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JILA’s experiment

Universal dynamics of a degenerate unitary
Bose gas
P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell* and D. S. Jin*
From neutron stars to high-temperature superconductors,

strongly interacting many-body systems at or near quantum

degeneracy are a rich source of intriguing phenomena. The

microscopic structure of the first-discovered quantum fluid,

superfluid liquid helium, is difficult to access owing to limited

experimental probes. Although an ultracold atomic Bose gas

with tunable interactions (characterized by its scattering

length, a) had been proposed as an alternative strongly

interacting Bose system
1–8
, experimental progress

9–12
has been

limited by its short lifetime. Here we present time-resolved

measurements of the momentum distribution of a Bose-

condensed gas that is suddenly jumped to unitarity, where

a= 1. Contrary to expectation, we observe that the gas lives

long enough to permit the momentum to evolve to a quasi-

steady-state distribution, consistent with universality, while

remaining degenerate. Investigations of the time evolution of

this unitary Bose gas may lead to a deeper understanding of

quantummany-body physics.

A powerful feature of atom gas experiments that provides access
to these new regimes is the ability to change the interaction
strength using amagnetic-field Feshbach resonance13. In particular,
at the resonance location, a is infinite. For atomic Fermi
gases14–20, accessing this regime by adiabatically changing a led to
the achievement of superfluids of paired fermions and enabled
investigation of the crossover from superfluidity of weakly bound
pairs, analogous to the Bardeen–Cooper–Schrieffer theory of
superconductors, to Bose–Einstein condensation (BEC) of tightly
bound molecules16,17. For bosonic atoms, however, this route to
strong interactions is stymied by the fact that three-body inelastic
collisions increase as a to the fourth power21–23. This circumstance
has limited experimental investigation of Bose gases with increasing
interaction strength to studying either non-quantum-degenerate
gases24,25 or BECs with modest interaction strengths (na3 < 0.008,
where n is the atom number density)9–12.

The problem is that the loss rate scales as n
2
a
4 whereas the

equilibration rate scales as na2v , where v is the average velocity.
Thus, it would seem that the losses will always dominate as a is
increased to 1. Even if we were to forsake thermal equilibrium
and suddenly change a to project a weakly interacting BEC onto
strong interactions12,26–28, one might expect that three-body losses
would still dominate the ensuing dynamics for large a. In this
work, however, we use this approach to take a BEC to the unitary
gas regime, and we observe dynamics that in fact saturate on a
timescale shorter than that set by three-body losses and that exhibit
universal scaling with density.

One of the intriguing aspects of the unitary gas is that because a
diverges, it can no longer be a physically relevant scale for describing
the system and its behaviour. For a gas near zero temperature,
such as a BEC, the only physical scale that remains at unitarity
is the interparticle spacing. (In principle, the size of the cloud,

JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, Boulder, Colorado 80309-0440, USA.

*e-mail: cornell@jila.colorado.edu; jin@jilau1.colorado.edu

or, equivalently the trap parameters, can provide a length scale,
although one that is not intrinsic to the system. In addition, we
are ignoring here any explicit three-body interactions, which could
provide an additional length scale.) The gas behaviour should then
be universal in the sense that it is characterized only by the density n.
This means that energies scale as n2/3, momenta as n1/3, and times as
n

�2/3, which we parameterize respectively by En ⌘ h̄
2(6⇡2n)2/3/2m,

kn ⌘ (6⇡2n)1/3 and tn ⌘ h̄/En.
The universality that makes the unitary gas so remarkable also

provides a reason to hope that rapid three-body loss will not nec-
essarily be an insurmountable barrier to experimental exploration
of bulk (as opposed to lattice-confined) degenerate Bose gases with
unitarity-limited interactions. For the degenerate unitary Bose gas,
both the loss rate and the equilibration rate must scale as n2/3. The
comparison of the two rates then hinges on unknown numerical
prefactors, and it becomes an experimental question whether losses
dominate or a local equilibrium can be reached. In addition, we
note that on resonance, the shallow bound state that exists for
finite positive a disappears, so that loss requires atoms to decay
to deeply bound molecular states29. For 85Rb atoms, the previous
experimental observation of a relatively narrow, and therefore
long-lived, Efimov resonance (characterized by a dimensionless
width, ⌘= 0.057⌧ 1; ref. 11) is indicative that atoms close together
do not decay instantaneously to deeply boundmolecular states.

Our experiments (Fig. 1a) begin with a 85Rb BEC of between 5
and 7⇥104 atoms confined in a 10Hz sphericalmagnetic trap30. The
magnetic field, B, is set approximately 8G above the 85Rb Feshbach
resonance at B0 = 155.04G (ref. 31). This sets the initial a to 142
a0, which gives the BEC a Thomas–Fermi density distribution with
an average density hni = 5.5(3)⇥ 1012 cm�3. With a typical initial
temperature <10 nK, the thermal de Broglie wavelength is large
compared with hni�1/3 and is not a relevant length scale in the
physics of the ensuing experiment. Starting with this BEC in the
extremely dilute limit, with hnia3 < 10�5, we then decrease B to B0
in 5 µs. During the final 3 µs of the ramp of B, hnia3 goes from an
essentially dilute value of 10�4 to hnia3 �1.

After allowing the cloud to evolve at unitarity for a time t ,
we measure the momentum distribution of atoms by ramping,
equally rapidly, back to small a and allowing the gas to expand
ballistically before imaging the cloud using resonant, high-intensity
absorption imaging32. From an azimuthal average of the image,
we extract a momentum-space column density ñ(k̃) as a function
of the component of momentum perpendicular to the line of
sight, k̃. By imaging at various times of flight (7, 13, 25ms), we
increase the dynamic range of our data and reduce the region of k̃
that is obscured by initial-size effects. We repeat this experimental
procedure for various t to explore the evolution of the momentum
distribution as a function of time at unitarity.

From images of the expanded cloud, we also obtain the number
of atoms, N , which we show in Fig. 1b as a function of t . Fitting an
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Figure 1 | The experimental geometry and loss rate at unitarity.
a, Schematic showing the geometry of the imaging. The magnetic-field

direction (ŷ), the imaging beam (�x̂) and the direction of gravity (�ẑ) are

mutually perpendicular. b, Number of atoms measured using absorption

imaging as a function of the time at unitarity. The number measured

without ramping to unitarity is shown at t= 0. The solid line shows an

exponential fit to the data (points), which gives a time constant of

630±30 µs.

exponential decay to this early time data yields a time constant of
630±30 µs. In addition, the measured change in the spatial volume
of the condensate is (6± 9)% during the first 500 µs at unitarity.
A fact that is immediately clear from this data is that the density
loss at unitarity occurs on a timescale that is much longer than the
few microsecond duration of our ramps onto and away from the
Feshbach resonance. The ramp duration is also much shorter than
the characteristic time set by the interparticle spacing, tn =57 µs.

Equipped with this information regarding the timescales for
number loss and for expansion of the trapped gas at unitarity, we
now consider the measured momentum distributions. These are
shown in Fig. 2 for various t , with the inset showing the same
data on a log–linear plot. Given the finite times of flight before
imaging, the data at small k̃ are strongly affected by the initial size
of the BEC and do not accurately reflect ñ(k̃); the grey regions in
Fig. 2 indicate where initial-size effects are non-negligible, and we
see that a significant fraction of the signal lies within this region.
Nevertheless, the data clearly show the emergence of signal at high k̃,
outside the grey regions. The signal at high k̃ grows as a function of
t before saturating in approximately 100 µs. In this time, the gas has
not yet lost a significant number of atoms or significantly reduced
its density. The fact that the evolution timescale for ñ(k̃) is very
different from the loss timescale clearly points to a mechanism for
this dynamics that is distinct from three-body loss. Furthermore,
the much shorter timescale for saturation of ñ(k̃) suggests the
existence of a ‘quasi-equilibrium’ metastable state of a degenerate
Bose gas at unitarity.

To look for evidence of universality, we repeated the measure-
ments for a lower initial density of the BEC. The measured ñ(k̃)
for lower initial spatial density hni also shows the emergence of
signal at high k̃ at unitarity. The distributions are similar to those
measured for the higher hni (Fig. 2), except that the dynamics
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Figure 2 | The column-integrated momentum distribution ñ(k̃) versus the
transverse momentum k̃ after evolving at unitarity for time t. The

distribution measured without ramping to unitarity is shown at t= 0. For
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, which corresponds to kn = 6.9 µm
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. Each
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on log–linear axes. The grey regions indicate the part of the data that is

contaminated by initial-size effects and, therefore, does not accurately

reflect the momentum distribution. We observe the emergence of signal

outside this region, and a saturation of ñ(k̃) for t> 100 µs.
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Figure 3 | The momentum distribution, n(), plotted versus the scaled
momentum, . Data for hni = 5.5(3)⇥ 10

12
cm

�3
and

hni = 1.6(1)⇥ 10
12

cm
�3

are shown as the black and grey lines, respectively.

Dashed lines indicate where the data are contaminated by finite-size

effects. The higher hni data is the average of measurements for 6 hold

times t between 100 and 300 µs; the lower hni data is the average of four

measurements for t between 200 and 700 µs. The distributions are

normalized so that
R
n()4⇡2

d = 8⇡3
. The data for two different

densities are consistent with a single curve when plotted in scaled units.

Inset: plotting 4n() for high hni, we do not find clear evidence for a 1/4

tail at high  .

occur over a longer timescale, with ñ(k̃) saturating in approximately
200 µs. To extract the three-dimensional n(k), we use an inverse
Abel transform. In Fig. 3, we show the saturated momentum dis-
tributions as a function of the scaled momentum,  = k/kn, where

NATURE PHYSICS | VOL 10 | FEBRUARY 2014 | www.nature.com/naturephysics 117

LETTERSNATURE PHYSICS DOI: 10.1038/NPHYS2850

ǟɥƐƎƏƓɥ�!,(++�-ɥ�4 +(2'#12ɥ�(,(3#"ƥɥ�++ɥ1(%'32ɥ1#2#15#"ƥɥ

t = 0 BEC (85Rb), small a (≈ 7 nm), T < 10 nK

B → B0 (a→ ∞) in ∆t = 5µs Unitary Limit
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JILA’s experiment
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Figure 1 | The experimental geometry and loss rate at unitarity.
a, Schematic showing the geometry of the imaging. The magnetic-field

direction (ŷ), the imaging beam (�x̂) and the direction of gravity (�ẑ) are

mutually perpendicular. b, Number of atoms measured using absorption

imaging as a function of the time at unitarity. The number measured

without ramping to unitarity is shown at t= 0. The solid line shows an

exponential fit to the data (points), which gives a time constant of

630±30 µs.

exponential decay to this early time data yields a time constant of
630±30 µs. In addition, the measured change in the spatial volume
of the condensate is (6± 9)% during the first 500 µs at unitarity.
A fact that is immediately clear from this data is that the density
loss at unitarity occurs on a timescale that is much longer than the
few microsecond duration of our ramps onto and away from the
Feshbach resonance. The ramp duration is also much shorter than
the characteristic time set by the interparticle spacing, tn =57 µs.

Equipped with this information regarding the timescales for
number loss and for expansion of the trapped gas at unitarity, we
now consider the measured momentum distributions. These are
shown in Fig. 2 for various t , with the inset showing the same
data on a log–linear plot. Given the finite times of flight before
imaging, the data at small k̃ are strongly affected by the initial size
of the BEC and do not accurately reflect ñ(k̃); the grey regions in
Fig. 2 indicate where initial-size effects are non-negligible, and we
see that a significant fraction of the signal lies within this region.
Nevertheless, the data clearly show the emergence of signal at high k̃,
outside the grey regions. The signal at high k̃ grows as a function of
t before saturating in approximately 100 µs. In this time, the gas has
not yet lost a significant number of atoms or significantly reduced
its density. The fact that the evolution timescale for ñ(k̃) is very
different from the loss timescale clearly points to a mechanism for
this dynamics that is distinct from three-body loss. Furthermore,
the much shorter timescale for saturation of ñ(k̃) suggests the
existence of a ‘quasi-equilibrium’ metastable state of a degenerate
Bose gas at unitarity.

To look for evidence of universality, we repeated the measure-
ments for a lower initial density of the BEC. The measured ñ(k̃)
for lower initial spatial density hni also shows the emergence of
signal at high k̃ at unitarity. The distributions are similar to those
measured for the higher hni (Fig. 2), except that the dynamics
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ñ(k̃)2⇡k̃dk̃= 8⇡3N(t). For this data

hni = 5.5(3)⇥ 10
12

cm
�3

, which corresponds to kn = 6.9 µm
�1

. Each

momentum distribution is obtained from several images for each of three

expansion times (7, 13 and 25 ms). The inset shows the same data plotted

on log–linear axes. The grey regions indicate the part of the data that is

contaminated by initial-size effects and, therefore, does not accurately

reflect the momentum distribution. We observe the emergence of signal
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Figure 3 | The momentum distribution, n(), plotted versus the scaled
momentum, . Data for hni = 5.5(3)⇥ 10
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Dashed lines indicate where the data are contaminated by finite-size

effects. The higher hni data is the average of measurements for 6 hold

times t between 100 and 300 µs; the lower hni data is the average of four

measurements for t between 200 and 700 µs. The distributions are

normalized so that
R
n()4⇡2

d = 8⇡3
. The data for two different

densities are consistent with a single curve when plotted in scaled units.

Inset: plotting 4n() for high hni, we do not find clear evidence for a 1/4

tail at high  .

occur over a longer timescale, with ñ(k̃) saturating in approximately
200 µs. To extract the three-dimensional n(k), we use an inverse
Abel transform. In Fig. 3, we show the saturated momentum dis-
tributions as a function of the scaled momentum,  = k/kn, where
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Figure 1 | The experimental geometry and loss rate at unitarity.
a, Schematic showing the geometry of the imaging. The magnetic-field

direction (ŷ), the imaging beam (�x̂) and the direction of gravity (�ẑ) are

mutually perpendicular. b, Number of atoms measured using absorption

imaging as a function of the time at unitarity. The number measured

without ramping to unitarity is shown at t= 0. The solid line shows an

exponential fit to the data (points), which gives a time constant of

630±30 µs.

exponential decay to this early time data yields a time constant of
630±30 µs. In addition, the measured change in the spatial volume
of the condensate is (6± 9)% during the first 500 µs at unitarity.
A fact that is immediately clear from this data is that the density
loss at unitarity occurs on a timescale that is much longer than the
few microsecond duration of our ramps onto and away from the
Feshbach resonance. The ramp duration is also much shorter than
the characteristic time set by the interparticle spacing, tn =57 µs.

Equipped with this information regarding the timescales for
number loss and for expansion of the trapped gas at unitarity, we
now consider the measured momentum distributions. These are
shown in Fig. 2 for various t , with the inset showing the same
data on a log–linear plot. Given the finite times of flight before
imaging, the data at small k̃ are strongly affected by the initial size
of the BEC and do not accurately reflect ñ(k̃); the grey regions in
Fig. 2 indicate where initial-size effects are non-negligible, and we
see that a significant fraction of the signal lies within this region.
Nevertheless, the data clearly show the emergence of signal at high k̃,
outside the grey regions. The signal at high k̃ grows as a function of
t before saturating in approximately 100 µs. In this time, the gas has
not yet lost a significant number of atoms or significantly reduced
its density. The fact that the evolution timescale for ñ(k̃) is very
different from the loss timescale clearly points to a mechanism for
this dynamics that is distinct from three-body loss. Furthermore,
the much shorter timescale for saturation of ñ(k̃) suggests the
existence of a ‘quasi-equilibrium’ metastable state of a degenerate
Bose gas at unitarity.

To look for evidence of universality, we repeated the measure-
ments for a lower initial density of the BEC. The measured ñ(k̃)
for lower initial spatial density hni also shows the emergence of
signal at high k̃ at unitarity. The distributions are similar to those
measured for the higher hni (Fig. 2), except that the dynamics
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occur over a longer timescale, with ñ(k̃) saturating in approximately
200 µs. To extract the three-dimensional n(k), we use an inverse
Abel transform. In Fig. 3, we show the saturated momentum dis-
tributions as a function of the scaled momentum,  = k/kn, where
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Losses : N(t)↘
”Universality” : rescaled momentum distribution

〈n〉 ≡ 6π2 k3n κ ≡ p/kn 1 = 1
2π2

∫ +∞
0 dκκ2 n(κ)
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Momentum distribution calculation

”High temperature” expansion : small parameter nλ3th � 1
Two phenomena :

3-body losses

Interactions
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3 body losses
(F. Chevy, D. Petrov, C. Salomon, F. Werner ...)

Figure – 3-body recombination-Courtesy L. Pricoupenko.

Use classical Boltzmann equation with 2-body elastic collisions and 3 body
losses :

∂t f = Icoll [f ]− L3[f ]

Icoll [f ] is two-body elastic collision integral at unitarity.
L3[f ] is loss rate operator for unitary Bose gas :

L3[f ](p1) =

∫
d3p2d3p3K3(p1,p2,p3)f (p1)f (p2)f (p3)
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3 body losses

2-body collision rate (s−1) (Icoll) γ2 ∝ n

3-body loss rate (L3) γ3 ∝ n2 =⇒ γ3/γ2 ∝ n� 1

B. S. Rem et al., PRL 110, 163202 (2013) :

γ3/γ2 = (1− e−4η)nλ3th

η : ”coupling” to deeply bound molecule

η ≥ 0 (7Li : η = 0.2, 85Rb : η = 0.06).

=⇒ Treat L3[f ] perturbatively.
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3 body losses
Treat L3[f ] perturbatively.

∂t f = Icoll [f ]− L3[f ]

f = f0 + f1 + · · · , f0 : gaussian with time dependent energy(temperature)
and particle number :

f0(p; t) =
n(t)λ3th(t)

h3
e
− p2

2m kB T (t)

Icoll [f0] = 0

∂t f0 = I ′coll [f1]− L3[f0]

Idea of the method :

Eliminate term with f1 by projection on the kernel of I ′coll , find
differential equations for n(t) and T (t)

In order to find f1, project onto space orthogonal to kernel (use
gaussian× orthogonal polynomials).
Order of magnitude : f1 ∼ L3[f0]/γ2 ∼ (nλ3th) f0.

Xavier Leyronas Unitary Bose Gas and 3-body losses 2018/2/2 8 / 17



3 body losses : results 1

Rate equations :

∂tn = −L3 n3

L3 ' 36
√

3π2
~5

m3(kB T )2
(1− e−4η) (1)

∂tE = −5

9
E L3 n

2

Temperature T (t) : E = 3
2kB n(t)T (t).

n(t)↘, E (t)↘ ... but T (t)↗.

Eq.(1) : L3 obtained in B. S. Rem et al., PRL 110, 163202 (2013).

Xavier Leyronas Unitary Bose Gas and 3-body losses 2018/2/2 9 / 17



3 body losses : results 2

flattening of the momentum distribution when the three-
body losses strength is increased.
In the experiment described in [18], the cloud is not

directly prepared in the quasistatic, strongly interacting
state. Rather, the experimental sequence starts with a the
weakly interacting Bose-Einstein condensate in a regime
where losses can be neglected. The magnetic field is then
ramped quickly to unitarity where the system can relax
towards the quasiequilibrium described above. To get some
insight on the relaxation of the system towards equilibrium,
we consider the simpler case of a noncondensed gas for
which the momentum distribution before the ramp is
Gaussian. We write as before f ¼ f0 þ f1 with f1 ¼
f1;qs þ δf1, where f1;qs is the quasistatic solution and
δf1 satisfies the initial condition δf1ðp; t ¼ 0Þ ¼
−f1;qsðp; t ¼ 0Þ, since at t ¼ 0, f ¼ f0. Expanding
Boltzmann’s equation to first order in f1 and using the
properties of f1;qs, we obtain for δf1,

∂tδf1 ¼ I0coll½δf1&: ð17Þ

This equation shows that the relaxation towards the
quasistatic regime is solely driven by two-body collisions
and occurs at a rate ∼γ2. This may seem paradoxical since
one would rather expect the three-body characteristic rate
∼γ3. However, as far as the phase-space density is con-
cerned, the depletion of f at low momenta is quite small
since the relative decrease of the peak momentum density is
∝ nλ3. Since 1=γ3is the time required to lose typically half
the initial atom number, the dip should form on a time
scale, ≃nλ3=γ3≃ 1=γ2.
The three-body losses lead to a correction to the

momentum distribution proportional to nλ3. This scaling
is similar to the first virial correction, and one may wonder
if the three-body losses might not mask the effects of two-
body interactions. To clarify this point, we calculated the
leading order corrections to the occupation number ρðpÞ ¼
h3fðpÞ using the scheme presented in [26]. In the virial

expansion, the leading order term corresponds to the ideal
Boltzmann gas. In the grand canonical ensemble, this term
reads ρð1ÞðpÞ ¼ ze−βεp , where z is the fugacity and
εp ¼ p2=2m. The next order term is the sum of two
contributions. The first one corresponds to Bose’s statistics
and is simply ρð2;aÞðpÞ ¼ z2e−2βεp, while the second one is
more involved and is due to interactions. Following [26], it
is given by

ρð2;bÞðpÞ ¼ 8πz2

m

Z

Cγ

ds
2πi

Z
þ∞

0

dPP2

2π2
e−βsffiffiffiffiffiffiffiffiffiffi
−ms

p

×
e−βðP

2=4mÞ

½sþ P2

4m − p2

2m − ðP−pÞ2
2m &½sþ P2

4m − p2

2m − ðPþpÞ2
2m &

;

ð18Þ

where Cγ is a Bromwich contour [27]. We note that this
expression is simply twice that obtained for spin 1=2
fermions [26]. To convert this momentum distribution to
the canonical ensemble, we use the virial expansion of the
equation of state of the unitary Bose gas, nλ3th ¼ zþ
2b2z2þ ' ' ', with b2¼ 9=4

ffiffiffi
2

p
[13]. We thus obtain

ρðpÞ ¼ nλ3the
−βεp þ ðnλ3thÞ2½ξðλthp=ℏÞ −2b2e−βεp &; ð19Þ

where we took ρð2ÞðpÞ ¼ ρð2;aÞðpÞ þ ρð2;bÞðpÞ ¼
z2ξðλthp=ℏÞ.
In Fig. 2, we compare the effect of three-body losses with

the virial corrections to the momentum distribution. We
observe that for 7Li, for which η ¼ 0.2, the dip in the
momentum distribution is dominated by three-body losses.
We now turn to the quantitative comparison of our results

with the experimental data presented in [18]. In this
experiment an ultracold, weakly interacting Bose-
Einstein condensate is ramped abruptly to the Feshbach
Resonance and after a 100-μs-long waiting time, the system
reaches a quasiequilibrium characterized by the momentum

2 1 0 1 2
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FIG. 1 (color online). Deformation of the momentum distribu-
tion of a unitary Bose gas due to three-body losses. From top to
bottom: nλ3thð1 − e−4ηÞ ¼ 0 (blue, Boltzmann gas), nλ3thð1 −
e−4ηÞ ¼ 0.05(orange), and nλ3thð1 − e−4ηÞ ¼ 0.1 (red).
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FIG. 2 (color online). Correction to the Boltzmann gas: Three-
body losses vs interactions. The correction to Boltzmann’s
distribution is plotted for maximal three-body losses (η ¼ ∞,
red dashed line), η ¼ 0.2, corresponding to 7Li (orange dotted
line). The blue solid line corresponds to the correction, Eq. (19),
due to Bose statistics and two-body interactions.
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pth =
~
λth

f = f0 + f1

f0(p, t) = n(t)
e
− p2

2m kB T (t)

(2πmkB T (t))3/2

f1(p, t) =

(
n(t)λ3th(t)

)2

h3
ξ(p/pth(t))

× (1− e−4η)

Xavier Leyronas Unitary Bose Gas and 3-body losses 2018/2/2 10 / 17



Virial expansion-thermal equilibrium

small parameter : fugacity z = eβµ � 1,

z ' nλ3th, λth =
√

2π~2
kB T m .

Expand ρp = 〈c†pcp〉 in powers of z .

Diagrammatic approach :
ρp = −G (p, τ = 0−).
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Virial expansion-thermal equilibrium
Principle of the method :

Feynman diagrams : building blocks are free particle (boson)
propagators G 0 and coupling constant g .

• High temperature expansion, principle of the method 

• Method : Feynman diagrams 

• Building blocks are free fermions propagators G0 and interaction coupling 
constant g (e.g. for BEC-BCS crossover)

1.2 Introduction

Ex. :

Expand G 0 in power of fugacity :

G 0(p, τ) = eµτ
∑

n≥0
G 0,n(p, τ) zn

G (0,0)(p, τ) = −Θ(τ)e−εp τ , retarded

G (0,n≥1)(p, τ) = −e−εp τe−n β εp

εp =
p2

2m
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High-temperature expansion-thermal equilibrium
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High-temperature expansion-thermal equilibrium

G (0,0)(p, ⌧) =

G (0,1)(p, ⌧) =

G (0,2)(p, ⌧) =
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….

Propagation of  
a particle in vacuum

A diagram with n slashes is of order zn.

G (0,0) cannot got backward in (imaginary) time.

XL, PRA 84, 053633 (2011)
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High-temperature expansion-thermal equilibrium
ρp = 〈c†pcp〉 = −G (p, τ = 0−)
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Results-comparison to experiment

Uniform gas :

ρ(p) = z e−β
p2

2m + z2 [ρlosses(pλth/~) + ρvirial(pλth/~)]

Trapped gas :
Assume

Thomas-Fermi (1− r2/R2) profile unchanged during ramping

Local heating =⇒
T (n(r); a−1 = 0;m; ~) = C ~2 n(r)2/3

m
=⇒ n(r)λ3th(r) = constant = f (z).

Fugacity z is uniform.
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Results-comparison to experiment

JILA’s experiment
parameters :

〈n〉 ≡ 6π2 k3n

κ ≡ p/kn

n(κ) ∝
∫

r<R
d3rρ(p;µ(r);T (r))

1 =
1

2π2

∫ +∞

0
dκκ2 n(κ)

One parameter : fugacity z

distribution of Fig. 3. To compare this experiment with our
results, we must first determine the temperature of the cloud
and since the dynamics is very fast (in the experiment the
trapping frequencies are a few Hz), it is most likely
inhomogeneous. We therefore assume a purely local heat-
ing and we consider that the thermalization mechanism
depends only on elastic processes. Neglecting the initial
scattering length, we conclude that the local temperature
must scale like TðrÞ ¼ CTnðrÞ where C is a numerical
constant and Tn ¼ ℏ2ð6π2nÞ2=3=kBm. In other words, the
phase-space density (or equivalently the fugacity) is homo-
geneous over the cloud. Furthermore, the dynamics being
too fast for transport phenomena to occur, we can assume
that the density profile is not affected by the thermalization.
We can therefore average the predicted momentum dis-
tribution over the Thomas-Fermi density profile of the
initial, weakly interacting Bose-Einstein condensate and we
fit the experimental data taking η ¼ 0.06 and using the
uniform fugacity z as the only fitting parameter [24]. In this
way, we find a surprisingly good agreement between
experiment and theory for z ¼ 0.6ð1Þ (Note that as
expected for such a small value of η, the three-body losses
play only a small role in the wing of the momentum
distribution.) Using the virial expansion, this fugacity
corresponds to a temperature of 110 nK at the center of
the trap. This temperature is much higher than that of the
initial weakly interacting Bose gas and justifies the uni-
versal thermalization hypothesis.
In principle, the virial expansion is valid only in the limit

of vanishingly small fugacities, and its accuracy is therefore
questionable in the present case. Even though there is no

reliable way to assess the accuracy of the virial expansion
for unitary Bose gases, we note that for the equation of state
of the unitary Fermi gas, the first-order virial expansion
gives the correct result at a ≃10% level at z ¼ 0.6[28,29].
If we assume that the same level of accuracy is achieved in
the case of bosons, our calculation should provide a
quantitative description of JILA’s experiment. To further
support our analysis we note that the temperature deduced
from the virial expansion yields a three-body loss rate
comparable to the one observed in [18].
The approach presented above provides a quantitative

way to study unitary Bose gases in the dilute limit. In the
case of the results presented in [18], we find that three-body
losses are negligible and that the tail of the momentum
distribution is well described by a first-order virial expan-
sion at a fugacity z ¼ 0.6ð1Þ. This value raises a series of
open questions. First, is it possible to derive this value from
a purely microscopic model describing the dynamics of a
Bose gas projected from a weakly interacting regime to
unitarity. Second, is it really universal? In our work, we
assumed that, after the ramp, the thermalization was only
driven by the two-body scattering length. However, for
strongly interacting bosons, we know that three-body
Efimov physics cannot be neglected and requires the
introduction of the three-body parameter Rt. In this case,
the fugacity would be a log-periodic function of the
dimensionless parameter kFRt, as suggested in [20]. This
assumption could be tested by reproducing JILA’s experi-
ment on different atoms to vary the value of Rt.
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FIG. 3 (color online). The dimensionless momentum occupa-
tion number for the unitary Bose gas in a semilog scale. κ ¼
p=ℏkn with kn ≡ ð6π2hniÞ1=3 and hni the spatially averaged
density (hni ¼ 5.5× 1012 cm−3 and hni ¼ 1.6× 1012 cm−3).
The occupation number is normalized so that

R
nðκÞ4πκdκ ¼

8π3. The continuous line is the experimental result from
Ref. [18] , the dashed line is the result of Eq. (19) averaged
over the initial density profile for z ¼ 0.6, and the dotted line
includes the effect of three-body losses. The fit is restricted to
κ > 0.5 since for lower momenta, the momentum distribution
never equilibrates.
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Best fit for z ≈ 0.6.
Losses are weak here.
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κ ≡ p/kn

n(κ) ∝
∫

r<R
d3rρ(p;µ(r);T (r))

1 =
1

2π2

∫ +∞

0
dκκ2 n(κ)

One parameter : fugacity z

distribution of Fig. 3. To compare this experiment with our
results, we must first determine the temperature of the cloud
and since the dynamics is very fast (in the experiment the
trapping frequencies are a few Hz), it is most likely
inhomogeneous. We therefore assume a purely local heat-
ing and we consider that the thermalization mechanism
depends only on elastic processes. Neglecting the initial
scattering length, we conclude that the local temperature
must scale like TðrÞ ¼ CTnðrÞ where C is a numerical
constant and Tn ¼ ℏ2ð6π2nÞ2=3=kBm. In other words, the
phase-space density (or equivalently the fugacity) is homo-
geneous over the cloud. Furthermore, the dynamics being
too fast for transport phenomena to occur, we can assume
that the density profile is not affected by the thermalization.
We can therefore average the predicted momentum dis-
tribution over the Thomas-Fermi density profile of the
initial, weakly interacting Bose-Einstein condensate and we
fit the experimental data taking η ¼ 0.06 and using the
uniform fugacity z as the only fitting parameter [24]. In this
way, we find a surprisingly good agreement between
experiment and theory for z ¼ 0.6ð1Þ (Note that as
expected for such a small value of η, the three-body losses
play only a small role in the wing of the momentum
distribution.) Using the virial expansion, this fugacity
corresponds to a temperature of 110 nK at the center of
the trap. This temperature is much higher than that of the
initial weakly interacting Bose gas and justifies the uni-
versal thermalization hypothesis.
In principle, the virial expansion is valid only in the limit

of vanishingly small fugacities, and its accuracy is therefore
questionable in the present case. Even though there is no

reliable way to assess the accuracy of the virial expansion
for unitary Bose gases, we note that for the equation of state
of the unitary Fermi gas, the first-order virial expansion
gives the correct result at a ≃10% level at z ¼ 0.6[28,29].
If we assume that the same level of accuracy is achieved in
the case of bosons, our calculation should provide a
quantitative description of JILA’s experiment. To further
support our analysis we note that the temperature deduced
from the virial expansion yields a three-body loss rate
comparable to the one observed in [18].
The approach presented above provides a quantitative

way to study unitary Bose gases in the dilute limit. In the
case of the results presented in [18], we find that three-body
losses are negligible and that the tail of the momentum
distribution is well described by a first-order virial expan-
sion at a fugacity z ¼ 0.6ð1Þ. This value raises a series of
open questions. First, is it possible to derive this value from
a purely microscopic model describing the dynamics of a
Bose gas projected from a weakly interacting regime to
unitarity. Second, is it really universal? In our work, we
assumed that, after the ramp, the thermalization was only
driven by the two-body scattering length. However, for
strongly interacting bosons, we know that three-body
Efimov physics cannot be neglected and requires the
introduction of the three-body parameter Rt. In this case,
the fugacity would be a log-periodic function of the
dimensionless parameter kFRt, as suggested in [20]. This
assumption could be tested by reproducing JILA’s experi-
ment on different atoms to vary the value of Rt.
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FIG. 3 (color online). The dimensionless momentum occupa-
tion number for the unitary Bose gas in a semilog scale. κ ¼
p=ℏkn with kn ≡ ð6π2hniÞ1=3 and hni the spatially averaged
density (hni ¼ 5.5× 1012 cm−3 and hni ¼ 1.6× 1012 cm−3).
The occupation number is normalized so that

R
nðκÞ4πκdκ ¼

8π3. The continuous line is the experimental result from
Ref. [18] , the dashed line is the result of Eq. (19) averaged
over the initial density profile for z ¼ 0.6, and the dotted line
includes the effect of three-body losses. The fit is restricted to
κ > 0.5 since for lower momenta, the momentum distribution
never equilibrates.
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Best fit for z ≈ 0.6.
Losses are weak here.
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Conclusion

Unitary (a−1 = 0) Bose gas with 3-body losses

Controlled calculation if small parameter z ' n λ3th � 1.

Effects of 3-body losses and interaction/statistics O(z2).

Comparison with experiment : z ' 0.6. Small ?
' Ok for Equation of State of Unitary Fermi gas.

Efimov physics ? Needs 3-body correlations (”T3”) :
J. Hofmann and M. Barth PRA 93, 061602 (2016) (good agreement
with experiment if Efimov trimers states not populated).

Project : losses for spin 1/2 fermions.
3-body contact : g (3)(r1, r2, r3) if R → 0.
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