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Sign Reversals of the Quantum Hall Effect and Helicoidal Magnetic-Field-Induced Spin-Density
Waves in Quasi-One-Dimensional Organic Conductors
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We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave phases,
which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard
salts family. Within the framework of the quantized nesting model, we show that umklapp processes
may naturally explain sign reversals of the quantum Hall effect (QHE) observed in these conductors.
Moreover, umklapp scattering can change the polarization of the spin-density wave (SDW) from linear
(sinusoidal SDW) to circular (helicoidal SDW). The QHE vanishes in the helicoidal phases, but a
magnetoelectric effect appears. [S0031-9007(98)05849-9]

PACS numbers: 74.70.Kn, 72.15.Nj, 73.40.Hm, 75.30.Fv
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The organic conductors of the Bechgaard salts fami
sTMTSFd2X (where TMTSF stands for tetramethyltetrase
lenafulvalene) exhibit a rich phase diagram when tem
perature, magnetic field, or pressure are varied. In thr
members of this family (X ­ ClO4, PF6, ReO4), a moder-
ate magnetic field above several tesla destroys the meta
phase and induces a series of spin-density-wave (SDW
phases separated by first-order phase transitions [1]. B
cause of a strong quasi-one-dimensional anisotropy (t
typical ratio of the electron transfer integrals in the thre
crystal directions ista:tb :tc ­ 3000:300:10 K), the Fermi
surfaces of these materials are open. According to th
so-called quantized nesting model (QNM) [1,2], the for
mation of the magnetic-field-induced spin-density wave
(FISDW) results from an interplay between the nestin
properties of the Fermi surface and the quantization of th
electronic orbits in magnetic field. The wave vector of a
FISDW adjusts itself to the magnetic field so that unpaire
electrons completely fill an integer number of Landau lev
els; thus the Hall effect is quantized [3,4]. The standar
QNM [2] predicts the Hall plateaus of the same sign, re
ferred to as positive by convention, which agrees wit
most experiments. However, at certain pressures, a ne
tive Hall effect is also observed [5–7]. In order to ex-
plain the sign reversals of the quantum Hall effect (QHE
Zanchi and Montambaux [8] invoke the variation of the
electron dispersion law with pressure.

In this Letter, we study the effects of umklapp scatter
ing on the FISDW phases within the framework of the
QNM. Because the electron band in thesTMTSFd2X ma-
terials is half-filled, the electrons are allowed to trans
fer the momentum4kF along the chains (kF being the
Fermi momentum) to the crystal lattice. Therefore, th
interaction between electrons should include not only fo
ward (g2) and backward (g1) scattering amplitudes, but
also umklapp scattering amplitude (g3) [9]. We demon-
strate that, in the presence of umklapp interaction, FISDW
phases with a negative QHE appear. This effect provid
an alternative explanation for the sign reversals of th
QHE observed in the Bechgaard salts. It differs from th
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one suggested by Zanchi and Montambaux [8] in invok
ing the pressure dependence ofg3 rather than the electron
band structure. The umklapp scattering amplitudeg3 is
sensitive to pressure, because it is related to the dimeriz
tion in the crystal structure of the TMTSF chains. More
over, we show that the polarization of the FISDW may
change from linear (sinusoidal SDW) to circular (heli-
coidal SDW) because of umklapp interaction. The QHE
vanishes in the helicoidal phases, but a magnetoelect
effect appears. These two properties are characteristic
the helicoidal phases and can be utilized to detect the
experimentally. The effect of umklapp on the FISDW
phases was studied before by Lebed’ [10,11] using rath
crude approximations, but the helicoidal phases and t
sign reversals of the QHE were not discussed.

In the vicinity of the Fermi energy, the electron
dispersion law in the Bechgaard salts is approximated a

Eskx , kyd ­ yFsjkxj 2 kFd 1 t'skybd , (1)

where kx and ky are the electron momenta along and
across the one-dimensional chains of TMTSF, andh̄ ­ 1.
In Eq. (1), the longitudinal electron dispersion is line
arized in kx in the vicinity of the two one-dimensional
Fermi points6kF, andyF ­ 2ata sinskFad is the corre-
sponding Fermi velocity,a being the lattice spacing along
the chains. For the transverse electron dispersion, a tig
binding approximation is used:

t'skybd ­ 22tb cosskybd 2 2t2b coss2kybd

2 2t3b coss3kybd 2 2t4b coss4kybd , (2)

whereb is the distance between the chains. The electro
dispersion in the third direction along thez axis is not
important for the following and is not considered here.

When a magnetic fieldH is applied along thez
axis perpendicular to thesx, yd plane, it quantizes the
transverse electron motion into the Wannier-Stark ladd
[12]. Consequently, the static spin susceptibilityx0sqd,
calculated at a wave vectorq ­ sqx , qyd in the absence of
interaction between electrons, diverges logarithmically
© 1998 The American Physical Society
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quantized values of the longitudinal wave vectorq
snd
x ­

2kF 1 nG (n integer) [1,13]:

x0sqd ­
X
n

I2
nsqydx1Dsqx 2 nGd . (3)

HereG ­ eHbyh̄ is the characteristic wave vector of the
magnetic field (e is the electron charge), andx1Dsqxd is
the susceptibility of a 1D system without interaction. Th
coefficientsIn depend on the transverse dispersion law
electrons:

Insqyd ­ keinu1 i
yF G

fT'su1qyby2d1T'su2qyby2dgl , (4)

whereT'sud ­
Ru

0 du0 t'su0d, andk· · ·l denotes averaging
over u. In the absence of umklapp scattering, th
transition temperature of the FISDW is determined by th
Stoner criterion1 2 g2x0sQsNd

x , Qyd ­ 0. The quantized

longitudinal wave vectorQ
sNd
x ­ 2kF 1 NG and the

transverse wave vectorQy are selected to maximize the

transition temperatureT
sNd
c at a given magnetic field.

Except whenN ­ 0, Qy is incommensurate:Qy fi pyb.
The integer parameterN also determines the quantum
Hall conductivity in the FISDW phase:sxy ­ 22Ne2yh
per one layer of the TMTSF molecules [3,4]. As th
magnetic field increases, the value ofN changes, which
leads to a cascade of FISDW transitions [1,2].

Umklapp scattering mixes the wave vectorsQ
sNd
x and

Q
sNd
x 2 4kF ­ 2Q

s2Nd
x ; thus two SDWs, with the wave

vectors QN ­ sQsNd
x , Qyd and Q2N ­ sQs2Nd

x , 2Qyd,
form simultaneously [10,11]. In the random-phase a
proximation, the critical temperatureT

sNd
c is determined

by the modified Stoner criterion [14]:

f1 2 g2x0sQN dg f1 2 ag2x0sQ2N dg 2

g2
3x0sQN dx0sQ2N d ­ 0 . (5)

Of the two integersN and 2N, we selectN such that
x0sQN d . x0sQ2N d to label each FISDW phase.

Below T
sNd
c , the system is characterized by the ord

parametersDbN ,a:

kĉy
a,"srdĉ2a,#srdl ­

X
b­6

DbN ,ae2iar?QbN , (6)

where r ­ sx, yd is the spatial coordinate. In Eq. (6)
the index b ­ 6 labels the wave vectorsQ6N . The
operatorsc syd

a,s annihilate (create) electrons with spins
and momenta close toakF (a ­ 6). The electron spin
density has a nonzero expectation value varying in spa
[15]:

kSxsrdl ­
X

b­6

m
sxd
bN cossr ? QbN 1 u

sxd
bN d ,

kSysrdl ­
X

b­6

m
s yd
bN cossr ? QbN 1 u

s yd
bN d .

(7)

When u
sxd
bN ­ u

s yd
bN , Eq. (7) describes sinusoidal SDWs

Whenm
sxd
bN ­ m

s yd
bN andu

sxd
bN ­ u

s yd
bN 6 py2, it describes
e
of

e
e

e

p-
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,
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helicoidal SDWs. The spin polarization vectorkSsrdl of a
generic helicoidal SDW rotates in the plane perpendicula
to a vectorn when the coordinater varies. In our case,
because of the Zeeman effect, the vectorn aligns itself
with the magnetic fieldH; thus the spin polarization (7)
rotates in thesx, yd plane.

The actual polarization of the SDWs is determined b
minimizing the free energy of the system. In terms of th
linear combinations of the order parameters,

D̃bN ,a ­ IbN sQyd sg2DbN ,a 1 g3D2bN ,2ad , (8)
the Landau expansion of the free energy in the vicinity o
T

sNd
c for the phaseN has the following form [16]:

FN ­
X
a

" X
b

AbN jD̃bN ,a j2 1 BsD̃N ,aD̃p
2N ,2a 1 c.c.d

1 sKy2d
X
b

jD̃bN ,a j4 1 2KjD̃N ,aD̃2N ,a j2

#
,

(9)

where the coefficients are

AbN ­
1

I2
bN sQyd

√
g2

g2
2 2 g2

3
2 x0sQbN d

!
, (10)

B ­ 2g3yIN sQydI2N sQyd sg2
2 2 g2

3d , (11)

K ­ 7z s3dy16p3yFbT2, z s3d . 1.20 . (12)
As long as the quadratic part of the free energyFN

(9) is positively defined, the metallic state is stable. Th
second-order phase transition into a FISDW state tak
place when the determinant of the quadratic part of Eq. (9
vanishes:AN A2N ­ B2. With the coefficientsA and B
given by Eqs. (10) and (11), this condition is equivalen
to the Stoner equation (5). Minimizing the free energy
FN (9) with respect toD̃6N ,6 at T , T

sNd
c , we find two

types of solutions depending on the value ofg3. For
small g3, when

p
2jBj , jAN 2 A2N j, we find a solution

where jD̃N ,1j ­ jD̃N ,2j and jD̃2N ,1j ­ jD̃2N ,2j, which
corresponds to two sinusoidal SDWs. Wheng3 exceeds
a certain critical value so that

p
2jBj . jAN 2 A2N j,

the minimum of the free energy is reached atD̃N ,2 ­
D̃2N ,1 ­ 0 and jD̃N ,1j, jD̃2N ,2j fi 0, which corresponds
to two helicoidal SDWs of opposite chiralities. Using the
method of Ref. [4], we find that the QHE is quantized in
the sinusoidal phase,sxy ­ 22Ne2yh, but vanishes in the
helicoidal phase. We also find that, when the magnet
field is varied, phase transitions between adjacent FISD
phases, whether sinusoidal or helicoidal, are of the fir
order [17]. The conclusion of Lebed’ [10] that, in the
presence of umklapp scattering, adjacent FISDW phas
are separated by two second-order phase transitions a
an intermediate phase with coexistence of four SDWs
incorrect, because he did not consider helicoidal SDWs.

Having gained an analytical insight into the problem
we study the phase diagram in the presence of um
lapp scattering numerically. It is convenient to charac
terize the interaction by dimensionless coupling constan
3619
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g̃2 ­ g2ypyFb and g̃3 ­ g3ypyFb. We vary the ra-
tio g̃3yg̃2 while keeping the sum constant:g̃2 1 g̃3 ­
2y lns2gE0ypT

s`d
c d, whereT

s`d
c ­ 12 K is the transition

temperature for an infinite magnetic field,E0 is an ul-
traviolet cutoff of the order ofta, and g . 1.781 is the
exponential of the Euler constant. The calculations a
performed fortb ­ 300 K, t2b ­ 20 K, t3b ­ 0 K, t4b ­
0.75 K, and E0 ­ 2000 K. The transition tempera-
ture T

sNd
c is obtained numerically from Eq. (5), and the

polarizations of the SDWs forT , T
sNd
c are determined

by minimizing the free energyFN given by Eq. (9).
A very small g3 does not change the phase diagra

qualitatively compared to the caseg3 ­ 0. Now the main
SDW at the wave vectorQN coexists with a weak SDW
at the wave vectorQ2N . In general, the value ofQy

that maximizesx0sQN d does not maximizex0sQ2N d, so
x0sQ2N d ø x0sQN d. As a result, the SDW amplitude at
the wave vectorQ2N is very small, and the polarizations
of the SDWs are linear. The values ofN follow the
usual “positive” sequenceN ­ . . . , 6, 5, 4, 3, 2, 1, 0 with
increasing magnetic field.

A larger value ofg3 increases the coupling between
the two SDWs. This leads to a strong decrease of t
critical temperature or even the disappearance of t
SDWs. However, for evenN, there exists a critical
value of g3 above which the system prefers to choos
the transversely commensurate wave vectorQy ­ pyb
for both SDWs. The reason is that, for evenN (as
opposed to oddN), Qy ­ pyb corresponds to a local

maximum of the susceptibilitiesand x0sQsNd
x , pybd .

x0sQs2Nd
x , pybd. The latter relation implies that the two

SDWs havecomparableamplitudes. The two suscepti-
bilities are strictly equal att4b ­ 0, but whent4b . 0,
x0sQs2Nd

x , pybd . x0sQsNd
x , pybd (this result holds also

for t3b fi 0) [8]. This yields a negative Hall plateau, pro-
vided the SDWs are sinusoidal. Thus, forg3yg2 ­ 0.03
(g̃2 . 0.37 and g̃3 . 0.01), we find the sequenceN ­
. . . , 6, 5, 4, 22, 2, 1, 0 (see Fig. 1). The phaseN ­ 3 is
suppressed, and the negative commensurate phase
N ­ 22 and Qy ­ pyb appears in the cascade. Al
the phases are sinusoidal, so the Hall effect is quantiz
(sxy ­ 22Ne2yh).

The strength of umklapp scattering is very sensitiv
to pressure, because hydrostatic pressure reduces
dimerization in the crystal structure of the TMTSF chain
which diminishesg3. Therefore, we conclude that the
sign reversals of the QHE can be induced by varyin
pressure. In our simplified model, this effect require
t4b . 0. Our results provide a new explanation of th
negative Hall plateaus in the Bechgaard salts.

If g3yg2 is increased to 0.06, a second negativ
phase (N ­ 24) appears, and the cascade becom
N ­ . . . , 8, 7, 24, 6, 5, 4, 22, 2, 1, 0 (see Fig. 2). As
discussed in Ref. [8],N ­ 22 and N ­ 24 correspond
to the two negative QHE phases observed in experime
[6,7]. As shown in Fig. 2, the phaseN ­ 22 splits
3620
re

m

he
he

e

with
l
ed

e
the

s,

g
s
e

e
es

nts

FIG. 1. Phase diagram forg3yg2 ­ 0.03 (g̃2 . 0.37 and
g̃3 . 0.01). The phaseN ­ 3 is suppressed, and the negative
commensurate phase withN ­ 22 andQy ­ pyb appears in
the cascade (the shaded area). All the phases are sinusoi
and the Hall effect is quantized:sxy ­ 22Ne2yh. The vertical
lines are only guides for the eyes and do not necessar
correspond to the actual first-order transition lines.

into two subphases: helicoidal and sinusoidal.Not only
does umklapp scattering stabilize negative phases, b
as g3 increases, these negative phases are likely
become helicoidal. Therefore, in order to observe the
helicoidal phase experimentally, it would be desirabl
to stabilize the negative phaseN ­ 22 at the lowest
possible pressure (which corresponds to the stronge
g3). In sTMTSFd2PF6, the pressure has to be higher
than 6 kbar, since the FISDW cascade disappears bel
this pressure [1]. In the experiment [7], where the phas
N ­ 22 has been observed at 8.3 kbar, the pressure cou
be reduced by only about 2 kbar. Nevertheless, such
pressure reduction could induce a significant increase
g3. sTMTSFd2ReO4, where the sign reversals of the QHE
have been observed under pressure [18], could also b
good candidate for detecting helicoidal phases.

The helicoidal FISDW phases exhibit a kinetic magne
toelectric effect and vanishing QHE. The magnetoelectr

FIG. 2. Phase diagram forg3yg2 ­ 0.06 (g̃2 . 0.36 and
g̃3 . 0.02). Two negative phases,N ­ 22 andN ­ 24, are
observed (the shaded areas). The phaseN ­ 22 splits into
two subphases: helicoidal (the dark shaded area) and sinuso
(the light shaded area).
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effect may exist if time-reversal and space-inversion sym
metries are broken [19]. Gor’kov and Sokol found th
kinetic magnetoelectric effect for a single helicoidal SDW
[20]. The effect also exists in the presence of two he
coidal SDWs of opposite chiralities, provided their ampl
tudes are not equal. An electric current along the chain
jx, induces a uniform magnetizationM along the vector
n that characterizes the spin polarization of a helicoid
SDW. In our case, the vectorn is parallel to the magnetic
field H, which is oriented along thez axis; thusMz ~ jx .
(HereMz is the additional spin magnetization induced b
jx in excess of the magnetization induced by the magne
field without jx.) The effect can be understood by con
sidering the spectrum of electronic excitations in the he
coidal FISDW phase shown in Fig. 3. The1kF electrons
with spin up and the2kF electrons with spin down have
the energy gapD1 ­ jD̃N ,1j, whereas the1kF electrons
with spin down and the2kF electrons with spin up have
the different energy gapD2 ­ jD̃2N ,2j. To produce a cur-
rent jx along the chains, electrons need to be transferr
from 2kF to 1kF . For D1 fi D2 (D1 fi D2 if t4b fi 0),
this redistribution of electrons results in a uniform magne
tizationMz:

jx ­ eyF

X
s

sdn1,s 2 dn2,sd ,

Mz ­
gmB

2

X
a­6

sdna," 2 dna,#d ,
(13)

wheredna,s is the deviation of the distribution function
of electrons with spins and momenta nearakF from the
equilibrium one,g is the electron gyromagnetic factor, and
mB is the Bohr magneton. At low temperature, we ca
consider solely the electrons excited above the lowest g
(D2 in Fig. 2). This implies thatdn1," . dn2,# . 0 and
Mzyjx . 2gmBy2eyF.

In conclusion, we have shown that the negative phas
(i.e., with a sign reversal of the QHE) observed in the Bec
gaard salts can be explained by considering umklapp p
cesses. These phases are characterized by the coexist
of two linearly polarized SDWs (with the wave vectors
QN andQ2N ) with comparable amplitudes. We have als

FIG. 3. Spectrum of electronic excitations in the helicoida
FISDW phase. The solid (dashed) line corresponds to
(down) spins.
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shown that these negative phases are likely to become
licoidal under low pressure. The helicoidal phases ha
no QHE and exhibit a magnetoelectric effect. The latte
effect can be utilized to detect the helicoidal phases expe
mentally by looking for a spin magnetization proportiona
to the current along the chains.
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