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Motivation

Bosonic mixtures of two different components with competing
attractive inter and repulsive intra species interaction caught recently
a great deal of attention.

Ability to form self trapped liquid droplets.

Finite piece of liquid in equilibrium with vacuum without any external
potential !

Many possible applications of these droplets. (cooling, ...)

Direct manifestation of Beyond-Mean-Field (BMF) effects.
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Mixture & Stability

Mixture : 2 6= particles (↑, ↓) of equal masses and same densities.
Interactions (g↑↓, g↑↑, g↓↓) with attractive inter and repulsive intra
species. What about stability (i.e. no collapse) ?

g↑↑/|g↑↓|

g
↓↓

/|g
↑↓

|

Collapse Region

MF Collapse Line 

Stability Region

... In 1D, close to this MF collapse line, on the MF repulsive side
the mixture liquefy !

→ Comes from an effectively attractive BMF term.
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A Brief Insight

MF 

BMF

MF + BMF

n0

E/n

n

Repulsion

Attraction

MF BMF
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Overview of one dimensional Bose-Bose mixture at this stage

Increasing g↑↑g↓↓/g
2
↑↓

makes the system more
dilute which in one
dimension leads to
stronger correlations.

For gσσ � |g↑↓|, ,the
system becomes a gas of
↑↓ dimers.(Mapping with
Gaudin-Yang model
which has no other BS
than ↑↓ dimers.)

g↑↑/|g↑↓|

g
↓↓

/|g
↑↓

| ?

Collapse

Gaudin-Yang

Dilute atomic liquid

Gas of Dimers

MF Collapse Line 

ΨB , g↑↑ = g↓↓ = +∞ ⇔ ΨF , g↑↑ = g↓↓ = 0

Goal
By decreasing the ratio g↑↑g↓↓/g

2
↑↓ :

→ Find the line curve in the plane {g↑↑/|g↑↓|, g↓↓/|g↑↓|} where the
dimer-dimer interaction vanishes (add =∞).
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Reminders about 1D systems



Two-body scattering theory in 1D

[− ~2

2µ
d2

dx2 + V (|x |)]Ψ(x) = EΨ(x) (1)

|x | � Re → Ψ(x) = A sin(k|x |+ δ(k))

δ is the so-called phase shift
k is the relative momentum and verify E = ~2k2/2µ.

Scattering length a

lim
x→0

Ψ(x) ∝ |x | − a(k) where a(k) = − sin(δ)

k cos(δ)

Small momenta kRe � 1, we define the scattering length a :

a = lim
k→0

a(k) = lim
k→0
− tan δ

k

Expansion : kcotδ(k) = −1/a + (re/2)k2 + ...
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Two-body contact interaction

Short range interactions between particle modeled by a δ-potential
such that : Vij(x) = gijδ(xij).

It’s the so-called Zero-Range Approximation, valid when |λdB | � Re

One can show with the logarithm derivative of Ψ|0 that the constant
interaction gij is related to the scattering length.

gij = − ~2

µaij

If gij > 0 one deals with a repulsive potential, whereas for gij < 0 we
deal with an attractive potential.
If gij < 0 a bound state (BS) exists.

ΨBS ∝ e−|x |/aij EBS({m1,m2}, gij) = − ~2

2µa2
ij

→ aij can be seen as the size of the bound state.
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The Four-Body system



Schrödinger’s equation

Symmetries (eσσ = ±1)

Ψ(r1, r2,R) = e↓↓Ψ(r+, r−,
r1 − r2√

2
)

= e↑↑Ψ(r−, r+,
r2 − r1√

2
)

= e↑↑e↓↓Ψ(r2, r1,−R)

(−∇2
X − E )Ψ(r1, r2,R) =[−g↑↓(δ(r1) + δ(r2) + δ(r+) + δ(r−))

− g↑↑δ(r↑↑)− g↓↓δ(r↓↓)]Ψ(r1, r2,R)
(2)
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Skorniakov-Ter-Martirosian (STM)

We introduce the function f↑↓ which corresponds by definition to the
wavefunction Ψ when one pair {↑↓} coincide.

lim
r1→0

Ψ(r1, r2,R) = f↑↓(r2,R) (3)

We do the same for r↑↑ → 0 and then r↓↓ → 0 :

lim
r↑↑→0

Ψ(r1, r2,R) = f↑↑(r↓↓,R0) (4)

lim
r↓↓→0

Ψ(r1, r2,R) = f↓↓(r↑↑,R0) (5)

12 / 31



STM Equation

(P2 − E )Ψ̃(p1, p2, p) =− g↑↓ f̃↑↓(p2, p)− e↑↑e↓↓g↑↓ f̃↑↓(p1,−p)

− e↓↓g↑↓ f̃↑↓(
p1 + p2 −

√
2p

2
,
p1 − p2√

2
)

− e↑↑g↑↓ f̃↑↓(
p1 + p2 +

√
2p

2
,
p2 − p1√

2
)

− g↑↑ f̃↑↑(
p2 − p1 +

√
2p

2
,
p1 + p2√

2
)

− g↓↓ f̃↓↓(
p1 − p2 +

√
2p

2
,
p1 + p2√

2
)

(6)

Where P = {p1, p2, p} corresponds to a 3D vector in momentum space. Idea is
then to end up with a system of three coupled integral equations for {f̃↑↓, f̃↑↑, f̃↓↓}
since we can show that :

f̃↑↓(k , q) =
∫

du
2π Ψ̃(u, k , q)

f̃↑↑(k , q) =
∫

du
π Ψ̃(u,

√
2q − u,

√
2(k + u)− q)

f̃↓↓(k , q) =
∫

du
π Ψ̃(u,

√
2q − u,

√
2(k − u) + q)

(7)
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Dimer-dimer Scattering

We fix g↑↓ < 0 (attractive interspecies).

The total energy is E = −2|ε↑↓|+ ε0, where ε↑↓ = −~2/ma2
↑↓ and ε0

is the dimer-dimer collisional energy.

Starting from gas of dimers ↑↓ (Yang Gaudin), we decrease the ratio
g↑↑g↓↓/g

2
↑↓ and look at zero-collision d-d energy to extract add/a↑↓ .

By substituting f̃↑↓ by an appropriate expression, homogeneous STM
equation becomes an inhomogeneous equation MX = Y

Leads to a linear problem that we put on the grid to extract add/a↑↓.

Goal reminder
Find the line curve in the plane {g↑↑/|g↑↓|, g↓↓/|g↑↓|} where the
dimer-dimer interaction vanishes.

14 / 31



Dimer-dimer Scattering

We fix g↑↓ < 0 (attractive interspecies).

The total energy is E = −2|ε↑↓|+ ε0, where ε↑↓ = −~2/ma2
↑↓ and ε0

is the dimer-dimer collisional energy.

Starting from gas of dimers ↑↓ (Yang Gaudin), we decrease the ratio
g↑↑g↓↓/g

2
↑↓ and look at zero-collision d-d energy to extract add/a↑↓ .

By substituting f̃↑↓ by an appropriate expression, homogeneous STM
equation becomes an inhomogeneous equation MX = Y

Leads to a linear problem that we put on the grid to extract add/a↑↓.

Goal reminder
Find the line curve in the plane {g↑↑/|g↑↓|, g↓↓/|g↑↓|} where the
dimer-dimer interaction vanishes.

14 / 31



Results



Overview of the Bose-Bose mixture in the plane {g↑↑/|g↑↓|, g↓↓/|g↑↓|}

0 1 2 3 4 5 6
0

1

2

3

4

5

6

g↑↑/|g↑↓|

g
↓↓

/|
g
↑↓

|

MF Collapse Line
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Overview in symmetric case (g↑↑ = g↓↓) in function of α = g↑↑/|g↑↓|

Attractive Domain Repulsive Domain

Interaction between dimers become attractive when α < α∗

3 known integrable cases : α→ +∞, α = −1, α→ −∞
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Overview of the dimerized symmetric Bose-Bose mixture in function of α

- 5 0 5 10 15
- 15

- 10

- 5

0

5

10

15

gdd = 0 for α∗ = 2.2
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Discussions



Soliton ?

Consider Nd > 2 dimers close to the dimer-dimer zero crossing line in
the attractive regime where add � a↑↓ ∼ re .

→ Ground State ?
L

Soliton

ENd
=
−g2

ddNd(N2
d − 1)

12

L ∼ add/Nd

Breaks down for Nd → +∞ (cf.
above the collapse line)
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MF & 3-Body Repulsive Interaction

Idea : A liquid state which is a result of a competition between two-
and three- dimer forces ? (gdd < 0 and assume g3 > 0)
MF (for dimers) treatment (cf. Bulgac) :

ε := ENd
/Nd = gddnd/2 + g3n

2
d/6 (8)

E/n

n
n0

Minimum : n0
d = −3gdd/2g3

Applicability : Interaction energy shift much smaller than the energy
scale E ∼ nd

2 → {addnd � 1 and g3 � 1}

Both of these conditions (at n0
d) lead to g3 � 1

21 / 31



About 3-Body Interaction

What is this g3 ?

3-Body in 1D→ 2-Body in 2D , Ψ3 ∝ ln(ρ/a3) , a3 > 0

3-dimer effective potential taken as :

g3 =

√
3π

2ln(2e−γ/a3κ)
(9)

κ is the typical momentum of the system
In the leading order of g3 � 1, by assuming that a3 ∼ a↑↓, we have in
the leading order of g3 :

g3 =
√
3π/2ln(add/a↑↓)� 1

n0
d = (

√
3/πadd)ln(add/a↑↓) , µ = ε = (

√
3/4πa2

dd)ln(add/a↑↓)
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Different regimes

In the region a3 ∼ a↑↓ � n−1
d , precisely 1/ln(a↑↓nd) ∼ 1/ln(a3nd)� 1

Crossover : Soliton to Liquid Droplet when increasing Nd

L

Dimer-dimer effective range correction (per dimer) ?

→ Scales as reεnd ∼ εg−1
3 e−

√
3π/2g3 smaller than any powers of g3

Case a↑↓ � 1/nd � a3 ?

→ Weak 3-body attraction leads to high density phase (cf. Nishida)
→ Solution breaks down for same reasons than soliton.
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Conclusion



Summary
1. We derived STM equations for the 4 body-problem in the case of a
mixture with intercomponent dimers.

2. We implemented these equations numerically and verify our numerical
method in known integrable cases.

3. We calculated the line where the dimer-dimer interaction vanishes
(particularly in the Bose symmetric case α∗ = 2.2 and in the BF case
gBB = 0.575|gFB |)

4. For a weak dimer-dimer interaction, we predict a dilute dimerized liquid
phase stabilized against collapse by a repulsive three-dimer force.

Open questions
Solve the three-dimer problem / Three dimer zero crossing point ? / Liquid
density imbalanced / Pentamer ...
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Bose-Fermi Mapping

In 1D, one can map the case of N impenetrable bosons with an ideal
Fermi gas of N particles.
For fermions, thanks to Pauli principle, the wavefunction vanishes with
contact of intraspecies.
For bosons, if we impose an infinite contact repulsion (impenetrable
bosons), we reproduce artificially the Pauli principle.{

ΨB(x1, x2, ..., xn) = A(x1, ..., xn)ΨF (x1, x2, ..., xn)
A(x1, ..., xn) =

∏
i>j

sgn(xi − xj) (10)

→ Same characteristic such as energy.
This mapping has been at center of investigations in 1-dimension, in
our case, we will resume this by :

ΨB , g↑↑ = g↓↓ = +∞ ⇔ ΨF , g↑↑ = g↓↓ = 0 (11)
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Trimer Threshold

Let us consider the ↑↑↓
combination (or
equivalently, ↓↓↑) and
apply STM.
In the case g↑↓ < 0, ↑↑↓
is always bound except in
the limit g↑↑ = +∞
where (ε↑↑↓ − ε↑↓) = 0
and aad diverges.
The trimer ↑↑↓ can be
formed if
ε↑↑↓ < E = −2|ε↑↓| for
zero dimer-dimer
collision energy.

-2 -1 0 1 2 3

-7

-6

-5

-4

-3

-2

-1

0

g↑↑/|g↑↓|

ϵ
↑
↑
↓
/|
ϵ
↑
↓
|

ε↑↑↓ = −2|ε↑↓| ⇔ g↑↑ = 0.0738|g↑↓|
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Case α→ +∞

Thanks to the BFM, the case of infinite repulsion between
intracomponents lead to study interacting two species Fermi gas.
Corresponds equivalently in this study to the fermionic case where
g↑↑ = g↓↓ = 0 → We end up with 1 Integral equation.
Four attractively interacting fermions in 1D → Integrable case (solved
by C. Mora) :
Scattering properties of the two dimers (↑↓) system are described by
the dimer-dimer scattering length add .

add = 0.5a↑↓ (12)
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Case α→ −∞
Intraspecies are infinitely attractive : g↑↑ = g↓↓ = −∞
→ Four-body bound state composed of two intracomponent dimers.

x

[− ~2

2µ
d2

dx2 + 4g↑↓δ(x)]χr = EBSχr (13)

E = − 2
ma↑↑2

− EBS({2m, 2m}, g = 4g↑↓) (14)

E/|ε↑↓| = −2α2 − 32 (15)
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Case α = −1

Known as Lieb-Liniger / Mc Guire model
Take N as the arbitrary number of particles of equal masses M all
interacting via one another via equal strength δ-function potentials.

[− ~2

2M

N∑
i=1

d2

dxi 2
+ C

∑
i>j

N∑
j=1

δ(xi − xj)]Ψ = EΨ (16)

We put ~ = M = 1 and g = −
√
2C and consider the case of a

δ-attractive potential between particles. We end up with the energy of
the N-body bound state :

E = −g2

48
N(N2 − 1) (17)

In our units for our four-body problem :

E (N = 4) = −10|ε↑↓| (18)
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Case α ' α∗

Appearance of a weakly bound four-body bound state :

E = − 2
ma↑↓2

− EBS({2m, 2m}, gdd)

Where gdd is the strength of interaction between the two
intercomponent dimers and which verify gdd = −1/add .

E/|ε↑↓| = −2−
a↑↓

2

add2 (19)

One can interest to the function A defined by :

A(α) =
√
2

√
E

ε↑↓
− 2 =

α'α∗
a↑↓
add

(20)

A(α∗) passes through zero when add diverge, namely for the ratio α∗

of the gas-liquid transition :

A(α∗) = 0⇔ add =∞⇔ gdd = 0 (21)
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