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Effect of umklapp scattering on the magnetic-field-induced spin-density waves
in quasi-one-dimensional organic conductors

N. Dupuis* and V. M. Yakovenko
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 9 March 1998!

We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave~FISDW! phases
which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts
family. Within the framework of the quantized nesting model, we show that the transition temperature is
determined by a modified Stoner criterion which includes the effect of umklapp scattering. We determine the
SDW polarization~linear or circular! by analyzing the Ginzburg-Landau expansion of the free energy. We also
study how umklapp processes modify the quantum Hall effect~QHE! and the spectrum of the FISDW phases.
We find that umklapp scattering stabilizes phases which exhibit a sign reversal of the QHE, as experimentally
observed in the Bechgaard salts. These ‘‘negative’’ phases are characterized by the simultaneous existence of
two SDW’s with comparable amplitudes. As the umklapp scattering strength increases, they may become
helicoidal ~circularly polarized SDW’s!. The QHE vanishes in the helicoidal phases, but a magnetoelectric
effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced heli-
coidal SDW phases experimentally.@S0163-1829~98!08937-1#
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I. INTRODUCTION

The organic conductors of the Bechgaard salts fam
(TMTSF)2X ~where TMTSF stands for tetramethyltetras
enafulvalene! exhibit a rich phase diagram when tempe
ture, magnetic field, or pressure are varied. In three mem
of this family (X5ClO4, PF6, ReO4), a moderate magneti
field above several Tesla destroys the metallic phase
induces a series of spin-density-wave~SDW! phases sepa
rated by first-order phase transitions.1 Because of a strong
quasi-one-dimensional~1D! anisotropy~the typical ratio of
the electron transfer integrals in the three crystal direction
ta :tb :tc53000:300:10 K), the Fermi surfaces of these m
terials are open. According to the so-called quantized nes
model ~QNM!,1–7 the formation of the magnetic-field
induced spin-density-wave~FISDW! phases results from a
interplay between the nesting properties of the Fermi surf
and the quantization of the electronic orbits in magne
field. The wave vector of a FISDW adjusts itself to the ma
netic field so that unpaired electrons completely fill an in
ger number of Landau levels, thus the Hall effect
quantized.8,9 The standard QNM predicts the Hall plateaus
the same sign, referred to as positive by convention, wh
agrees with most experiments. However, at certain pressu
a negative Hall effect is also observed.10–14

We have recently shown that umklapp processes m
naturally explain the sign reversals of the quantum Hall
fect ~QHE!.15 Our explanation differs from the one suggest
by Zanchi and Montambaux16 in invoking the pressure de
pendence of umklapp scattering rather than the electron b
structure. Although both explanations lead to similar ph
diagrams, we predict the existence of two SDW’s~with com-
parable amplitudes! in the negative phases. Moreover, w
have shown that the negative phases are likely to bec
helicoidal ~circularly polarized SDW’s! under the effect of
stronger umklapp scattering. Experimentally, this can
PRB 580163-1829/98/58~13!/8773~20!/$15.00
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achieved by decreasing the applied pressure. The helico
phases are characterized by a vanishing QHE and a kin
magnetoelectric effect.15

In this paper we study the effect of umklapp processes
the FISDW phases within the framework of the QNM. W
discuss in more detail the results reported in Ref. 15,
address issues not considered in the latter. The effect of
klapp scattering on the FISDW phases was studied befor
Lebed’ using rather crude approximations, but the helicoi
phases and the sign reversals of the QHE were
discussed.17,18

In Bechgaard salts, complete charge transfer from
molecules TMTSF to the anionsX leads to a conduction
band that is quarter-filled in terms of holes. A dimerizati
along thex axis induces a gap in the electronic spectru
This results in a half-filled band for the holes so that u
klapp processes transferring 4kF52p/a are possible (kF be-
ing the Fermi wave vector of the holes, anda the lattice
spacing along the chains!. Therefore, a quasi-1Dg-ology
description of the FISDW phases should include not o
forward (g2) and backward (g1) scattering amplitudes, bu
also umklapp scattering amplitude (g3).19,20Since the dimer-
ization is weak, we expect the umklapp scattering amplitu
g3 to be small. Nevertheless, we shall show in this paper
very weak umklapp processes can have drastic effects on
low-temperature phase diagram.

In the next section we obtain the FISDW transition te
perature in the random-phase approximation~RPA! and dis-
cuss the phase diagram. In absence of umklapp scatte
the instability of the metallic phase corresponds to the f
mation of a SDW with a quantized longitudinal wave vect
Qx

(N)52kF1NG (N integer! where G5eHb/\ is a mag-
netic wave vector~with H the magnetic field,b the inter-
chain spacing, and2e the electron charge!. As the field
varies, the value of the integerN changes~its sign remaining
the same!, which leads to a cascade of FISDW phases se
rated by first-order transitions. The integerN also determines
8773 © 1998 The American Physical Society
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8774 PRB 58N. DUPUIS AND V. M. YAKOVENKO
the quantum Hall conductivity:sxy522Ne2/h per one
layer of the TMTSF molecules.1 In presence of umklapp
scattering, two SDW’s with quantized longitudinal wav
vectorsQx

(N) andQx
(2N) form simultaneously. We label eac

FISDW phase by the integerN such that the SDW with wave
vectorQx

(N) has the largest amplitude. We find that the tra
sition temperatureTc

(N) is determined by a modified Stone
criterion that includes the effect of umklapp scattering. W
calculateTc

(N) numerically as a function ofg3 and the de-
tailed geometry of the Fermi surface. In order to keep
discussion of the phase diagram compact, we use som
sults that are proved in subsequent sections. We find
weak umklapp scattering (g3 /g2 a few percent! can lead to a
FISDW cascade with both positive and negative values ofN.
Since the quantum Hall conductivity is still determined
the integerN, sxy522Ne2/h ~Sec. VI!, this leads to sign
reversals of the QHE as the magnetic field varies. The ne
tive phases~i.e., with a sign reversed QHE! correspond to
even integersN in agreement with experiments. For strong
values ofg3 , the negative phases may become helicoi
~i.e., with a circular polarization of the SDWs! ~Sec. IV!. The
helicoidal phases are characterized by a vanishing QHE
a kinetic magnetoelectric effect~Secs. VI and VII!. There
may also be some reentrances of the phaseN50 within the
cascade. In Sec. V, we study how umklapp scattering aff
the excitation spectrum in the FISDW phases. In Sec. V
we consider the possible coexistence of two succes
FISDW phases, an issue previously considered by Lebed
the case of sinusoidal SDW’s.17

The experimental consequences of our work are ma
discussed in Secs. II, VII, and IX. To a large extent, the
sections can be read independently of the rest of the pa

II. INSTABILITY OF THE METALLIC PHASE AND
PHASE DIAGRAM

In this section, we first consider the system with
electron-electron interaction. We obtain the one-parti
eigenstates in the presence of a uniform magnetic fieldH
along the least conducting axisz, and calculate the bare su
ceptibility. Then we take into account the interactions~in-
cluding umklapp processes! and study the formation o
SDW’s in the RPA. We also discuss the QHE and the po
ization of the SDW’s using results to be proved in the n
sections.

In the vicinity of the Fermi energy, the electron dispersi
law in the Bechgaard salts is approximated as~we take\
5kB51 throughout the paper, and the Fermi energym is
chosen as the origin of the energies!

E~kx ,ky!5vF~ ukxu2kF!1t'~kyb!, ~2.1!

wherekx andky are the electron momenta along and acr
the one-dimensional chains of TMTSF. In Eq.~2.1!, the lon-
gitudinal electron dispersion is linearized inkx in the vicinity
of the two one-dimensional Fermi points6kF , and vF
52ata sin(kFa) is the corresponding Fermi velocity. Th
function t'(u), which describes the propagation in the tran
verse direction, is periodic:t'(u)5t'(u12p). It can be
expanded in Fourier series
-

e

r
re-
at

a-

r
l

nd

ts
I,
ve
in

ly
e
r.

e

r-
t

s

-

t'~u!522tbcos~u!22t2bcos~2u!22t3bcos~3u!

22t4bcos~4u!¯ . ~2.2!

If we retain only the first harmonic (tb), we obtain a Fermi
surface with perfect nesting at (2kF ,p/b). The other har-
monics t2b ,t3b¯!tb generate deviations from the perfe
nesting. They have been introduced in order to keep a r
istic description of the Fermi surface despite the linearizat
around6kF .1 In the following, we shall retain onlytb , t2b ,
andt4b ~as we shall show,t3b does not play an important rol
in our mechanism and can be discarded!. We do not consider
the electron dispersion along thez axis, because it is no
important in the following~its main effect is to introduce a
3D threshold field below which the FISDW cascade
suppressed1!.

The effect of the magnetic field along thez axis is taken
into account via the Peierls substitutionk→2 i“2eA. ~The
chargee is positive since the actual carriers are holes.! Fol-
lowing Ref. 21, we use the gaugeA5(2Hy,0,0). Consid-
ering also electron-electron interactions, we obtain
HamiltonianH5H01Hint with

H05(
a,s

E d2rcas
† ~r !@vF~2 ia]x2kF!

1am̂vc1t'~2 ib]y!1smBH#cas~r !,
~2.3!

Hint5
g2

2 (
a,s,s8

E d2rcas
† ~r !cās8

†
~r !cās8~r !cas~r !

1
g3

2 (
a,s

E d2re2 ia4kFxcās
†

~r !cās̄
†

~r !cas̄~r !cas~r !.

Here cas(r ) are fermionic operators for right (a51) and
left (a52) moving particles.s51(2) for ↑ ~↓! spin. We
use the notationr5(x,mb) (m integer!, *d2r 5b(m*dx and
ā52a, s̄52s.

Apart from the Zeeman termsmBH (mB is the Bohr mag-
neton, and we take the electron gyromagnetic factorg equal
to 2!, the magnetic field introduces the additional termam̂vc

wherem̂ is the~discrete! position operator in they direction.
vc5GvF5eHbvF .

The interacting part of the Hamiltonian contains tw
terms corresponding to forward (g2) and umklapp (g3) scat-
tering. For repulsive interactionsg2 ,g3>0. We do not con-
sider backward scattering (g1), since it does not play any
role in the mean-field theory of the FISDW phases.

A. Bare susceptibility

The one-particle eigenstates ofH0 were obtained in Ref.
21 in the particular case wheret'(u)522tbcos(u). The ex-
tension to a generalt'(u) is straightforward, and we only
quote the final result. The eigenstates and the spectrum
be written as
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FIG. 1. Diagrammatic repre-
sentation of the integral equatio
for the susceptibilitiesx11 and
x12 in the RPA. The solid
~dashed! lines represent electron
on the right ~left! sheet of the
Fermi surface. The arrows indicat
the spin direction. The wavy lines
correspond to forward (g2) or um-
klapp scattering (g3).
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fkx ,l
a ~r !5

1

AbLx

eikxxf l 2m
a ,

f l 2m
a 5E

0

2p du

2p
e2 i ~ l 2m!u1 i ~a/vc!T'~u!, ~2.4!

ekx ,l ,s
a 5vF~akx2kF!1a lvc1smBH,

where we have introduced

T'~u!5E
0

u

du8t'~u8!. ~2.5!

Lx is the length of the system in thex direction. kx is the
eigenvalue of the operator2 i ]x ~which commutes withH0).
The wave functionfkx ,l

a is localized around thel th chain

with a spatial extension in they direction of the order of
btb /vc ~assumingtb@t2b ,t3b¯). btb /vc also corresponds
to the amplitude of the semiclassical orbits in the transve
direction. The localization of the wave functions can be
terpreted as Bloch oscillations of the electrons in the m
netic field, and within the same picture the quantized sp
trum ekx ,l ,s

a can be seen as a Wannier-Stark ladder.21 The

latter provides a very natural picture of the quantized nes
mechanism, which is at the origin of the FISDW’s
quasi-1D conductors.1,3,21,22Indeed, for two rodsl 1 andl 2 of
the Wannier-Stark ladder, the ‘‘nesting condition’’ekx ,l 1 ,↑

2

52ekx1Qx ,l 2 ,↓
1 is fulfilled if Qx52kF1( l 12 l 2)G. There-

fore we expect the formation of a SDW at a quantized wa
vector Qx52kF1NG (N integer! in the presence of repul
sive electron-electron interactions.

Now we introduce the bare transverse spin susceptib
in the Matsubara formalism

xa
~0!~r2r 8,t!5^Ttcā↑

†
~r ,t!ca↓~r ,t!ca↓

† ~r 8,0!cā↑~r 8,0!&
~2.6!

which is to be calculated withH0 only. Heret is an imagi-
nary time. In Fourier space, we obtain

xa
~0!~q,vn!5

1

LxLy
E d2rd2r 8E

0

1/T

dte2 iq•~r2r8!1 ivnt

3xa
~0!~r2r 8,t!

52
T

LxLy
(
v

E d2rd2r 8e2 iq•~r2r8!

3Gā↑~r 8,r ,v!Ga↓~r ,r 8,v1vn!, ~2.7!
e
-
-

c-

g

e

y

whereLxLy is the area of the system andqx;a2kF . Gas is
the one-particle Green’s function.v5pT(2n11) (n inte-
ger! is a fermionic Matsubara frequency, andvn52pTn ~n
integer! a bosonic Matsubara frequency. Using

Gas~r ,r 8,v!5(
kx ,l

fkx ,l
a ~r !fkx ,l

a* ~r 8!

iv2ekx ,l ,s
a , ~2.8!

we obtain the well-known result1

xa
~0!~q,vn!5(

n
I n

2~qy!xa
1D~qx2anG,vn!, ~2.9!

wherexa
1D(qx ,vn) is the susceptibility of a one-dimension

system without interaction. In the static limit (vn50),

xa
1D~qx!5

N~0!

2 F lnS 2gE0

pT D1CS 1

2D
2Re CS 1

2
1

vF

4ipT
~qx2a2kF! D G , ~2.10!

whereN(0)51/pvFb is the density of states per spin,C is
the digamma function, andg.1.781 the exponential of the
Euler constant.E0 is an ultraviolet cutoff of the order of the
bandwidth. Sincex1

1D(2kF)5(N(0)/2)ln(2gE0 /pT), the bare
susceptibilityx (0) has logarithmic divergences at quantiz
valuesQx

(N)52kF1NG (N integer! of the longitudinal wave
vector. The coefficientsI n(qy) defined by

I l 2 l 8~qy!5ei ~ l 1 l 8!qyb/2(
m

e2 imqybf l 2m
2 f l 82m

1

5E
0

2p du

2p
ei ~ l 2 l 8!u1~ i /vc!@T'~u1qyb/2!1T'~u2qyb/2!#

~2.11!

are well known in the QNM.1 They crucially depend on the
detailed structure of the quasi-1D Fermi surface and the
fore determine the stability of the metallic phase with resp
to the formation of a SDW phase.

B. RPA susceptibility and phase diagram

We now consider the total Hamiltonian as given by E
~2.3!, and introduce the spin susceptibility

xaa8~r ,r 8,t!5^Ttcā↑
†

~r ,t!ca↓~r ,t!ca8↓
†

~r 8,0!cā8↑~r 8,0!&.
~2.12!

In the RPA,xaa8 is determined by the integral equation~see
Fig. 1!
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xaa8~r ,r 8!5da,a8xa
~0!~r2r 8!

1g2E d2r 1xa
~0!~r2r1!xaa8~r1 ,r 8!

1g3E d2r 1xa
~0!~r2r1!eia4kFx1xāa8~r1 ,r 8!,

~2.13!

where we now consider only the static limit (vn50). In
Fourier space, this leads to

xaa8~qx ,qx8!5da,a8dqx ,q
x8
xa

~0!~qx!

1g2xa
~0!~qx!xaa8~qx ,qx8!

1g3xa
~0!~qx!xāa8~qx2a4kF ,qx8!.

~2.14!

We have not written explicitly the dependence onqy since
the latter is a conserved quantity. Sincex (0) logarithmically
rs

em
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diverges atQx
(N)52kF1NG, we consider spin fluctuation

only at these wave vectors. Because of umklapp proces
fluctuations atQx

(N) are coupled with fluctuations atQx
(N)

24kF52Qx
(N̄) :

x11~Qx
~N! ,Qx

~N!!5x1
~0!~Qx

~N!!

1g2x1
~0!~Qx

~N!!x11~Qx
~N! ,Qx

~N!!

1g3x1
~0!~Qx

~N!!x21~2Qx
~N̄! ,Qx

~N!!,

x21~2Qx
~N̄! ,Qx

~N!!5g2x2
~0!~2Qx

~N̄!!x21~2Qx
~N̄! ,Qx

~N!!

1g3x2
~0!~2Qx

~N̄!!x11~Qx
~N! ,Qx

~N!!.

~2.15!

Using xā
(0)(2qx ,qy)5xa

(0)(qx ,qy), we obtain
x11~QN ,QN!5
x1

~0!~QN!@12g2x1
~0!~QN̄!#

@12g2x1
~0!~QN!#@12g2x1

~0!~QN̄!#2g3
2x1

~0!~QN!x1
~0!~QN̄!

,

x21~2Qx
~N̄! ,Qy ;QN!5

g3x1
~0!~QN!x1

~0!~QN̄!

@12g2x1
~0!~QN!#@12g2x1

~0!~QN̄!#2g3
2x1

~0!~QN!x1
~0!~QN̄!

. ~2.16!
ll

ort
e
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al
We have written explicitly the dependence on the transve
wave vector by introducing

QN5~Qx
~N! ,Qy! and QN̄5~Qx

~N̄! ,2Qy!. ~2.17!

Note that in our notation the wave vectorQN̄[Q2N has both
the signs ofN andQy reversed compared toQN . This hap-
pens because Umklapp scattering couples (Qx

(N) ,Qy) to

(2Qx
(N̄) ,Qy), but the latter is equivalent to (Qx

(N̄) ,2Qy).
In the presence of umklapp processes, the transition t

peratureTc
(N) is determined by the modified Stoner criterio

@12g2x1
~0!~QN!#@12g2x1

~0!~QN̄!#

2g3
2x1

~0!~QN!x1
~0!~QN̄!50, ~2.18!

which is the condition for vanishing of denominators a
divergence of susceptibilitiesxaa8 in Eq. ~2.16!. Two fluc-
tuation modes diverge simultaneously, which leads to
formation of two SDW’s with wave vectorsQN

5(Qx
(N) ,Qy) and QN̄5(Qx

(N̄) ,2Qy) @see Eq.~2.16!#. We
label each FISDW phase by the integerN such that the SDW
with wave vectorQN has the largest amplitude. This
equivalent to definingN by the conditionx1

(0)(QN).x1
(0)

3(QN̄) ~Sec. IV!.
We will show in Sec. IV that the SDW’s can be eith

sinusoidal or helicoidal, depending on the value of the an
qN (P#2p/4,p/4]) defined by tan(2qN)52B/(AN2AN̄) and
e

-

e

le

A6N5
1

I 6N
2 ~Qy! S g2

g2
22g3

2 2x1
~0!~Q6N! D ,

~2.19!

B52
g3

I N~Qy!I N̄~Qy!~g2
22g3

2!
.

For sin2(2qN),2/3, the SDW’s are sinusoidal and the Ha
effect is quantized:sxy522Ne2/h. N then corresponds to
the quantum number which is directly measured in transp
experiments. For sin2(2qN).2/3, the phase is helicoidal. Th
Hall effect vanishes, but a kinetic magnetoelectric effect
pears~see Secs. VI and VII!. The phaseN50 is sinusoidal if
Qy5p/b and helicoidal ifQyÞp/b ~Sec. IV!. qN also de-
termines the ratiougu (0,ugu,1) of the amplitudes of the
two SDW’s:

g5
I N~Qy!tan~qN!2rI N̄~Qy!

I N̄~Qy!2rI N~Qy!tan~qN!
, ~2.20!

where r 5g3 /g2 . The figures of this section also showug̃u
5utan(qN)u which is analogous tougu but for the effective
mean-field potential acting on the electrons.~g and g̃ are
precisely defined in section IV.! ug̃u and ugu increase with
uqNu. At the transition between the sinusoidal and helicoid
phasesugu;ug̃u.0.518.

In the absence of umklapp processes, Eq.~2.18! yields the
usual Stoner criterion 12g2x1

(0)(QN)50 for the formation
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of a SDW at wave vectorQN5(Qx
(N) ,Qy). The quantized

longitudinal wave vectorQx
(N)52kF1NG and the transverse

wave vectorQy are chosen to maximize the transition tem
peratureTc

(N) at a given magnetic field. Except whenN50,
Qy is incommensurate:QyÞp/b. The SDW is sinusoida
(qN50 for g350), and the quantum Hall conductivity i
the FISDW is determined by the integerN: sxy5
22Ne2/h. As the magnetic field increases, the value ofN
changes, which leads to a cascade of FISDW phases s
rated by first-order transitions. In the simplest version of
QNM, wheret3b5t4b5¯50, the phases of the cascade a
labeled byN5¯5,4,3,2,1,0 as the field increases. The in
gerN is positive providedt2b.0, i.e., sgn(N)5sgn(t2b). ~For
t2b,0, one would obtain a similar sequence but with ne
tive values ofN.)

We study the phase diagram in the presence of umkl
scattering numerically~see Figs. 2–6!. The calculations are
done for tb5300 K, t2b520 K, t3b50 K, and E0

52000 K. g̃21g̃352/ln(2gE0 /pTc
`) is held fixed whereTc

`

512 K is the transition temperature for an infinite magne
field, and g̃i5N(0)gi ( i 52,3) are dimensionless couplin
constants. Since the values ofr and t4b are not precisely
known in Bechgaard salts, we calculate the phase diagra
a function of these parameters.~In Bechgaard salts,t4b is
expected to be a very small energy scale, of order 1 K or
even less.16! g2 and g3 are such that we are in the wea
coupling limit: g̃3,g̃2&0.4.

For r 50 and t4b50.75 K, we obtain the sequenceN
5¯,4,3,2,1,0 in agreement with what has been found
t4b50 ~i.e., a small value oft4b does not change the phas
diagram whenr 50).1 The transverse wave vectorQy varies
approximately linearly with the field within each phase, a
is incommensurate (QyÞp/b) except in the phaseN50
~Fig. 2!.

A very smallg3 does not change the phase diagram qu
tatively compared to the caseg350. Now the main SDW at

FIG. 2. Phase diagram forr 50 (g̃2.0.38 andg̃350) andt4b

50.75 K. Top picture: Transition temperatureTc
(N) ~solid line!. The

dashed line gives the value of the integerN. The QHE is deter-
mined bysxy522Ne2/h. Bottom picture: Transverse wave vect
Qy maximizing the transition temperatureTc

(N) .
pa-
e

-

-

p

as

r

i-

the wave vectorQN coexists with a weak SDW at the wav
vector QN̄ . In general, the value ofQy that maximizes
x (0)(QN) does not maximizex (0)(QN̄), so x (0)(QN̄)
!x (0)(QN). As a result, the SDW amplitude at the wav
vectorQN̄ is very small, and the polarizations of the SDW
are linear. The values ofN follow the usual positive se-
quenceN5¯,5,4,3,2,1,0 as the magnetic field increases

A larger value ofg3 increases the coupling between th
two SDW’s. This leads to a strong decrease of the criti
temperature or even the disappearance of the SDW’s. H
ever, for evenN, there exists a critical value ofg3 above
which the system prefers to choose the transversely comm
surate wave vectorQy5p/b for both SDW’s. The reason is
that, for evenN ~as opposed to oddN), Qy5p/b corre-
sponds to a local maximum of the susceptibiliti

and x (0)(Qx
(N) ,p/b).x (0)(Qx

(N̄) ,p/b). The two suscepti-
bilities are strictly equal att4b50, but when t4b.0,
x (0)(Qx

(2uNu) ,p/b).x (0)(Qx
(uNu) ,p/b) ~this result also holds

for t3bÞ0 sincex (0)(Qx
(N) ,p/b) is independent oft3b).16

This yields a negative Hall plateau, provided the SDW’s a
sinusoidal. Thus, forr 50.025 (g̃2.0.37 andg̃3.0.01) and
t4b50.75 K, we find the sequenceN5¯5,4,3,22,2,1,0
~Fig. 3!. A negative commensurate phase withN522 and
Qy5p/b appears in the cascade. All the phases are s
soidal, so the Hall effect is quantized (sxy522Ne2/h). For
r 50.025 andt4b520.75 K, we obtain only positive inte
gers:N5¯5,4,3,2,1,0. However, the phaseN52 has split
into two subphases: for large enough field, the transve
wave vectorQy differs fromp/b and varies linearly with the
field; for a weaker field, the phase is commensurate (Qy
5p/b). All the phases are sinusoidal@sin2(2qN),2/3# so
that the Hall effect is quantized.

Figure 3 shows that both SDW’s have comparable am
tudes in the negative phases:ugu,ug̃u.0.3. This results from

the propertyx (0)(Qx
(N) ,p/b).x (0)(Qx

(N̄) ,p/b). On the con-
trary, the amplitude of the SDW with wave vectorQN̄ re-
mains very small in the positive phases. Note that it isg̃
which is actually vanishingly small,ugu being of the order of
r ~see Sec. IV A for a further discussion!.

The strength of umklapp scattering is very sensitive
pressure. Indeed, hydrostatic pressure reduces the dime
tion gap and diminishesg3 . Therefore, we conclude that sig
reversals of the QHE can be induced by varying pressure
our simplified model, this effect requirest4b.0. Our results
provide a new explanation of the sign reversals of the Q
which have long been observed in quasi-1D orga
conductors.10–14 In particular, Balicaset al. have recently
shown unambiguously the existence of the phaseN522 in
~TMTSF!2PF6 at a pressure of 8.3 kbar by observing a si
reversal of the QHE with a well-defined Hall plateau corr
sponding toN522.14 ~These results required a conditionin
procedure in which current pulses depin the FISDW fro
lattice defects and tend to reduce hysteresis.! The observed
FISDW cascade corresponds toN5¯4,3,22,2,1,0. When
the pressure is increased to 9 kbar~which decreases the um
klapp scattering strength!, the phaseN522 disappears and
the usual sequenceN5...4,3,2,1,0 is obtained.

If the value oft4b is reduced, the phaseN522 becomes
helicoidal. This is shown in Fig. 4 obtained forr 50.03 and
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t4b50.3 K. ~When t4b50.3 K, the phaseN522 appears
for stronger umklapp scattering. This is the reason why
show the phase diagram forr 50.03 and notr 50.025.) In
the helicoidal phase,ugu;ug̃u*0.5. For t4b50, there
is a degeneracy betweenN and 2N at Qy5p/b:
x1

(0)(Qx
(N) ,p/b)5x1

(0)(Qx
(N̄) ,p/b), I N(p/b)5I N̄(p/b) and

AN5AN̄ . This yieldsugu5ug̃u51 andqN5p/4: the waves
are helicoidal. A finitet4b lifts this degeneracy, so thatAN
ÞAN̄ and in turn sin2(2qN),1. Thus, the stability of the
helicoidal phases is strongly related to the degeneracy
tweenN and2N occurring forQy5p/b. In our model, this
degeneracy is entirely controlled byt4b . It is not affected by
t3b , which is the reason why we have chosent3b50 in the
numerical calculations.

If, on the other hand, the value oft4b is increased, the
ratio of the amplitudes of the two SDW’s decreases. F
instance, for r 50.025 and t4b51.5 K, we find ugu,ug̃u
;0.15. Thus, for larget4b ~i.e., t4b*1.5 K), the amplitude
of the SDW with wave vectorQN̄ becomes very small. Ther
is then no real difference between a positive and a nega
phase~except for the sign of the QHE! insofar as both con-
tain a main SDW, which coexists with another SDW with
very small amplitude.

FIG. 3. Phase diagram forr 50.025 (g̃2.0.37 andg̃3.0.01)
and t4b50.75 K. The bottom picture shows sin2(2qN) ~solid line!,

ug̃u ~dashed line!, and ugu ~dotted line!. sin2(2qN) determines the

polarization of the SDW’s andug̃u,ugu give the ratio of the ampli-
tudes of the two SDW’s~see text for a precise definition!. ~These
quantities are not shown in the last phase of the cascade (N50,
Qy5p/b) which contains a single linearly polarized SDW.! A
negative phase (N522) appears in the cascade.Qy5p/b in that

phase, and the two SDW’s have comparable amplitudes:ug̃u,ugu
;0.3. All the phases are sinusoidal@since sin2(2qN),2/3# and the
Hall effect is quantized:sxy522Ne2/h.
e

e-

r

ve

If r is increased to 0.06~with t4b50.75 K), a second
negative phase (N524) appears, and the cascade becom
N5¯8,7,24,6,5,4,22,2,1,0~Fig. 5!. Note thatN522 and
N524 are the two negative phases most easily observe
experiments.13,16 The phaseN522 has split into two sub-
phases: one is helicoidal@sin2(2q2).2/3#, one is sinusoidal
@sin2(2q2),2/3#. Thus, increasing the strength of umklap
processes makes the negative phaseN522 helicoidal.

In order to observe the helicoidal phase experimentally
would be desirable to stabilize the negative phaseN522 at
the lowest possible pressure~which corresponds to the stron
gestg3). In ~TMTSF!2PF6, the pressure has to be larger th
6 kbar, since below this pressure the FISDW casc
disappears.1 In the experiment reported in Ref. 14, where t

FIG. 5. Phase diagram forr 50.06 andt4b50.75 K. Two nega-
tive phases,N522 and N524, can be observed. The phaseN
522 has split into two subphases: one is helicoidal@sin2(2q22)
.2/3#, one is sinusoidal@sin2(2q22),2/3#.

FIG. 4. Phase diagram forr 50.03 andt4b50.3 K ~the horizon-
tal dot-dashed line corresponds to 2/3). Whent4b is reduced from
0.75 to 0.3 K, the negative phaseN522 becomes helicoida
@sin2(2q22).2/3#. The QHE vanishes in that phase, but a mag
toelectric effect appears.
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phaseN522 has been observed at 8.3 kbar, the press
could be reduced only by about 2 kbar. Nevertheless,
causeg3 is very sensitive to pressure, such a pressure red
tion could induce a significant increase of the umklapp sc
tering strength.~TMTSF!2ReO4, where sign reversals of th
QHE have been observed under pressure,23 could also be a
good candidate for the observation of helicoidal phases
~TMTSF!2ClO4, sign reversals of the QHE have been o
served at ambient pressure,1,10 so that it is not possible to
increaseg3 by decreasing pressure.

When r is further increased, only phases with negat
evenN survive. This leads to the sequenceN5¯28,26,
24,22,0 for t4b50.75 K apart from some reentrances of t
phaseN50 within the cascade to be discussed below.~For
t4b520.75 K, we obtain the sequenceN5¯8,6,4,2,0.)
Moreover, all the phasesNÞ0 are commensurate (Qy
5p/b). This is shown in Fig. 6 obtained forr 50.2, i.e.,
g̃2.0.32 andg̃3.0.06.

The phaseN50 is somehow special sincex1
(0)(QN)

5x1
(0)(QN̄) in that case. As a result, the transition tempe

ture Tc
(0) is determined by 12(g21g3)x1

(0)(Q0)50 and
does not depend on the ratior 5g3 /g2 wheng21g3 is held
fixed. This should be contrasted with the transition tempe
ture Tc

(N) (NÞ0) which decreases withr @except whenQy

5p/b and x1
(0)(Qx

(N) ,p/b)5x1
(0)(Qx

(N̄) ,p/b)#. This ex-
plains why, whenr increases, some reentrances of the ph
N50 are observed within the cascade. Notice that the la
phases are not commensurate (QyÞp/b) contrary to the last

FIG. 6. Phase diagram forr 50.2 (g̃2.0.32 andg̃3.0.06) and
t4b50.75 K. Only phases with negative evenN survive when um-
klapp scattering is strong enough. Some reentrances of the p
N50 ~with QyÞp/b) also appear within the cascade.
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phase (N50, Qy5p/b) of the cascade. The reentrant phas
N50 are always helicoidal~independently of the structure o
the Fermi surface!, but the last phaseN50, Qy5p/b of the
cascade is sinusoidal~Sec. IV!.

C. Effect of 1D fluctuations

Our numerical results show that a very small value of
umklapp scattering amplitude is sufficient to explain t
phase diagram of Bechgaard salts. In fact, the order of m
nitude of g3 which is required to stabilize negative phas
strongly depends on the choice of the ultraviolet cutoffE0 .

Within a mean-field picture,E0 is a large energy, of the
order of the electron bandwidth. It has been argued that
cause of 1D fluctuations, the appropriate cutoff to be use
the QNM is not the bandwidth but the dimensional crosso
temperatureTx1!E0 .24 ~AboveTx1, the behavior of the sys
tem is essentially 1D, so that the interference betwe
particle-particle and particle-hole channels invalidate
mean-field~or ladder! approximation.! A stronger value of
g3 is then required to stabilize negative phases. This is
agreement with the suggestion of Behniaet al. that the ef-
fective low-temperature value ofg3 in a magnetic field is
significantly enhanced by 1D high-energy scales.25 This
point of view is supported by NMR measurements and
large magnetoresistance, which shows an activated beha
becoming more and more pronounced as the fi
increases.25

III. ORDER PARAMETERS: HELICOIDAL VS
SINUSOIDAL WAVES

The divergence of the susceptibilitiesxaa8 ~Sec. II! indi-
cates that the FISDW phases are characterized by the o
parameters

Das~r !5^cas
† ~r !cās̄~r !&5 (

p56
Das

~pN!e2 iaQpN•r. ~3.1!

The two wave vectorsQpN , p561, are given by Eq.~2.17!.

Qx
(pN)52kF1pNG and Qy

(N̄)52Qy
(N) . The complex num-

bers Das
(pN) are the order parameters of the FISDW pha

Das(r )5Dās̄
* (r ) implies Das

(pN)5Dās̄
(pN)* . Among the eight

order parametersDas
(pN) , only four are therefore independen

and sufficient to characterize the SDW phase. Note that
N50, one should distinguish in general between the pha
N andN̄. In this case, there are two SDW’s with wave ve

tors (2kF ,Qy
(0)) and (2kF ,Qy

(0̄)) with Qy
(0̄)52Qy

(0) . For
Qy

(0)Þ0,p/b, the two SDW’s are different so that bothDas
(0)

andDas
(0̄) are needed. WhenQy

(0)50,p/b, the two SDW’s are
identical, and only one order parameter~for instanceDas

(0)) is
sufficient.

Now we discuss how the polarization of the wave affe
the order parametersDas

(pN) . For simplicity, we consider only
one wave vectorQ and denote the four different order pa
rameters byDas ~among which only two are independe
sinceDās̄5Das* ). For a SDW polarized perpendicularly t

ase
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the magnetic field, the expectation value of the spin-den
operatorS~r ! can be written as

^Sx~r !&5 (
a,s,s8

^cas
† ~r !ts,s8

~x! cās8~r !&5mxcos~Q•r1u1!,

~3.2!

^Sy~r !&5 (
a,s,s8

^cas
† ~r !ts,s8

~y! cās8~r !&5mycos~Q•r1u2!,

wheret(x) andt(y) are Pauli matrices.u15u2 corresponds to
a sinusoidal wave, whileu15u26p/2 and mx5my corre-
sponds to a helicoidal wave.^S~r !& can be expressed in term
of the order parameters~3.1!:

^S1~r !&5^Sx~r !&1 i ^Sy~r !&

5(
a

^ca↑
† ~r !cā↓~r !&5(

a
Da↑~r !. ~3.3!

Comparing this expression with Eqs.~3.2!, we find

D1↑5
1

2
~mxe

2 iu11 imye
2 iu2!,

~3.4!

D2↑5
1

2
~mxe

iu11 imye
iu2!.

For a sinusoidal waveuD1↑u5uD2↑u. For a helicoidal
waveD1↑Þ0 andD2↑50 ~or the symmetric solutionD2↑
Þ0 and D1↑50). The inverse is also true:uD1↑u5uD2↑u
implies that the wave is sinusoidal, whileD1↑Þ0 andD2↑
50 implies that the wave is helicoidal.

IV. POLARIZATION OF THE PHASE N

In this section we derive the Ginzburg-Landau expans
of the free energy as a function of the order parame
Das

(pN) . The minimum of the free energy determines the p
larization ~linear or circular! of the SDW’s.

The mean-field~or Hartree-Fock! Hamiltonian is given by
ty

n
rs
-

HMF5H02(
a,s

E d2r D̃as~r !cās̄
†

~r !cas~r !

1(
a

E d2r D̃a↑~r !Dā↓~r !, ~4.1!

where we have introduced

D̃as~r !5g2Das~r !1g3e2 ia4kFxDās~r !. ~4.2!

Das(r ) is given by Eq.~3.1!. For g3Þ0, the mean-field po-
tential D̃as(r ) acting on the electrons is a linear combinati
of the order parametersDas(r ).

Calculating the free energy~per surface unit! of the phase
N to the fourth order in the order parameters, we obtainFN

5FN
(2)1FN

(4) with

FN
~2!5(

a
E d2r

LxLy
D̃a↑~r !Dā↓~r !

1
T

LxLy
(
a,v

E d2r 1d2r 2D̃a↑~r1!D̃ā↓~r2!

3Ga↑~r1 ,r2 ,v!Gā↓~r2 ,r1 ,v!,
~4.3!

FN
~4!5

T

2LxLy
(
a,v

E d2r 1d2r 2d2r 3d2r 4D̃a↑~r1!D̃ā↓~r2!

3D̃a↑~r3!D̃ā↓~r4!Ga↑~r1 ,r2 ,v!Gā↓~r2 ,r3 ,v!

3Ga↑~r3 ,r4 ,v!Gā↓~r4 ,r1 ,v!.

Gas is the single-particle Green’s function in the metal
phase@see Eq.~2.8!#. Introducing the electron-hole pairin
amplitude@we use the notationwi[(kix ,l i) for the indices of
the functionsfkix ,l i

a
„Eq. ~2.4!…#

D̃as~w1 ,w2!5E d2rfw1

ā* ~r !fw2

a ~r !D̃as~r !5D̃ās̄
* ~w2 ,w1!,

~4.4!

we write the free energy as
FN
~2!5(

a
E d2r

LxLy
D̃a↑~r !Dā↓~r !1

T

LxLy
(

a,v,w1 ,w2

D̃a↑~w1 ,w2!D̃ā↓~w2 ,w1!

~ iv2ew1↓
ā !~ iv2ew2↑

a !
, ~4.5!

FN
~4!5

T

2LxLy
(
a,v

(
w1 ,w2 ,w3 ,w4

D̃a↑~w1 ,w3!D̃ā↓~w3 ,w4!D̃a↑~w4 ,w2!D̃ā↓~w2 ,w1!

~ iv2ew1↓
ā !~ iv2ew3↑

a !~ iv2ew4↓
ā !~ iv2ew2↑

a !
. ~4.6!
The pairing amplitudes are given by~Appendix A!

D̃as~w1 ,w2!5 (
p56

dk2x ,k1x1aQ
x
~pN!~g2Das

~pN!1g3Dās
~ p̄N!

!

3e2 iaQy
~pN!b~ l 11 l 2!/2I a~ l 12 l 2!~Qy

~N!!. ~4.7!

This leads to
FN
~2!5(

p,a
@ApNuD̃a↑

~pN!u21BD̃a↑
~pN!D̃ ā↑

~ p̄N!* #1dF0
~2! ,

~4.8!

dF0
~2!5dN,0S (

n
dQ

y
~0!b,npD(

a
@A0~D̃a↑

~0!D̃a↑
~ 0̄!* 1c.c.!

1B~D̃ā↑
~ 0̄!

D̃a↑
~ 0̄!* 1D̃ā↑

~0!
D̃a↑

~0!* !#.
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A6N and B are defined by Eq.~2.19!. We have introduced
the new order parametersD̃as

(pN) related toDas
(pN) by

D̃as
~pN!5I pN~g2Das

~pN!1g3Dās
~ p̄N!

!5D̃ās̄
~pN!* ,

~4.9!

Das
~pN!5

g2I p̄ND̃as
~pN!2g3I pND̃ās

~ p̄N!

~g2
22g3

2!I NI N̄
,

with I pN[I pN(Qy
(pN)).

A commonly used approximation in the QNM is th
quantum limit approximation~QLA! valid whenvc@T.1,6,7

It consists in retaining only the most singular~electron-hole!
pairing channels that have the logarithmic singular
; ln(2gE0 /pT). This singularity results from pairings be
tween electron and hole states of the same energy. There

in the QLA, D̃as(w1 ,w2) is nonzero only ifew1s̄
ā

52ew2s
a .

This leads to

D̃as~w1 ,w2!uQLA5 (
p56

dk2x ,k1x1aQ
x
~pN!d l 2 ,l 12apN

3e2 iaQy
~pN!b~2l 12apN!/2D̃as

~pN! .

~4.10!
tin

y

rs
re,

The QLA is usually known as the single gap approximati
~SGA! because it amounts to considering only the gap t
opens at the Fermi level. However, when umklapp proces
are present, the spectrum cannot be described with only
gap, although gaps opening above and below the Fermi l
are still neglected~see Sec. V!. For this reason, we use th
term QLA rather than SGA. In the QLA, we would hav
obtained Eq.~4.8!, together with Eq.~2.19!, but with the
exact susceptibilityx1

(0) replaced by

x1
~0!~QpN!uQLA5I pN

2 N~0!

2
lnS 2gE0

pT D . ~4.11!

Although qualitatively correct, this approximation strong
underestimates the susceptibilityx (0) because it neglects
terms; ln(2gE0 /unuvc) (nÞ0) with respect to ln(2gE0 /pT).
However, the QLA becomes very accurate for higher-or
contributions to the free energy. ForFN

(4) , corrections to the
QLA are of orderT2/vc

2 and can therefore be neglecte
whenvc@T. Within the QLA, we obtain
FN
~4!5

K

2 (
a

(
p1 ,p2 ,p3 ,p4

D̃a↑
~p1N!

D̃a↑
~p2N!* D̃a↑

~p3N!
D̃a↑

~p4N!* exp@ iN~b/2!@p1Qy
~p1N!

2~2p12p2!Qy
~p2N!

1~2p122p21p3!Qy
~p3N!

2p4Qy
~p4N!

##d~p12p21p32p4!N,0(
n

dQ
y

~p1N!
2Q

y

~p2N!
1Q

y

~p3N!
2Q

y

~p4N!
,n2p/b , ~4.12!
-
whereK57z(3)N(0)/(16p2T2) and z(3).1.20. A some-
what lengthy calculation~see Appendix B! leads to

FN
~4!5

K

2 (
p,a

uD̃a↑
~pN!u412K(

a
uD̃a↑

~N!D̃a↑
~N̄!u21dF0

~4! ,

~4.13!

dF0
~4!5dN,0S (

n
dQ

y
~0!b,npDK(

a
F D̃a↑

~0!uD̃a↑
~ 0̄!u2D̃a↑

~ 0̄!*

1D̃a↑
~ 0̄!uD̃a↑

~0!u2D̃a↑
~0!* 1

1

2
~D̃a↑

~0!D̃a↑
~ 0̄!* !21c.c.G .

Equations~4.8! and ~4.13! show that the caseN50 and
Qy

(0)50,p/b is special, since in that case one cannot dis

guish betweenDa↑
(0) andDa↑

(0̄) . In practice, the caseQy
(0)50

never occurs~see Sec. II! so that we shall not consider it an
more.

A. PhasesNÞ0, or N50 and Qy
„0…Þp/b

We first consider the casesNÞ0, and N50 with Qy
(0)

Þp/b. The latter corresponds to the reentrant phasesN50
within the cascade~see Sec. II!. The quadratic part of the
free energy~4.8! is not diagonal in the order paramete
-

sinceD̃a↑
(N) is coupled toD̃ā↑

(N̄) . Introducing the order param
etersua

(N) andva
(N) defined by

S D̃a↑
~N!

D̃ ā↑
~N̄!D 5S cos~qN! 2sin~qN!

sin~qN! cos~qN!
D S ua

~N!

va
~N!D , ~4.14!

we obtain

FN
~2!5(

a
~D̃a↑

~N!* , D̃ā↑
~N̄!* !S AN B

B AN̄
D S D̃a↑

~N!

D̃ ā↑
~N̄!D

5(
a

@l1
~N!uua

~N!u21l2
~N!uva

~N!u2# ~4.15!

for

tan~2qN!5
2B

AN2AN̄
. ~4.16!

2qN can be chosen in ]2p/2,p/2]. The eigenvaluesl1
(N)

andl2
(N) are given by
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l1
~N!5AN cos2~qN!1AN̄ sin2~qN!1B sin~2qN!

5
AN1AN̄

2
1

1

2
sgn~AN2AN̄!@~AN2AN̄!214B2#1/2,

~4.17!

l2
~N!5AN sin2~qN!1AN̄ cos2~qN!2B sin~2qN!

5
AN1AN̄

2
2

1

2
sgn~AN2AN̄!@~AN2AN̄!214B2#1/2.

The transition temperatureTc
(N) is determined by

min(l1
(N) ,l2

(N))50. In this section, the sign ofN has not been
specified yet, since both phasesN and2N correspond to a
phase with two SDW’s at wave vectors (Qx

(N) ,Qy
(N)) and

(Qx
(N̄) ,2Qy

(N)). In the following, we fix the sign ofN by the
condition x1

(0)(QN)>x1
(0)(QN̄) ~i.e., in the absence of um

klapp processes, the phaseN would be more stable than th
phase2N). Then we have 0<AN<AN̄ and 0<l1

(N)<l2
(N)

for T>Tc
(N) ~assuming 0<g3,g2). The transition tempera

ture Tc
(N) is determined byl1

(N)50, i.e., ANAN̄5B2. Using
Eqs. ~2.19!, we recover the result~2.18! obtained from the
RPA calculation of the susceptibility.

Since l2
(N).0 for T&Tc

(N) , we can putva
(N)50 in the

expansion of the free energy. This leads to

FN5l1
~N!(

a
uua

~N!u21
K

2
@cos4~qN!1sin4~qN!#

3(
a

uua
~N!u41K sin2~2qN!uu1

~N!u2
~N!u2. ~4.18!

The minimum of the free energy is determined by

]FN

]ua
~N!*

5ua
~N!@l1

~N!1K@cos4~qN!1sin4~qN!#uua
~N!u2

1K sin2~2qN!uuā
~N!u2#50. ~4.19!

For l1
(N),0 ~i.e., T,Tc

(N)), there are two solutions corre
sponding to a SDW phase:

~i! uu1
(N)u5uu2

(N)u(Þ0). Using va
(N)50, we find uD̃1↑

(N)u
5uD̃2↑

(N)u, uD̃1↑
(N̄)u5uD̃2↑

(N̄)u, and also uD1↑
(N)u5uD2↑

(N)u, uD1↑
(N̄)u

5uD2↑
(N̄)u. From the results of Sec. III, we conclude that t

two SDW’s are linearly polarized.
~ii ! u1

(N)Þ0 and u2
(N)50 ~or the symmetric solution

u2
(N)Þ0 and u1

(N)50). va
(N)50 then implies D̃2↑

(N)5D̃1↑
(N̄)

50, andD2↑
(N)5D1↑

(N̄)50. This corresponds to two helicoida
SDWs of opposite chiralities.

For the sinusoidal waves@solution ~i!#, we find

uua
~N!u252

l1
~N!

K@11~1/2!sin2~2qN!#
, ~4.20!

FN52
l1

~N!2

K@11~1/2!sin2~2qN!#
,

~4.21!

while for the helicoidal waves@solution ~ii !#, we have
uu1
~N!u252

l1
~N!

K@12~1/2!sin2~2qN!#
, u2

~N!50,

~4.22!

FN52
l1

~N!2

2K@12~1/2!sin2~2qN!#
. ~4.23!

Comparing Eqs.~4.21! and~4.23!, we conclude that the heli
coidal phase is more stable than the sinusoidal phase w
sin2(2qN).2/3, i.e., when &uBu.uAN2AN̄u. When
sin2(2qN),2/3, the minimum ofFN for l1

(N),0 corresponds
to uu1

(N)u5uu2
(N)u. When sin2(2qN).2/3, there are two

minima located on the linesu1
(N)50 andu2

(N)50.
In the absence of umklapp processes (g350), qN50 and

the SDW’s are sinusoidal. For values ofg3 such thatQy
(N)

5p/b, the polarization of the waves depends on the det
of the Fermi surface. In our model, it is determined byt4b
~see the numerical calculation of Sec. II!.

The results obtained in this section are very simple wh
N50. Sincex1

(0)(QN)5x1
(0)(QN̄) for N50 ~the susceptibil-

ity does not change whenQy→2Qy), AN5AN̄ and q0
5p/4. The phaseN50 ~with QyÞp/b) is therefore always
helicoidal. This result does not hold whenQy5p/b ~see Sec.
IV B !.

Using va
(N)50, we obtain the ratio of the amplitudes o

the two SDW’s:

g̃5
D̃ā↑

~N̄!

D̃a↑
~N!

5tan~qN!, ~4.24!

g5
Dā↑

~N̄!

Da↑
~N! 5

g̃I N2rI N̄

I N̄2r g̃I N

. ~4.25!

Since qNP] 2p/4,p/4], ugu,ug̃u<1. The SDW with wave
vectorQN has the largest amplitude. This simply results fro
the fact that we have chosenN such that x (0)(QN)
>x (0)(QN̄). The transition from the sinusoidal phase to t
helicoidal phase occurs when sin2(2qN)52/3, i.e., whenug̃u
50.518.

Note that in the positive phases, it isg̃ and notg which is
vanishingly small. Whenx1

(0)(QN̄)!x1
(0)(QN), the minimum

of the free energy corresponds toD̃a↑
(N̄)50 ~and not Da↑

(N̄)

50), since it is the potentialD̃a↑ ~and notDa↑) that couples
to the electrons@see Eq.~4.1!#. g̃.0 implies ugu.r .

B. PhaseN50, Qy
„0…5p/b

We now consider the caseN50 with Qy
(0)5p/b, which

corresponds to the phaseN50 terminating the cascade
There is only one SDW in that case, so we can cho

Das
(0)5Das

(0̄) ~alternatively, we could chooseDas
(0̄)50). The

free energy is then given by

F054(
a

@A0uD̃a↑
~0!u21BD̃a↑

~0!D̃ ā↑
~0!* 12KuD̃a↑

~0!u4#.

~4.26!
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The quadratic part of the free energyF0
(2) is diagonalized by

introducing the order parametersu andv defined by

S D̃1↑
~0!

D̃2↑
~0! D 5

1

&
S 1 21

1 1 D S u
v D . ~4.27!

This leads to

F0
~2!54l1

~0!uuu214l2
~0!uvu2, ~4.28!

with

l1
~0!5

1

I 0
2 S 1

g21g3
2x1

~0!~Q0! D ,

~4.29!

l2
~0!5

1

I 0
2 S 1

g22g3
2x1

~0!~Q0! D .

Tc
(0) is determined byl1

(0)50, i.e., 12(g21g3)x1
(0)(Q0)

50. This agrees with the RPA result~2.18! whenx1
(0)(QN)

5x1
(0)(QN̄)5x1

(0)(Q0).
Since l2

(0).l1
(0) , v50 for T&Tc

(0) . This implies D1↑
(0)

5D2↑
(0) . Thus, the phaseN50, Qy5p/b is always linearly

polarized. ForN50 ~andQy
(0)5p/b), g3 couplesD̃1↑

(0) and

D̃2↑
(0) . As a result, we cannot haveD̃1↑

(0)Þ0 andD̃2↑
(0)50, so

that the polarization cannot be circular. The caseg350 is
special since thenl1

(0)5l2
(0) and bothu andv become non-

zero belowTc
(0) . Nevertheless, Eq.~4.26! shows that the

sinusoidal wave is more stable than the helicoidal wave
this case too.

Settingv50, we obtain the free energy

F054l1
~0!uuu214Kuuu4. ~4.30!

Minimizing F0 with respect tou, we obtain

uuu252
l1

~0!

2K
, F052

~l1
~0!!2

K
. ~4.31!
n

V. SPECTRUM

In the absence of umklapp processes, the spectrum
sists of Landau subbands separated by gaps opening a
Fermi level, and atnvc/2 (n integer! above and below the
Fermi level.1,5–7 In this section we show that for sinusoid
SDW’s the gaps opening at the Fermi level depend on
transverse momentumky ~in this section, we use a gaug
whereky is a good quantum number!. On the other hand, the
spectrum of the helicoidal phase remains independent ofky .
As shown below, this provides a natural explanation of
instability of the sinusoidal phase with respect to the helic
dal phase.

In this section we use the gaugeA5(0,Hx,0) where the
calculations are simpler. In the next section this will al
allow us to calculate the QHE using previous results deriv
in this gauge. Using the Peierls substitution, we obtain

H05 (
a,s,ky

E dxcas
† ~x,ky!@vF~2 ia]x2kF!

1t'~kyb2Gx!1smBH#cas~x,ky!, ~5.1!

where we have taken the Fourier transform with respec
the y direction. In the absence of electron-electron inter
tion, the eigenstates and the spectrum are given by

fk
a~r !5

1

AS
eik•r1 i ~a/vc!T'~kyb2Gx!,

~5.2!
ek,s

a 5vF~akx2kF!1smBH.

The dispersion law is now one-dimensional and the states
extended in both thex andy directions. However, since th
energy does not depend onky , we can take the Fourier trans
form with respect toky and obtain localized wave function
similar to those obtained in Sec. II. The Wannier-Stark la
der can then be recovered by a simple gauge transforma

Using Eq. ~4.1!, the interacting part of the mean-fiel
Hamiltonian can be written as
Hint
MF52 (

a,ky

E dxFe2 iaQx
~N!x

D̃a↑
~N!

I N
cā↓

†
~x,ky!ca↑~x,ky1aQy

~N!!1eiaQx
~N̄!x

D̃ā↑
~N̄!

I N̄
ca↓

† ~x,ky!cā↑~x,ky1aQy
~N!!G1H.c.

~5.3!

up to a constant term. Introducing new fieldsc̃as
(†) defined by

cas~x,ky!5eiakFx2 ias~mBH/vF!x1 i ~a/vc!T'~kyb2Gx!c̃as~x,ky!, ~5.4!

we rewrite the Hamiltonian as

HMF5 (
a,s,ky

E dxc̃as
† ~x,ky!~2 iavF]x!c̃as~x,ky!2 (

a,ky ,n
E dxe2 iaNGx2 ian~kyb2Gx1aQy

~N!b/2!

3F D̃a↑
~N!

I N
I n~Qy

~N!!c̃ ā↓
†

~x,ky!c̃a↑~x,ky1aQy
~N!!1

D̃ā↑
~N̄!

I N̄
I 2n~Qy

~N!!c̃a↓
† ~x,ky!c̃ ā↑~x,ky1aQy

~N!!1H.c.G . ~5.5!

We have used

(
n52`

`

I n~qy!e2 in~u1qyb/2!5ei /vc[T'~u!1T'~u1qyb!] , ~5.6!
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which follows from Eq.~2.11!. To proceed further, we use the QLA. This amounts to retaining only the gaps that open
Fermi level neglecting those opening above and below the Fermi level. In the QLA, only the termn5N is retained in Eq.
~5.5!. This leads to

Hint
MF52 (

a,ky

E dxe2 iaNkyb@D̃a↑
~N!c̃ ā↓

†
~x,ky2aQy

~N!/2!c̃a↑~x,ky1aQy
~N!/2!

1D̃ā↑
~N̄!

c̃a↓
† ~x,ky2aQy

~N!/2!c̃ ā↑~x,ky1aQy
~N!/2!#1H.c. ~5.7!

In the case of sinusoidal SDW’s, Eq.~5.7! shows thatky is coupled toky6Qy
(N) , ky62Qy

(N) , . . . sothat the Hamiltonian
cannot be straightforwardly diagonalized. For very smallg3 , the system is not significantly affected by umklapp processes~the
SDW with wave vectorQN̄ has a very small amplitude!, and therefore we expect that the spectrum will not be very sens
to g3 . Thus, the most interesting situation arises when umklapp processes are strong enough so that the FISDW phas
commensurate in the transverse direction (Qy

(N)5p/b) ~which implies thatN is even!. In that case,ky is coupled only to
ky1p/b, and both the sinusoidal and helicoidal phases are described by the Hamiltonian

HMF5 (
Kx ,ky

„c̃1↑
† ~Kx ,ky1p/2b!, c̃2↓

† ~Kx ,ky2p/2b!…

3S vFKx

2e2 iNkybD̃1↑
~N!2eiNkybD̃1↑

~N̄!
2eiNkybD̃1↑

~N!* 2e2 iNkybD̃1↑
~N̄!*

2vFKx
D S c̃1↑~Kx ,ky1p/2b!

c̃2↓~Kx ,ky2p/2b!
D

1 (
Kx ,ky

„c̃1↓
† ~Kx ,ky2p/2b!, c̃2↑

† ~Kx ,ky1p/2b!…

3S vFKx

2eiNkybD̃2↑
~N̄!* 2e2 iNkybD̃2↑

~N!*
2e2 iNkybD̃2↑

~N̄!2eiNkybD̃2↑
~N!

2vFKx
D S c̃1↓~Kx ,ky2p/2b!

c̃2↑~Kx ,ky1p/2b!
D , ~5.8!
en

pi
th

io

is
the

nts
y of

at
where Kx is now measured with respect to6kF
6mBH/vF . In the metallic phase, the dispersion law is giv
by e156vFKx , e256vFKx . The 1/2 corresponds to
right/left moving electrons and the degeneracy is due to s
In the SDW phase, gaps open at the Fermi level, and
dispersion law becomesE156@vF

2Kx
21D1(ky)

2#1/2 and E2

56@vF
2Kx

21D2(ky)
2#1/2 with

D1~ky!25ue2 iNkybD̃1↑
~N!1eiNkybD̃1↑

~N̄!u2

5uD̃1↑
~N!u21uD̃1↑

~N̄!u212uD̃1↑
~N!D̃1↑

~N̄!ucos~2Nkyb1w1!,

D2~ky!25ueiNkybD̃2↑
~N!1e2 iNkybD̃2↑

~N̄!u2

5uD̃2↑
~N!u21uD̃2↑

~N̄!u212uD̃2↑
~N!D̃2↑

~N̄!ucos~2Nkyb1w2!,

~5.9!

wherew1 andw2 depend on the phases ofD̃a↑
(pN) .

A. Sinusoidal waves

For sinusoidal waves, as follows from Eq.~5.9!, there are
interferences between the two SDW’s, and the dispers

depends onky . Using uD̃1↑
(N̄)u/uD̃1↑

(N)u5utan(qN)u @Eq. ~4.24!#,
we obtain
n.
e

n

uD1~ky!umin

uD1~ky!umax
5

uD2~ky!umin

uD2~ky!umax
5

12utan~qN!u
11utan~qN!u

. ~5.10!

For uqNu!1, which corresponds to a larget4b ~Sec. II!,

uD̃1↑
(N̄)u!uD̃1↑

(N)u. The dispersion in the transverse direction
weak. Everywhere on the Fermi surface, the gap is of
order of uD̃1↑

(N)u5uD̃2↑
(N)u. For larger values ofuqNu, the dis-

persion becomes significant. In particular, whenuqNu5p/4
~which occurs when there is a degeneracy betweenN and

2N, i.e., when t4b50), we haveuD̃1↑
(N)u5uD̃1↑

(N̄)u and the
spectrum becomes gapless.26 Equations~5.9! show that there
are 4N values ofky for which D1 or D2 vanish.

However, the occurrence of the helicoidal phase preve
the spectrum from becoming gapless. Indeed, the stabilit
the sinusoidal phase requires sin2(2qN),2/3. From Eq.
~5.10!, we then deduce

uD1~ky!umin

uD1~ky!umax
>0.32. ~5.11!

B. Helicoidal waves

For helicoidal waves,D̃2↑
(N)5D̃1↑

(N̄)50. The spectrum is

given by E156@vF
2Kx

21uD̃1↑
(N)u2#1/2 and E256@vF

2Kx
2

1uD̃2↑
(N̄)u2#1/2. Contrary to the sinusoidal phase, the gaps

the Fermi level,D̃1↑
(N) and D̃2↑

(N̄) , remain independent of the
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transverse momentumky . Since the sinusoidal phase b
comes gapless atuqNu5p/4, it is natural to expect that
above a certain value ofuqNu, the system prefers to form
helicoidal SDW’s in order to lower the free energy by ope
ing a large gap on the whole Fermi surface. This is precis
the result we have obtained in Sec. IV by considering
Ginzburg-Landau expansion of the free energy.

In general, the two gapsuD̃1↑
(N)u anduD̃2↑

(N̄)u differ ~they are
equal only whent4b50 or N50). As shown in Sec. VII,
this property gives rise to a kinetic magnetoelectric effec

VI. QUANTUM HALL EFFECT

In this section, we use the results of Ref. 9 to study
quantum Hall effect. At zero temperature, the off-diago
conductivity is given by the formula

sxy52 ie2(
a
E dkx

2p

dky

2p
~]kx

^cau]ky
uca&

2]ky
^cau]kx

uca&!. ~6.1!

The summation is taken over all completely occupied ba
and the integral is taken over the Brillouin zone.uca(kx ,ky)&
are the normalized eigenvectors of the Hamiltonian.

Before calculatingsxy in the FISDW phases, we reca
the main result of Ref. 9 and generalize it to the case of
SDW’s. We consider the Hamiltonian

HMF5 (
Kx ,ky

„c̃1
† ~Kx ,ky!, c̃2

† ~Kx ,ky!…

3S vFKx

Deif~ky!

De2 if~ky!

2vFKx
D S c̃1~Kx ,ky!

c̃2~Kx ,ky!
D ~6.2!

describing spinless electrons in presence of a charge-de
wave at wave vector (2kF ,Qy50). HereD and f(ky) are
real. Kx5kx7kF for 6 electrons. The spectrum is given b
E15(vF

2Kx
21D2)1/2 for the upper~empty! band andE25

2(vF
2Kx

21D2)1/2 for the lower~filled! band. The wave func-
tions are defined on the Brillouin-zone torusukxu,kF and 0
<ky<2p/b. Consider now a wave functionuc(kx

(0) ,ky)& in
the lower band. Whenkx is changed along the closed lin
encircling the torus at fixedky , the wave function change
and transforms intoeif(ky)uc(kx

(0) ,ky)& when we return to
the starting point.9,27Noting that the second term in the righ
hand side of Eq.~6.1! vanishes~since the Hamiltonian is the
same forky50 andky52p), we obtain9

sxy5
e2

4p2 @f~2p/b!2f~0!#. ~6.3!

We now consider electrons with spin in presence of t
SDW’s ~with zero transverse wave vectors:Qy50):
-
ly
e

e
l

s

o

ity

o

HMF5 (
Kx ,ky

„c̃1↑
† ~Kx ,ky!, c̃2↓

† ~Kx ,ky!…

3S vFKx

D1eif1~ky!

D1e2 if1~ky!

2vFKx
D S c̃1↑~Kx ,ky!

c̃2↓~Kx ,ky!
D

1 (
Kx ,ky

~ c̃1↓
† ~Kx ,ky!, c̃2↑

† ~Kx ,ky!!

3S vFKx

D2eif2~ky!

D2e2 if2~ky!

2vFKx
D S c̃1↓~Kx ,ky!

c̃2↑~Kx ,ky!
D , ~6.4!

where D1 , D2 , f1 , and f2 are real. We apply the sam
reasoning as before to the wave functionuc↑(kx

(0) ,ky)& of the
lower band. After the trip around the Brillouin zone, we o
tain the wave functioneif1(ky)uc↓(kx

(0) ,ky)&. Repeating this
procedure once more, we obtain the wave funct
eif1(ky)1 if2(ky)uc↑(kx

(0) ,ky)&. This yields

sxy5
e2

4p
@f1~2p/b!1f2~2p/b!2f1~0!2f2~0!#.

~6.5!

It was shown in Ref. 9 that Eq.~6.5! does not depend on th
value of the transverse wave vectors of the SDW’s. Mo
over, the global contribution of the gaps~if any! located
below the Fermi level vanishes.9 We are therefore now in a
position to calculatesxy for the FISDW phases, using th
Hamiltonian derived in the QLA~Sec. V!.

A. Sinusoidal waves

Comparing Eqs.~5.8! and ~6.4!, we deduce

D1e2 if1~ky!5D2e2 if2~ky!

52eiNkybuD̃1↑
~N!u2e2 iNkybuD̃1↑

~N̄!u. ~6.6!

We have useduD̃1↑
(pN)u5uD̃2↑

(pN)u. When ky varies from 0 to
2p/b, the changef1(2p/b)2f1(0)5f2(2p/b)2f2(0)
is determined by the term with the largest amplitude in E

~6.6!. SinceuD̃1↑
(N̄)/D̃1↑

(N)u5ug̃u,0.518 in the sinusoidal phase
we obtain

f1~2p/b!1f2~2p/b!2f1~0!2f2~0!524pN.
~6.7!

This yields

sxy522N
e2

h
, ~6.8!

where we have restored the dimensional Planck constanh.
Thus, in the sinusoidal phase, the QHE is determined by
SDW with the largest amplitude.

B. Helicoidal waves

For helicoidal waves, we deduce from Eq.~5.7!

D1e2 if1~ky!52eiNkybD̃1↑
~N! ,

~69!
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D2e2 if2~ky!52e2 iNkybD̃2↑
~N̄! .

This yields f1(2p/b)2f1(0)52@f2(2p/b)2f2(0)# so
that

sxy50. ~6.10!

Thus, we come to the conclusion that the QHE vanishe
the helicoidal phase.

VII. MAGNETOELECTRIC EFFECT

A magnetoelectric effect may exist if time-reversal a
space-inversion symmetries are broken.28 Gor’kov and Sokol
found the kinetic magnetoelectric effect for a single helic
dal SDW.29 The effect also exists in the presence of tw
helicoidal SDW’s of opposite chiralities, provided their am
plitudes are not equal. An electric currentj x along the chains
induces a uniform magnetizationdM along the vectorn that
characterizes the spin polarization of the helicoidal SDW
In our case, the vectorn is parallel to the magnetic fieldH,
which is oriented along thez axis, thus

dMz} j x . ~7.1!

Here dMz is the additional spin-magnetization density i
duced by j x in excess of the magnetization densityMz in-
duced by the magnetic field withoutj x . The effect can be
understood by considering the spectrum of electronic exc
tions in the helicoidal FISDW phase shown in Fig. 7. T
1kF electrons with spin up and the2kF electrons with spin
down have the energy gapuD̃N,1u, whereas the1kF elec-
trons with spin down and the2kF electrons with spin up
have the different energy gapuD̃ N̄,2u. To produce a curren
j x along the chains, electrons need to be transferred f
2kF to 1kF ~we assume that the electric field is we
enough so that the SDW’s remain pinned by impurities!. For
uD̃N,1uÞuD̃ N̄,2u (uD̃N,1uÞuD̃ N̄,2u if t4bÞ0 andNÞ0), this
redistribution of electrons affects up and down spins in
different way, which results in a uniform magnetizationMz .
Denoting the deviation of the distribution function of ele
trons with spins and momenta nearakF from the equilib-
rium one bydna,s , we have

FIG. 7. Spectrum of electronic excitations in the helicoid
FISDW phase. The solid~dashed! line corresponds to up~down!
spins. Only the gaps at the Fermi level are shown. For clarity,
have not shown the Zeeman splitting.
in

-

.

a-

m

a

j x5evF(
s

~dn1,s2dn2,s!,

~7.2!

dMz5
gmB

2 (
a56

~dna,↑2dna,↓!.

Here we denote the electron gyromagnetic factor byg ~as-
sumed to be equal to 2 in the preceding sections!. At low
temperature,T!uD̃N,1u,uD̃ N̄,2u, the electrons are excite
solely above the lowest energy gap (D̃ N̄,2 in Fig. 7!. This
implies thatdn1,↑.dn2,↓.0 and

dMz

j x
.2

gmB

2evF
. ~7.3!

Equation~7.3! can be rewritten as

dMz

mB
.2

gI

2evFLyLz
, ~7.4!

whereI 5 j xLyLz is the current passing through the sample
cross sectionLyLz . For I;1 mA @which is slightly below
the critical current for the depinning of the SDW’s~Ref.
30!#, LyLz;1 mm2, vF;331025 m/s, andg.2, we obtain

udMzu
mB

;2310215 Å 23. ~7.5!

This should be compared with the ground-state magnet
tion density

uMzu
mB

;1028 Å 23, ~7.6!

that we obtain from Ref. 7. Thus, we obtainudMzu/uMzu
;231027.

The reentrant phasesN50 are somehow special sinc

uD̃1↑
(0)u5uD̃2↑

(0̄) u independent of t4b . Consequently, these
phases do not exhibit the magnetoelectric effect, altho
they are helicoidal.

VIII. COEXISTENCE BETWEEN SUCCESSIVE PHASES

It has been shown by Lebed’ that under certain circu
stances, umklapp processes can lead to the simultaneou
istence of two successive sinusoidal phasesN1b and N.17

The system then evolves from the phaseN1b to the phase
N via a region of the phase diagram where both the pha
N1b andN exist. The transitions to the coexistence regi
are of second order.

In this section, we reconsider the problem of the coex
ence between two successive SDW phases, distinguis
between sinusoidal and helicoidal waves. We analyze
possible cases~depending on the polarization of the SDW’s!.

The coexistence of two phases implies the simultane
formation of four SDW’s. Therefore Eqs.~4.7! and ~4.10!
should be replaced by

l

e
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D̃as~w1 ,w2!5 (
p56

(
g50,b

dk2x ,k1x1aQ
x
„p~N1g!…~g2Das

„p~N1g!…1g3Dās
„p̄~N1g!…

!e2 iaQy
„p~N1g!…b~ l 11 l 2!/2I a~ l 12 l 2!~Qy

~N1g!!,

~8.1!

D̃as~w1 ,w2!uQLA5 (
p56

(
g50,b

dk2x ,k1x1aQ
x
„p~N1g!…d l 2 ,l 12ap~N1g!e

2 iaQy
„p~N1g!…b[2 l 12ap~N1g!]/2D̃as

„p~N1g!… .

The free energy becomes

FN,N1b5FN1FN1b1FN,N1b
int , ~8.2!

with the interacting part

FN,N1b
int 52K(

a
@ uD̃a↑

~N!u21uD̃a↑
~N̄!u2#@ uD̃a↑

~N1b!u21uD̃a↑
~N1b!u2#

12K cos@~N1b!Qy
~N!b2NQy

~N1b!b#(
a

~D̃a↑
~N!D̃a↑

~N̄!D̃a↑
~N1b!* D̃a↑

~N1b!* 1c.c.!

1dN,0S (
n

dQ
y
~0!b,npDK(

a
F2 (

p56
uD̃a↑

~pb!u2D̃a↑
~0!D̃a↑

~ 0̄!* 1cos~bQy
~0!b!@~D̃a↑

~0!!21~D̃a↑
~ 0̄!!2#D̃a↑

~b!* D̃a↑
~ b̄ !* 1c.c.G .

~8.3!

Without loss of generality, we have assumed that the phaseN1b is not the last phase of the cascade~i.e., we do not
consider the caseN1b50 andQy

(N1b)5p/b). In order to study the possible coexistence of phasesN andN1b, we consider
a region in the phase diagram where the phaseN is more stable than the phaseN1b (Tc

(N).Tc
(N1b)). Assuming that the orde

parameters of the phaseN1b are infinitesimal, we derive an effective free energy for this phase, from which we con
about the coexistence of the two phases. The same reasoning is applied to regions of the phase diagram wTc

(N)

,Tc
(N1b) .

A. Sinusoidal waves

1. NÞ0

Introducing the order parametersua
(N) , va

(N) , ua
(N1b) , andva

(N1b) defined in Sec. IV A, and settingva
(N)5va

(N1b)50, we
rewrite Eq.~8.3! ~for NÞ0) as

FN,N1b
int 52K(

a
@cos2~qN!uua

~N!u21sin2~qN!uuā
~N!u2#@cos2~qN1b!uua

~N1b!u21sin2~qN1b!uuā
~N1b!u2#

1K cos@~N1b!Qy
~N!b2NQy

~N1b!b#sin~2qN!sin~2qN1b!~u1
~N!u2

~N!u1
~N1b!* u2

~N1b!* 1c.c.!. ~8.4!

For sinusoidal waves, we haveuu1
(N)u5uu2

(N)u and uu1
(N1b)u5uu2

(N1b)u. We consider a region of the phase diagram wh
Tc

(N).Tc
(N1b) and assume thatua

(N1b) is infinitesimal. To lowest order inua
(N1b) , the effective free energy for the phaseN

1b is

FN1b
eff 52l1

~N1b!uu1
~N1b!u214Kuu1

~N!u2uu1
~N1b!u2

1K cos@~N1b!Qy
~N!b2NQy

~N1b!b#sin~2qN!sin~2qN1b!~u1
~N!u2

~N!u1
~N1b!* u2

~N1b!* 1c.c.!, ~8.5!

whereua
(N) is not changed by the infinitesimalua

(N1b) and is therefore given by Eq.~4.20! for T<Tc
(N) . The free energy is

minimal if the phase ofua
(N1b) is such that

cos@~N1b!Qy
~N!b2NQy

~N1b!b#sin~2qN!sin~2qN1b!u1
~N!u2

~N!u1
~N1b!* u2

~N1b!*

52ucos@~N1b!Qy
~N!b2NQy

~N1b!b#sin~2qN!sin~2qN1b!uuu1
~N!u1

~N1b!u2, ~8.6!

which yields

FN1b
eff 52uu1

~N1b!u2@l1
~N1b!12Kuu1

~N!u22Kuu1
~N!u2ucos@~N1b!Qy

~N!b2NQy
~N1b!b#sin~2qN!sin~2qN1b!u#. ~8.7!
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A second-order phase transition to a phase where bothu1
(N)

andu1
(N1b) are nonzero occurs if the coefficient ofuu1

(N1b)u2

in FN1b
eff becomes negative. Since in all case

Qy
(N) ,Qy

(N1b);p/b ~see Sec. II!, we make the approxima
tion ucos@(N1b)Qy

(N)b2NQy
(N1b)b#u.1. Using~see Appendix

C!

l1
~N!.

N~0!

2Tc
~N! ~T2Tc

~N!!, ~8.8!

we can write the coexistence condition forT<Tc
(N) as

T2Tc
~N1b!

Tc
~N1b! <

T2Tc
~N!

Tc
~N! x1 , ~8.9!

where

x15
22usin~2qN!sin~2qN1b!u

11~1/2!sin2~2qN!
. ~8.10!

For the coexistence in regions of the phase diagram wh
Tc

(N),Tc
(N1b) , we obtain by the same method the conditi

~for T<Tc
(N1b))

T2Tc
~N!

Tc
~N! <

T2Tc
~N1b!

Tc
~N1b! x2 , ~8.11!

where

x25
22usin~2qN!sin~2qN1b!u

11~1/2!sin2~2qN1b!
. ~8.12!

qN , qN1b are determined byAN , AN̄ , andB, and there-
fore depend on temperature and magnetic field. To ve
that the region of the phase diagram defined by Eqs.~8.9!
and ~8.11! exists, we consider a point in the (H,T) plane
slightly below the intersection point of the two curvesTc

(N)

andTc
(N1b) . For this pointTc

(N).Tc
(N1b) and the coexistence

conditions can be rewritten as

~12x!
T2Tc

~N!

Tc
~N! <0, ~8.13!

wherex5x2 ,x1 . SinceT2Tc
(N),0, the coexistence is pos

sible only if x2,1 or x1,1. The existence of linearly po
larized SDW’s requires sin2(2qN),sin2(2qN1b),2/3 and
therefore impliesx2umin5x1umin51. Consequently, there i
no coexistence between phases for sinusoidal waves. T
our results invalidate Lebed’s conclusion17 concerning the
coexistence of two successive sinusoidal phases.

If we discard the existence of helicoidal waves, then
coexistence between phases may be possible dependin
the geometry of the Fermi surface. Let us take for insta
Qy

(N)5Qy
(N1b)5p/b and t4b50, which is the case consid

ered by Lebed’. ThenqN5qN1b5p/4. The region of coex-
istence does exist and is determined by

3

2

T2Tc
~N1b!

Tc
~N1b! <

T2Tc
~N!

Tc
~N! <

2

3

T2Tc
~N1b!

Tc
~N1b! . ~8.14!

This is precisely the result obtained by Lebed’.17
,

re

y

us,

e
on
e

2. N50, Qy
„0…5p/b

We can study the coexistence of the last two phases of
cascade following the same procedure. Using the resul
Sec. IV B, we have

F0,b
int 58Kuuu2uu1

~b!u2

12K cos~bp!sin~2qb!~u2u1
~b!* u2

~b!* 1c.c.!.

~8.15!

Choosing the phases ofu1
(b) and u2

(b) in order to minimize
the free energy, we obtain

F0,b
int 54K@22usin~2qb!u#uuu2uu1

~b!u2. ~8.16!

We deduce that the coexistence region is determined by

1

x18

T2Tc
~b!

Tc
~b! <

T2Tc
~0!

Tc
~0! <x28

T2Tc
~b!

Tc
~b! , ~8.17!

where

x28 5
22usin~2qb!u

11~1/2!sin2~2qb!
,

~8.18!

x18 522usin~2qb!u.

The coexistence occurs ifx18 ,1 or x28 ,1. Since sin2(2qb)
,2/3, x28 umin.0.89. In principle, the coexistence betwee
the phasesN5b andN50, Qy5p/b is therefore possible in
the region of the phase diagram whereTc

(b).Tc
(0) provided

that x28 ,1. If b51, then our numerical calculations sho
that sin2(2qb)!2/3 ~the latter inequality holds for all phase
with N odd!. Therefore, the coexistence region does not e
if the phaseN50 is preceded by the phaseb51. In the case
where the phaseN50 is preceded by the phaseb52, the
coexistence region exists provided thatx28 ,1. This situation
however requires strong umklapp scattering and is there
quite unlikely.@Note that for sin2(2qb)51, Eq.~8.17! agrees
with Lebed’s results.17#

3. N1b50, Qy
„N1b…Þp/b

The coexistence between the phaseN and the reentran
phaseN1b50, Qy

(N1b)Þp/b can be studied by settingb
52N. This case is special since the phaseN1b50,
Qy

(N1b)Þp/b is always helicoidal wheng3Þ0 ~see Sec. IV!.
Using uu1

(N)u5uu2
(N)u andu2

(0)50, we have

FN,0
int 52Kuu1

~0!u1
~N!u2. ~8.19!

In the regionTc
(N),Tc

(0) , we find the effective free energ
for the phaseN ~for T,Tc

(0))

FN
eff5uu1

~N!u2N~0!FT2Tc
~N!

Tc
~N! 22

T2Tc
~0!

Tc
~0! G . ~8.20!
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The coefficient ofuu1
(N)u2 is always positive so that there

no phase coexistence. In the regionTc
(0),Tc

(N) , we find the
effective free energy~for T,Tc

(N))

F0
eff5uu1

~0!u2
N~0!

2 FT2Tc
~0!

Tc
~0! 2

2

11~1/2!sin2~2qN!

T2Tc
~N!

Tc
~N! G ,

~8.21!

which shows that there is no coexistence.

B. Helicoidal waves

1. NÞ0, or N50 and Qy
„0…Þp/b

First we study the coexistence between the two helico
phasesN and N1b. For simplicity, we consider only the
caseqN5qN1b5p/4. For helicoidal waves, we haveu2

(N)

50 andu2
(N1b)50 ~we could also chooseu1

(N1b)50, this
would not change the result!. Equation~8.3! then yields

FN,N1b
int 5Kuu1

~N!u1
~N1b!u2. ~8.22!

In the regionTc
(N).Tc

(N1b) , we find the effective free energ
for the phaseN1b ~for T,Tc

(N))

FN1b
eff 5uu1

~N1b!u2
N~0!

2 FT2Tc
~N1b!

Tc
~N1b! 22

T2Tc
~N!

Tc
~N! G .

~8.23!

The coefficient ofuu1
(N1b)u2 is always positive so that there

no phase coexistence. In the regionTc
(N),Tc

(N1b) , we find
the effective free energy~for T,Tc

(N1b))

FN
eff5uu1

~N!u2
N~0!

2 FT2Tc
~N!

Tc
~N! 22

T2Tc
~N1b!

Tc
~N1b! G , ~8.24!

which shows that there is no coexistence.

2. N50, Qy5p/b

For the coexistence between the helicoidal phaseN5b
and the sinusoidal phaseN50, Qy5p/b terminating the
cascade, we have

F0,b
int 54Kuuu2uu1

~b!u2. ~8.25!

This yields~for T,Tc
(0))

Fb
eff5uu1

~b!u2
N~0!

2 FT2Tc
~b!

Tc
~b! 22

T2Tc
~0!

Tc
~0! G ~8.26!

in the regionTc
(0).Tc

(b) , and~for T,Tc
(b))

F0
eff54uuu2

N~0!

2 FT2Tc
~0!

Tc
~0! 22

T2Tc
~b!

Tc
~b! G ~8.27!

in the regionTc
(0),Tc

(b) . The coexistence is therefore n
possible.
al

IX. SUMMARY AND CONCLUSION

Our main results can be summarized as follows:
In the presence of umklapp processes, the instability

the metallic phase at the temperatureTc
(N) corresponds to the

formation of two SDW’s, with quantized longitudinal wav
vectors Qx

(N)52kF1NG and Qx
(N̄)52kF2NG. For very

weak umklapp scattering, both SDW’s are incommensur
in the transverse direction (Qy

(N)52Qy
(N̄)Þp/b) except

when N50. If we label each phase by the integerN corre-
sponding to the SDW with the largest amplitude, we ha
sgn(N)5sgn(t2b). The amplitude of the SDW at wave vecto
Qx

(N̄) is vanishingly small. The quantum Hall conductivity
determined by the SDW with the largest amplitude, i.
sxy522Ne2/h.

For evenN, there exists a critical value ofg3 ~typically
g3 /g2 of the order of a few percent! above which the system
prefers to form two transversely commensurate SDW
(Qy

(N)52Qy
(N̄)5p/b). When t4b.0, the SDW with the

largest amplitude is then determined by sgn(N)52sgn(t2b):
the QHE changes sign. The two SDW’s have compara
amplitudes whent4b is not too large (t4b&1.5 K). When the
umklapp scattering strength increases, the first nega
phase to appear is the phaseN522.

Umklapp scattering also tends to suppress the phases
an oddN and produce some reentrances of the phaseN50
within the cascade. Unlike the last phase of the cascade
reentrant phasesN50 are incommensurate (QyÞp/b).

The negative phases are likely to become helicoidal w
the umklapp scattering strength is further increased. Exp
mentally, this situation could be achieved by decreas
pressure. The appearance of these helicoidal phases is
tirely controlled byt4b . The QHE vanishes in the helicoida
phases, but a magnetoelectric effect appears. These two
acteristic properties may be utilized to detect the helicoi
phases experimentally. The reentrant phasesN50 are al-
ways helicoidal but do not exhibit the magnetoelectric effe

In the sinusoidal phases, umklapp processes modulate
gap on the Fermi surface as a function ofky . When
uD(ky)umin /uD(ky)umax.0.32, the sinusoidal phase becom
unstable against the formation of a helicoidal phase.

The conclusion of Lebed’17 that, in the presence of um
klapp scattering, adjacent FISDW phases are separate
two second-order phase transitions and an intermediate p
with coexistence of four SDW’s is incorrect, because he
not consider helicoidal SDW’s.

In conclusion, the consideration of umklapp scatteri
naturally explains the appearance of negative FISDW pha
in quasi-one-dimensional organic conductors. These ph
are characterized not only by a sign reversal of the QHE,
also but the simultaneous presence of two SDW’s with co
parable amplitudes~provided thatt4b is not too large!. This
leads to the possible stabilization of helicoidal phases.
even in the sinusoidal phases~which are the ones that hav
been observed up to now!, we expect the presence of tw
SDW’s to give rise to different physical properties.
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APPENDIX A

We calculate in this appendix the pairing amplitudes

D̃as~w1 ,w2!5E d2rfw1

ā* ~r !fw2

a ~r !D̃as~r !

5 (
p56

E d2rfw1

ā* ~r !fw2

a ~r !~g2Das
~pN!e2 iaQpN•r1g3Dās

~pN!e2 ia4kFx1 iaQpN•r !. ~A1!

Using 24kF1Qx
(pN)52Qx

( p̄N) andQy
(pN)52Qy

( p̄N) , we have

D̃as~w1 ,w2!5 (
p56

~g2Das
~pN!1g3Dās

~ p̄N!
!E d2rfw1

ā* ~r !fw2

a ~r !e2 iaQpN•r. ~A2!

Using Eq.~2.11!, we have

E d2rfw1

ā* ~r !fw2

a ~r !e2 iaQpN•r5
1

Lx
E dxeix~2k1x1k2x2aQx

~pN!
!(

m
f l 12m

ā f l 22m
a e2 iaQy

~pN!bm

5dk2x ,k1x1aQ
x
~pN!e2 iaQyb~ l 11 l 2!/2I a~ l 12 l 2!~aQy

~pN!!. ~A3!

SinceI n(qy)5I n(2qy), Eq. ~A3! leads to Eq.~4.7!.

APPENDIX B

In this appendix, we give the main steps in the calculation of the fourth-order term of the free energy leading to Eqs~4.13!
and ~8.3!. We consider the case where there are simultaneously four SDW’s at wave vectorsQN , QN̄ , QN1b , QN1b :

FN
~4!5

K

2 (
a

(
p1 ,¯ ,p456

(
g1 ,¯ ,g450,b

D̃a↑
„p1~N1g1!…

D̃a↑
„p2~N1g2!…* D̃a↑

„p3~N1g3!…
D̃a↑

„p4~N1g4!…*

3exp$ i ~b/2!@p1~N1g1!Qy
„p1~N1g1!…

2@2p1~N1g1!2p2~N1g2!#Qy
„p2~N1g2!…

1@2p1~N1g1!22p2~N1g2!1p3~N1g3!#Qy
„p3~N1g3!…

2p4~N1g4!Qy
„p4~N1g4!…

#%

3d~p12p21p32p4!N1p1g12p2g21p3g32p4g4,0(
n

dQ
y

„p1~N1g1!…
2Q

y

„p2~N1g2!…
1Q

y

„p3~N1g3!…
2Q

y

„p4~N1g4!…
,n2p/b . ~B1!

We write FN
(4)5FN

(4)u41FN
(4)u31FN

(4)u21FN
(4)u1 . FN

(4)u4 corresponds to the case where all the (pi ,g i) in Eq. ~B1! are identical
(p15p25¯ , g15g25¯). FN

(4)u3 corresponds to the case where three of the (pi ,g i) are equal and different from the fourt
one...FN

(4)u1 corresponds to the case where all the (pi ,g i) are different. Skipping the details of the calculation, we only g
the final result forFN

(4)u i :

FN
~4!u45

K

2 (
a,p,g

uD̃a↑
„p~N1g!…u4,

FN
~4!u35dN,0S (

n
dQ

y
~0!b,npDK(

a
@D̃a↑

~0!uD̃a↑
~ 0̄!u2D̃a↑

~ 0̄!* 1D̃a↑
~ 0̄!uD̃a↑

~0!u2D̃a↑
~0!* 1c.c.#,

FN
~4!u25K(

a
(

pgÞp8g8
uD̃a↑

„p~N1g!…D̃a↑
„p8~N1g8!…u21dN,0S (

n
dQ

y
~0!b,npDK(

a
F2(

p
uD̃a↑

~pb!u2D̃a↑
~0!D̃a↑

~ 0̄!* 1
1

2
~D̃a↑

~0!D̃a↑
~ 0̄!* !2

1cos~bQy
~0!b!@~D̃a↑

~0!!21~D̃a↑
~ 0̄!!2#D̃a↑

~b!* D̃a↑
~ b̄ !* 1c.c.G ,

FN
~4!u152K cos@~N1b!Qy

~N!b2NQy
~N1b!b#(

a
~D̃a↑

~N!D̃a↑
~N̄!D̃a↑

~N1b!* D̃a↑
~N1b!* 1c.c.!. ~B2!
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APPENDIX C

In this appendix, we calculatel1
(N) for T.Tc

(N) . Since
l1

(N) vanishes forT5Tc
(N) , we have

l1
~N!.~T2Tc

~N!!
]l1

~N!

]T
U

T
c
~N!

.~T2Tc
~N!!

]

]T S AN1AN̄

2
1

1

2
sgn~AN2AN̄!

3@~AN2AN̄!214B2#1/2D
T

c
~N!

. ~C1!

From Eq.~2.19! we deduce]B/]T50 and

AN5ANuT
c
~N!2

T2Tc
~N!

I N
2

]x1
~0!~QN!

]T U
T

c
~N!

, ~C2!

with

]x1
~0!~QN!

]T
5(

n
I n

2~Qy
~N!!

]x1
1D@2kF1~N2n!G#

]T
.

~C3!

Equation~2.10! yields

]x1
1D~2kF2nG!

]T

5
N~0!

2 H 2
1

T
1ReF invc

4pT2 C8S 1

2
1

invc

4pT D G J ,

~C4!
M

whereC8 is the derivative of the digamma function. Usin
C8(z).1/z11/2z2 for uzu@1, we obtain forvc@T

]x1
1D~2kF2nG!

]T
52

N~0!

2T
dn,01O~T/vc

2!. ~C5!

To leading order inT/vc , we therefore have

]x1
~0!~QN!

]T
52I N

2 N~0!

2T
, ~C6!

from which we deduce

AN5ANuT
c
~N!1

N~0!

2Tc
~N! ~T2Tc

~N!!. ~C7!

In the same way, we can show that

AN̄5AN̄uT
c
~N!1

N~0!

2Tc
~N! ~T2Tc

~N!!. ~C8!

This yields

l1
~N!.

N~0!

2Tc
~N! ~T2Tc

~N!!. ~C9!
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