Dirac cones for cold atoms in an optical lattice

Jean-Noël Fuchs CNRS, LPTMC (Paris) and LPS (Orsay) With L.K. Lim, G. Montambaux, M.O. Goerbig and F. Piéchon

Outline

1) Lattice simulation of relativistic particles : quantum particle in a periodic lattice
→ emergent Dirac or Weyl equation at low energy
e.g. electrons in a crystal (graphene)
Cold atoms in an optical lattice (honeycomb or brick-wall)

2) Band contact points (e.g. Dirac/Weyl point) as topological defects

3) Probing these topological defects via Stückelberg interferometry for cold atoms in optical lattices

Tight-binding model on honeycomb

Simplest tight-binding model of graphene Wallace PR 1947

 $H(\mathbf{k})|u_{\mathbf{k}}\rangle = \varepsilon_{\mathbf{k}}|u_{\mathbf{k}}\rangle$ $|u_{\mathbf{k}}\rangle = \begin{pmatrix} u_{A\mathbf{k}} \\ u_{B\mathbf{k}} \end{pmatrix}$ Sub-lattice spinor (amplitude on A and B sites) $H(\mathbf{k}) = \begin{pmatrix} 0 & f(\mathbf{k})^* \\ f(\mathbf{k}) & 0 \end{pmatrix} = |f|(\cos\phi\sigma_x + \sin\phi\sigma_y)$ 3 Phase = azimuthal angle along equator of Bloch sphere $f(\mathbf{k}) = -t \sum e^{-i\mathbf{k}\cdot\boldsymbol{\delta}_j} = |f(\mathbf{k})|e^{i\phi(\mathbf{k})}$ Modulus and phase

Modulus \rightarrow energy spectrum

 $\varepsilon_{\mathbf{k}} = \pm |f(\mathbf{k})| = \pm t\sqrt{3 + 2\cos(\mathbf{k} \cdot \mathbf{a}_1)2\cos(\mathbf{k} \cdot \mathbf{a}_2) + 2\cos(\mathbf{k} \cdot (\mathbf{a}_1 - \mathbf{a}_2))}$

Phase \rightarrow eigenstate & quantized vortex

$$|u_{\mathbf{k}}\rangle = \begin{pmatrix} u_{A\mathbf{k}} \\ u_{B\mathbf{k}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm e^{i}\phi_{\mathbf{k}} \end{pmatrix} \stackrel{Cell-periodic Bloch state}{(upper/lower band)}$$
Phase = azimuthal angle along equator of Bloch sphere
$$\Gamma(C) = \oint_{C} d\mathbf{k} \cdot i \langle u_{\mathbf{k}} | \nabla_{\mathbf{k}} u_{\mathbf{k}} \rangle = \frac{1}{2} \oint_{C} d\phi_{\mathbf{k}} = \pm \pi \qquad \begin{array}{c} \text{Berry phase} \\ (here quantized, winding number \times \pi) \end{pmatrix}$$

$$= \frac{1}{2} \oint_{C} d\phi_{\mathbf{k}} = \frac{1}{2} \int_{C} d\phi_{$$

Dirac equation: 2+1 and massless

 $\mathbf{k} = \xi \mathbf{K} + \mathbf{q}$ where $\xi = \pm 1$ is the valley index K/K'

$$H(\mathbf{k}) \approx H_{\xi}(\mathbf{q}) = \hbar v_F(\xi q_x \sigma_x + q_y \sigma_y) = \hbar v_F \begin{pmatrix} 0 & \xi q_x - iq_y \\ \xi q_x + iq_y & 0 \end{pmatrix}$$

 $v_F\equiv {3\over 2}{ta\over \hbar}pprox 10^6~{
m m/s}~$ is the Fermi velocity (density independent)

Pauli matrices in sublattice A/B sub-space 2D massless Dirac (Weyl) Hamiltonian in two copies (valley degeneracy) Four copies if (real) spin is included Semenoff; di Vincenzo & Mele 1984

Haldane's model of Chern insulator Spinless graphene with inhomog. B-field (broken TRS) within unit cell of honeycomb lattice + NNN hopping $t_2e^{i\phi}$

$$H(\mathbf{k}) \approx H_G(\mathbf{k}) + \Delta_H(\mathbf{k})\sigma_z$$
$$\Delta_H(\mathbf{k}) = 2t_2 \sin \phi \sum_{j=1}^3 \sin(\mathbf{k} \cdot \mathbf{b}_j)$$
$$\Delta_H(K/K') = \pm t_2 3\sqrt{3} \sin \phi$$

Pair of massive Dirac fermions with opposite masses $H_H(\boldsymbol{q}) = (\tau_z q_x \sigma_x + q_y \sigma_y) \mathbf{1}_s + \underbrace{\Delta_H \tau_z \sigma_z}_{\text{Gap/mass changes sign with valley}} \varepsilon = \pm \sqrt{\boldsymbol{q}^2 + \Delta_H^2}$ - Bulk energy spectrum similar to boron nitride

$$\operatorname{Gap} = 2|\Delta_H| = 2t_2 3\sqrt{3}|\sin\phi|$$

- Berry curvature $\geq 0 \rightarrow$ Chern $\neq 0 \rightarrow$ QHE without LLs
- Edge energy spectrum ?

Haldane 1988

Band contact as topological defect

Band contact between two bands:

$$\begin{split} H(\mathbf{k}) &= \epsilon_0(\mathbf{k})\sigma_0 + \vec{h}(\mathbf{k}) \cdot \vec{\sigma} \\ \epsilon_{\pm}(\mathbf{k}) &= \epsilon_0(\mathbf{k}) \pm |\vec{h}(\mathbf{k})| \\ \vec{h}(\mathbf{k}) &= |\vec{h}(\mathbf{k})|\vec{n}(\mathbf{k}) \\ \end{split}$$
Bloch sphere S²

Band contact : $|\vec{h}(\mathbf{k})| = 0 \rightarrow 3$ constraints (3 Pauli matrices) $h_j(\mathbf{k}) = 0, \ j = 1, 2, 3 = x, y, z$

How many independent parameters?

Von Neumann – Wigner 1929

Band contact as topological defect

 $D=3 \rightarrow 3$ k parameters \rightarrow stable contact : Weyl point

 $D=2 \rightarrow 2$ k parameters \rightarrow unstable contact

D=2 with symmetry constraint (such as T and I or chiral S) \rightarrow only 2 Pauli matrices (motion on equator S¹) \rightarrow stable contact: Dirac points in graphene

Homotopy groups:

Encircling of the defect: S^{D-1}

Target space: Bloch sphere S^2 or equator S^1

- $S^2 \rightarrow S^2$
- $\Pi_2(S^2) = \mathbb{Z}$ Wrapping number

Band contact as topological defect

2D Dirac points : linear band contact points of winding W=±1 (Berry phase = π)

Dirac points appear in pairs of opposite winding (chirality) Fermion doubling (Nielsen-Ninomiya theorem)

Motion on an equator (great circle) of Bloch sphere \rightarrow single angle $\phi(\mathbf{k})$ Quantized vortices (vorticity = winding number)

Other band contacts exist in 2D : Semi-Dirac (linear-quadratic) W=0 (Berry phase = 0) Quadratic band contact W=0 (Berry phase = 0) Quadratic band contact W=±2 (Berry phase = 0)

Conservation of total winding number during annihilation/creation of topological defects

« Universal » Hamiltonian of +- merging

$$\mathcal{H}(\boldsymbol{q}) = \begin{pmatrix} 0 & \Delta^* + \frac{q_x^2}{2m^*} - ic_y q_y \\ \Delta^* + \frac{q_x^2}{2m^*} + ic_y q_y & 0 \end{pmatrix}$$

$$\varepsilon = \pm \sqrt{\left(\Delta^* + \frac{q_x^2}{2m^*}\right)^2 + (c_y q_y)^2}$$

Artificial graphene with cold atoms

Tarruell, Greif, Uehlinger, Jotzu & Esslinger Nature 2012

Artificial graphene VS Real graphene

<u>Fermionic atoms</u>: spin polarized, <u>Conduction electrons</u>: spin $\frac{1}{2}$ neutral, no s-wave interaction Coulomb repulsion <u>Tunable optical lattice</u> Carbon honeycomb lattice (honeycomb-like) Band filling: <u>number of atoms</u> Band filling: backgate controls Degenerate ideal Fermi gas (T ~ <u>chemical potential</u> ε_{F} 0.1 ε_). 2D degenerate Fermi liquid. <u>Inhomogeneous</u> atomic density <u>Homogeneous</u> electronic density (trapping potential) Band structure probed directly No transport measurement, no ARPES: how to « see » the band by ARPES or indirectly in structure? ↓transport

Honeycomb VS brick wall : t-t' model

Bloch oscillation, Landau-Zener tunneling and band mapping technique

Tarruell, Greif, Uehlinger, Jotzu & Esslinger Nature 2012

Transferred fraction after Bloch oscillation

Lim, Fuchs & Montambaux PRL 2012

Double Dirac cone case : $P_{+} = \langle 2 P_{z} (1 - P_{z}) \rangle$ Incoherent « interferometer »

Bloch oscillations + Landau-Zener tunneling + band mapping technique can tell whether Dirac points are present/absent

Lim, Fuchs & Montambaux PRL 2012

Stückelberg interferometer

Two paths interferometer in energy space Avoided crossings (gapped Dirac cones) act as beam splitters Dynamical phase is different for the two paths

Stückelberg 1932

Coherent double Dirac cone

 $V_{\overline{X}}$

Combining probability amplitudes gives: $P_t = 4P_Z(1 - P_Z) \sin^2(\frac{\varphi_{\text{dyn.}}}{2} + \varphi_{\text{St.}})$ With the dynamical phase difference $\varphi_{\text{dyn.}} = \frac{1}{\hbar} \int_{-t_0}^{t_0} dt (E_+(t) - E_-(t))$ and the Stokes' phase (acquired upon reflection on the « beam splitter »)

$$\varphi_{\mathrm{St.}} = rac{\pi}{4} + \delta(\ln \delta - 1) + rg \Gamma(1 - i\delta)$$

Stückelberg interferences give access to the energy spectrum via the dynamical phase.

Can we probe the eigenstates as well?

Lim, Fuchs & Montambaux PRL 2012

Phase of the Stückelberg interferometer

$$P_t = 4P_Z(1 - P_Z)\sin^2(\frac{\varphi_{\rm dyn.} + \varphi_g}{2} + \varphi_{\rm St.})$$

1) Dynamical phase

2) Stokes phase

3) Extra contribution : geometrical phase (probes eigenstates), open-path Berry phase involving two bands

$$\varphi_g = \int_{-t_0}^{t_0} dt (\langle \psi_- | i\partial_t | \psi_- \rangle - \langle \psi_+ | i\partial_t | \psi_+ \rangle) + \arg \langle \psi_- (-t_0) | \psi_- (t_0) \rangle - \arg \langle \psi_+ (-t_0) | \psi_+ (t_0) \rangle$$

Stückelberg interferences for topol. insulators

Double K point versus double M point Interferometer with finite bandwidth

K points : <u>Dirac points</u> Linearly vanishing DoS Gapless Vicinity of K points : small « lateral » gap Zürich exp. with fermions M points : <u>saddle points</u> Van Hove singularity in DoS Large « saddle point » gap Münich exp. with bosons

Ambulance cross : Six trajectories & one energy landscape

Units s.t. hopping amplitude J = 1, NN distance a = 1, \hbar

Ambulance cross : Six trajectories & two phase landscapes

Units s.t. hopping amplitude J = 1, NN distance a = 1, \hbar

- Geometric π phase shift at any force F [in units of J/a] phase opposition
- Saturation of proba to 0 or 3/4 in sudden limit
- \rightarrow reveals extended periodicity beyond 1st BZ

Fast and straight trajectory from Γ to Γ Tripled periodicity H(k)? Interband transition proba sequence: 3/4, 3/4, 0, 3/4, 3/4, 0, etc?

Sudden approximation : overlap matrix Interband transition probability $P^{+-}(t_f) = |\langle u_+(Ft_f)|u_-(Ft_i)\rangle|^2 = \sin^2 \frac{\Delta \phi}{2}$ $\Delta \phi = \phi_f - \phi_i$ $\begin{aligned} \boldsymbol{k}_i &= 0\\ \boldsymbol{k}_f &= \boldsymbol{k} \end{aligned}$ Phase pattern 0 k_u k_x $P^{+-} = \sin^2 \frac{2\pi/3}{2} = \frac{3}{4}$ -5 5

Tripled periodicity of relative phase measured in honeycomb lattice

Conclusion : Two Dirac points

+- scenario (semi-Dirac)

++ scenario (nematic instability C_4 or $C_6 \rightarrow C_2$ QBCP W=+2)

