)

yielding

te ≈
2

JS
√
S

→ t̃e ≈ 2
√
S/J. (3.42)

The first thing to note from the result in Eq. 3.38 is that the agreement
with numerical simulations is excellent till the first approximate recurrence
time t̃ar (see Fig. 3.8). At t̃ar, the analytical contrast obtained above deviates
from the numerical one. The analytical approach has not properly taken
into account the multi-scale dynamics of the system, but has instead focused
on the first time scales. Thus the complex phenomena, such as the envelope
of the envelope, are not obtained. In the analytical solution of the effective
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Figure 3.9: Comparison of components of spin number 1 between the nu-
merical simulations and the effective model as a function of rescaled time
1/δ for S = 10 and J = 0.1δ. The blue lines are the numerics and the green
ones analytical results. a) nx

1 . b) n
y
1. c) n

z
1. Note that the vertical scale for nz

1

is different from those for nx
1 and ny

1.

model, only three time scales are revealed, the fast oscillation time, the en-
velope time, and the first approximate recurrence time. The fast oscillation
time is given as t̃o ∼ 1/δ. This is a reminiscent of the classical period t̃p. The
envelope time in the effective model is t̃e ∼

√
S/J , giving the right behavior

of numerical results. And the first approximate recurrence time takes the
form t̃ar ≈ 2π

√
S(S + 1)/J ≈ 2πS/J . The latter two are purely quantum

time scales.
Another remarkable point is that in this effective model, the z-component

of the individual spin is always zero instead of following the dynamics in the
numerical simulations. However, this difference does not have a great impact
on the dynamics and the other components obtained from the effective model
agree very well with the numerics till the first approximate recurrence time.
This can be understood by noting that the z-component of the individual
spin operator is small. For S = 10, J = 0.1δ, the maximum value of the
〈nz

1(t̃)〉 is about 0.18 (see Fig. 3.9). For a single spin, we can write

C1(t̃) ≈

∣∣∣∣∣cos2S ( Jt̃

2
√
S(S + 1)

)

∣∣∣∣∣ , (3.43)

and

~n1 ≈

cos (δt̃/2)
sin (δt̃/2)

0

 . (3.44)

We can compare the result of this effective model with that of the S = 1/2
case obtained exactly. In the spin S = 1/2 case, if J � δ/2, the contrast can
be written as

C1/2 ≈
∣∣∣∣cos (δt̃/2) cos ( Jt̃√

3
)

∣∣∣∣ .
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And the contrast obtained by the effective model reads

Cdep ≈

∣∣∣∣∣cos (δt̃/2) cos2S ( Jt̃

2
√
S(S + 1)

)

∣∣∣∣∣ . (3.45)

If we take S = 1/2, we recover the exact result for S = 1/2.

3.3.2 Effective model in the synchronized regime

Contrary to the dephased regime, the dominant mechanism of dynamics in
the synchronized regime (J � δ/2) is the exchange interaction. The interac-
tion term in the original Hamiltonian in Eq. 6.1 can be written as

~S1 · ~S2 =
1

2

[(
~S1 + ~S2

)2
−
(
~S1

)2
−
(
~S2

)2]
. (3.46)

The second and third term in the square bracket are constant because of the
identity(

~Si

)2
≡ S(S + 1)1, (3.47)

where 1 is the identity operator. If we neglect the constant terms in the
Hamiltonian, the original Hamiltonian reduces to

H =
δS
2
(Sz

1 − Sz
2) +

JS
2

(
~S1 + ~S2

)2
. (3.48)

The interaction is nothing but the square of the total spin operator ~St ≡ ~S1+
~S2. In the synchronized regime, the inhomogeneity of the external magnetic
field is small and can therefore be treated as a perturbation. The unperturbed
Hamiltonian with only the interaction term takes the form

H0 =
JS
2

(
~St

)2
, (3.49)

and therefore it is more suitable to consider the total spin as a good quantum
number instead of the individual spins. This Hamiltonian has eigenenergies
and eigenvectors

E0
i =

JS
2
S2
t , |E0

i 〉 = |St,m
z
t 〉, (3.50)

with St ∈ [0, 2S] and mz
t ∈ [−St, St]. The eigenvectors are the eigenvectors

of the total spin operator ~St, and are (2St+1)-fold degenerate where St is the
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Figure 3.10: A schematic illustration of the Bloch spheres of the two-spin
system and the corresponding radii. The system of two spins with size S
can be considered as the product of two spheres with radii S. And this is

equivalent to the sum of 2S + 1 spheres with radii 0, 1, . . ., 2S. As a first
approximation, we only consider the Bloch sphere with St = 2S.

quantum number of total spin. It is equivalent to say that the eigenvectors of
the unperturbed Hamiltonian are grouped according to their total spin size.
Each group is on a different Bloch sphere of the total spin.

The initial state is two spin of size S pointing in the x-direction. Using the
total spin basis, this is the state |St = 2S,mtx = 2S〉. This can be seen readily
if we consider transformation between the basis {|mx

1 ,m
x
2〉} and {|St,m

x
t }

for two spins of size S. For the state |St = 2S,mx
t = 2S〉, the only non-

vanishing Clebsch-Gordan coefficient is 〈mx
1 = S,mx

2 = S|St = 2S,mx
t =

2S〉 (where for simplicity, we have omitted the quantum number S1 and S2

in the Clebsch-Gordan coefficient) because of the property of the Clebsch-
Gordan coefficient that 〈mx

1 ,m
x
2 |St,m

x
t 〉 = 0 unless mx

1 + mx
2 = mx

t . Thus
|St = 2S,mx

t = 2S〉 ∝ |mx
1 = S,mx

2 = S〉. And since both |St = 2S,mx
t = 2S〉

and |mx
1 = S,mx

2 = S〉 are normalized, we have |St = 2S,mx
t = 2S〉 =

|mx
1 = S,mx

2 = S〉. Therefore the initial state under consideration is on the
outermost Bloch sphere with St = 2S. The energy difference between this
subspace of the complete Hilbert space and the neighboring subspace with
St = 2S − 1 is

∆E =
JS
2

[
4S − 1 +O(

δS
JS

)

]
, (3.51)
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where the second term comes from the perturbation, should the perturba-
tion theory work. In the synchronized regime and in the large interaction
limit J � δ/2, which is equivalent to JSS � δS, this energy difference is
large and the perturbation from the external field is unlikely to couple the
initial state with states from different Bloch sphere. As a first approxima-
tion, we constrain ourselves to the outermost Bloch sphere and project the
complete Hamiltonian onto this subspace to get an effective Hamiltonian
(see Fig. 3.10).

The perturbation term in the Hamiltonian, when acting on the basis
{|St,m

z
t 〉}, has no diagonal terms. Besides, it only couples two states with

St and St ± 1. The details of these are left to the appendix. With this infor-
mation, the full Hamiltonian, written in the eigenvectors of the unperturbed
Hamiltonian H0, takes the form

H =

(
JS
2
(~St)

2(St = 2S) δS
2
(Sz

1 − Sz
2) (St = 2S, 2S − 1)

δS
2
(Sz

1 − Sz
2)

T (St = 2S, 2S − 1) JS
2
(~St)

2(St 6= 2S)

)
.

(3.52)

In the above symbolical expression, the term JS
2
(~St)

2(St = 2S) designates the
diagonal block of the interaction in the subspace St = 2S, and JS

2
(~St)

2(St 6=
2S) the diagonal block of the interaction in the remaining subspace St 6=
2S. The two off-diagonal terms represent the perturbations. Though the
perturbation also contributes to the diagonal part in the subspace St 6= 2S,
they have no impact on the perturbation calculation. And for simplicity, they
are not written explicitly in the above Hamiltonian.

To carry out the perturbative calculation, we use the projection operator
method developed by Bloch and Horowitz [45], and later with contribution
from Löwdin [46]. Leaving the details of this approach to the appendix, we
can write the Hamiltonian in the subspace St = 2S as follows

Hsyn =
JS
2

(
~St

)2
+ δV, (3.53)

with the perturbation

δV =
δ2S

8S(4S − 1)JS

[
[(2S)21− (Sz

t )
2] . (3.54)

This term is obtained from second order perturbation theory, and can be
considered as describing virtual transitions to the second outermost Bloch
spheres St = 2S − 1. Neglecting the term proportional to the identity oper-
ator, the Hamiltonian reduces to

H ′
eff = − δ2S

8S(4S − 1)JS
(Sz

t )
2 , (3.55)
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Figure 3.11: Contrast as a function of rescaled time in unit of 1/δ. The
analytical results from perturbation theory is compared to the numerics for
S = 10, J = 5δ. The red line is the analytical result and the dotted blue
numerics. a) Long time behavior. b) Short time behavior.

with the eigenvectors and eigenenergies

Ei = − (Sz
t )

2m2, |Ei〉 = |St = 2S,mz
t = m〉. (3.56)

And the contrast takes the form

Contrast(t̃) =

∣∣∣∣∣cos4S−1

(
δ2
√
S(S + 1)t̃

8S(4S − 1)J

)∣∣∣∣∣ , (3.57)

where we have already restored the rescaled quantities. This result gives
good agreement with the numerics, as shown in Fig. 3.11. The envelope
time and first approximate recurrence are well described by this perturbative
calculation.

In the deep synchronized regime (J � δ), and for large spin size S, the
contrast reduces to

Contrast(t̃) ≈ cos
(

δ2t̃

32SJ

)4S

. (3.58)

When S → ∞, we have

C(t) ≈e4S ln (cos ( δ2 t̃
32SJ

))

≈e4S ln (1− 1
2
( δ2 t̃
32SJ

)2)

≈e−2S( δ2 t̃
32SJ

)2

≈e(t̃/t̃e)2 .

(3.59)

Then the envelope time reads

t̃e ≈
16
√
2SJ

δ2
∼

√
S
J

δ2
. (3.60)
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Also, the first approximate recurrence time t̃ar can be obtained from the
approximate expression of contrast in Eq. 3.57 from the requirement

δ2
√
S(S + 1)t̃

8S(4S − 1)J
= π. (3.61)

Then t̃ar is found to be

t̃ar =
32πS2(1− 1/(4S))√

S(S + 1)

J

δ2
≈ 32πS

J

δ2
. (3.62)

However, from Fig. 3.11.b, it is clear that this single sphere approach does
not yield the right short time behavior. The fast oscillating corresponding
to the classical dynamics are completely absent in this approximation. A
remedy to this is to include higher orders in the perturbative calculation or
make a truncation in the Hilbert space, including the matrix elements from
other Bloch spheres.

3.3.3 Improved method in the synchronized regime

In the preceding subsection, we have obtained an effective Hamiltonian with
a perturbation describing the virtual transition between the Bloch spheres
St = 2S and St = 2S − 1. In this subsection, we carry out a truncation in
the Hilbert space and consider the subspace of St = 2S, 2S + 1, treating the
transition exactly but neglecting all the other subspaces. In this subspace,
we can show that the perturbation term δS/2(S

z
1 −Sz

2) only couples the state
|St = 2S,mt〉 and |St = 2S − 1,mt〉. Thus we can first confine ourselves to
the small subspace consisting of the two states. In this small subspace, the
Hamiltonian reads

H =

 JSS
2 δS

2

√
4S2−m2

4S−1

δS
2

√
4S2−m2

4S−1
JSS(S − 2)

 (3.63)

The eigenenergies are

E+
m =JSS(S − 1) +

1

2

√
4J2

SS
2 + δ2S

4S2 −m2

4S − 1
,

E−
m =JSS(S − 1)− 1

2

√
4J2

SS
2 + δ2S

4S2 −m2

4S − 1
.

(3.64)

And the eigenstates are

|e+m〉 = sm|2S,m〉+ cm|2S − 1,m〉,
|e−m〉 = −cm|2S,m〉+ sm|2S − 1,m〉,

(3.65)
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with sm = sinαm, cm = cosαm and

tanαm = δS
√
(4S2 −m2)/(4S − 1)/(Em+ − JSS

2). (3.66)

To first order, we have

E+
m ≈JSS2 +

δ2S(4S
2 −m2)

8JSS(4S − 1)
,

E−
m ≈JSS(S − 2)− δ2S(4S

2 −m2)

8JSS(4S − 1)
,

sm ≈1

cm ≈ δS
4JSS

√
4S2 −m2

4S − 1
.

(3.67)

Then the contrast reads

〈Sx
t 〉(t̃) ≈ 2S cos4S−1

(
δ2
√
S(S + 1)t̃

8S(4S − 1)J

)
+
δ2(S + 1)

16J2
cos

(
2Jt̃√
1 + 1/S

)
.

(3.68)

However, the above result does not satisfy

〈Sx
t 〉(0) = 2S, (3.69)

as it should, because of the second term. We can expand the second term

δ2(S + 1)

16J2
cos

(
2Jt̃√
1 + 1/S

)

=
δ2(S + 1)

16J2

[
1− 2 sin2

(
2Jt̃√
1 + 1/S

)]
.

(3.70)

If we neglect the constant term, then we get

〈Sx
t 〉(t̃)

≈2S cos4S−1

(
δ2
√
S(S + 1)t̃

8S(4S − 1)J

)

− δ2(S + 1)

8J2
sin2

(
2Jt̃√
1 + 1/S

)
.

(3.71)
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Figure 3.12: Contrast as a function of rescaled time in units of 1/δ for S = 10,
J = 5. The red line is the contrast in Eq. 3.71, the blue dots are the result of
numerical simulation.

At time t = 0, the above expression gives correctly

〈Sx
t 〉(0) = 2S. (3.72)

From Fig. 3.12, we can see that the expression in Eq. 3.71 does not fit
exactly to the numerical simulations. We need to improve further. Recall
from the calculation for the S = 1/2 case that, in the synchronized regime
(J � δ/2), the contrast reads

C1/2 ≈

∣∣∣∣∣cos (
√
3δ2

8J
t̃)

[
1− 3δ2

8J2
sin2 (

Jt̃√
3
)

]∣∣∣∣∣ ,
which can be written as

C1/2 ≈

∣∣∣∣∣∣cos4S−1 (
δ2
√
1 + 1

S

8J(4S − 1)
t̃)

1− δ2(1 + 1
S
)

8J2
sin2 (

Jt̃√
1 + 1

S

)

∣∣∣∣∣∣ , with S = 1/2.

(3.73)

In addition, the contrast for the limit S → ∞ (classical system) is

C(t̃) ≈ 1− δ2

8J2
sin2 (Jt̃). (3.74)
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Figure 3.13: Contrast as a function of rescaled time in units of 1/δ for S = 10,
J = 5. The red line is the contrast in Eq. 3.75, the blue dots are the result of
numerical simulation.

t̃i t̃o t̃e t̃ar

Dephased regime (J � δ/2) 2
√
2/δ ≈ 2π/δ 2

√
S/J 2πS/J

Synchronized regime (J � δ/2) 2
√
2/δ ≈

√
1 + 1

S
π/J ≈ 16

√
2SJ/δ2 ≈ 32πSJ/δ2

Table 3.2: Characteristic time scales in the quantum two-spin model.

Then we guess that the contrast should take the form

C ≈

∣∣∣∣∣∣cos4S−1 (
δ2
√

1 + 1
S

8J(4S − 1)
t̃)

1− δ2(1 + 1
S
)

8J2
sin2 (

Jt̃√
1 + 1

S

)

∣∣∣∣∣∣ . (3.75)

From Fig. 3.13, we can see that the guessed result in Eq. 3.75 agrees very
well with the numerical simulations. And we can get the fast oscillation time

t̃o =

√
1 +

1

S

π

J
. (3.76)

Now we summarize the characteristic time scales in the quantum dynam-
ics of the two-spin system in Tab. 3.2.
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3.4. Cumulant expansion method

3.4 Cumulant expansion method

A semiclassical approach to the spin dynamics problem is the cumulant ex-
pansion, developed by Garanin and collaborators (see [40, 41, 42]). In par-
ticular, we follow closely the approach in [42]. The basic idea is to expand
the Heisenberg equations of motions for spin operators, and treat the quan-
tum average as classical average plus a quantum correction which take the
form of cumulants of spin operators.

3.4.1 Direct expansion

For our model, the equations of motion for the first order spin operators
read

d

dt̃
~nt =

δ

2
êz × ~nd,

d

dt̃
~nd =

δ

2
êz × ~nt +

J

2
(~nt × ~nd − ~nd × ~nt) .

(3.77)

In the above equations, the term ~nt × ~nd − ~nd × ~nt, which contains second
order spin operators, needs to be treated quantum mechanically. We define
the second order spin operators as

Mαβ = nα
t n

β
d + nβ

dn
α
t ,

Mαβ
t = nα

t n
β
t + nβ

t n
α
t ,

Mαβ
d = nα

dn
β
d + nβ

dn
α
d .

(3.78)

Then the equations of motion for second order spin operators can be written
as

d

dt̃
Mαβ

t =− δ

2

(
εzαδM

βδ + εzβδM
αδ
)
,

d

dt̃
Mαβ =− δ

2

(
εzαδM

δβ
d + εzβδM

αδ
t

)
+
J

2
εβγδT

αγδ
t ,

d

dt̃
Mαβ

d =− δ

2

(
εzαδM

δβ + εzβδM
δα
)
+
J

2

(
εαγδT

βγδ
d + εβγδT

αγδ
d

)
,

(3.79)

where we have used the anti-symmetric Levi-Civita symbol εαβγ and have
defined the third order operators

Tαβδ
t =Sα

t M
βδ +MβδSα

t ,

Tαβδ
d =Sα

dM
βδ +MβδSα

d .
(3.80)
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And the equations of motion for the third order spin operators need also to
be calculated using Heisenberg equations, which in turn leads to fourth order
operators. Continuing this approach, we would obtain an infinite series of
coupled equations of motion. However, we will not calculate higher orders
and truncate the equations of motion at second orders, which gives an error
of the order S−1. At first order, we will recover the classical limit and the
second order cumulants are the minimum to take into account the quantum
corrections. The expectation values are

d

dt̃
〈nα

t 〉 =− δ

2
εzαβ〈nβ

d〉,

d

dt̃
〈nα

d 〉 =− δ

2
εzαβ〈nβ

t 〉+
J

2
εαβγ〈Mβγ〉,

d

dT̃
〈Mαβ

t 〉 =− δ

2

(
εzαδ〈Mβδ〉+ εzβδ〈Mαδ〉

)
,

d

dT̃
〈Mαβ〉 =− δ

2

(
εzαδ〈M δβ

d 〉+ εzβδ〈Mαδ
t 〉
)
+
J

2
εβγδ〈Tαγδ

t 〉,

d

dT̃
〈Mαβ

d 〉 =− δ

2

(
εzαδ〈M δβ〉+ εzβδ〈M δα〉

)
+
J

2

(
εαγδ〈T βγδ

d 〉

+εβγδ〈Tαγδ
d 〉

)
,

(3.81)

We define the cumulants of first and second order as follows

mα
t =〈nα

t 〉,
mα

d =〈nα
d 〉,

mαβ =
1

2
〈Mα〉 −mα

tm
β
d ,

mαβ
t =

1

2
〈Mα

t 〉 −mα
tm

β
t ,

mαβ
d =

1

2
〈Mα

d 〉 −mα
dm

β
d .

(3.82)

From the above definition, we can see that the second order cumulants mαβ
t

and mαβ
d are symmetric. It has been shown that the n-th order cumulants

for the spin operators are of the order S1−n[41, 47], negligible for large spin
size S. Therefore, if we truncate at terms of order O(S−2), we can expand
the expectation values for third order operators as

〈Tαβδ
t 〉 ≈4

(
mα

tm
β
tm

δ
d +mαβ

t mδ
d +mαδmβ

t +mβδmα
t

)
,

〈Tαβδ
d 〉 ≈4

(
mα

dm
β
tm

δ
d +mβαmδ

d +mβδmα
d +mαδ

d m
β
t

)
.

(3.83)
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3.4. Cumulant expansion method

Figure 3.14: The numerical results of contrast as a function of rescaled time
(in units of 1/δ) obtained from the cumulant expansion equations of motion.
a) S = 10, J = 0.1δ. b) S = 10, J = 5δ. The blue line is the results of exact
diagonalization. The green one is the solution of the cumulant equations
obtained from Eq. 3.84.

Then the equations of motion for operators reduce to

d

dt̃
mα

t =− δ

2
εzαβm

β
d ,

d

dt̃
mα

d =− δ

2
εzαβm

β
t + Jεαβγ

(
mγ

dm
β
t +mβγ

)
,

d

dt̃
mαβ

t =− δ

2

(
εzαγm

βγ + εzβγm
αγ
)
,

d

dt̃
mαβ =− δ

2

(
εzαγm

γβ
d + εzβγm

αγ
t

)
+ Jεβγδ

(
mγ

tm
αδ +mδ

dm
γα
t

)
,

d

dt̃
mαβ

d =− δ

2

(
εzαγm

γβ + εzβγm
γα
)
+ J

[
εαγδ

(
mγ

tm
βδ
d +mδ

dm
γβ
)

+εβγδ
(
mγ

tm
αδ
d +mδ

dm
γα
)]
,

(3.84)

which form a closed set of equations. The initial conditions are

mα
t (0) =

2Sδαx√
S(S + 1)

,

mα
d (0) =0,

mαβ(0) =0,

mαβ
t (0) =

1

S + 1
(δαyδβy + δαzδβz) ,

mαβ
d (0) =

1

S + 1
(δαyδβy + δαzδβz) .

(3.85)

We can solve the above equations of motion numerically. The results are
shown in Fig 3.14. From the results, we can see that in the dephased regime
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(i.e. J = 0.1δ), the contrast obtained by the cumulant expansion agrees well
with the one obtained by exact diagonalization before diverging to infinity
at approximately the envelope time. In the opposite regime, however, the
cumulant expansion leads to unphysical result at very short time (t̃ ∼ 2.5/δ).
This clearly indicates that the cumulant expansion to second order does not
describe correctly the real physics of the synchronized regime. We need to
either expand further or find other physical constraints that would give a
more physically consistent set of equations. If we go to further orders of
cumulants, the number of equations increases exponentially, which is unde-
sirable.

3.4.2 Improved cumulant expansion

As an alternative approach, we seek the physical constraints that might lift
the irregular behavior of the solution in the large interaction regime. To do
so, we first note that the total energy of the system is conserved since the
Hamiltonian of the system is independent of time. Then due to the rotation
symmetry around the z-axis, 〈nz

t (t̃)〉 is a constant of motion. Besides, for the
two individual spins, we have

〈~ni〉 = 1. (3.86)

These constraints lead to

E =

〈
δ

2
nz
d +

J

4

(
(~nt)

2 − (~nd)
2
)〉

= J
S

S + 1
,

〈nz
t 〉 = 0,

〈(nz
t )

2〉 = 0,

〈~nt · ~nd + ~nd · ~nt〉 = 0,

〈(~nt)
2 + (~nd)

2〉 = 4.

(3.87)

In the cumulant language, the above constraints are equivalent to

(mx
d)

2 + (my
d)

2 + (mz
d)

2 +mxx
d m

yy
d +mzz

d − δ

J
mz

d =
2

S + 1
,

mz
t = 0,

mzz
t =

1

S + 1
,

mx
tm

x
d +my

tm
y
d +mz

tm
z
d +mxx +myy +mzz = 0,

(mx
t )

2 + (my
t )

2 + (mz
t )

2 +mxx
t +myy

t +mzz
t +

δ

J
mz

d = 2
2S + 1

S + 1
.

(3.88)
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Now we need some supplementary information that does not come from
the physical argument, but rather from the numerical simulations by exact
diagonalization. First of all, in the numerical simulation, the first order op-
erators have the property that

my
t (t̃) = 0,

mx
d(t̃) = 0,

(3.89)

because 〈nx
1〉 = 〈nx

2〉, 〈n
y
1〉 = −〈ny

2〉, and 〈nz
1〉 = −〈nz

2〉. Then the constraints
in Eq 3.88 reduce to

(my
d)

2 + (mz
D)

2 +mxx
D +myy

d +mzz
d =

2

S + 1
,

mz
t = 0,

mz
t z =

1

S + 1
,

mxx +myy +mzz = 0,

(mx
t )

2 +mxx
t +myy

t +
δ

J
mz

d =
4S + 1

S + 1
.

(3.90)

The fact that mx
d ≡ 0 leads to

d

dt̃
mx

d =
J

2
(myz −mzy) ≡ 0, (3.91)

since my
t ≡ mz

t ≡ 0. Besides, exact diagonalization simulation also shows
that for the second order cumulants, we have

myz(t̃) = 0,

mzy(t̃) = 0,

mxx(t̃) = 0,

myy(t̃) = 0.

From these, we can show that

mxy
t = 0,

mxz
t = 0,

mxy
d = 0,

mxz
d = 0.

(3.92)
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So finally, the equations of motion with the second order cumulants reduce
to 14 coupled differential equations

d

dt̃
mx

t =− 1

2
my

d,

d

dt̃
my

d =
δ

2
mx

t + J(mzx −mxz)− Jmz
dm

x
t ,

d

dt̃
mz

d =Jm
y
dm

x
t + J(mxy −myx),

d

dt̃
mxx

t =−mxy,

d

dt̃
myy

t =δmyz,

d

dt̃
myz

t =
δ

2
mzx,

d

dt̃
mxx

d =− δmyx + 2J(mz
dm

yx −my
dm

zx),

d

dt̃
myy

d =δmxy − 2J(mz
dm

xy −my
dm

zx),

d

dt̃
mzz

d =2J(my
dm

xz +mx
tm

yz
d ),

d

dt̃
myz

d =
δ

2
mxz + J [my

dm
xy −mz

dm
xz +mx

t (m
yy
d −mzz

d )],

d

dt̃
mxy =− δ

2
(myy

d −mxx
t ) + J(−mz

dm
xx
t −mx

tm
xz),

d

dt̃
myx =

δ

2
(mxx

d −myy
t ) + J(mz

dm
yy
t −my

dm
yz
t ),

d

dt̃
mxz =− δ

2
myz

d + J(my
dm

xx
t +mx

tm
xy),

d

dt̃
myx =− δ

2
myz

t + J(mz
dm

yz
t −my

dm
zz
t ),

(3.93)

which form a closed set of equations. The numerical solution of the above
equations is shown in Fig. 3.15. The improved cumulant expansion does not
diverge, which compares favorably to the original cumulant expansion. We
can also note that in the dephased regime (J = 0.1δ), the contrast obtained
from the improved cumulant expansion agrees well with that of the exact
diagonalization simulation until the envelope time where the contrast of the
improved cumulant begins reviving earlier, the same as the previous cumu-
lant method. In the synchronized regime (J = 5δ), the improved cumulant
expansion first follows well the quantum dynamics and then at a certain time
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Figure 3.15: Contrast as a function of rescaled time in units of 1/δ. a) S = 10,
J = 0.1δ. b) S = 10, J = 5δ. The blue line is the exact diagonalization, the
green one the improved cumulant expansion from Eq. 3.93.

(t̃ ∼ 50/δ), the contrast relaxes to zero and stays close zero oscillating with
small amplitude.

3.4.3 Comments on the cumulant expansion

Before proceeding to another method, we need to make some remarks. First,
in [41, 47] it is argued that the nth-order cumulants should be of the order
S1−n. But we have seen that the cumulants expansion failed to describe the
envelope behavior, which is of the order

√
S. One possible explanation is

that since we have only simulated a system of spin size S = 10, and that this is
not large enough to compensate the possible prefactors. To see this, we need
to compare the cumulant expansion with exact diagonalization for systems
with larger spins. Another possible explanation is that the system considered
by Kladko et. al.[41] and Garanin et. al.[47] is at equilibrium, or at least
in adiabatic limit, where the state vector is not far away from a coherent
state. The spin components in their system can be characterized by a refer-
ence frame following the direction of external field. In our model, however,
the effective magnetic field acting on each spin depends on the dynamics of
the whole system, and thus may not follow their conclusion. This also in-
dicates the answer to the question why the cumulant expansion method has
worse performance in the synchronized regime. In the synchronized regime,
the exchange interaction between the two spins are very strong and plays a
dominant role in the temporal evolution of the system. Unlike the external
magnetic field, which preserves a coherent spin state, the interaction between
the two spins generates correlation between the two spins and deforms the
wave packet of the two spins such that they are not in coherent states any-
more. The stronger the interaction, the faster the deviation of the spin states
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from coherent states. Therefore, the cumulant expansion does not apply in
strongly interacting systems.

Second, if the conclusion in [41, 47] is correct for our model, we may
still fail to get the correct envelope time behavior. This is due to the fact in
cumulant expansion, we get a series of the form∑

S

anS
−n, (3.94)

but the envelope time t̃e ∝
√
S, which can not be approximated by such a

series.
Third, the cumulant method may not be self-contained when treating

certain time dependent systems or systems out of equilibrium. To get the
right behavior, certain quantum information is needed. For example, in the
article [42], Garanin used a technique similar to moving average tricks in
data analysis and we have used some complementary information from our
quantum simulations. This does not invalidate the cumulant expansion, but
makes it a less appealing approach since no universal methods are found and
we need to complement the method with other approaches.

However, as we can see from the cumulant expansion method, the S →
∞ limit gives the classical dynamics. For 1 � S < ∞, the correction of
order 1/S to the classical dynamics destroys the synchronization in the syn-
chronized regime.

3.5 Phase-space method

In the previous sections, we have seen that the quantum dynamics of the
two-spin problem demonstrates considerable differences from the classical
model. New characteristic time scales emerge which do not have classical
equivalents. In this section, we will try to understand the origin of the quan-
tum corrections to the classical dynamics. In order to achieve this goal, we
need to carry out analysis of the quantum phase space, which is described
by the quasiprobability functions. The phase-space approach in quantum
mechanics was initially used in the quantum optics, where it was applied to
the Dicke model using the quasiprobability distribution P (θ, φ, t) , the diag-
onal weighting function of the density operator, by Narducci et al[48]. And
then Gilmore et al developed a similar approach using the Husimi Q func-
tion and compared the two approaches, arriving at the conclusion that the
two functions are related by a convolution integral[49].

In the literature, there are mainly three types of quasiprobability func-
tions used in the description of quantum dynamics. In the following, we
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define them with respect to a single spin. But generalization to two spins
is evident. For a review on the quasiprobability functions, see [50, 51] and
references therein. The quasiprobability function is based on the density op-
erator ρ̂(t) which describes the statistical ensemble of the quantum system.
But since we do not consider dissipation effects and work at zero tempera-
ture, the density operator is given by

ρ̂(t) = |Ψ(t)〉〈Ψ(t)|, (3.95)

where |Ψ(t)〉 is the state vector.
The first one of the three quasiprobability functions is the Wigner func-

tion, introduced by Eugene Wigner[52] as a quantum analog to the classi-
cal phase space density. The generalization to spin systems was done by
Agarwal[53] and Dowling et al[54]. The Wigner function W is defined as

W (θ, φ, t) =
2S∑
l=0

l∑
m=−l

ρlm(t)Y
m
l (θ, φ), (3.96)

with (θ, φ) specifying the coordinate on the Bloch sphere, Y m
l (θ, φ) the spher-

ical harmonic functions, and ρlm(t) = Tr(ρ̂(t)T̂m†
l ) the reduced density op-

erator. In the preceding expression, we have used the multipole operator

Tm
l ≡

S∑
n,n′=−S

(−1)S−n
√
2l + 1

(
S l S
−n m n′

)
|S, n〉〈S, n′|, (3.97)

where we have used the Wigner 3j symbol.
Another quasiprobability function is the Husimi function (see [55] ) de-

fined as

Q(θ, φ, t) ≡ 〈θ, φ|ρ̂(t)|θ, φ〉, (3.98)

where ρ̂(t) is the density operator at time t.
The third one is the Glauber-Sudarshan distribution P (θ, φ, t) defined as

(see [56, 57])

ρ̂(t) =

∫
P (θ, φ, t)|θ, φ〉〈θ, φ|dµ(θ, φ), (3.99)

with dµ(θ, φ) being the measure of the phase space.
In practice, the Wigner function is used less often because it is not defi-

nite positive and gives negative values at some region under certain circum-
stances, which makes it a bad probability although the negativity points di-
rectly to quantum effects. Besides, Wigner function can also change abruptly
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in certain region, rendering it more difficult to compute. TheGlauber-Sudarshan
distribution shares the same problems. On the contrary, the Husimi func-
tion is semi definite positive and can be viewed as an average of the Wigner
function in a small cell of phase space of the surface ~, and thus behaves
more benignly. Consequently, in the following, we will use this function as
the desired quasiprobability and derive the equation of motion for it. This
method has been first proposed by Brif and Mann [58], and then developed
by Trimborn et al [59, 60] in the system of Bose-Einstein condensate trapped
in a double well potential. This approach has also been applied to the Dicke
model by Altland and Haake [61, 62].

Before proceeding, we need to use a different parametrization of the co-
herent states. Instead of using the angle specifying the coordinate on the
Bloch sphere, we use the stereographic projection on the complex plane of
the points on the Bloch sphere. The complex parameter is defined as

z = tan
θ

2
eiφ, (3.100)

with (θ, φ) the coordinate of the end point of the spin state on the Bloch
sphere. This is the stereographic projection of the spin vector on the equator
complex plane from the south pole (see Fig. 3.16). The points on the north
hemisphere are projected onto the region |z| < 1, while the points on the
south hemisphere are projected onto the region |z| > 1. The south pole is a
singular point in this projection and is projected to ∞.

Using this parametrization, the spin coherent state is now expressed as

|z〉 = |θ, φ〉 =
S∑

m=−S

√(
2S

S +m

)
zS−m

(1 + |z|2)S
|S,m〉. (3.101)

Then the Husimi function for a single spin is

Q(z, t) ≡ 〈z|ρ̂|z〉, (3.102)

which is just a change of variable. Note that, since the Husimi function is
a quasiprobability function and follows most normal properties of a proba-
bility distribution function, if we want to change the variables, we need to
introduce a corresponding Jacobian as a prefactor. In the above expression,
this is not done explicitly, because we will normalize the obtained function
to unit. But later, when deriving the equation of motion for this quasiprob-
ability function for the canonical variables, we should not forget this factor.
Otherwise, the obtained equation of motion would not take the correct form.

Another element needed to derive the equation ofmotion for the quasiprob-
ability function is the differential operator resulting from the action of an
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3.5. Phase-space method

Figure 3.16: Schematic illustration of the stereographic projection used to
parametrize the Bloch sphere of unit radius. A spin vector pointing in the
direction (sin θ cosφ, sin θ sinφ, cos θ) is projected onto the equator plane at
z = tan (θ/2)eiφ.

arbitrary Hermitian operator on the coherent state projector. This is in
analogy with the classical phase-space distribution theory and the algebra
is called coherent state D algebra (see [43]). There are different types of D
algebra defined as

B|Ω〉 = Dk(B)|Ω〉,
〈Ω|B = 〈Ω|Db(B),

B|Ω〉〈Ω| = Dl(B)|Ω〉〈Ω|,
|Ω〉〈Ω|B = |Ω〉〈Ω|Dr(b),

(3.103)

where |Ω〉 is a generic coherent state and B a Hermitian operator. From the
above definitions, it is clear that we have the relations

Dk(b) = [Db(b)]∗,

Dr(b) = [Dl(b)]∗.
(3.104)
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Besides, we also have

|Ω〉〈Ω|B = |Ω〉〈Ω|Dr(b) = Dr(b)|Ω〉〈Ω| = [Dl(b)]∗|Ω〉〈Ω|. (3.105)

For our purpose, to derive the equation of motion for the Husimi function,
it is more suitable to use the Dl algebra. And the Dl algebra for the spin
coherent state in the z representation reads (for a detailed derivation, see
Sect. 3.8)

S+|z〉〈z| =
(
−z2∂z + 2S

z

1 + |z|2

)
|z〉〈z|,

S−|z〉〈z| =
(
∂z + 2S

z∗

1 + |z|2

)
|z〉〈z|,

Sz|z〉〈z| =
(
−z∂z + S

1− |z|2

1 + |z|2

)
|z〉〈z|.

(3.106)

And the right action of the spin operators are

|z〉〈z|S+ =

(
−(z∗)2∂z∗ + 2S

z∗

1 + |z|2

)
|z〉〈z|,

|z〉〈z|S− =

(
∂z∗ + 2S

z

1 + |z|2

)
|z〉〈z|,

|z〉〈z|Sz =

(
−z∗∂z∗ + S

1− |z|2

1 + |z|2

)
|z〉〈z|.

(3.107)

Now we are in the position to derive the equation of motion for the
quasiprobability function of the two-spin system. The Husimi function for
our two-spin model is defined as

Q(z1, z2, t) ≡ C(z1, z2)〈z1, z2|ρ̂(t)|z1, z2〉, (3.108)

with the coherent state |z1, z2〉 = |z1〉 ⊗ |z2〉 and the time-independent nor-
malization factor

C(z1, z2) =
(2S + 1)2

π2(1 + |z1|2)2(1 + |z2|2)2
.
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3.5. Phase-space method

Then the equation of motion for this function can be derived as

dtQ(z1, z2, t)

=C(z1, z2)〈z1, z2|dtρ̂|z1, z2〉
=C(z1, z2)〈z1, z2|(−i)[H, ρ̂]|z1, z2〉
=− iC(z1, z2)(〈z1, z2|Hρ̂|z1, z2〉 − 〈z1, z2|ρ̂H|z1, z2〉)

=− iC(z1, z2)

(∑
n

〈z1, z2|H|n〉〈n|ρ̂|z1, z2〉 −
∑
n

〈z1, z2|n〉〈n|ρ̂H|z1, z2〉

)

=− iC(z1, z2)

(∑
n

〈n|ρ̂|z1, z2〉〈z1, z2|H|n〉 −
∑
n

〈n|ρ̂H|z1, z2〉〈z1, z2|n〉

)
=− iC(z1, z2)Tr (ρ̂[|z1, z2〉〈z1, z2|, H])

=− 2Im[Dl(Ω)]Q(z1, z2, t).

(3.109)

After some algebra, we obtain the equation of motion for the quasiprob-
ability Husimi function as

dtQ(z1, z2, t) = (Ldrift + Ldiff )Q(z1, z2, t) (3.110)

with the drift term

Ldrift

=− i
δS
2
(z1∂z1 − z2∂z2) + iJSS

(
z2

1 + |z2|2
− z∗2

1 + |z2|2
z21

−1− |z2|2

1 + |z2|2
z1

)
∂z1 + iJSS

(
z1

1 + |z1|2
− z∗1

1 + |z1|2
z22

−1− |z1|2

1 + |z1|2
z2

)
∂z2 + c.c.

(3.111)

and the diffusion term

Ldiff = −iJS
2

(
z21 − 2z1z2 + z22

)
∂2z1z2 + c.c. (3.112)

The above equation of motion for Husimi function takes the form of a
Fokker-Planck equation. The drift term corresponds to the classical move-
ment, and the diffusion is the quantum correction, as we will see later.

In the following, we demonstrate that the drift term does indeed corre-
spond to the classical movement. To this end, we need to first reduce the
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Chapter 3. Quantum dynamics and no sync

drift term to its standard form and then change to canonical variable repre-
sentation. But before that, we need to express the unrescaled quantities in
the rescaled quantities. Using the relations

δ =
δS√

S(S + 1)
,

J =
JS

S(S + 1)
,

(3.113)

and neglecting the difference between S and S + 1 (since we consider the
semiclassical limit), the equation of motion for the Husimi function reduces
to

dt̃Q(z1, z2, t̃) =
(
L̃drift + L̃diff

)
Q(z1, z2, t̃), (3.114)

with the drift term

L̃drift

=− i
δ

2
(z1∂z1 − z2∂z2) + iJ

(
z2

1 + |z2|2
− z∗2

1 + |z2|2
z21

−1− |z2|2

1 + |z2|2
z1

)
∂z1 + iJ

(
z1

1 + |z1|2
− z∗1

1 + |z1|2
z22 −

1− |z1|2

1 + |z1|2
z2

)
∂z2

+ c.c.

(3.115)

and the diffusion time

L̃diff

=− i
J

2S

(
z21 − 2z1z2 + z22

)
∂2z1z2 + c.c.

(3.116)

From the above expression, we can already see that the quantum effects, i.e.
the diffusion term, is negligible in the semiclassical limit S → ∞, J = Const.
and δ = Const..

The first drift term originates from the inhomogeneous magnetic field,
and can be written as

− i
δS
2
(z1∂z1 − z2∂z2)

=− i
δ

2
(∂z1z1 − ∂z2z2) .

(3.117)
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The second term is

iJ

(
z2

1 + |z2|2
− z∗2

1 + |z2|2
z21 −

1− |z2|2

1 + |z2|2
z1

)
∂z1

=iJ∂z1

(
z2

1 + |z2|2
− z∗2

1 + |z2|2
z21 −

1− |z2|2

1 + |z2|2
z1

)
+ iJ

(
2

z1z
∗
2

1 + |z2|2
+

1− |z2|2

1 + |z2|2

)
.

(3.118)

Similarly, the third term is

iJ

(
z1

1 + |z1|2
− z∗1

1 + |z1|2
z22 −

1− |z1|2

1 + |z1|2
z2

)
∂z2

=iJ∂z2

(
z1

1 + |z1|2
− z∗1

1 + |z1|2
z22 −

1− |z1|2

1 + |z1|2
z2

)
+ iJ

(
2

z∗1z2
1 + |z1|2

+
1− |z1|2

1 + |z2|2

)
.

(3.119)

As a result, the drift term can be written as

L̃drift

=i∂z1

[
−δ
2
z1 + J

(
z2

1 + |z2|2
− z∗2

1 + |z2|2
z21 −

1− |z2|2

1 + |z2|2
z1

)
+ i∂z2

[
δS
2
z2 + J

(
z1

1 + |z1|2
− z∗1

1 + |z1|2
z22 −

1− |z1|2

1 + |z1|2
z2

)]
+ c.c.

(3.120)

Now we are in the position to change the variables to the canonical vari-
ables (cos θ1, φ1, cos θ2, φ2). From the transformation rule in Eq. 3.100

zi = tan
θi
2
eiφi ,

we can get the transformation rule for the derivatives

∂zi = −1

2

[
∂ci(1 + ci)

√
1− c2i + i∂φi

√
1 + ci
1− ci

]
e−iφi+

√
1− c2i e

−iφi . (3.121)

The above result has been found in [62], and we have followed their conven-
tion using ci to denote cos θi. A detailed derivation of the above expression
is given in Sect. 3.8. However, given the Jacobian arising from the transfor-
mation (zi, z

∗
i ) → (ci, φi), we should use

∂zi → −1

2

[
∂ci(1 + ci)

√
1− c2i + i∂φi

√
1 + ci
1− ci

]
e−iφi . (3.122)
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Then the drift term in the equation of motion for the Husimi function can
be expressed in canonical variables as

L̂drift = ∂c1dc1 + ∂φ1dφ1 + ∂c2dc2 + ∂φ2dφ2 , (3.123)

with

dc1 = J sin θ1 sin θ2 sin (φ2 − φ1),

dφ1 = −δ
2
− J

[
cos θ2 − sin θ2 cos (φ1 − φ2)

cos θ1
sin θ1

]
,

dc2 = J sin θ1 sin θ2 sin (φ1 − φ2),

dφ2 =
δ

2
− J

[
cos θ1 − sin θ1 cos (φ1 − φ2)

cos θ2
sin θ2

]
.

(3.124)

Then according to the standard theory of stochastic processes (see for exam-
ple [63, 64]), for a drift term of the form

− ∂

∂xi
[Ai(x)] , (3.125)

the corresponding evolution equations are

dxi
dt

= Ai(x). (3.126)

It is clear that the evolution equations for the canonical variables (cos θi, φi)
correspond to the classical dynamics:

d

dt̃
cos θ1 =J sin θ1 sin θ2 sin (φ1 − φ2),

d

dt̃
φ1 =

δ

2
+ J

[
cos θ2 − sin θ2 cos (φ1 − φ2)

cos θ1
sin θ1

]
,

d

dt̃
cos θ1 =J sin θ1 sin θ2 sin (φ2 − φ1),

d

dt̃
φ1 =− δ

2
+ J

[
cos θ1 − sin θ1 cos (φ1 − φ2)

cos θ2
sin θ2

]
,

(3.127)

the same as the classical dynamics of the two-spin model discussed in the
previous chapter.

3.5.1 Remarks on the phase-space method

In summary, we have shown that the evolution of the Husimi function which
determines uniquely the system can be described with a Fokker-Planck type
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equation in the limit S → ∞. In the semiclassical limit, the drift term reflects
the underlying classical dynamics while the diffusion term is the quantum
correction to this system. The Fokker-Planck equation has been extensively
studied and we can find well developed method to solve this problem.

The advantage of the phase-space approach is that the obtained equation
of evolution can be solved numerically to obtain the correct dynamics in the
semiclassical limit, which is the future direction of this work. Besides, if
we use exact diagonalization to simulate the system, the dimension of the
Hilbert space is (2S+1)2, increasing fast when considering the semiclassical
limit S → ∞. With the phase-space method, this is no longer a problem,
because the phase space of the system is always SU(2)⊗ SU(2).

The quantum aspects manifest themselves in three points. First, the rescal-
ing factor is different from that of the classical dynamics. Thus the drift term
is equivalent to the classical dynamics only in the limit S → ∞ such that we
can neglect the difference between

√
S(S + 1) and S. Second, there is a dif-

fusion term in addition to the drift term, which is purely of quantum origin.
Third, the initial state in the quantum dynamics is a Gaussian wave packet
in the phase space. In the classical dynamics, the initial state is a Dirac point.

3.6 Summary

In this chapter, we have studied the quantum model which has the same
Hamiltonian and initial conditions as the classical problem we considered
in the preceding chapter. Unlike the classical system, in the quantum sys-
tem, there is no synchronization transition in the strict sense for finite spin
size S. Besides, we have seen that the dynamics of the quantum system is
characterized by a multi-scale behavior. The smallest time scales correspond
to the classical time scales, and the other time scales are purely of quantum
origin as they have an explicit dependence on the size of the spin. We then
concentrated on the smallest quantum time scales and derived two effective
models which describe correctly the fast oscillation time t̃o, the envelope time
t̃e, and the t̃ar in the dephased and synchronized regimes respectively. How-
ever, near the critical point J = δ/2, the dynamics is very complicated and
eludes simple explanation.

In addition, we have used the cumulant expansion method, which is basi-
cally a semiclassical approach, to study the quantum corrections. The results
obtained by the direct expansion diverge and we are forced to use an im-
proved version combining information obtained from quantum simulations.
The improved method works more or less well in the dephased regime, but
deviates from the exact result quickly in the synchronized regime.
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Chapter 3. Quantum dynamics and no sync

Another promising approach we considered is the phase-space method,
originating from quantum optics. This work is not finished yet, but we can
see clearly that it separates the classical movement and the quantum cor-
rections in the evolution equation of the quasiprobability function, which
determines the state vector. Since this is an approach in the phase space, the
critical point, which is shown to be a separatrix in the classical dynamics,
can also be included in this approach. The separatrix in other systems has
been studied with the phase-space method already in [65, 66].

3.7 Appendix: Details of calculation for the effec-
tive models

In Sec. 3.3, the results are given without the details of calculation. Here, we
write explicitly the omitted intermediate steps.

3.7.1 Dephased regime (J � δ/2): {|m1,m2〉} basis

In the dephased regime, the terms like 〈Ψ(t)|Sx
1 |Ψ(t)〉 and 〈Ψ(t)|Sx

2 |Ψ(t)〉 in
Eq. 3.36 can be obtained as follows

〈Sx
1 〉(t)

=〈Ψ(t)|Sx
1 |Ψ(t)〉

=

(
1

2

)4S ∑
m′

1,m
′
2,m1,m2

√(
2S

S +m′
1

)(
2S

S +m′
2

)(
2S

S +m1

)(
2S

S +m2

)
× exp [i (E ′

i − Ei) t]〈m′
1,m

′
2|Sx

1 |m1,m2〉

(3.128)

The term 〈m′
1,m

′
2|Sx

1 |m1,m2〉 can be written as

〈m′
1,m

′
2|Sx

1 |m1,m2〉

=
1

2

(
〈m′

1,m
′
2|S+

1 |m1,m2〉+ 〈m′
1,m

′
2|S−

1 |m1,m2〉
)

=
1

2
δm2,m′

2

(√
(S −m1)(S +m1 + 1)δm′

1,m1+1

+
√

(S +m1)(S −m1 + 1)δm′
1,m1−1

)
.

(3.129)
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Substituting back into the expression for 〈Sx
1 〉(t), and summing overm′

1 and
m′

2, we get

〈Sx
1 〉(t)

=

(
1

2

)4S+1 ∑
m1,m2

(
2S

S +m2

)(√(
2S

S +m1 + 1

)(
2S

S +m1

)
×
√
(S −m1)(S +m1 + 1) exp

[
i

(
δS
2

+ JSm2

)
t

]
+

√(
2S

S +m1 − 1

)(
2S

S +m1

)√
(S +m1)(S −m1 + 1)

× exp
[
−i
(
δS
2

+ JSm2

)
t

])
.

(3.130)

For the sum over m1, the first term in the bracket can be calculated as

∑
m1

√(
2S

S +m1 + 1

)(
2S

S +m1

)√
(S −m1)(S +m1 + 1)

=
∑
m1

√(
2S

S +m1 + 1

)(
2S

S −m1

)√
(S −m1)(S +m1 + 1)

=
∑
m1

2S

√(
2S − 1
S +m1

)(
2S − 1

S −m1 − 1

)
=
∑
m1

2S

(
2S − 1
S +m1

)
=22SS.

(3.131)

Similarly, the second term in the bracket yields

∑
m1

√(
2S

S +m1 − 1

)(
2S

S +m1

)√
(S +m1)(S −m1 + 1)

=22SS.

(3.132)
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And the sum over m2 yields∑
m2

(
2S

S +m2

)
exp (iJSt)

=
∑
m2

(
2S

S +m2

)
exp

(
i
JSt

2
(S +m2)

)
exp

(
i
JSt

2
(S −m2)

)

=22S
(
cos
(
JSt

2

))2S

.

(3.133)

Then

〈Sx
1 〉(t) = S cos (

δSt

2
) cos2S (

JSt

2
). (3.134)

〈Sx
2 〉(t) can be calculated the same way and the result is

〈Sx
2 〉(t) = S cos (

δSt

2
) cos2S (

JSt

2
). (3.135)

Therefore, we obtain

〈Sx
t 〉(t) = 2S cos (

δSt

2
) cos2S (

JSt

2
). (3.136)

The other components can be computed alike.

3.7.2 Synchronized regime (J � δ/2): {|St,mt〉} basis

If we have an Hamiltonian with unperturbed eigenvectors grouped into dif-
ferent subspaces which are separated far away in energy, then we can treat
the subspace as a single state. But the perturbation from other subspaces,
instead of being just numbers, take the form of operators. For example, if
the Hamiltonian has the generic form

H = H0 + V, (3.137)

where H0 is the unperturbed Hamiltonian and V the perturbation. If the
subspace S1 is degenerate under the unperturbed Hamiltonian and is far
separated from its complement space S2, then we can write the complete
Hamiltonian in the eigenvectors of H0 as

H =

(
H1 V
V H2

)
, (3.138)
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where we have assumed that the perturbation V has no diagonal part. This
blockwise form of the Hamiltonian is quite convenient. If we define the
projection operators P1 and P2, onto the subspaces S1 and S2 respectively,
then the effective Hamiltonian [45] for the eigenenergy E in the subspace S1

is

H1 = P1H0P1 + P1V
1

E −H0

V P1. (3.139)

Note that this Hamiltonian is not a real Hamiltonian in that it depends itself
on the energy E. To lowest order, the above Hamiltonian can be approxi-
mated as

H1 ≈ P1H0P1 + P1V
1

ES1
0 − ES2

0

V P1, (3.140)

where E0 is the eigenenergy of the unperturbed Hamiltonian. Here ES1
0 =

JSS
2.
The previous paragraph outlines the general philosophy of the approx-

imation scheme for a degenerate perturbation problem. Returning to the
two-spin model in the synchronized regime, the unperturbed Hamiltonian
is the exchange interaction term H0 = JS ~S1 · ~S2, and the weak perturba-
tion is the external magnetic field V = (δS/2)(S

z
1 − Sz

2). The eigenvectors of
the exchange interaction is {|St,m

z
t 〉}. And the perturbation does not have

diagonal term because

〈S ′
t,m

′
t|V |St,mt〉

=
δS
2
δmt,m′

t

∑
m1

m1〈S ′
t,mt|m1,mt −m1〉〈m1,mt −m1|St,mt〉

×
(
1− (−1)4S−St−S′

t

)
.

(3.141)

In the above expression, the terms 〈m1,mt−m1|St,mt〉 are Clebsch-Gordan
coefficients. And we have used the property of Clebsch-Gordan coefficients
that

〈m1,m2|St,mt〉 = 0, unless m1 +m2 = mt. (3.142)

And since St and S ′
t are integers, 〈S ′

t,m
′
t|V |St,mt〉 = 0 if St = S ′

t ± 2n with
n = 0, 1, 2, . . . . So V has no diagonal term. And it only couples two Bloch
spheres with St − S ′

t = 2n + 1. Besides, the delta function in front also
indicates that the the perturbation couples only two states with similar z-
component of total spin.
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Numerical computation of the matrix of the perturbation shows further
that the perturbation couples only the nearest neighboring Bloch sphere of
the total spin, i.e.

〈S ′
t,m

′
t|V |St,mt〉 = 0, unless S ′

t = St ± 1. (3.143)

The only ES2
0 we need to consider is ES2

0 = JSS(S−2). Then to calculate the
perturbation in the Bloch sphere St = 2S, we need to calculate the matrix
elements like

〈St = 2S,mt|(Sz
1 − Sz

2)|St = 2S − 1,mt〉,
〈St = 2S − 1,mt|(Sz

1 − Sz
2)|St = 2S,mt〉.

(3.144)

These can be done numerically, and the final form of the effective Hamilto-
nian takes the form

Hsyn = H0 + δV, (3.145)

with

δV =
δ2S

8S(4S − 1)JS

[
(2S)21− (Sz

t )
2
]
. (3.146)

Then the contrast can be computed as in the dephased regime. However,
the components of the individual spin are not easy to calculate because of
the complicated form of the Clebsch-Gordan coefficients.

3.7.3 Improved method in the synchronized regime (J � δ/2)

In this subsection, we give the details in Sect. 3.3.3. The state vector at t = 0
is

|Ψ(0)〉

=

(
1

2

)2S 2S∑
m=−2S

√(
4S

2S +m

)
|2S,m〉

=

(
1

2

)2S 2S∑
m=−2S

√(
4S

2S +m

)(
sm|e+m〉+ cm|e−m〉

)
.

(3.147)

80



3.7. Appedix: Effective models detail

Then at t, the state is

|Ψ(t)〉

=(
1

2
)2S

2S∑
m=−2S

√(
4S

2S +m

)(
sme

−iE+
mt|e+m〉 − cme

−iE−
mt|e−m〉

)

=(
1

2
)2S

2S∑
m=−2S

√(
4S

2S +m

)[(
s2me

−iE+
mt + c2me

−iE−
mt
)
|2S,m〉

+smcm

(
e−iE+

mt − e−iE−
mt
)
|2S − 1,m〉

]
.

(3.148)

Then 〈Sx
t 〉 is

〈Sx
t 〉(t)

=

(
1

2

)4S 2S∑
m,m′=−2S

√(
4S

2S +m

)(
4S

2S +m′

)
×
{(
s2me

iE+
mt + c2me

iE−
mt
)(

s′2me
−iE+

m′ t + c′2me
−iE−

m′ t
)

× 〈2S,m|Sx
t |2S,m′〉+ smcms

′
mc

′
m

(
eiE

+
mt − eiE

−
mt
)

×
(
e−iE+

m′ t − e−iE−
m′ t
)
〈2S − 1,m|Sx

t |2S − 1,m′〉
}

(3.149)

The first sum in the curly bracket can be rewritten as

∑
m,m′

√(
4S

2S +m

)(
4S

2S +m′

)(
s2me

iE+
mt + c2me

iE−
mt
)

×
(
s′2me

−iE+
m′ t + c′2me

−iE−
m′ t
)
〈2S,m|Sx

t |2S,m′〉

=2S
∑
m

(
4S − 1
2S +m

)[(
s2m+1e

iE(m+1)+t + c2m+1e
iE(m+1)−t

)
×
(
s2me

−iEm+t + c2me
−iEm−t

)
+ c.c

]
=2S

∑
m

(
4S − 1
2S +m

)[
(s2ms

2
m+1e

i(E+
m+1−E+

m)t + c.c.)

+(s2m+1c
2
me

i(E+
m+1−E−

m)t + c.c.) + (s2mc
2
m+1e

i(E+
m−E−

m+1)t + c.c.)
]

(3.150)
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Using Eq. 3.67, we get

∑
m

(
4S − 1
2S +m

)
(s2ms

2
m+1e

i(E+
m+1−E+

m)t + c.c.)

≈24S cos4S−1

(
δ2St

8S(4S − 1)JS

)
,∑

m

(
4S − 1
2S +m

)
(s2m+1c

2
me

i(E+
m+1−E−

m)t + c.c.)

≈(2S)2 cos (2JSSt)
δ2S

16J2
SS

2(4S − 1)

∑
m

(
4S − 1
2S +m

)
(4S2 −m2),

∑
m

(
4S − 1
2S +m

)
(s2mc

2
m+1e

i(E+
m−E−

m+1)t + c.c.)

≈(2S)2 cos (2JSSt)
δ2S

16J2
SS

2(4S − 1)

∑
m

(
4S − 1
2S +m

)
(4S2 − (m+ 1)2).

(3.151)

For the second sum, we have

2S∑
m,m′=−2S

√(
4S

2S +m

)(
4S

2S +m′

)
smcms

′
mc

′
m

(
eiE

+
mt − eiE

−
mt
)

×
(
e−iE+

m′ t − e−iE−
m′ t
)
〈2S − 1,m|Sx

t |2S − 1,m′〉

≈(2S)4(1− cos (2JSSt))
δ2S

16J2
SS

2(4S − 1)

×
∑
m

√(
4S

2S +m

)(
4S

2S +m′

)√
(4S2 −m2)(4S2 − (m− 1)2).

(3.152)

We can check numerically that

∑
m

(
4S − 1
2S +m

)
(4S2 −m2) +

∑
m

(
4S − 1
2S +m

)
(4S2 − (m+ 1)2)

− 2
∑
m

√(
4S

2S +m

)(
4S

2S +m′

)√
(4S2 −m2)(4S2 − (m− 1)2)

∼24S−2(4S − 1).

(3.153)
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And for the constant term in Eq. 3.152, we have

∑
m

√(
4S

2S +m

)(
4S

2S +m′

)√
(4S2 −m2)(4S2 − (m− 1)2)

∼24S−1S(4S − 1).

(3.154)

This term is too large by a factor S, so we neglect it. Then, we get

〈Sx
t 〉(t)

≈2S cos4S−1

(
δ2
√
S(S + 1)t̃

8S(4S − 1)J

)

− δ2(S + 1)

8J2
sin2

(
2Jt̃√
1 + 1/S

)
.

3.8 Appendix: Coherent states

In this section, we give some key elements in deriving the D algebra, and
the change of variables to canonical variables. For simplicity, we consider
the single spin case, but the results can be readily generalized to two-spin
systems.

3.8.1 D algebra of coherent state

The D algebra for spin coherent states, or atomic coherent states, has been
derived by Gilmore et al[49], and Zhang[67], where they used group the-
oretical approach and obtained the algebra in terms of the variables (θ, φ).
But the pair of variables (θ, φ) are not canonical variables. To make the link
between the phase-space approach and the classical dynamics, it is better
to use the canonical variables (cos θ, φ) instead. This is the very approach
adopted by Altland and Haake[61]. They first derived the D algebra for the
complex number z parametrizing the Bloch sphere, and then changed to the
canonical variables. We follow their approach and give some computational
details. The coherent states |z〉 can be written explicitly as

|z〉 =
S∑

m=−S

√(
2S

S +m

)
zS−m

(1 + |z|2)S
|S,m〉. (3.155)
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For the sake of simplicity, we will use the unnormalized coherent states in
deriving the D algebra, which read

||z〉 =
S∑

m=−S

√(
2S

S +m

)
zS−m|S,m〉 = (1 + |z|2)S|z〉. (3.156)

Then we have for the spin operator S+

S+||z〉〈z||

=
∑

m1,m2

√(
2S

S +m1

)(
2S

S +m2

)
S+zS−m1 |m1〉〈m2|(z∗)S−m2

=
∑

m1,m2

√(
2S

S +m1

)(
2S

S +m2

)√
(S −m1)(S +m1 + 1)zS−m1

× |m1 + 1〉〈m2|(z∗)S−m2

=
∑

m1,m2

√(
2S

S +m1 + 1

)(
2S

S +m2

)
(S +m1 + 1)zS−m1

× |m1 + 1〉〈m2|(z∗)S−m2

=
∑

m1,m2

√(
2S

S +m1

)(
2S

S +m2

)
z(S +m1)z

S−m1 |m1〉〈m2|(z∗)S−m2 .

(3.157)

In the last line of the above expression, we have changed m1 +1 to m1. And
the factor (S +m1) can be obtained as

(S +m1)z
S−m1

=[2S − (S −m1)]z
S−m1

=(2S − z∂z)z
S−m1 .

(3.158)

As a result, we have the following algebra

S+||z〉〈z|| = (2Sz − z2∂z)||z〉〈z||. (3.159)

Similarly, we can get the other two expressions

S−||z〉〈z|| =∂z||z〉〈z||,
Sz||z〉〈z|| =(S − z∂z)||z〉〈z||.

(3.160)
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It is simple to get the D algebra for the normalized coherent states. For
example, for S+ operator, we have

S+|z〉〈z|

=S+

(
1

(1 + |z|2)2S
||z〉〈z||

)
=(2Sz − z2∂z)

(
1

(1 + |z|2)2S
||z〉〈z||

)
− z2

(
∂z

1

(1 + |z|2)2S
||z〉〈z||

)
=(2Sz − z2∂z)|z〉〈z| −

2Sz2z∗

(1 + |z|2)
|z〉〈z|

=(−z2∂z + 2S
z

1 + |z|2
|z〉〈z|.

(3.161)

And we obtain finally

S+|z〉〈z| =
(
−z2∂z + 2S

z

1 + |z|2

)
|z〉〈z|,

S−|z〉〈z| =
(
∂z + 2S

z∗

1 + |z|2

)
|z〉〈z|,

Sz|z〉〈z| =
(
−z∂z + S

1− |z|2

1 + |z|2

)
|z〉〈z|.

3.8.2 The equation of motion for Husimi function

The equation of motion for the Husimi function is

dtQ(z1, z2, t) = iT r (ρ̂(t)H|z1, z2〉〈z1, z2| − ρ̂(t)|z1, z2〉〈z1, z2|H) . (3.162)

We first calculate the term Tr(ρ̂(t)H|z1, z2〉〈z1, z2|) as follows

Tr (ρ̂(t)H|z1, z2〉〈z1, z2|)

=Tr

(
ρ̂(t)

δS
2
(Sz

1 − Sz
2)|z1, z2〉〈z1, z2|)

)
+ Tr

(
ρ̂(t)

JS
2
(S+

1 S
−
2 + S−

1 S
+
2 )|z1, z2〉〈z1, z2|

)
+ Tr (ρ̂(t)JSS

z
1S

z
2 |z1, z2〉〈z1, z2|) .

(3.163)
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The magnetic field can be written as

Tr

(
ρ̂(t)

δS
2
(Sz

1 − Sz
2)|z1, z2〉〈z1, z2|

)
=Tr

(
ρ̂(t)

δS
2
(−z1∂z1 + S

1− |z1|2

1 + |z1|2
)|z1, z2〉〈z1, z2|

)
− Tr

(
ρ̂(t)

δS
2
(−z2∂z2 + S

1− |z2|2

1 + |z2|2
)|z1, z2〉〈z1, z2|

)
=Tr

(
ρ̂(t)

δS
2
(−z1∂z1 + z2∂z2)|z1, z2〉〈z1, z2|

)
+ Tr

(
ρ̂(t)

δSS

2
(
1− |z1|2

1 + |z1|2
− 1− |z2|2

1 + |z2|2
)|z1, z2〉〈z1, z2|

)
=− δS

2
(z1∂z1 − z2∂z2)Q(z1, z2, t)

+
δSS

2

(
1− |z1|2

1 + |z1|2
− 1− |z2|2

1 + |z2|2

)
Q(z1, z2, t).

(3.164)

The term originating from S+
1 S

−
2 is

Tr

(
ρ̂(t)

JS
2
S+
1 S

−
2 |z1, z2〉〈z1, z2|

)
=Tr

(
ρ̂(t)

JS
2
(−z21 + 2S

z1
1 + |z1|2

)(∂z2 + 2S
z∗2

1 + |z2|2
)|z1, z2〉〈z1, z2|

)
=Tr

(
ρ̂(t)

JS
2
(4S2 z1z

∗
2

1 + |z2|2
− 2S

z21z
∗
2

1 + |z2|2
∂z1)|z1, z2〉〈z1, z2|

)
+ Tr

(
ρ̂(t)

JS
2
(2S

z1
1 + |z1|2

∂z2 − z21∂
2
z1z2

)|z1, z2〉〈z1, z2|
)

=JSS

(
− z21z

∗
2

1 + |z2|2
∂z1 +

z1
1 + |z1|2

∂z2

)
Q(z1, z2, t)

− JS
2
z21∂

2
z1z2

Q(z1, z2, t) + 2JSS
z1z

∗
2

1 + |z2|2
Q(z1, z2, t).

(3.165)

The term containing S−
1 S

+
2 is similarly

Tr

(
ρ̂(t)

JS
2
S−
1 S

+
2 |z1, z2〉〈z1, z2|

)
=JSS

(
− z22z

∗
1

1 + |z1|2
∂z2 +

z2
1 + |z2|2

∂z1

)
Q(z1, z2, t)

− JS
2
z22∂

2
z1z2

Q(z1, z2, t) + 2JSS
z∗1z2

1 + |z1|2
Q(z1, z2, t).

(3.166)
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The Sz
1S

z
2 term is

Tr (ρ̂(t)JSS
z
1S

z
2 |z1, z2〉〈z1, z2|)

=Tr

(
ρ̂(t)JS(−z1∂z1 + S

1− |z1|2

1 + |z1|2
)

× (−z2∂z2 + S
1− |z2|2

1 + |z2|2
)|z1, z2〉〈z1, z2|

)
=− JSS

(
1− |z2|2

1 + |z2|2
z1∂z1 +

1− |z1|2

1 + |z1|2
z2∂z2

)
Q(z1, z2, t)

− JSz1z2∂
2
z1z2

Q(z1, z2, t) + JSS
21− |z1|2

1 + |z1|2
1− |z2|2

1 + |z2|2
Q(z1, z2, t).

(3.167)

Summing over all the four terms, we get the equation of motion for the
Husimi function

dtQ(z1, z2, t) = (Ldrift + Ldiff )Q(z1, z2, t) (3.168)

with the drift term and diffusion term as in Eq. 3.111 and Eq. 3.112.

3.8.3 Change of variables to canonical variables

As mentioned earlier, the conjugate variables (z, z∗) are not canonical vari-
ables. In order to change to the canonical variables (cos θ, φ), we need to
find the inverse transformation of the variable

z = tan
θ

2
eiφ,

z∗ = tan
θ

2
e−iφ.

(3.169)

First, we can calculate the Jacobian between these two variables∣∣∣∣ ∂(z, z∗)

∂(cos θ, φ)

∣∣∣∣
=

∣∣∣∣∣− eiφ

(1+cos θ) sin θ i sin θe
iφ

1+cos θ

− e−iφ

(1+cos θ) sin θ −i sin θe−iφ

1+cos θ

∣∣∣∣∣
=

2

(1 + cos θ)2
.

(3.170)

After some algebra, the inverse transformation can be found to be

cos θ =
1− zz∗

1 + zz∗
,

φ = arccos
(
z + z∗

2
√
zz∗

)
.

(3.171)
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The derivatives are

∂ cos θ
∂z

=− 1

2
sin θ(1 + cos θ)e−iφ,

∂φ

∂z
=− i

2

cos θ
sin θ

e−iφ.

(3.172)

Then using the chain rule, we get

∂z

=
∂ cos θ
∂z

∂

∂ cos θ
+
∂φ

∂z

∂

∂φ

=− 1

2

[
∂cos θ(1 + cos θ) sin θ + i∂φ

cos θ
sin θ

]
+ sin θe−iφ

=− 1

2

[
∂cos θ(1 + cos θ)

√
1− cos2 θ + i∂φ

√
1 + cos θ
1− cos θ

]
e−iφ

+
√
1− cos2 θe−iφ.

(3.173)

The last term is a constant term, andmay indicate dissipation effects of quan-
tum jumps. However, this is artificial because if we take into account the
Jacobian factor which is indispensable to keep the quasiprobability function
a well-behaved one, this term would cancel out. And the final form of the
derivative is

∂z → −1

2

[
∂cos θ(1 + cos θ)

√
1− cos2 θ + i∂φ

√
1 + cos θ
1− cos θ

]
e−iφ. (3.174)

This result has been obtained by Altland and Haake[62].
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Chapter 4
Squeezing and quantum
entanglement in the two spin model

In the previous chapter, we have studied the quantity 〈~St〉 which is the quan-
tum mechanical equivalent to the classical spin vector. In this chapter, we
study the quantum operators of higher order and the phenomena of spin
squeezing.

4.1 Introduction to spin squeezing

The squeezing phenomena describe the redistribution of quantum fluctua-
tions. At first the squeezing phenomena were studied in bosonic systems in
the context of quantum optics(see e.g. [68], and see [69] for a review). And
then the concept of squeezing was generalized to spin systems[70, 71, 72].
For a general treatment of spin squeezing, see [73] for a review. Below, we
first briefly review spin squeezing.

Let us consider a spin coherent state pointing in the z-direction, which is
a state with minimum uncertainty. For the operator Sz, we have

〈Sz〉 = S, 〈(∆Sz)2〉 = 0, (4.1)

where we have defined

∆Sz ≡ Sz − 〈Sz〉. (4.2)

For the operators Sx and Sy, we have

〈(∆Sx)2〉〈(∆Sy)2〉 = |〈Sz〉|2

4
=
S2

4
, (4.3)
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where we have defined similarly

∆Sx ≡ Sx − 〈Sx〉,∆Sy ≡ Sy − 〈Sy〉. (4.4)

Furthermore, we have

〈(∆Sx)2〉 = 〈(∆Sy)2〉 = S

2
. (4.5)

The quantity S/2 is called the standard quantum limit (SQD). The quan-
tum fluctuations are distributed isotropically in the transverse plane of the
mean spin direction for the coherent state. If the quantum fluctuations are
redistributed and become anisotropic, it is possible that in one direction, for
example the x-direction, the fluctuation is less than S/2 as long as

〈(∆Sx)2〉〈(∆Sy)2〉 ≥ S2

4
. (4.6)

In this case, we have

〈(∆Sx)2〉 < 〈Sz〉
2

=
S

2
< 〈(∆Sy)2〉. (4.7)

The quantum fluctuation in the x-direction is smaller the the SQD. We say
that the system is spin squeezed in the x-direction. In the following, we give
two more rigorous definitions of spin squeezing.

4.1.1 Spin squeezing parameter of Kitagawa and Ueda

The spin squeezing parameter of Kitagawa and Ueda[71] is

ξ2S =
min(〈(∆Sn⊥)

2〉)
S/2

, (4.8)

where Sn⊥ denotes the spin operator perpendicular to the mean spin direc-
tion. If ξ2S < 1, the spin is squeezed according to Kitagawa and Ueda. Ac-
cording to this criteria, the spin squeezing means that in the transverse plane
of the mean spin direction, there exists a direction in which the quantum
fluctuation is smaller than the SQD of a coherent state.

To calculate this spin squeezing parameter (see [73]), we first need to
determine the mean spin direction by computing the quantum average of the
spin vector operator. This gives us the mean spin direction ~n0. Then we can
define two orthogonal spin operators in the transverse plane of the mean
spin direction ~n1 and ~n2. Then the spin squeezing parameter is

ξ2S =
1

2S

[〈
S2
~n1

+ S2
~n2

〉
−
√(

〈S2
~n1

− S2
~n2
〉
)2

+ 4Cov(S~n1 , S~n2)
2

]
, (4.9)
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where we have defined the covariance of spin operators S~n1 and S~n2

Cov(S~n1 , S~n2)

=
1

2
〈[S~n1 , S~n2 ]+〉 − 〈S~n1〉〈S~n2〉

=
1

2
〈[S~n1 , S~n2 ]+〉 ,

(4.10)

since

〈S~n1〉 = 〈S~n2〉 = 0. (4.11)

4.1.2 Spin squeezing parameter of Wineland et al

Soon after the proposition of the spin squeezing by Kitagawa and Ueda,
Wineland et al have proposed another definition of spin squeezing[72]. Their
definition of spin squeezing is related to the precision in the Ramsey spec-
troscopy measurement. They consider a system of trapped atoms with two
internal degrees of freedom. These atoms can be treated as an ensemble of
N spins 1/2 and thus a macro-spin of spin size S = N/2. When perform-
ing Ramsey spectroscopy experiments, the precision is of primary interest.
However, there is an intrinsic precision, which is that of the initial coherent
state given by

∆φDS =
1

N1/2
=

1√
2S
, (4.12)

where the subscript DS indicates the Dicke state of the constituting spin
1/2 particles. In the experiment, if we can achieve in one direction a better
precision

∆φ =

√
min(〈(∆Sn⊥)

2〉)
|〈~S〉|

< ∆φDS, (4.13)

then we say that we have spin squeezing. The spin squeezing parameter is
given by

ξ2R =

∣∣∣∣ ∆φ

∆φDS

∣∣∣∣2 = 2Smin(〈(∆Sn⊥)
2〉)

|〈~S〉|2
. (4.14)

From the above definition, we can rewrite the spin squeezing parameter
of Wineland et al. as the follows

ξ2R =

(
S

|〈~S〉|

)2
min(〈(∆Sn⊥)

2〉)
S/2

=

(
1

C

)2

ξ2S, (4.15)
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Figure 4.1: Numerical results of spin squeezing and contrast as a function of
rescaled time (in units of 1/δ) for S = 10 and J = 0.1δ. The unit of rescaled
time is 1/δ. The blue line is the contrast, the red line the spin squeezing
parameter ξ2S, and the green line ξ2R. a) shows the long time behavior till
the approximate recurrence time t̃ar and b) the short time behavior till the
envelope time t̃e.

where C is the contrast. If ξ2R < 1, the spin is squeezed. The physical in-
terpretation of this squeezing is that the measured noise of the spectroscopy
is less than that of the independent atoms. The correlation or entanglement
between the atoms has increased the precision of measurement.

Since S ≥ |〈 ~S〉|, we have ξ2R ≥ ξ2S. Therefore the definition by Wineland
et al. is a more stringent condition on the spin squeezing. In the follow-
ing, we study mainly the spin squeezing parameter by Kitagawa and Ueda,
though the definition byWineland et al. is more suitable to the atomic clock.
Knowing ξ2S and C, it is straight-froward to obtain ξ2R.

4.2 Numerical computation of squeezing parame-
ters in the two-spin model

In this section, we compute the spin squeezing parameters by numerical sim-
ulations.

First, for the dephased regime (J = 0.1δ, see Fig. 4.1), we can see from the
numerical results that the spin squeezing has also multi-scale dynamics, with
characteristic times scales identical to those of the contrast. Initially the spin
squeezing parameter ξ2S decreases and so does the contrast, and at one half of
the fast oscillation time (t̃ = t̃o/2), the spin squeezing reaches its minimum.
At longer times, the contrast is modulated by an envelope till the envelope
time where it remains very small for a long time. The spin squeezing, on
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Figure 4.2: Numerical results of spin squeezing and contrast as a function
of rescaled time (in units of 1/δ) for S = 10 and J = 5δ. The unit of rescaled
time is 1/δ. The blue line is the contrast, the red line the spin squeezing
parameter ξ2S, and the green line ξ2R. a) shows the long time behavior till
the approximate recurrence time t̃ar and b) the short time behavior till the
envelope time t̃e.

the other hand, begins increasing and goes to almost unity at the envelope
time. And near the approximate recurrence time, the above process is first
reversed (t̃ ∼ t̃ar − t̃e), and then happens again. ξ2R changes more abruptly
and diverges because of the zeros of the contrast.

For the synchronized regime (J = 5δ, see Fig. 4.2 ), a similar behavior of
the spin squeezing parameters is observed. Initially, there is a decrease of the
spin squeezing parameter, indicating that the two spins are squeezed. But
then ξ2S increases to unity. ξ2R is similar to ξ2S, but increases earlier and then
diverges because the contrast goes towards zero. There is a time window
during which ξ2R < 1, and the experimental precision is better than that
for independent atoms. Near the approximate recurrence time, the above
process occurs in the reversed sense and then in the normal sense.

4.3 Effective models for the spin squeezing param-
eter

In the preceding section, we have computed the spin squeezing parameter by
simulating exactly the temporal evolution of the two-spin system. Now we
want to gain a more quantitative understanding of the system. The method
to be used is the effective model developed in the previous chapter.
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Chapter 4. Squeezing and Entanglement

4.3.1 Weak interaction regime J � δ

In the weak interaction regime, the effective Hamiltonian is

Heff =
δS
2
(Sz

1 − Sz
2) + JSS

z
1S

z
2 ,

with the eigenenergies and eigenvectors

Ei =
δS
2
(m1 −m2) + JSm1m2, |ei〉 = |m1,m2〉,

where {m1,m2} are Fock states labeled by the z-axis quantum number of
two spins. At time t, the state vector is

|Ψ(t)〉 =
(
1

2

)2S S∑
m1,m2=−S

√(
2S

S +m1

)(
2S

S +m2

)
e−iEit|m1,m2〉.

To get the spin squeezing parameter, we still need to compute the variance
of the quantum operators such as 〈(Sy

t )
2〉, 〈(Sz

t )
2〉, 〈Sy

t S
z
t 〉, and 〈Sz

t S
y
t 〉 (see

Eq. 4.9). The detailed calculation is given in appendix. Here we just list the
results

〈(Sy
t )

2〉 =S2[cos (JSt/2)]4S−2[cos (δSt)− 1] +
S

2
(2S + 1)

− S

2
(2S − 1) cos (δSt)[cos (JSt)]2S,

〈(Sz
t )

2〉 =S,
〈Sy

t S
z
t 〉 =2S2 cos (δSt/2) sin (JSt/2)[cos (JSt/2)]2S−1

+ iS cos (δSt/2)[cos (JSt/2)]2S,

〈Sz
t S

y
t 〉 =2S2 cos (δSt/2) sin (JSt/2)[cos (JSt/2)]2S−1

− iS cos (δSt/2)[cos (JSt/2)]2S.

(4.16)

94



4.3. Effective models

Figure 4.3: Comparison of numerical results of spin squeezing and those
obtained from the effective model as a function of rescaled time (in units of
1/δ) for S = 10 and J = 0.1δ. The unit of rescaled time is 1/δ. The blue
line is the numerics and the red line the analytics from the effective model.
a) shows the long time behavior till the approximate recurrence time t̃ar and
b) the short time behavior till the envelope time t̃e discussed in the previous
chapter.

Expressing them in rescaled quantities, we get

〈(Sy
t )

2〉 =S2[cos (
Jt̃

2
√
S(S + 1)

)]4S−2[cos (δt̃)− 1] +
S

2
(2S + 1)

− S

2
(2S − 1) cos (δt̃)[cos (Jt̃/

√
S(S + 1))]2S,

〈(Sz
t )

2〉 =S,

〈Sy
t S

z
t 〉 =2S2 cos (

δt̃

2
) sin (

Jt̃

2
√
S(S + 1)

)[cos (
Jt̃

2
√
S(S + 1)

)]2S−1

+ iS cos (
δt̃

2
)[cos (

Jt̃

2
)]2S,

〈Sz
t S

y
t 〉 =2S2 cos (

δt̃

2
) sin (

Jt̃

2
√
S(S + 1)

)[cos (
Jt̃

2
√
S(S + 1)

)]2S−1

− iS cos (
δt̃

2
)[cos (

Jt̃

2
)]2S,

(4.17)

From the comparison between the effective model and the numerics (see
Fig. 4.3), we can see clearly that the effective model does not only describes
correctly the contrast of the two-spin system, but also it gives very good
agreement for the spin squeezing parameter. Since this regime is not partic-
ularly relevant to the experiments, we do not study ξ2R.
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Chapter 4. Squeezing and Entanglement

Figure 4.4: Comparison of numerical results of spin squeezing parameters
as a function of time and those obtained from the effective model for S = 10
and J = 5δ. The unit of rescaled time is 1/δ. The blue line is the numerics,
the red line the result obtained from the effective model, and the green line is
the lower bound in Eq. 4.21. a) The comparison for ξ2S. b) The comparison
for ξ2R.

4.3.2 Strong interaction regime J � δ

In this regime, we restrain ourselves to the largest Bloch sphere of the total
spin. In this subspace, the effective Hamiltonian is (see Eq. 3.55)

H = −χ(Sz
t )

2,

with the constant

χ =
δ2S

8S(4S − 1)JS
.

Then we can get

〈(Sy
t )

2〉 =S
2

[
(4S + 1)− (4S − 1) (cos (2χt))4S−2

]
,

〈(Sz
t )

2〉 =S,

〈Sy
t S

z
t 〉 =

1

i

(
−4S2eiχt − Se−iχt

)
(cos (2χt))4S−2 ,

〈Sz
t S

y
t 〉 =

1

i

(
4S2e−iχt + Seiχt

)
(cos (2χt))4S−2 .

(4.18)

We concentrate on the behavior of the spin squeezing before the envelope
time, because this is experimentally relevant. First thing to note is that the
agreement between the effective model and the numerics is very good. Sec-
ond, this effective model in the strong interaction regime is equivalent to the
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one-axis twisting scheme in [71], with a spin size St = 2S. Then our results
can be obtained directly from theirs. The spin squeezing parameter ξ2S reads

ξ2S,min ≈
(

1

(Stµ)2
+

1

24
(Stµ

2)2
)
, (4.19)

with µ ≡ 2χt. Then at

µ0 =

(
3

4S24

)1/6

, (4.20)

the spin squeezing parameter reaches its minimum

ξ2S,min =
3

4

(
1

6S2

)1/3

. (4.21)

The above result about µ0 is different from that in [71], but agrees with that
in [74]. And ξ2S,min is also different from that in [71]. This difference is
due to a minor computational error in [71]. For S = 10 system, this gives
ξ2S,min ≈ (3/4)(1/600)1/3. We can see that it agrees well with the numerics.
In fact, for S = 10 and J = 5, we have

tmin ≈ 153/δ,

ξ2S,min ≈ 0.089.
(4.22)

For ξ2R, the agreement is also very good. It scales similarly as

ξ2R ∝ S−3/2. (4.23)

It is thus advantageous to have larger spin size S to get a better experimental
precision.

4.3.3 Husimi function of the effective model

In this subsection, we use the Husimi function to depict qualitatively the
spin squeezing. We concentrate mainly on the strong interaction regime
(J � δ/2) since this is relevant for the experiments. We use the same ef-
fective model and consider the same subspace St = 2S as used in the previ-
ous subsection. For S = 10, and J = 5δ, the Husimi function Q(θ, φ, t̃) =
|〈θ, φ|ψ(t̃)〉|2 is presented on the Bloch spheres (see Fig. 4.5). The state |θ, φ〉
is the coherent state pointing in the direction (sin θ cosφ, sin θ sinφ, cos θ)T

on the Bloch sphere St = 2S. This function is related to ξ2S because the radius
of the Bloch sphere is invariant, the same as the denominator in definition
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Chapter 4. Squeezing and Entanglement

Figure 4.5: The Husimi function Q(θ, φ, t̃) represented on the Bloch sphere
St = 2S = 20 for different times t̃ (in units of 1/δ) for J = 5δ. The view point
is the positive x-direction. In each plot, the Husimi function is rescaled by its
maximum value Qmax(t̃). The color scale indicates the value of Q. The red
is higher value and blue lower value. a) Initial state, t̃ = 0, Qmax(0) = 1. b)
Optimally squeezed state, t̃ = 153, Qmax(153) ≈ 0.43. c) Excessively twisted
state, t̃ = 400, Qmax(400) ≈ 0.18. d) State at the envelope time, t̃ = 600,
Qmax(600) ≈ 0.14.

ξ2S. So we speak of the optimally squeezed state and the excessively twisted
state with respect to ξ2S.

From Fig. 4.5, it is clear that the state is first squeezed because of the non-
linear Hamiltonian, which deforms the Husimi function on the Bloch sphere,
until it reaches the optimally squeezed state at t̃ ≈ 153/δ. At this time, we
obtain a minimum ξ2S. Then the Husimi function is further deformed but
the spin squeezing parameter increases because of the excessive twisting. At
about the envelope, the Husimi function spreads along the equator and some
islands of high probability are about to form. Thus the spin squeezing is re-
lated to the spread of the wave packet in the phase space. (In this case, the
reduced phase space is the single Bloch sphere St = 20.)
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4.4 Summary and discussion

In this chapter, we have studied the spin squeezing phenomena in the two-
spin system. We have seen that the spin squeezing is also multi-scaled and
the characteristic time scales are identical to those of the contrast. Shortly
after t = 0, the system is squeezed. But after a certain decrease in the spin
squeezing parameter, the diffusion of the wave packet of the two-spin system
dominates and the spin squeezing is less obvious. At the envelope time, the
wave packet of the system is so diffused that the spins are not squeezed at all.
The effective models developed in the previous chapter are also competent
in describing the spin squeezing parameter till the approximate recurrence
time, and thus provide us a more quantitative picture of the spin squeezing
phenomena.

To conclude, we note that spin squeezing is related to other types of
squeezing such as number squeezing in the bosonic Josephson junction [75],
and other quantum effects such as correlation and entanglement [71, 76,
77, 78]. In addition, it can be used to detect the quantum phase transition
and quantum chaos [79, 74]. These are promising domains and it would
be interesting to apply these ideas to the two-spin model, which constitutes
directions of future work.

4.5 Appendix: Details of calculation in effectivemod-
els

In this section, we give the details omitted in the Sect. 4.3.

4.5.1 Weak interaction regime (J � δ/2)

In this regime, the quantum expectation values of second order operators
can be calculated as follows. For (Sy

t )
2, we have

〈(Sy
t )

2〉 = −1

4
〈S+

t S
+
t − S+

t S
−
t − S−

t S
+
t + S−

t S
−
t 〉. (4.24)
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Computation of the four terms on the right hand side of the equality yields

〈S+
t S

+
t 〉 =S(2S − 1) cos (δSt) (cos (JSt))

2S + 2S2

(
cos (

JSt

2
)

)4S−2

,

〈S+
t S

−
t 〉 =S(2S + 1) + 2S2 cos (δSt)

(
cos (

JSt

2
)

)4S−2

,

〈S−
t S

+
t 〉 =S(2S + 1) + 2S2 cos (δSt)

(
cos (

JSt

2
)

)4S−2

,

〈S−
t S

−
t 〉 =S(2S − 1) cos (δSt) (cos (JSt))

2S + 2S2

(
cos (

JSt

2
)

)4S−2

.

(4.25)

Summing the above expressions, we get

〈(Sy
t )

2〉 =S2[cos (JSt/2)]4S−2[cos (δSt)− 1] +
S

2
(2S + 1)

− S

2
(2S − 1) cos (δSt)[cos (JSt)]2S.

(4.26)

(Sz
t )

2 is conserved and we have

〈(Sz
t )

2〉 = S. (4.27)

For 〈Sy
t S

z
t 〉, we have

〈Sy
t S

z
t 〉 =

1

2i
〈S+

t S
z
t − S−

t S
z
t 〉. (4.28)

For the above two terms, we have

〈S+
t S

z
t 〉 =− S cos (δSt/2)[cos (JSt/2)]2S

+ i2S2 cos (δSt/2) sin (JSt/2)[cos (JSt/2)]2S−1,

〈S−
t S

z
t 〉 =S cos (δSt/2)[cos (JSt/2)]2S

− 2iS2 cos (δSt/2) sin (JSt/2)[cos (JSt/2)]2S−1.

(4.29)

Summing the two terms yields

〈Sy
t S

z
t 〉 =2S2 cos (δSt/2) sin (JSt/2)[cos (JSt/2)]2S−1

+ iS cos (δSt/2)[cos (JSt/2)]2S.
(4.30)

Taking the complex conjugate of the above expression, we get

〈Sy
t S

z
t 〉 =2S2 cos (δSt/2) sin (JSt/2)[cos (JSt/2)]2S−1

− iS cos (δSt/2)[cos (JSt/2)]2S.
(4.31)

4.5.2 Strong interaction regime (J � δ/2)

In this regime, the calculation is straight forward, and we do not list them.
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Conclusion and outlook

Now we are able to answer the questions asked in the introduction. Is there
a synchronization transition? What is the difference between the classical
and quantum dynamics? And what is the effect of spin size S on the syn-
chronization?

There is a synchronization transition in the classical dynamics of the
two-spin model when the interaction strength is superior to a critical value
Jcri = δ/2. This transition is due to a bifurcation in the reduced phase space
of a single spin. The synchronization does not occur simultaneously with
the bifurcation because of our choice of initial state. If we choose another
initial state such as ~n1 = (sinα, 0, cosα)T and ~n2 = (sinα, 0,− cosα)T with
α ≈ 0, the synchronization will happen immediately after the bifurcation
at Jbif = δ/4. Thus, by changing the initial state, we can have a synchro-
nization transition with a weaker interaction. However, this may lead to a
smaller signal. For example, for the initial state mentioned above, the max-
imum total spin is 2 sinα. So we need to find an optimal initial condition
that makes a compromise between the need for a weaker interaction and a
strong signal, which are pursued in the atomic clock experiments.

The synchronization transition is not present in the quantum dynamics,
where the contrast will be lost eventually at an envelope time te. The quan-
tum dynamics is different from classical dynamics in several aspects. First,
whereas the spin size S plays a trivial role in the classical dynamics that can
be eliminated by a rescaling, it is nontrivial in the quantum dynamics because
the spin size S determines the dimension of Hilbert space in the quantum sys-
tem. Therefore, the quantum dynamics depends on the spin size. Second,
the cumulant expansion method reveals that once we take into account the
quantum correlation effects (cumulant of second order operators), even par-
tially, the synchronization is destroyed. The quantum correlations are thus
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responsible for the loss of synchronization.
The classical limit is attained in the following way. In the quantum dy-

namics of two spins, there are many quantum time scales in addition to the
two time scales equivalent to classical ones. The smallest one of these quan-
tum time scales is the envelope time (t̃e), which increases with the spin size
S as t̃e ∝

√
S if the inhomogeneity of the external field and the interaction

strength are kept constant. Therefore, in the semiclassical limit, this time
scale is pushed to infinity and so are all the other quantum time scales. In
this way we can observe only the classical dynamics, and we obtain the clas-
sical limit.

In addition, we also studied the spin squeezing in the two-spin model.
The spin squeezing in the two-spin model can be used to improve the ex-
perimental precision of the measurements and we have shown that the spin
squeezing is present in the two-spin model. The spins are squeezed when the
dynamics takes place initially, as the contrast diminishes. After this initial
squeezing, the spin squeezing phenomenon in the two-spin model reaches
a maximum before the contrast vanishes. Then the system is less squeezed
because of the excessive twisting mentioned in [71]. At the envelope time,
where the contrast becomes zero, the system is not squeezed. So there is a
time interval in which we can get higher measurement precision and a not
so weak signal, which is advantageous. For S = 10 and J = 5δ system, this
time interval is approximately t̃ ≈ 260/δ, with a contrast C ≈ 0.6. The best
squeezing in this system is about ξ2R ≈ 0.1.

Concerning the experiments on atomic clocks[24], we can make the fol-
lowing remarks. A first remark is that a higher density of atoms in the ex-
periments is constructive for the fabrication of atomic clocks in that a higher
density leads to a stronger interaction (larger J) and a larger number of atoms
(larger S). The envelope time is therefore increased. At the same time, in-
creasing the density means that lateral collisions become more frequent. To
estimate the coherence time in the experiment, we make the correspondence
between the parameters of the experiments and those of the two-spin model
as follows. In the experiment, there are N ∼ 104 atoms, so the spin size
S = N/4 ∼ 104. In the first experiment in [24], the inhomogeneity of the
magnetic field in the two-spin model can be approximated as δ ∼ 104rad/s,
and the interaction strength is approximately J/δ ∼ 100. Then the envelope
time is te ≈ t̃eS ∼ 104 − 105s. In the second experiment in [24], we have
δ ∼ 105rad/s, J/δ ∼ 1− 10. Then the envelope time is te ∼ 10− 100s. This
envelope time might be accessible experimentally.

However, it may be rudimentary to describe real experiments by the two-
spin. In the weak interaction regime (J � δ), the two spin model assumes
that the atoms in each group are aligned together. But this is not the case since
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the inhomogeneity is large compared to the interaction. Therefore, the two-
spin model does not describe properly the dynamics in this regime. In the
strong interaction regime (J � δ), the two-spin model is good because the
strong interaction aligns all atoms together. Splitting them into two aligned
groups is well justified.

In the two-spin model, we have used the rotating reference frame with
an angular velocity equal to the rotation of the mean magnetic field, and
thus are unable to study the central frequency of the system, which is a key
ingredient in atomic clock experiments. To obtain this frequency, we could
either average over the inhomogeneity of the effective field for each atom in
the original experiment to get an estimation, or consider the full dynamics
of the atoms and calculate the central frequency.

There are still many open questions left in this thesis. The first one is
how to understand the dynamics near the critical point J = δ/2. This special
regime could be studied with the phase-space method sketched in chapter 3
with Husimi function. Since this method does not depend on the interaction
strength, it may be useful in revealing the complex dynamics in this region.
Another possible approach is to use the semiclassical quantization, which
has been employed to treat the BHD model in [80, 81].

The cumulant expansion method does show that quantum corrections
destroy the synchronization, but it diverges if we make the direct expan-
sion to second order spin operators. After improving the expansion by im-
posing certain observations from numerical simulations about second order
cumulants, the solution is convergent but in the synchronized regime devi-
ates quickly from the exact quantum dynamics. A possible reason is that
in the synchronized regime, there is a separatrix which separates the phase
space into two regions with different dynamical behaviors. The cumulant
expansion that works well in one region may not be applicable in the other.
This has been observed by Garanin and Schilling in[42] in a biaxial model
which is chaotic for a finite time interval. A remedy to this is to develop an
expansion that is state dependent (see [82]).

A related question on the two-spin model is: what is the effect of dissi-
pation or coupling to the environment in this model? In the context of cold
atoms, the dissipation describes the loss of atoms, an unavoidable effect in
cold atom experiments. In [83], it is shown that the dissipation can change
the structure of the phase space by altering the position of the fixed points
or changing the nature of the fixed points. Another article by Orth et al.[84]
showed that the coupling to an harmonic bath can actually lead to synchro-
nization in the dynamics of two Ising spins. It is thus interesting to see the
effect of dissipation in the two-spin model.

Another direction is to consider a one-dimensional chain of N spins 1/2
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in an inhomogeneous external field instead of two macro-spins with spin
size S = N/4. This approach is equivalent to considering the cold atoms
in the energy space where the mean magnetic field is determined by their
orbital movements[23]. However, in the energy space, the interaction be-
tween spins is long ranged. But a short range interaction on the spin chain
simplifies greatly the treatment and, via Jordan-Wigner transformation, re-
duces the problem to the one of 1D spinless fermions (electrons) performing
Bloch oscillations in a finite chain (some preliminary results are presented
in chapter 6). In such a system, the exchange interaction can be mapped to
a hopping term on the chain and the inhomogeneous magnetic field to an
external electric field of constant strength. The problem of spin becomes
the dynamics of Bloch oscillation. In Bloch oscillation, if the strength of the
external electric field is inferior to a critical value, then the amplitude of the
oscillation is so large that the electron can move in the entire system, char-
actering a metal-insulator transition. This is similar to the synchronization
transition in the spin models. It might be tempting to consider a finite chain
with a short range interaction as a first step.

The experiments on atomic chips were performed at the temperature
above the BEC. It is also interesting to consider a system already condensed,
whose theoretical basis has been laid in [85]. Is there a synchronization in
this system? If so, how does it happen? Can we find a simple model that
captures the physics of the condensates? These are also directions for future
work.
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Chapter 6
Appendix: Dynamics on a spin
chain

6.1 Statement of the problem

In this appendix we turn to a different model which is ongoing work. The
model consists of a one-dimensional chain of spin 1/2 particles in an inho-
mogeneous magnetic field with a linear gradient of δ. Each spin is fixed in
real space and has index n to label its position. There are only interaction
between nearest neigbors, and we assume an anisotropic interaction of the
form J⊥(S

x
nS

x
n+1+S

y
i S

y
n+1)+JzS

z
nS

z
n+1 where Sα

n = σα
n , the Pauli matrix. The

Hamiltonian is

H =
N∑

n=1

n

N
δSz

n +
N∑

n=1

[
J⊥
2
(S+

n S
−
n+1 + S−

n S
+
n+1) + JzS

z
nS

z
n+1

]
. (6.1)

The different interaction strength in the xy-plane and the z-direction seems
artificial, but later we will see that this leads to great simplification in the
limit Jz → 0. We take the periodic boudary condition

Sα
N+1 = Sα

1 . (6.2)

Initially, all the spins are prepared in the x-dirction, perpendicular to the
external magnetic field which reads

|Ψ(0)〉 = ⊗n
1√
2
(| ↑〉n + | ↓〉n) (6.3)

So it will take all 2N possible spin configurations.
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The quantity of interest is the contrast defined as

C(t) ≡ |〈Sx
t (t)〉|

|〈Sx
t (0)〉|

, (6.4)

with the total spin component operator

Sx
t ≡

N∑
n=1

Sx
n. (6.5)

6.2 A possible direction

In order to solve this problem, we carry out a Jordan-Wigner transformation

S+
n =f †

ne
iπ

∑
m<n nm ,

S−
n =eiπ

∑
m<n nmfn,

Sz
n =f †

nfn − 1/2,

(6.6)

where f †
n (fn) is the creation (annihilation) operator of a fermion on the n-th

site. The phase factor in the transformation is to ensure that [Sα
m, S

β
n ] = 0 for

m 6= n. And for site n, the spin state can be described by the fermion state
as

| ↑〉n = |1〉n,
| ↓〉n = |0〉n,

(6.7)

where the fermion state |1〉n (|0〉n) means there are 1 (0) fermion on the n-th
site. Then the Hamiltonian takes the form

H =
∑
n

n

2N
δ +

∑
n

n

N
δf †

nfn +
∑
n

[
J⊥
2
(f †

nfn+1 + f †
n+1fn)

+Jz(f
†
nfnf

†
n+1fn+1 − f †

nfn +
1

4
)

]
.

(6.8)

The first term in the above Hamiltonian is a constant and can be neglected.
The last term contains interaction between fermions on two nearby sites and
is thus diffficult to treat. As a first step, we neglect this term, i.e. taking the
limit Jz → 0. And the resulting Hamiltonian reads

H =
∑
n

n

2N
δ +

∑
n

n

N
δf †

nfn +
∑
n

[
J⊥
2
(f †

nfn+1 + f †
n+1fn)

]
. (6.9)
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The above Hamiltonian is a many-body version of the Bloch oscillation
Hamiltonian which describes electrons in a one-dimensional lattice potential
with an external electric field and cold atoms in a tilted lattice potential. For
a finite lattice, a localization transition occurs if the external field strength
is increased to a critical value. This is similar to our dephasing phenomenon
in the two-spin model. In our two-spin system, if the inhomogeneity of the
external field is strong enough, the two spins can not synchronized their
movement. This is a motivation for this transformation.

However, the initial state is very complicated in this transformation

|Ψ(0)〉 = ⊗n
1√
2
(|1〉n + |0〉n), (6.10)

corresponding to a state with 1/2 fermion on each site.

6.3 Summary and discussion

The problem of a one-dimensional spin chain in an inhomogeneous magnetic
field with anisotropic exchange interaction between nearest neighbors is con-
sidered in this chapter. Neglecting the interaction in the direction of the mag-
netic field and using the Jordan-Wigner transformation, we arrive at a tight-
binding model with Bloch oscillation, whose eigenstates are known[86]. But
the initial state in this transformation still takes a complicated form and an
easy decomposition onto the eigenstates of the tight-binding model is not
evident.
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