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Bosonic mixtures of two different components with competing
attractive inter and repulsive intra species interaction caught recently
a great deal of attention.

@ Ability to form self trapped liquid droplets.

e Finite piece of liquid in equilibrium with vacuum without any external
potential !

e Many possible applications of these droplets. (cooling, ...)

@ Direct manifestation of Beyond-Mean-Field (BMF) effects.
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Mixture & Stability

e Mixture : 2 # particles (1,]) of equal masses and same densities.
o Interactions (gt,, g1+, &) With attractive inter and repulsive intra
species. What about stability (i.e. no collapse) ?
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Mixture & Stability

e Mixture : 2 # particles (1,]) of equal masses and same densities.

o Interactions (gt,, g1+, &) With attractive inter and repulsive intra
species. What about stability (i.e. no collapse) ?
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... In 1D, close to this MF collapse line, on the MF repulsive side
the mixture liquefy !

— Comes from an effectively attractive BMF term.
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A Brief Insight
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Overview of one dimensional Bose-Bose mixture at this stage

@ Increasing gﬁgu/g%i

makes the system more ﬁ %

. . . Gas of Dimers
dilute which in one

) A E/ Gaudin-Yang
dimension leads to v/
stronger correlations. ~ e 5
MF Collapse Line § “‘./ '
e For gyo > |g¢¢], .the = ‘\‘//
system becomes a gas of N ) |- Dilute atomic liquid
1. dimers.(Mapping with P
Gaudin-Yang model Collapse ononl
which has no other BS
than 1| dimers.) ‘ Ve, e =en="Fo & Ve e =en =0

By decreasing the ratio gr1gy, /&7,

— Find the line curve in the plane {g}1/|gt,|. g1 /]g1|} where the
dimer-dimer interaction vanishes (agqy = 00).
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Reminders about 1D systems |




Two-body scattering theory in 1D

m? d?

5 g+ VIDIVE) = EV(x) 1)

o |x| > Re — W(x) = Asin(k|x| + 8(k))

@ J is the so-called phase shift

@ k is the relative momentum and verify E = h2k?/2p.
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Two-body scattering theory in 1D

h? d?

gz T VIDIVE) = V() 1)

® |x| > Re — V(x) = Asin(k|x| + d(k))
@ J is the so-called phase shift

@ k is the relative momentum and verify E = h2k?/2p.

Scattering length a

in(0
o lim W(x) o x| — a(k) where a(k) = _%(5(35)
@ Small momenta kR, < 1, we define the scattering length a :
tand
a= lima(k) = lim —
k—0 k—0

o Expansion : kcotd(k) = —1/a+ (re/2)k? +
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Two-body contact interaction

@ Short range interactions between particle modeled by a d-potential
such that : V,'J'(X) = g’Jé(XU)

@ It's the so-called Zero-Range Approximation, valid when |Agg| > Re

@ One can show with the logarithm derivative of Wy that the constant
interaction gj; is related to the scattering length.

h2

piajj

&j = —

o If gjj > 0 one deals with a repulsive potential, whereas for gj; < 0 we
deal with an attractive potential.
e If gjj < 0 a bound state (BS) exists.

h2
2

2,uaij

s o e XI/3i Eps({m, m},gj) = —

— ajj can be seen as the size of the bound state.
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The Four-Body system




Schrédinger's equation
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Schrédinger's equation

T
I S
/n'\ h 1 Symmetries (e,, = £1)
RO/\/ﬁ: loyel
]
& ' V(n,rn, R)= eulll(nr,r,,m)
N V2
] 3
l. :eTTw(r*’rJraL\ﬁrl)
1
1
! ) = epe V(rn, n, —R)
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Schrédinger's equation

™

Symmetries (e,, = £1)

I
]
]
‘
I n—nrn
1 V(r, n,R)=¢e V(ry, r_,
ro (1 2 ) AN (+ \ﬁ )
ro—n
= eTTw(rf, ry, 7)

= erey V(r2, n, —R)

(=Vx — E)V(r1, r2, R) =[—g1(6(r1) + 6(r2) + 0(ry) + 6(r-))
— g10(rt) — g1 6(r)IV(r, r2, R)
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Skorniakov-Ter-Martirosian (STM)

We introduce the function £ which corresponds by definition to the
wavefunction W when one pair {1} coincide.

lim W(r,rn,R) = f(r,R) (3)

rn—0

We do the same for 4 — 0 and then r; — 0 :

lim w(r17r2aR) = ﬁTT(rMn RO) (4)
rTT_>O

lim W(ry, r2, R) = f,4(rt1, Ro) (5)
ru—>0
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STM Equation

(P? — E)U(py, p2,p) = — &1, F11(p2, ) — errey &1, Fri(pr, —p)

H pL+p2—V2p pr—p2
— ey g fry( 5 e )

F pL+p2+V2p po—p1
—ergrifru( 5 =) (6)

z p2—p1+V2p p1+p
— &1 5 =)

7 p1—p2+V2p p1+p2
—guf( 5 , ﬁ)

Where P = {p1, p2, p} corresponds to a 3D vector in momentum space. ldea is
then to end up with a system of three coupled integral equations for {f;, fy1, f }
since we can show that :

= V(
%‘?(u, V2q — u,V2(k + u) — q) (7)
DY (u,v2q — u,V2(k — u) + q)
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Dimer-dimer Scattering

e We fix gy < 0 (attractive interspecies).

@ The total energy is E = —2|eq|| + €o, where ey = —77,2/ma%i and €
is the dimer-dimer collisional energy.

e Starting from gas of dimers 1| (Yang Gaudin), we decrease the ratio
g11811/&7, and look at zero-collision d-d energy to extract agd/ar, -

@ By substituting fu by an appropriate expression, homogeneous STM
equation becomes an inhomogeneous equation MX = Y

@ Leads to a linear problem that we put on the grid to extract aqy/as.
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Dimer-dimer Scattering

e We fix gy < 0 (attractive interspecies).

@ The total energy is E = —2|eq|| + €o, where ey = —77,2/ma%i and €
is the dimer-dimer collisional energy.

e Starting from gas of dimers 1| (Yang Gaudin), we decrease the ratio
g11811/&7, and look at zero-collision d-d energy to extract agd/ar, -

@ By substituting '?N by an appropriate expression, homogeneous STM
equation becomes an inhomogeneous equation MX = Y

@ Leads to a linear problem that we put on the grid to extract aqy/as.

<

Goal reminder

Find the line curve in the plane {gw+/|gr,],&11/|gt1|} where the
dimer-dimer interaction vanishes.
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Results




Overview of the Bose-Bose mixture in the plane {g+1/|gr.|, 811 /|811]}
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Overview in symmetric case (g = g} ) in function of a = gr1/|gy|

Attractive Domain Repulsive Domain

—00 —1 o +00

® ©EYO0

o Interaction between dimers become attractive when o < ax

@ 3 known integrable cases : o — +o00, a = -1, = —©
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Overview of the dimerized symmetric Bose-Bose mixture in function of «

21 apy/aga =2
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a = Goo/|914l

gdqd = 0 for a* =2.2
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Discussions




Soliton 7

e Consider Ny > 2 dimers close to the dimer-dimer zero crossing line in
the attractive regime where agq > ap| ~ re.
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Soliton 7

e Consider Ny > 2 dimers close to the dimer-dimer zero crossing line in
the attractive regime where agq > ap| ~ re.
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12
— Ground State ?
L L ~ agq/Ng

Breaks down for Ny — +oo (cf.

above the collapse line) 20/ 31



MF & 3-Body Repulsive Interaction

@ Idea : A liquid state which is a result of a competition between two-
and three- dimer forces ? (gg¢ < 0 and assume g3 > 0)

e MF (for dimers) treatment (cf. Bulgac) :

€ .= ENd/Nd:gddnd/2—|—g3nf,/6 (8)

Minimum : nY = —3g44/2g3

@ Applicability : Interaction energy shift much smaller than the energy
scale E ~ ng?> — {aggng > 1 and g3 < 1}

o Both of these conditions (at ng) lead to
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About 3-Body Interaction

@ What is this g3 7

‘3—Body in1D — 2-Bodyin2D , W3xlIn(p/a3) , a3 > 0‘

@ 3-dimer effective potential taken as :
_ E
 2In(2e77/a3k)

@ « is the typical momentum of the system

83 9)

o In the leading order of g3 < 1, by assuming that a3 ~ a;|, we have in
the leading order of g3 :

83 = \/§7r/2|n(add/a¢¢) <1

ng = (\/§/7radd)|n(add/aw) , M= €= (\@/47ra§,d)|n(add/au)

22/31



Different regimes

o In the region a3 ~ ar; < n !, precisely 1/In(ar ng) ~ 1/In(azng) < 1

Crossover : Soliton to Liquid Droplet when increasing Ny

N
fL\ Na ~ v/Ilaaalary)
AN

e Dimer-dimer effective range correction (per dimer) 7

— Scales as reeng ~ egsfle_\/’g“/z“-"3 smaller than any powers of g3

o Caseapy < 1/ng < a3 ?

— Weak 3-body attraction leads to high density phase (cf. Nishida)
— Solution breaks down for same reasons than soliton.
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Conclusion




Summary
1. We derived STM equations for the 4 body-problem in the case of a
mixture with intercomponent dimers.

2. We implemented these equations numerically and verify our numerical
method in known integrable cases.

3. We calculated the line where the dimer-dimer interaction vanishes
(particularly in the Bose symmetric case a* = 2.2 and in the BF case
ges = 0.575|grs|)

4. For a weak dimer-dimer interaction, we predict a dilute dimerized liquid
phase stabilized against collapse by a repulsive three-dimer force.

| \

Open questions

Solve the three-dimer problem / Three dimer zero crossing point 7 / Liquid
density imbalanced / Pentamer ...

o’

25/31



Bose-Fermi Mapping

@ In 1D, one can map the case of N impenetrable bosons with an ideal
Fermi gas of N particles.

@ For fermions, thanks to Pauli principle, the wavefunction vanishes with
contact of intraspecies.

@ For bosons, if we impose an infinite contact repulsion (impenetrable
bosons), we reproduce artificially the Pauli principle.

Wg(x1, X2, ooy Xn) = A(X1, ooy Xn )V E(X1, X245 -y Xn)
{ A(x1, ..., xn) = ] sgn(xi — x;) (10)
i>j
— Same characteristic such as energy.
@ This mapping has been at center of investigations in 1-dimension, in
our case, we will resume this by :

Vg, g+ =g =400 <& Vg, gTT:gu:O‘ (11)
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Trimer Threshold

@ Let us consider the 11
combination (or
equivalently, [J1) and
apply STM.

o In the case gy <0, 11
is always bound except in
the limit g4 = 400
where (ETTi - ETJ,) =0
and a,y diverges.

@ The trimer 11| can be
formed if
er) < E = _2’€Ti| for
zero dimer-dimer
collision energy.
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Trimer Threshold

@ Let us consider the 11
combination (or

equivalently, [J1) and 0 ' . . .
apply STM. T S PO
o In the case gy <0, 11 2f
is always bound except in 5 -3}
the limit g = +00 %_:) _af
Where (ETTi — ETJ,) =0 ? 5L
and a,q diverges. of
@ The trimer 11| can be a2t
formed if 2 ) o y > 3
er) < E = _2’€Ti| for gr/lgnl

zero dimer-dimer
collision energy.
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Trimer Threshold

@ Let us consider the 11
combination (or
equivalently, [J1) and 0 '
apply STM. PP
o In the case gy <0, 11 2f
is always bound except in 5 -3}

the limit g = +00 % _af
where (eppy —epy) =0 7 4f
and a,y diverges. o
@ The trimer 11 can be b
formed if 2 > 5 y s 3
er) < E= _2’€Ti| for grm/lgnl

zero dimer-dimer
collision energy.

€4y = —2|€N‘ < g = 0.0738|g¢¢|
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@ Thanks to the BFM, the case of infinite repulsion between
intracomponents lead to study interacting two species Fermi gas.

@ Corresponds equivalently in this study to the fermionic case where
g+t = & = 0 — We end up with 1 Integral equation.

e Four attractively interacting fermions in 1D — Integrable case (solved
by C. Mora) :

@ Scattering properties of the two dimers (1) system are described by
the dimer-dimer scattering length ayy.

8
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Intraspecies are infinitely attractive : gy = g|| = —00
— Four-body bound state composed of two intracomponent dimers.

(il L

2 g2
[ i 4g116(x)]xr = Epsxr (13)
E=— — Eps({2m,?2 =4 14
maﬁ\z BS({ m, m}7g gTi) ( )
E/lery| = —2a2 — 32 (15)




e Known as Lieb-Liniger / Mc Guire model
@ Take N as the arbitrary number of particles of equal masses M all
interacting via one another via equal strength é-function potentials.

N
_m dx +CZZ§ —x)|V=EV (16)

i>j j=1
e We put =M =1 and g = —v/2C and consider the case of a
J-attractive potential between particles. We end up with the energy of
the N-body bound state :

2

E= —i—SN(NZ—l) (17)

In our units for our four-body problem :

E(N = 4) = —10[ep| (18)
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Case a ~ o

@ Appearance of a weakly bound four-body bound state :

2
— E 2m, 2
mar, Bs({2m,2m}, g4q)

E=-—

2

@ Where gyq is the strength of interaction between the two
intercomponent dimers and which verify ggg = —1/aq4.

2
a
Eflery| = -2 - 7322 (19)

@ One can interest to the function A defined by :

E
AlQ) =2,/ = —2 = M (20)
€N ax~a* ddd

o A(a*) passes through zero when agy diverge, namely for the ratio o*
of the gas-liquid transition :

A(Oz*) =0& agg =00 gg¢g =0 (21)
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