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Sign Reversals of the Quantum Hall Effect and Helicoidal Magnetic-Field-Induced Spin-Density
Waves in Quasi-One-Dimensional Organic Conductors
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We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave phases,
which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard
salts family. Within the framework of the quantized nesting model, we show that umklapp processes
may naturally explain sign reversals of the quantum Hall effect (QHE) observed in these conductors.
Moreover, umklapp scattering can change the polarization of the spin-density wave (SDW) from linear
(sinusoidal SDW) to circular (helicoidal SDW). The QHE vanishes in the helicoidal phases, but a
magnetoelectric effect appears. [S0031-9007(98)05849-9]

PACS numbers: 74.70.Kn, 72.15.Nj, 73.40.Hm, 75.30.Fv

The organic conductors of the Bechgaard salts familyone suggested by Zanchi and Montambaux [8] in invok-
(TMTSF),X (where TMTSF stands for tetramethyltetrase-ing the pressure dependencegefrather than the electron
lenafulvalene) exhibit a rich phase diagram when temband structure. The umklapp scattering amplitgdds
perature, magnetic field, or pressure are varied. In thregensitive to pressure, because it is related to the dimeriza-
members of this familyX = ClO,, PR, ReQ,), a moder- tion in the crystal structure of the TMTSF chains. More-
ate magnetic field above several tesla destroys the metallmver, we show that the polarization of the FISDW may
phase and induces a series of spin-density-wave (SDWhange from linear (sinusoidal SDW) to circular (heli-
phases separated by first-order phase transitions [1]. Beoidal SDW) because of umklapp interaction. The QHE
cause of a strong quasi-one-dimensional anisotropy (theanishes in the helicoidal phases, but a magnetoelectric
typical ratio of the electron transfer integrals in the threeeffect appears. These two properties are characteristic of
crystal directions is,:1,:t. = 3000:300:10 K), the Fermi  the helicoidal phases and can be utilized to detect them
surfaces of these materials are open. According to thexperimentally. The effect of umklapp on the FISDW
so-called quantized nesting model (QNM) [1,2], the for-phases was studied before by Lebed’ [10,11] using rather
mation of the magnetic-field-induced spin-density wavesrude approximations, but the helicoidal phases and the
(FISDW) results from an interplay between the nestingsign reversals of the QHE were not discussed.
properties of the Fermi surface and the quantization of the In the vicinity of the Fermi energy, the electron
electronic orbits in magnetic field. The wave vector of adispersion law in the Bechgaard salts is approximated as
FISDW adjusts itself to the _rnagnetic field so that unpaired E(ky, ky) = vp(lky| — kp) + 1, (kyb) 1)
electrons completely fill an integer number of Landau lev-
els; thus the Hall effect is quantized [3,4]. The standard'heré k. and k, are the electron momenta along and
QNM [2] predicts the Hall plateaus of the same sign, re-2€r0ss the one—dlme.nspnal chains of T_MTSF_, Enﬁl L.
ferred to as positive by convention, which agrees with!n Ed- (1), the longitudinal electron dispersion is line-
most experiments. However, at certain pressures, a neg@lized ink. in the vicinity of the two one-dimensional
tive Hall effect is also observed [5—7]. In order to ex- F€rMi points®kx, andvy = 2at, sin(kra) is the corre-
plain the sign reversals of the quantum Hall effect (QHE) SPonding Fermi velocity being the lattice spacing along
Zanchi and Montambaux [8] invoke the variation of theth_e qhams. Fo_r the_ transverse electron dispersion, a tight-
electron dispersion law with pressure. binding approximation is used:

In this Letter, we study the effects of umklapp scatter-
ing on the FISDW phases within the framework of the  f1(kyb) = =21, coSky,b) — 212 CO2kyb)

Ql\_IM. _Becaus_e the electron band in #fl®MTSF),X ma- — 213, COY3kyb) — 214, COS4k,b), (2)
terials is half-filled, the electrons are allowed to trans-

fer the momentumdkyr along the chainsk being the whereb is the distance between the chains. The electron
Fermi momentum) to the crystal lattice. Therefore, thedispersion in the third direction along theaxis is not
interaction between electrons should include not only forimportant for the following and is not considered here.
ward (g;) and backward g;) scattering amplitudes, but  When a magnetic fieldd is applied along thez
also umklapp scattering amplitudesf [9]. We demon- axis perpendicular to théx,y) plane, it quantizes the
strate that, in the presence of umklapp interaction, FISDWransverse electron motion into the Wannier-Stark ladder
phases with a negative QHE appear. This effect providefl2]. Consequently, the static spin susceptibility(q),

an alternative explanation for the sign reversals of thecalculated at a wave vectqr= (g, ¢,) in the absence of
QHE observed in the Bechgaard salts. It differs from thanteraction between electrons, diverges logarithmically at
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quantized values of the longitudinal wave vecta? —  helicoidal SDWs. The spin polarization vectSir)) of a
2kp + nG (n integer) [1,13]: generic helicoidal SDW rotates in the plane perpendicular
to a vectorn when the coordinate varies. In our case,
xo@) = IXg)xip(g: — nG). (3)  because of the Zeeman effect, the veaioaligns itself

with the magnetic field; thus the spin polarization (7)
HereG = eHb/h is the characteristic wave vector of the rotates in thex, y) plane.
magnetic field ¢ is the electron charge), angip(q.) is The actual polarization of the SDWs is determined by
the susceptibility of a 1D system without interaction. Theminimizing the free energy of the system. In terms of the
coefficientsl, depend on the transverse dispersion law ofinear combinations of the order parameters,

electrons: _ Apna = 1gv(0y) (828pN.a + g3D—pn—a), (8)
I(gy) = (M et b/ DT u=g,b/2ly gy the Landau expansion of the free energy in the vicinity of

(N) : _
whereT, (u) = ff; du't, ('), and(- - -) denotes averaging Tc ~ for the phas&v has the following form [16]:

over u. In the absence of umklapp scattering, the p ~_ AavlA 2 4 B(Av . A* Tecce
transition temperature of the FISDW is determined by the % % evlAp.al (Arvadn-a <)

L (N) .

Stoner criterionl — g2 x0(0x , Q,) = 0. The quantized - 4 - 5
o ’ + (K/2 Agneal® + 2K| AN AN ol? |,

longitudinal wave vectorQ)(cN) = 2kr + NG and the ( /)%l p.al I, Vel

transverse wave vect@, are selected to maximize the 9)
transition temperaturqc(m at a given magnetic field.

Except whenV = 0, Q, is incommensurate?, # /b. where the coefficients are

The integer parameteN also determines the quantum Ay = 1 82 ~ vo(Qpn) (10)
Hall conductivity in the FISDW phaset,, = —2Ne?/h AN o\ — g YY)

per one layer of the TMTSF molecules [3,4]. As the _ 5 2 1
magnetic field increases, the value Mfchanges, which B = —g3/In(Q))I-N(0Qy) (g7 — &3)» (11)

leads to a cascade of FISDW transitions [1,2]. 3 5
Umklapp scattering mixes the wave vectgs'’ and K =7.03)/16m ”Fb_T ’ (B3)=120. (12)
Q)((N> — dkp = —Q)(C_N); thus two SDWSs, with the wave As Iong.as the quadratlc part Qf the fr_ee enefgy
vectors Qy — (Q)((N)’Qv) and Q_y — (Q)((fzv)’ ~0)), (9) is positively defined, th_e_ me_talllc state is stable. The
) second-order phase transition into a FISDW state takes

form simultaneously [10,11]. In the random-phase ap'place when the determinant of the quadratic part of Eq. (9)

proximation_,'the critical t.em_peraturEc(N) is determined vanishesAyA_y = B2. With the coefficientsA and B
by the modified Stoner criterion [14]: given by Egs. (10) and (11), this condition is equivalent
[1 = g2x0(QW)[1 = agaxo(Q-n)] — to the Stgner equatiorj (5). Minimizir(ll\% the fr.ee energy
5 Fy (9) with respect t)A+y + at7 < T¢ °, we find two
83x0(Qn)x0(Q-y) = 0. (5) types of solutions depending on the value @f For
Of the two integersV and —N, we selectV such that Smallgs, wheny/2|B| < |Ay — A_y|, we find a solution
Xo(Qn) > x0(Q_y) to label each FISDW phase. where [Ay +| = [Ay | and |[A_y | = [A_y -], which
Below 7", the system is characterized by the ordercOTTeSPONds to two sinusoidal SDWs. Whenexceeds
parameters gy o a certain critical value so tha¥/2|B| > |Ay — Ayl
’ the minimum of the free energy is reached/&{ - =
(&J,T(r)&,agl(r)) = Z Ay ge @ Qey, 6) A_y+ =o0and|Ay|,|A_y_| # 0, which corresponds
B== to two helicoidal SDWs of opposite chiralities. Using the
wherer = (x,y) is the spatial coordinate. In Eq. (6), Method of Ref. [4], we find that the QHE is quantized in
the index 8 = + labels the wave vector@.y. The thesinusoidal phase, = —2_Ne2/h, but vanishes in the
operatorsy(!) annihilate (create) electrons with spin  helicoidal phase. We also find that, when the magnetic
and momenta close takr (@ = *). The electron spin field is varied, phase transitions between adjacent FISDW
density has a nonzero expectation value varying in spadghases, whether sinusoidal or helicoidal, are of the first
[15]: order [17]. The conclusion of Lebed’ [10] that, in the
presence of umklapp scattering, adjacent FISDW phases
(Sur) = > m,(BXI)V codr - Qpy + 02‘111 , are separated by two second-order phase transitions and
B== (7) an intermediate phase with coexistence of four SDWs is
(Sy(r)) = Z m(BVK, codr - Qpn + 9;;1\), ) incorrect, because he did not consider helicoidal SDWs.
B== Having gained an analytical insight into the problem,
) (y) ) i ) we study the phase diagram in the presence of umk-
When 0y = 64y, EQ. (7) describes sinusoidal SDWS. a5 scattering numerically. It is convenient to charac-

Whenmgl)v = mﬁ;’}\), and H(BXZ)\, = H(B)}\), + 7/2, it describes  terize the interaction by dimensionless coupling constants
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2> = g»/mvrb and g3 = g3/mwvrb. We vary the ra-
tio g;3/g, while keeping the sum constang, + 2; =

2/|n(2yE0/7TT£x)), whereT” = 12 K is the transition
temperature for an infinite magnetic field, is an ul-
traviolet cutoff of the order of,, andy = 1.781 is the

exponential of the Euler constant. The calculations are

performed fort, = 300 K, 15, = 20 K, 13, = 0 K, 4,
0.75 K, and Ey = 2000 K.  The transition tempera-

ture 7" is obtained numerically from Eq. (5), and the
polarizations of the SDWs foF < 7Y are determined

by minimizing the free energ¥y given by Eq. (9).

A very small g; does not change the phase diagram

qualitatively compared to the cage = 0. Now the main
SDW at the wave vectoQy coexists with a weak SDW
at the wave vectoQ-y. In general, the value 00,
that maximizesyy(Qy) does not maximizey(Q-y), SO
xo(Q-n) < x0(Qu). As aresult, the SDW amplitude at
the wave vectoQ_y is very small, and the polarizations
of the SDWs are linear. The values of follow the
usual “positive” sequenc® = ...,6,5,4,3,2,1,0 with
increasing magnetic field.

A larger value ofg; increases the coupling between

(N)(K)
< S N
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FIG. 1. Phase diagram fogs/g, = 0.03 (g, = 0.37 and

23 = 0.01). The phaseV = 3 is suppressed, and the negative
commensurate phase withi = —2 and Q, = /b appears in

the cascade (the shaded area). All the phases are sinusoidal,
and the Hall effect is quantized:,, = —2Ne?/h. The vertical

lines are only guides for the eyes and do not necessarily
correspond to the actual first-order transition lines.

20 25

into two subphases: helicoidal and sinusoid&lot only
does umklapp scattering stabilize negative phases, but,

the two SDWs. This leads to a strong decrease of thas g; increases, these negative phases are likely to

critical temperature or even the disappearance of th
SDWs. However, for everV, there exists a critical

Become helicoidal. Therefore, in order to observe the
helicoidal phase experimentally, it would be desirable

value of ¢; above which the system prefers to choose stabilize the negative phasé = —2 at the lowest

the transversely commensurate wave veglr= 7 /b
for both SDWs. The reason is that, for evéh (as
opposed to oddV), Q, = 7/b corresponds to a local
maximum of the susceptibilitieand XO(Q)(CN),w/b) =
XO(Q)(IN), 7/b). The latter relation implies that the two
SDWs havecomparableamplitudes. The two suscepti-
bilities are strictly equal aty, = 0, but whenz,, > 0,
XO(Q)(C_N),n-/b) > XO(Q)(CN),w/b) (this result holds also
for 73, # 0) [8]. This yields a negative Hall plateau, pro-
vided the SDWs are sinusoidal. Thus, fgy/g, = 0.03
(82 = 0.37 and g3 = 0.01), we find the sequenct =
...,60,5,4,-2,2,1,0 (see Fig. 1). The phas¥f = 3 is

possible pressure (which corresponds to the strongest
g3). In (TMTSF),PF;, the pressure has to be higher
than 6 kbar, since the FISDW cascade disappears below
this pressure [1]. In the experiment [7], where the phase
N = —2 has been observed at 8.3 kbar, the pressure could
be reduced by only about 2 kbar. Nevertheless, such a
pressure reduction could induce a significant increase of
g3. (TMTSF);ReQ,, where the sign reversals of the QHE
have been observed under pressure [18], could also be a
good candidate for detecting helicoidal phases.

The helicoidal FISDW phases exhibit a kinetic magne-
toelectric effect and vanishing QHE. The magnetoelectric

suppressed, and the negative commensurate phase with
N = -2 and Q, = 7/b appears in the cascade. All
the phases are sinusoidal, so the Hall effect is quantized
(04 = —2Ne2/h).

The strength of umklapp scattering is very sensitive

—~

to pressure, because hydrostatic pressure reduces the —
dimerization in the crystal structure of the TMTSF chains,
which diminishesg;. Therefore, we conclude that the
sign reversals of the QHE can be induced by varying
pressure. In our simplified model, this effect requires
t4p > 0. Our results provide a new explanation of the
negative Hall plateaus in the Bechgaard salts.

If g3/g2 is increased to 0.06, a second negative
phase §¥ = —4) appears, and the cascade becomes

g,
&

N=..87-46,54,-2,2,1,0 (see Fig.2). As °_
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FIG. 2. Phase diagram fogs/g, = 0.06 (g, = 0.36 and

. . _ _ 23 = 0.02). Two negative phased] = —2 andN = —4, are
discussed in Ref. [8]V = —2 and N = —4 correspond observed (the shaded areas). The phsise —2 splits into

to the two negative QHE phases observed in experimenig,o subphases: helicoidal (the dark shaded area) and sinusoidal
[6,7]. As shown in Fig. 2, the phas®y = —2 splits (the light shaded area).

3620



VOLUME 80, NUMBER 16 PHYSICAL REVIEW LETTERS 20 ARIL 1998

effect may exist if time-reversal and space-inversion symshown that these negative phases are likely to become he-
metries are broken [19]. Gor’kov and Sokol found thelicoidal under low pressure. The helicoidal phases have
kinetic magnetoelectric effect for a single helicoidal SDWno QHE and exhibit a magnetoelectric effect. The latter
[20]. The effect also exists in the presence of two heli-effect can be utilized to detect the helicoidal phases experi-
coidal SDWs of opposite chiralities, provided their ampli- mentally by looking for a spin magnetization proportional
tudes are not equal. An electric current along the chaingp the current along the chains.

Jx, induces a uniform magnetizatioWl along the vector This work was partially supported by the NSF un-

n that characterizes the spin polarization of a helicoidader Grant No. DMR-9417451 and by the Packard
SDW. In our case, the vectaris parallel to the magnetic Foundation.

field H, which is oriented along the axis; thusM, « j..
(Here M, is the additional spin magnetization induced by
Jx in excess of the magnetization induced by the magnetic
field without j,.) The effect can be understood by con-
sidering the spectrum of electronic excitations in the heli-
C(.)idal FISDW phase shown in Fig. 3.‘ THG.'CF electrons Université Paris-Sud, 91405 Orsay, France.
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