Zoo of Quantum Halos

Yusuke Nishida (Tokyo Tech)

Hadrons and Nuclear Physics meet ultracold atoms: a French Japanese workshop @ IHP Jan. 29 - Feb. 2 (2018)

Plan of this talk

- 1. Introduction to quantum halos
 - Efimov effect
 - Super Efimov effect
- 2. Semi-super Efimov effect
 - Model analysis
 - RG analysis and universality
- 3. Classification of quantum halos
 - Even more universality classes ?

4. Summary

Ref: Y. Nishida, "Semi-super Efimov effect of two-dimensional bosons at a three-body resonance," Phys. Rev. Lett. 118, 230601 (2017)
Y. Sekino & Y. Nishida, "Quantum droplet of one-dimensional bosons with a three-body attraction," Phys. Rev. A 97, 011602(R) (2018)

Introduction

REVIEWS OF MODERN PHYSICS, VOLUME 76, JANUARY 2004

Structure and reactions of quantum halos

A. S. Jensen, K. Riisager, and D. V. Fedorov

Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

E. Garrido

Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

(Published 5 February 2004)

This article provides an overview of the basic principles of the physics of quantum halo systems, defined as bound states of clusters of particles with a radius extending well into classically forbidden regions. Exploiting the consequences of this definition, the authors derive the conditions for occurrence in terms of the protection of the physics of quantum halo systems, and excitation of the protection of the protectio

Quantum halos

Efimov effect

- ✓ 3 bosons
- ✓ 3 dimensions

 r_0

✓ s-wave resonance

Infinite bound states with universal scaling

$$E_n \sim e^{-2\pi n}$$

V. Efimov, PLB (1970)

Quantum halos can be arbitrarily large for n>>1!

Quantum halos

Super Efimov effect

✓ 3 fermions

 r_0

- ✓ 2 dimensions
- ✓ p-wave resonance

Infinite bound states with universal scaling

 $E_n \sim e^{-2e^{3\pi n/4}}$

Y. Nishida, S. Moroz, D. T. Son, PRL (2013)

6/24

$$R_n \sim e^{e^{3\pi n/4}} r_0$$

Quantum halos can be arbitrarily large for n>>1 !

Quantum halos

7/24

Semi-super Efimov effect

- ✓ 4 bosons
- ✓ 2 dimensions

 r_0

✓ 3-body resonance

Infinite bound states with universal scaling $E_n \sim e^{-2(\pi n)^2/27}$

Y. Nishida, PRL (2017)

$$R_n \sim e^{(\pi n)^2/27} r_0$$

Quantum halos can be arbitrarily large for n>>1!

Semi-super Efimov effect

3-body scattering T-matrix in effective range expansion

$$T_3(\varepsilon) = \frac{\pi^2}{\frac{1}{A} + \varepsilon \ln(\frac{\Lambda}{\sqrt{-\varepsilon}}) + O(\varepsilon^2)} \to \frac{\pi^2}{\ln(\frac{\Lambda}{\sqrt{-\varepsilon}})} \times \frac{1}{E - \frac{k^2}{6m} + i0^+}$$

(collision energy $\varepsilon = E - rac{k^2}{6m} + i0^+$)

⇒ Propagation of a point-like trimer

Singular wave function at origin : $\Psi(r_1, r_2, r_3) \xrightarrow[R \to 0]{} \frac{C}{R^2}$ Cf. p-wave in 2D, s-wave in 4D

Low-energy effective field theory

$$\mathcal{L} = \phi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2m} \right) \phi + \frac{v_2 \phi^{\dagger} \phi^{\dagger} \phi \phi}{2 \text{-body interaction}} \\ + \Phi^{\dagger} \left(i \partial_t + \frac{\nabla^2}{6m} \right) \Phi + g \Phi^{\dagger} \phi \phi \phi + g \phi^{\dagger} \phi^{\dagger} \phi \Phi \\ - 3 \text{-body int}$$

⇒ Propagation of a point-like trimer

Singular wave function at origin : $\Psi(r_1, r_2, r_3) \xrightarrow[R \to 0]{} \frac{C}{R^2}$ Cf. p-wave in 2D, s-wave in 4D

⇒ RG equations

 $(s\equiv \ln\Lambda/\kappa)$

Low-energy effective field theory

$$\mathcal{L} = \phi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m} \right) \phi + \underline{v_2} \phi^{\dagger} \phi^{\dagger} \phi \phi$$

$$+ \Phi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{6m} \right) \Phi + \underline{g} \Phi^{\dagger} \phi \phi \phi + \underline{g} \phi^{\dagger} \phi^{\dagger} \phi^{\dagger} \Phi$$

$$+ \underline{v_4} \phi^{\dagger} \Phi^{\dagger} \Phi \phi + \underline{v_6} \Phi^{\dagger} \Phi^{\dagger} \Phi \Phi$$

$$4\text{-body int.}$$

$$\frac{dv_2}{2} = v_2^2$$

$$\begin{aligned} \frac{dv_2}{ds} &= \frac{v_2}{\pi} \\ \frac{dg}{ds} &= -\frac{g^3}{2\pi^2} + \frac{3gv_2}{\pi} \\ \frac{dv_4}{ds} &= \frac{9g^2}{\pi} + \frac{3v_4^2}{4\pi} - \frac{g^2v_4}{\pi^2} + O(g^2v_2) \end{aligned}$$

Solution for v₂=0 in the low-energy limit $s \equiv \ln \Lambda / \kappa \to \infty$

2-body
$$ightharpoondown \frac{dv_2}{ds} = \frac{v_2^2}{\pi}$$
 $\Rightarrow v_2(s) = 0$
3-body $ightharpoondown \frac{dg}{ds} = -\frac{g^3}{2\pi^2} + \frac{3gv_2}{\pi}$ $\Rightarrow g^2(s) \rightarrow \frac{\pi^2}{s}$
4-body $ightharpoondown \frac{dv_4}{ds} = \frac{9g^2}{\pi} + \frac{3v_4^2}{4\pi} - \frac{g^2v_4}{\pi^2} + O(g^2v_2)$
 $\Rightarrow v_4(s) \rightarrow -\frac{6\pi}{\sqrt{3s}} \cot(\sqrt{27s} - \theta)$

diverges at $\sqrt{27s} = \pi n + \theta$

⇒ 4-body binding energies at $\kappa_n \to e^{-(\pi n + \theta)^2/27} \Lambda$ Semi-super Efimov effect !

Solution for v₂≠0 in the low-energy limit $s \equiv \ln \Lambda / \kappa \to \infty$

14/24

Double fine-tunings of 2-body and 3-body int. are needed but possible with ultracold atoms !

> D.S.Petrov, PRL (2014); A.J.Daley, J. Simon, PRA (2014); D.S.Petrov, PRA (2014); S.Paul, P.R.Johnson, E.Tiesinga, PRA (2016)

15/24

Quantum Halo Zoo

Spinless bosons

- 3D + 2-body res. $\Rightarrow \kappa_n \sim e^{-\pi n/1.006}$
- 2D + 3-body res. $\Rightarrow \kappa_n \sim e^{-(\pi n)^2/27}$
- Y.Nishida, PRL (2017)

V.Efimov, PLB (1970)

16/24

• 1D + 4-body res. $\Rightarrow \kappa_n \sim e^{-\pi n/1.247}$

Y.Nishida, D.T.Son, PRA (2010)

Spinless fermions

• 2D + 2-body res. $\Rightarrow \kappa_n \sim e^{-e^{3\pi n/4}}$

Y.Nishida, S.Moroz, D.T.Son, PRL (2013)

• unknown in 3D & 1D

Interesting hierarchy & interplay among statistics, dimensionality, required interaction, and emergent universal scaling laws

Spinless bosons

- 3D + 2-body res. ⇒ Efimov effect
- 2D + 3-body res. ⇒ Semi-super Efimov effect

17/24

1D + 4-body res. ⇒ Efimov effect

Spinless fermions

- 2D + 2-body res. ⇒ Super Efimov effect
- unknown in 3D & 1D

Interesting hierarchy & interplay among statistics, dimensionality, required interaction, and emergent universal scaling laws

Known universal scaling laws are classified into

(Normal) **Efimov class**

 $\kappa_n \sim e^{-\pi n/\gamma}$

- ✓ 3 bosons in 3D (Efimov, 1970)
- 4 anyons in 2D (Nishida, 2008)
- ✓ 5 bosons in 1D (Nishida, Son, 2010)
- mass-imbalanced 3, 4, 5 fermions in 3D **4** next talk ! (Efimov, 1973; Castin et al., 2010 Bazak, Petrov, 2017)
- mixed dimensions (Nishida, Tan, 2008; 2011)

Semi-super

Efimov class

- ✓ 4 bosons in 2D (Nishida, 2017)
- mixed dimensions (Zhang, Yu, 2017)

 $\kappa_n \sim e^{-e^{\pi n/\gamma}}$ ✓ 3 fermions in 2D (Nishida et al., 2013)

Super

Efimov class

18/24

- mass-imbalanced bosons / fermions in 2D (Moroz, Nishida, 2014)
- mixed dimensions (Zhang, Yu, 2017)

Known universal scaling laws are classified into

19/24

TRiO of few-body universality classes

Q3. Even more universality classes ? ⇒ My speculation is ...

Known universal scaling laws are classified into

V.Efimov, PLB (1970)

M.A.Efemov, W.P.Schleich, Vo arXiv:1407; arXiv:1511 C.0

Volosniev et al., JPB (2014); C.Gao et al., PRA (2015)

20/24

Known universal scaling laws are classified into

21/24

22/24

Q4. Do semi-hyper and hyper Efimov effects emerge in quantum few-body systems with short-range interactions ?

⇒ I don't know (at this moment).

 $V(R) \sim rac{\#}{R^2 (\ln R)^2 (\ln \ln R)^2}$ If $V(R) \sim \frac{\#}{R^2(\ln R)^2(\ln \ln R)}$ $\kappa_n \sim e^{-e^{e^{\pi n/\gamma}}}$ $\kappa_n \sim e^{-e^{(\pi n/\gamma)^2}}$ Semi-hyper Hyper **Efimov class Efimov class**

"Phase diagram"

Fates of N bosons with few-body attraction

Fully universal (ground and excited states)

		2-body	3-body		4-body
]	1D	N^3	$e^{8N^2/\sqrt{3}\pi}$		Efimov
2	2D	$e^{2.148N}$	semi-super Efin	nov	and a sub-
e e	3D	Efimov 🔺	Sand all allow and the second s		
next	talk !	A State of the sta		Non-uni	/ersal (?)
Semi-universal					
 Iow-lying states are non-universal 					
 higher excited states show universal scaling law 					
McGuire, JMP (1964); Sekino, Nishida, PRA (2018); Nishida, Son, PRA					n, PRA (2010)

Hammer, Son, PRL (2004); Nishida, PRL (2917); Efimov, PLB (1970)

Summary

V ...

Known (arbitrarily large) quantum halos are classified into TRiO of few-body universality classes

- ✓ (Normal) Efimov class
- ✓ Semi-super Efimov class
- ✓ Super Efimov class
- Q. Even more universality classes such as
 - ✓ Semi-hyper Efimov class
 - ✓ Hyper Efimov class

emerge in quantum few-body systems with short-range interactions ???

$$\kappa_n \sim e^{-\pi n/\gamma}$$

 $\kappa_n \sim e^{-(\pi n/\gamma)^2}$
 $\kappa_n \sim e^{-e^{\pi n/\gamma}}$

$$\kappa_n \sim e^{-e^{(\pi n/\gamma)^2}}$$

 $\kappa_n \sim e^{-e^{e^{\pi n/\gamma}}}$