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Effect of umklapp scattering on the magnetic-field-induced spin-density waves
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We study the effect of umklapp scattering on the magnetic-field-induced spin-density#¥&\) phases
which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts
family. Within the framework of the quantized nesting model, we show that the transition temperature is
determined by a modified Stoner criterion which includes the effect of umklapp scattering. We determine the
SDW polarization(linear or circulay by analyzing the Ginzburg-Landau expansion of the free energy. We also
study how umklapp processes modify the quantum Hall eff@etE) and the spectrum of the FISDW phases.
We find that umklapp scattering stabilizes phases which exhibit a sign reversal of the QHE, as experimentally
observed in the Bechgaard salts. These “negative” phases are characterized by the simultaneous existence of
two SDW's with comparable amplitudes. As the umklapp scattering strength increases, they may become
helicoidal (circularly polarized SDW’s The QHE vanishes in the helicoidal phases, but a magnetoelectric
effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced heli-
coidal SDW phases experimental\50163-182@08)08937-1

[. INTRODUCTION achieved by decreasing the applied pressure. The helicoidal
phases are characterized by a vanishing QHE and a kinetic
The organic conductors of the Bechgaard salts familynagnetoelectric effect
(TMTSF),X (where TMTSF stands for tetramethyltetrasel- I this paper we study the effect of umklapp processes on
enafulvaleng exhibit a rich phase diagram when tempera-th€ FISDW phases within the framework of the QNM. We

ture, magnetic field, or pressure are varied. In three membegs'sgrlfsss Iigs?gsrengteézlrlwtirgieerr:(js?rgtsthf?z;{gd%ﬂez?é éséf?ﬂg_
of this family (X=CIO,, PFK;, ReQ,), a moderate magnetic K :
field above several Tesla destroys the metallic phase ana
induces a series of spin-density-waDW) phases sepa- nases and the sign reversals of the QHE were not
rated by first-order phase transitich®ecause of a strong discussed’-18
quasi-one-dimensiondllD) anisotropy(the typical ratio of |5 Bechgaard salts, complete charge transfer from the
the electron transfer integrals in the three crystal directions igholecules TMTSF to the anion¥ leads to a conduction
ta:ty :t.=3000:300:10 K), the Fermi surfaces of these ma-hand that is quarter-filled in terms of holes. A dimerization
terials are open. According to the so-called quantized nestinglong thex axis induces a gap in the electronic spectrum.
model (QNM),"”" the formation of the magnetic-field- This results in a half-filled band for the holes so that um-
induced spin-density-wavé-ISDW) phases results from an klapp processes transferringd=2/a are possibleKg be-
interplay between the nesting properties of the Fermi surfacing the Fermi wave vector of the holes, aadthe lattice
and the quantization of the electronic orbits in magneticspacing along the chaipnsTherefore, a quasi-1@-ology
field. The wave vector of a FISDW adjusts itself to the mag-description of the FISDW phases should include not only
netic field so that unpaired electrons completely fill an inte-forward (g,) and backward @) scattering amplitudes, but
ger number of Landau levels, thus the Hall effect isalso umklapp scattering amplitudgs).'®?°Since the dimer-
quantized®® The standard QNM predicts the Hall plateaus ofization is weak, we expect the umklapp scattering amplitude
the same sign, referred to as positive by convention, whiclgs to be small. Nevertheless, we shall show in this paper that
agrees with most experiments. However, at certain pressure¥gry weak umklapp processes can have drastic effects on the
a negative Hall effect is also observ€d! low-temperature phase diagram.

We have recently shown that umklapp processes may In the next section we obtain the FISDW transition tem-
naturally explain the sign reversals of the quantum Hall efferature in the random-phase approximatiB®A) and dis-
fect (QHE).™® Our explanation differs from the one suggestedcuss the phase diagram. In absence of umklapp scattering,
by Zanchi and Montambad%in invoking the pressure de- the instability of the metallic phase corresponds to the for-
pendence of umklapp scattering rather than the electron barfation of a SDW with a quantized longitudinal wave vector
structure. Although both explanations lead to similar phas€®{"=2k-+NG (N intege) where G=eHb/% is a mag-
diagrams, we predict the existence of two SDWséth com-  netic wave vecto(with H the magnetic fieldp the inter-
parable amplitudgsin the negative phases. Moreover, we chain spacing, and-e the electron charge As the field
have shown that the negative phases are likely to becomearies, the value of the integr changegits sign remaining
helicoidal (circularly polarized SDW’s under the effect of the samg which leads to a cascade of FISDW phases sepa-
stronger umklapp scattering. Experimentally, this can beated by first-order transitions. The inted¢mlso determines

app scattering on the FISDW phases was studied before by
bed’ using rather crude approximations, but the helicoidal
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the quantum Hall conductivitynxyz—ZNezlh per one t, (u)=—2t,coq u) — 2t,,coq 2u) — 2t3,coq 3u)
layer of the TMTSF molecules.In presence of umklapp
scattering, two SDW’s with quantized longitudinal wave —2typcoq4u)- - . (2.2

vectorsQ(™ andQ{ ™) form simultaneously. We label each

FISDW [()’\rll)ase by the integéy suc.h that the S,DW with wave If we retain only the first harmonict{), we obtain a Fermi
vectorQy™ has the largest amplitude. We find that the tran-g,tace with perfect nesting at k2,#/b). The other har-
sition temperaturd’(" is determined by a modified Stoner monics t,, s, --<t, generate deviations from the perfect
criterion that includes the effect of umklapp Scattering. Wenesting_ They have been introduced in Order to keep a rea'_
calculate T numerically as a function of; and the de- istic description of the Fermi surface despite the linearization
tailed geometry of the Fermi surface. In order to keep ouraround=+ kg . In the following, we shall retain only,, t,y,
discussion of the phase diagram compact, we use some r@ndt,, (as we shall showtg, does not play an important role
sults that are proved in subsequent sections. We find thag our mechanism and can be discardatle do not consider
weak umklapp scatteringgg/g, a few percentcan leadto a the electron dispersion along threaxis, because it is not
FISDW cascade with both positive and negative valued.of  important in the following(its main effect is to introduce a
Since the quantum Hall conductivity is still determined by 3D threshold field below which the FISDW cascade is
the integerN, o,,=—2N e’/h (Sec. V), this leads to sign suppresseil.

reversals of the QHE as the magnetic field varies. The nega- The effect of the magnetic field along tleaxis is taken
tive phasedi.e., with a sign reversed QHEorrespond to into account via the Peierls substitutikr —iV —eA. (The
even integer&\ in agreement with experiments. For strongerchargee is positive since the actual carriers are hol&sl-
values ofgs, the negative phases may become helicoidalowing Ref. 21, we use the gauge=(—Hy,0,0). Consid-
(i.e., with a circular polarization of the SDW&Sec. IV). The  ering also electron-electron interactions, we obtain the
helicoidal phases are characterized by a vanishing QHE aﬂdamiltonianH=Ho+Him with

a kinetic magnetoelectric effe¢Secs. VI and VI). There

may also be some reentrances of the phdsed within the

cascade. In Sec. V, we study how umklapp scattering affects

the excitation spectrum in the FISDW phases. In Sec. VIII, Ho:% d?r gl (N[ve(—iade—ke)
we consider the possible coexistence of two successive '
FISDW phases, an issue previously considered by Lebed’ in +amo.+t (—ibd)+ ou-H r
the case of sinusoidal SDW'. et V) TugH]e(r), 2.3
The experimental consequences of our work are mainly '
discussed in Secs. Il, VII, and IX. To a large extent, these
sections can be read independently of the rest of the paper).{im:% > , f d2rwl(,(r)t/%a,(r)lﬁZa'(f)l/fmr(r)
II. INSTABILITY OF THE METALLIC PHASE AND O3 e + t
PHASE DIAGRAM ) Z«T dZre HEY (0 Yo (1) ().

In this section, we first consider the system with no
electron-electron interaction. We obtain the one-particl
eigenstates in the presence of a uniform magnetic feld
along the least conducting axis and calculate the bare sus-
ceptibility. Then we take into account the interactidins
cluding umklapp processesand study the formation of ¢~ & 0= —0. ,

SDW's in the RPA. We also discuss the QHE and the polar- APart from the Zeeman termugH (g is the Bohr mag-
ization of the SDW’s using results to be proved in the next"€ton, and we take the electron gyromagnetic fagtequal
sections. to 2), the magnetic field introduces the additional termw,

In the vicinity of the Fermi energy, the electron dispersionwherem is the(discreté position operator in thg direction.
law in the Bechgaard salts is approximated(ag take# w.=Gvg=eHbuvr.

Here (1) are fermionic operators for righto=+) and
left (= —) moving particleso=+(—) for 7 (]) spin. We
use the ngtation=(x,mb) (mintegey, fd?r=bZ,fdx and

=kg=1 throughout the paper, and the Fermi eneggys The interacting part of the Hamiltonian contains two
chosen as the origin of the energies terms corresponding to forwarg{) and umklapp ¢3) scat-
tering. For repulsive interactiort,,g;=0. We do not con-
E(kye,ky) =vg(|ke —ke) + 1, (kyb), (2.1  sider backward scatteringy{), since it does not play any

role in the mean-field theory of the FISDW phases.

wherek, andk, are the electron momenta along and across
the one-dimensional chains of TMTSF. In E§.1), the lon-
gitudinal electron dispersion is linearizedkipin the vicinity

of the two one-dimensional Fermi pointskg, and vg The one-particle eigenstates &f, were obtained in Ref.
=2at, sin(kza) is the corresponding Fermi velocity. The 21 in the particular case whete(u) = —2t,cosf). The ex-
functiont, (u), which describes the propagation in the trans-tension to a generdl, (u) is straightforward, and we only
verse direction, is periodict, (u)=t, (u+2). It can be quote the final result. The eigenstates and the spectrum can
expanded in Fourier series be written as

A. Bare susceptibility
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FIG. 1. Diagrammatic repre-
sentation of the integral equation
for the susceptibilitiesy, . and
X+— in the RPA. The solid
(dashedl lines represent electrons
on the right (left) sheet of the
Fermi surface. The arrows indicate
the spin direction. The wavy lines
correspond to forwardg,) or um-
klapp scattering ds).

whereL,L is the area of the system angg~ a2kg. G, is

bi ()= \/_e”‘xxf,"_m, the one-particle Green’s functiom=7T(2n+1) (n inte-
bLy gen is a fermionic Matsubara frequency, and=27Tv (v
2 du intege) a bosonic Matsubara frequency. Using
a — amil=myuti(alwe) T, (u) a - ,
I=m fo 27t T 24 B (N (1)

Gw(r,r',w)=k2 , (2.9

N | iw—€ |,
ekxy|yg=v,:(akx—k,:)+a|wc+a',u,BH, X

. we obtain the well-known resalt
where we have introduced

u x2(q,0,)=2 12(a)x (A~ anG,w,), (2.9
Tl(u)=J’Odu’tL(u’). (2.5 n

wherexP(qy,,) is the susceptibility of a one-dimensional
L, is the length of the system in the direction.k, is the  system without interaction. In the static limii(=0),
eigenvalue of the operaterid, (which commutes with).
The wave functionqﬂﬁx,I is localized around théth chain lD( x)=@ |n(ﬁ)+q, E)
with a spatial extension in thg direction of the order of ‘ 2 7T 2
bt,/w; (@ssuming,>tsy ,tsy -*). bty/w. also corresponds 1 Ve
to the amplitude of the semiclassical orbits in the transverse —Re\lf(§+ 7 T(qx—chZkF)) } (2.10
direction. The localization of the wave functions can be in- ™
terpreted as Bloch oscillations of the electrons in the magwhereN(0)= 1/7vgb is the density of states per spif, is
netic field, and within the same picture the quantized specthe digamma function, angt=1.781 the exponential of the
trum € | , can be seen as a Wannier-Stark laddeFhe  Euler constantE, is an ultraviolet cutoff of the order of the
latter provides a very natural picture of the quantized nestinggandwidth. Since}°(2ke) = (N(0)/2)In(2yEy/T), the bare
mechanism, which is at the origin of the FISDW's in susceptibilityx(®) has logarithmic divergences at quantized
quasi-1D conductors®#??Indeed, for two rods; andl, of  valuesQ{=2k:+NG (N intege) of the longitudinal wave
the Wannier-Stark ladder, the “nesting conditior&’,{xv,l,T vector. The coefficients,(q,) defined by
n : ' .

=€ +Q,.l,| IS fulfilled if Q,=2kg+(l,—1,)G. There- o _
fore we expiact the formation of a SDW at a quantized wave 1-1/(dy) =¢€'""! )qym% e MW
vector Q,=2kg+NG (N intege) in the presence of repul-
sive electron-electron interactions. 27 du

Now we introduce the bare transverse spin susceptibility —f 5_€

i(1=1")u+ (i wo) [T, (u+aybi2)+ T, (u=qybi2)]

. . 0 21
in the Matsubara formalism

(2.11

(P — t T ’ _ ’
Xao (F=1"0) = (Tt (1,1 Y (1, 7) g (1,0) 915 (r7,0)) are well known in the QNM. They crucially depend on the
(2.6 detailed structure of the quasi-1D Fermi surface and there-
fore determine the stability of the metallic phase with respect

hich is to b Iculated wit ly. H i i i- .
which is to be calculated with{, only. Herer is an imagi o the formation of a SDW phase.

nary time. In Fourier space, we obtain
B. RPA susceptibility and phase diagram

1 T . )
(0) — 2p 42! —ig-(r=r")+iw,r
Xo (Gi0) LiLy f drd*r fo dre We now consider the total Hamiltonian as given by Eq.
(2.3), and introduce the spin susceptibility

XX (r=r',7) )
T Xaa' (1,0 7V = (T (0, 7)o (1, 1)L, (1,0 g (17,0)).
=- > | d¥rd?rreTietr (212
Y In the RPA, x ..’ IS determined by the integral equatitsee
XGu(r',r,0)G, (1,1 otw,), 2.7 Fig. 1)
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Xea (1F) =80 X O(r=1") diverges atQ{") =2k +NG, we consider spin fluctuations
only at these wave vectors. Because of umklapp processes,
i (N) i i (N)
+ng dzflx(aO)(f—rl)Xaa'(rl,r’) qu:liuatlonS(Ng\)th are coupled with fluctuations &)
—4ke=—QMN):

+gsf d2r D (r—ry)eletkexay (g,

(2.13

where we now consider only the static limito(=0). In
Fourier space, this leads to

X+ QY. QM) =x2(QY)
+ 002 (QM) x -+ +(QYY QM)
+9ax2(QM)x_ (— QM ,QM),
Xaa (Os03) = B ar B g/ X5 ()

T 9o (0 Y (GG X+ (= QYA =gax (=M x -+ (= QY. QYY)
+0ax (00 Xa (O ke ). F0ax (= QM+ (QY Q)
(2.14 (2.15

We have not written explicitly the dependence gnsince
the latter is a conserved quantity. Sing& logarithmically ~ Using x2(—a,,a,) = x\”(ay.dy,), we obtain

. XY (QuIL-gaxY(Qu)]
NN 1 =g P(QuITL -~ 92XV (Qu - g3 P QU T Q)

9ax'Y(Qu X 2(Q)

_(—Q,Qy:Qu)= - —. (2.16
X N T T g QL= 9 Q) 1~ G P (QuxT(Qu)
|
We have written explicitly the dependence on the transverse 1 9, 0
wave vector by introducing Ain=12 72— X (Qun) |,
1<n(Qy) | 92— 05 2.19

Qu=(Q" Q) and Qy=(Q",~-Q,). (217 o

B=-— .
Note that in our notation the wave vecQg=Q_y has both IN(Qy)IN(Qy)(g5—73)
the signs ofN andQ, reversed compared Qy. This hap-

: N For sirf(20,)<2/3, the SDW'’s are sinusoidal and the Hall
pens because Umklapp scattering COUDI%‘J’QV) o effect is quantizedo, = —2Ne?/h. N then corresponds to

(—Q",Q,), but the latter is equivalent taQ(" —Qy). the quantum number which is directly measured in transport
In the presence of umklapp processes, the transition tenEXperiments. For shi29,)>2/3, the phase is helicoidal. The
peratureT{"V is determined by the modified Stoner criterion Ha|l effect vanishes, but a kinetic magnetoelectric effect ap-

pears(see Secs. VI and VIl The phas& =0 is sinusoidal if
[1-gx P Q) [ 1-9oxP(QN)] Q,= /b and helicoidal ifQ,# m/b (Sec. V). ¥ also de-

termines the ratidy| (0<|7T< 1) of the amplitudes of the
— g Y (QuxY(Qw =0, (218 two SDW's:

which is the condition for vanishing of denominators and o
divergence of susceptibilitieg,, in Eq. (2.16. Two fluc- _ In(Qy)tandy) ~r1n(Qy) (2.20
i i i i YTINQy) — 1N (Qy)tan Dy’

tuation modes diverge simultaneously, which leads to the n(Qy n(Qy N

formation of two SDW's with wave vectorsQy h iy The fi ¢ th i | hde

=(Q1",0,) and Oy=(Qf” ~Q) [see Ea..16). we WIERE 0, T T00C B s B ectue

label each FISDW phase by the inte@ésuch that the SDW . . . ~

with wave vectorQy has the largest amplitude. This is mean-field potential acting on tbe electroitg.and y are

equivalent to defining\ by the conditiony(®(Qy)> x'* precisely defined in section 1¥]y| and |y increase with

x(Qn) (Sec. V). |9n|. At the transition between the sinusoidal and helicoidal
We will show in Sec. IV that the SDW'’s can be either phasegy|~|y|=0.518. _

sinusoidal or helicoidal, depending on the value of the angle In the absence of umklapp processes, BdL8 yields the

3y (e]- 7/4,m14]) defined by tan(2y)=2B/(Ay—Ay) and  usual Stoner criterion 2 g,x{?(Qn)=0 for the formation
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6 [ ' ] 8 the wave vectoQy coexists with a weak SDW at the wave
. 7_‘ 1s vector Qy. In general, the value o), that maximizes
= 4l - x(Qy) does not maximize x9(Qy), so x2(Qn)
R S 14 N <x©(Qy). As a result, the SDW amplitude at the wave
&~ 2 | "1 — I vectorQy is very small, and the polarizations of the SDW's
, [, are linear. The values di follow the usual positive se-
0 ' T SIS quenceN=---,5,4,3,2,1,0 as the magnetic field increases.
03 : A larger value ofg; increases the coupling between the

two SDW'’s. This leads to a strong decrease of the critical
< o2 Wy, temperature or even the disappearance of the SDW’s. How-
@ Ve

|

3

ever, for evenN, there exists a critical value af; above
which the system prefers to choose the transversely commen-

011 i surate wave vecto®, = /b for both SDW's. The reason is
o0 that, for evenN (as opposed to odiN), Q,= /b corre-
’ 5 1'0 1‘5 2‘0 o5 sponds to a local maximum of the susceptibilities

and y©O(QM  7/b)=xO(QM ,7/b). The two suscepti-
bilities are strictly equal att,,=0, but when t,,>0,

FIG. 2. Phase diagram far=0 (g,=0.38 andg;=0) andt,, X(O)(Q@ND ,7T/b)>X(O)(Q§<‘N|) ,m/b) (this result also holds
=0.75 K. Top picture: Transition temperatufg” (solid line). The ~ for t3,#0 since x©(Q{"™ ,7/b) is independent of3,)."®
dashed line gives the value of the intedér The QHE is deter- This yields a negative Hall plateau, provided the SDW's are
mined byo,,= —2N€é*/h. Bottom picture: Transverse wave vector sinusoidal. Thus, for =0.025 @2:0_37 andéazo_()l) and
Q, maximizing the transition temperatué" . t,,=0.75 K, we find the sequenchl=---54,3-22,1,0

N) ) (Fig. 3. A negative commensurate phase wik —2 and
of a SDW at wave vectoQy=(Q,”.Q,). The quantized q = /b appears in the cascade. All the phases are sinu-
longitudinal wave vecto{"= 2k + NG and the transverse soidal, so the Hall effect is quantizee(,= —2Ne?/h). For
wave vectorQ, are chosen to maximize the transition tem-r=0.025 andt,,=—0.75 K, we obtain only positive inte-
peratureTgN) at a given magnetic field. Except whéh=0, gers:N=---54,3,2,1,0. However, the phabk=2 has split
Qy is incommensurateQ,# w/b. The SDW is sinusoidal into two subphases: for large enough field, the transverse
(9n=0 for g3=0), and the quantum Hall conductivity in wave vectoQ, differs from z/b and varies linearly with the
the FISDW is determined by the integeN: o,,= field; for a weaker field, the phase is commensura® (
—2Né?/h. As the magnetic field increases, the valueNof =/b). All the phases are sinusoidpsir?(29y)<2/3] so
changes, which leads to a cascade of FISDW phases sep#at the Hall effect is quantized.
rated by first-order transitions. In the simplest version of the Figure 3 shows that both SDW's have comparable ampli-

lQE'\f',(;/VQe’:Ietsbzstzb;Z‘ '1:00: thipf;?lslg«‘? of the cas_clz_%dg aretydes in the negative phasési,|y|=0.3. This results from
abeled byN=---5,4,3,2,1,0 as the field increases. The inte~; ©)7 AN —(0)( AN

. . . . . propertyx*~’(Qy ", mw/b) = x"(Q;" ,m/b). On the con-
gerN is positive provided;,>0, i.€., sgnl)=sgnty). (For trary, the amplitude of the SDW with wave vectQy re-

t,,<<0, one would obtain a similar sequence but with nega- . - ~.
tive values ofN.) mains very small in the positive phases. Note that ityis

We study the phase diagram in the presence of umkIapWhiCh is actually vanishingly smally{ being of the order of

scattering numericallysee Figs. 2-6 The calculations are ' (S€€ Sec. IV A for a further discussijon .
done for t,=300 K, t,;,=20K, ts=0K, and E, The strength of umklapp scattering is very sensitive to

2000 K.§2+§3:2/In(2yE0/77T‘§) is held fixed wherer™ pressure. Indeed, hydrostatic pressure reduces the dimeriza-

B . o A ._tion gap and diminisheg;. Therefore, we conclude that sign
=12 K is the transition temperature for an infinite magnetic ., arsals of the QHE can be induced by varying pressure. In

field, andg;=N(0)g; (i=2,3) are dimensionless coupling our simplified model, this effect requirég,>0. Our results
constants. Since the values ofand ty, are not precisely provide a new explanation of the sign reversals of the QHE
known in Bechgaard salts, we calculate the phase diagram ggich have long been observed in quasi-1D organic
a function of these parameterdn Bechgaard saltsly, s conductors®* In particular, Balicaset al. have recently
expected to be a very small energy scale, of br& or  shown unambiguously the existence of the phase— 2 in
even less?) 92 and g; are such that we are in the weak- (TMTSF),PF; at a pressure of 8.3 kbar by observing a sign
coupling limit: g;<g,=<0.4. reversal of the QHE with a well-defined Hall plateau corre-

For r=0 andt,,=0.75 K, we obtain the sequend¢  sponding toN= —2.1* (These results required a conditioning
=---4,3,2,1,0 in agreement with what has been found foprocedure in which current pulses depin the FISDW from
t4,=0 (i.e., a small value of,, does not change the phase lattice defects and tend to reduce hystergdise observed
diagram wherr =0) ! The transverse wave vectQx, varies  FISDW cascade corresponds o=---4,3,-2,2,1,0. When
approximately linearly with the field within each phase, andthe pressure is increased to 9 kigahich decreases the um-
is incommensurate , # w/b) except in the phas&=0 klapp scattering strengththe phaseN= —2 disappears and
(Fig. 2. the usual sequendé=...4,3,2,1,0 is obtained.

A very smallg; does not change the phase diagram quali- If the value oft,, is reduced, the phad¢= —2 becomes
tatively compared to the cagg=0. Now the main SDW at helicoidal. This is shown in Fig. 4 obtained fo=0.03 and

H(T)
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T — Qyb

0.0 | ,

|'Y|7 H’l: Sin2(2aN)

25

FIG. 3. Phase diagram far=0.025 {g,=~0.37 andg;=0.01)
andt,,=0.75 K. The bottom picture shows 4{ad,) (solid line),
|7] (dashed ling and |y (dotted ling. sirf(29y) determines the
polarization of the SDW's antly|,| y| give the ratio of the ampli-
tudes of the two SDW'’gsee text for a precise definitipnThese
quantities are not shown in the last phase of the casciide0(
Qy=m/b) which contains a single linearly polarized SDWA
negative phaseN= —2) appears in the cascad@,= /b in that
phase, and the two SDW's have comparable amplituffgls} |
~0.3. All the phases are sinusoidaince sik(29,)<2/3] and the
Hall effect is quantizedo,, = —2Né?/h.

t4=0.3 K. (Whent,,=0.3 K, the phaseN=—2 appears
for stronger umklapp scattering. This is the reason why we
show the phase diagram for=0.03 and notr =0.025.) In

the helicoidal phase,|y|~|7|=0.5. For t,,=0, there
is a degeneracy betweeN and —N at Qy=m/b:
XOQW  mib)=x(QYY , w/b), I\(w/b)=Ix(m/b) and
Ay=Ay. This yields|y|=|7|=1 and9y==/4: the waves
are helicoidal. A finitet,, lifts this degeneracy, so thaty
#Ay and in turn siA(29y)<1. Thus, the stability of the
helicoidal phases is strongly related to the degeneracy be-
tweenN and —N occurring forQ,= #/b. In our model, this
degeneracy is entirely controlled by, . It is not affected by
tsp, Which is the reason why we have chodgg=0 in the
numerical calculations.

If, on the other hand, the value ¢f, is increased, the
ratio of the amplitudes of the two SDW'’s decreases. For

instance, forr=0.025 andt,,=1.5K, we find |y],|]
~0.15. Thus, for large,, (i.e., t4,=1.5 K), the amplitude
of the SDW with wave vectoQy becomes very small. There

™ (K)

|'Y|7 H’l: SiIl2 (2aN)
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FIG. 4. Phase diagram for=0.03 andt,,= 0.3 K (the horizon-

tal dot-dashed line corresponds to 2/3). Whgnis reduced from
0.75 to 0.3 K, the negative phad¢=—2 becomes helicoidal
[sir?(29_,)>2/3]. The QHE vanishes in that phase, but a magne-
‘ . toelectric effect appears.

If r is increased to 0.06with t,,=0.75 K), a second

negative phaseN= —4) appears, and the cascade becomes
N=---8,7,-4,6,5,4;-2,2,1,0(Fig. 5. Note thatN=—2 and
N=—4 are the two negative phases most easily observed in
experiment$31® The phaseN=—2 has split into two sub-
phases: one is helicoidsir?(29,)>2/3], one is sinusoidal
[sirP(29,)<2/3]. Thus, increasing the strength of umklapp
processes makes the negative pHase—2 helicoidal.

In order to observe the helicoidal phase experimentally, it

™ (K)
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would be desirable to stabilize the negative phdse—2 at

the lowest possible pressughich corresponds to the stron-
gestgs). In (TMTSF),PF;, the pressure has to be larger than
6 kbar, since below this pressure the FISDW cascade
disappears.In the experiment reported in Ref. 14, where the

N O

o

-4

is then no real difference between a positive and a negative FIG. 5. Phase diagram for=0.06 andt,,=0.75 K. Two nega-

phase(except for the sign of the QHENnsofar as both con-

tive phasesN=—2 andN= —4, can be observed. The phalse

tain a main SDW, which coexists with another SDW with a=—2 has split into two subphases: one is helicoigE?(29_,)

very small amplitude.

>2/3], one is sinusoiddlsir’(29_,)<2/3].
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phase N=0, Q,= 7/b) of the cascade. The reentrant phases
N=0 are always helicoiddindependently of the structure of
the Fermi surface but the last phash=0, Q,= 7/b of the
cascade is sinusoidébec. 1\V).

™ (K)

C. Effect of 1D fluctuations

Our numerical results show that a very small value of the
— ‘ umklapp scattering amplitude is sufficient to explain the
phase diagram of Bechgaard salts. In fact, the order of mag-
nitude of g3 which is required to stabilize negative phases
strongly depends on the choice of the ultraviolet cutgif
Within a mean-field picturek, is a large energy, of the
order of the electron bandwidth. It has been argued that be-
00 L cause of 1D fluctuations, the appropriate cutoff to be used in
: —t— : the QNM is not the bandwidth but the dimensional crossover
temperaturd,1<E,.?* (Above T,1, the behavior of the sys-
tem is essentially 1D, so that the interference between
particle-particle and particle-hole channels invalidate the
mean-field(or laddej approximation. A stronger value of
g3 is then required to stabilize negative phases. This is in
agreement with the suggestion of Beheigal. that the ef-
fective low-temperature value @; in a magnetic field is
L significantly enhanced by 1D high-energy scé&feshis
20 25 point of view is supported by NMR measurements and a
large magnetoresistance, which shows an activated behavior
becoming more and more pronounced as the field

FIG. 6. Phase diagram for=0.2 (g,=0.32 andg;=0.06) and increases?
t4p=0.75 K. Only phases with negative evlnsurvive when um-
klapp scattering is strong enough. Some reentrances of the phase
N=0 (with Q,# 7/b) also appear within the cascade.

T —Qyb

|7|1 W" Sin2 (QQN)

Ill. ORDER PARAMETERS: HELICOIDAL VS
SINUSOIDAL WAVES

phaseN=—2 has been observed at 8.3 kbar, the pressure

could be reduced only by about 2 kbar. Nevertheless, be- The divergence of the susceptibilitigg,- (Sec. 1) indi-

causeys is very sensitive to pressure, such a pressure redugates that the FISDW phases are characterized by the order

tion could induce a significant increase of the umklapp scatParameters

tering strength(TMTSF),ReQ,, where sign reversals of the

QHE have been observed under pres$tieguld also be a

good candidate for the observation of helicoidal phases. I, (r)= (| (r)¢zo(r))= E AlPNg=aQpyT, (3.9

(TMTSF),CIO,, sign reversals of the QHE have been ob-

served at ambient pressur® so that it is not possible to

increasegs by decreasing pressure. The two wave vector®,y, p=*1, are given by Eq(2.17.
Whenr is further increased, only phases with negative~(pN)_ N) _ N

evenN survive. This leads to the s)éqF:Jeriuec —8,~ % Se(:s)A(psz) ;2 '\tthe 83:33( )araer(te)rs E?eth(;orlpsleD):Nnu:ése

—4,—2,0 fort,,=0.75 K apart from some reentrances of the b P '

impli (PN) = A (PN)* i
phaseN=0 within the cascade to be discussed bel@var Aao(r)= A;(r) mp:qhes Ass =48, - Among the eight
ty=—0.75 K, we obtain the sequende=---8,6,4,2,0.) order parametera (?™ | only four are therefore independent

ao !

Moreover, all the phase#0 are commensurateq, and sufficient to characterize the SDW phase. Note that for
=/b). This is shown in Fig. 6 obtained far=0.2, i.e., N=0, one should distinguish in general between the phases

0,=0.32 andg;=0.06. N andN. In this case, there are two SDW's with wave vec-
The phaseN=0 is somehow special sincg”(Qy)  tors (Xr,Q{”) and (¢ ,Q(O)) with Q(O)— Q. For
= x'?(Qy) in that case. As a result, the transition tempera-Q{”# 0,x/b, the two SDW's are different so that bot{?)

ture T is determined by % (g,+9s)x(Qo)=0 and andA(O) are needed. Whe@{")=0,7/b, the two SDW’s are
does not depend on the rafie-g3/g, wheng,+gs is held  jdentical, and only one order paramettar instanceA?) is
fixed. This should be contrasted with the transition temperasficient.

ture T™Y (N#0) which decreases with [except wherQ, Now we discuss how the polarization of the wave affects
=x/b and xQQWN,w/b)=x2(QN 7/b)]. This ex- the order parameters"™ . For simplicity, we consider only
plains why, wherr increases, some reentrances of the phasene wave vectoQ and denote the four different order pa-
N=0 are observed within the cascade. Notice that the latterameters byA,, (among which only two are independent
phases are not commensura@®, ¢ 7/b) contrary to the last sinceA,,=A% ). For a SDW polarized perpendicularly to
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the magnetic field, the expectation value of the spin-density

operatorS(r) can be written as

(SUNN= 2 (YL T e (1)) =m0 Q-1+ 6y),

a,0,0' (32)
(SyN)= 2 (Y1) 7))y (1) =Myc0Q 1+ 0y),

where7® and#Y) are Pauli matricesd; = 6, corresponds to
a sinusoidal wave, whil&,=6,* 7/2 and m,=m, corre-
sponds to a helicoidal wavés(r)) can be expressed in terms
of the order parametef8.1):

(ST(n)=(S(r)+i(Sy(r))

=2 (P (NP (N)=2 Ay(r). (33
Comparing this expression with Eq&.2), we find
Ay E(mxe*mlJrimye*”’Z),
(3.9
A _1 1074 ; i 6y
—T_§(mxe +imye'”2).

For a sinusoidal waveA ,;|=|A_;|. For a helicoidal
waveA ;#0 andA_;=0 (or the symmetric solutior _,
#0 andA,;=0). The inverse is also tru¢A , [=[A_,]
implies that the wave is sinusoidal, while, ; #0 andA _;
=0 implies that the wave is helicoidal.

IV. POLARIZATION OF THE PHASE N
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7_{MF:,’-(O_E dzrzao(r)wz_o-(r)(paa'(r)
+§ J d?rA,,(NA4(r), 4.0
where we have introduced
Za(r(r):ngao(r)+g3e7ia4kFxA;0_(r)_ (42)

A ,.(r) is given by Eq.(3.1). Forgs+# 0, the mean-field po-
tentiallw(r) acting on the electrons is a linear combination
of the order parameters ,,(r).

Calculating the free enerdyper surface unjtof the phase
N to the fourth order in the order parameters, we obEjn
=F@+F{ with

(2)_2 J

aT r)AaL(r)

2 d?r ,d? rZAaT(rl)AaL(rZ)

L y
XGaT(rl1r21w)G;1(r21rlaw)a 43

oL Lyaw d2r1d2r2d2r3d2r4AaT(r1) 21(r2)

XzaT(rs)Za(M)GaT(rl,fz,w)G@(rz,fsyw)

><GQT(I’3,I’4,w)G;l(r4,rl,w).

G, is the single-particle Green’s function in the metallic
phase[see Eq.(2.8)]. Introducing the electron-hole pairing
amplitude[we use the notatiow;=(k;,,l;) for the indices of
the functions¢>ﬁix " (Eq. (2.9)]

In this section we derive the Ginzburg-Landau expansion

of the free energy as a function of the order parametersy (Wq,W,) = fdzﬁﬁ (N2 (DA, (1=K ~w,,w,)
ao 1 W aog ao )

AN The minimum of the free energy determines the po-
Iar|zat|on(l|near or circulay of the SDW's. (4.9
The mean-fieldor Hartree-FockHamiltonian is given by  we write the free energy as
|
d’r T A1 (Wi, W) A7 (Wy,W
Fo=2 j LL, R (NAG(N+ T > _T( o 2 : U 2 v 4.5
a y @,0,W;,Wp (Iw—ewll)(lw—ewﬁ)
Fg\‘4): T aT(Wl'W3) al(W3 W4)AQT(W4!W2)Aal(W2!W1) . (46)
2Lily o wwzwswy (lo—ey io—ey io—ey )io—ep )
|
The pairing amplitudes are given gppendix A F(2>—2 A, |A(pN | Z(j} ;F >*]+5F(2>,
(4.8

~ B N (pN)

Aa(r(wleZ)_pZi 5k2X,klx+aQ;pN)(ngEzprr)+93AZ¢T )
—i (PN) N

X e~ ieQy b(|1+|2)/2|a(|1_|2)(Q§/ ))' 4.7

This leads to

¥~ 3 (sQ(y%m) S [A(RYEG* 4 )

+B(A +A<°Aag 1.
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A,y andB are defined by Eq(2.19. We have introduced The QLA is usually known as the single gap approximation

the new order parametefsP™) related toA PN by (SGA) because it amounts to considering only the gap that
B opens at the Fermi level. However, when umklapp processes
A N < (pN) . .
AN pN(ng(ap(rN)_FgSA(a_po- >):A% * are present, the spectrum cannot be described with only one

gap, although gaps opening above and below the Fermi level
are still neglectedsee Sec. Y For this reason, we use the
term QLA rather than SGA. In the QLA, we would have
(95— 93)InIN ’ obtained Eq.(4.8), together with Eq.(2.19, but with the
exact susceptibility'®) replaced by

_ 4.9
gz'HNA(apaN)_%' pNA%)gN)

N)
A~

with | on=1,n(QPY).

A commonly used approximation in the QNM is the
quantum limit approximatioiQLA) valid whenw >T.1¢7
It consists in retaining only the most singul@tectron-holg
pairing channels that have the logarithmic singularity
~In(2yEy/#T). This singularity results from pairings be-

tween electron and hole states of the same energy. Therefore o . .
M Although qualitatively correct, this approximation strongly

N(O) | (ZyEO). 4.11)

X(-P)(QpN)|QLA:|§N > T

n Fhe QLA, Aao(Wy,Wo) is nonzero only ife, o=—€y,;-  yngerestimates the susceptibilin/® because it neglects
This leads to terms ~In(2yE,/|n|wy) (n#0) with respect to In(ZEy/#T).
However, the QLA becomes very accurate for higher-order
Zw(Wl,Wz)|QLA= Z Sk kst QPN 1~ apN contributions to the freezenergy. FBf, corrections to the
N QLA are of orderT?w; and can therefore be neglected
% e~ 1aQPVb(21;~ apN)/ZK (PN) when w>T. Within the QLA, we obtain
(4.10

K ~ ~ ~ ~
FE\IA):_ z E Atl,plN)AifZN)* Aixp’a’N)A(aple)* exqiN(bIZ)[plQ(plN)_(Zpl_pZ)Q(pZN)
2 < P1.P9P3.Pa T T T T y y

N) N)
+(2p1—2p2+p3)Q;p3 _p4Q§,p4 ]]5(pl—p2+p3—p4)N,0; 5Q;"1N)—Q;pZN)+Q<y”3N)—Q(y”4N),nzw/b, (4.12

whereK=7¢(3)N(0)/(167?T?) and {(3)=1.20. A some-
what lengthy calculatiorisee Appendix Bleads to

sinceA()} is coupled tozg). Introducing the order param-

N N -
etersu™ andv Y defined by

K i
_= X (PN) |4 ANK(N)[2 (4) ~
Fn =3 % |AapT | +2K§ |AaT AaT| +oFy7, A(a,\#) cogdy) —sin(Iy) (U(N))
, U ol @1
(4.13 AS;Q sindy)  cogdy) /oY (4.19
(4) — K (0| (0)[2% (0)x
oFo 5“’0(; 5Q(yo)b'”")K§ [A“Tm’”l = we obtain
~ T~ ~ 1.~ = ~
(0)|A(0)]2A (O)*% 4 — (A (0)A (0)%y2 _ (N)
+ AL AT PAGT 5 (A A ") Fec. FO_S (RMe, F0%, Ay B éai
. N ~ al al B Aﬁ AL)
Equations(4.8) and (4.13 show that the cas&l=0 and f
Q»=0,x/b is special, since in that case one cannot distin- N
: 0 _ = INVUNRAN )2 4.1
guish between (Y andA'Y . In practice, the cas@{”=0 ; SR LI (419
never occurgsee Sec. )Iso that we shall not consider it any
more. for
A. PhasesN #0, or N=0 and Q{* # zr/b 2B
tan(2:9y) = (4.16

We first consider the casd$+0, andN=0 with Q{ Av—AY
# w/b. The latter corresponds to the reentrant phase _ . \
within the cascaddsee Sec. )l The quadratic part of the 2%y can be chosen in}m/2,m/2]. The eigenvaluea ("

free energy(4.8) is not diagonal in the order parameters and)\(zN) are given by
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ANV=Ay coF(9y) + Ay sir(dy) +B sin(29y)

 AVTAY
2

1
+3 sgnAN— AR [ (Ay—Ay)2+4B?]12

(4.17

AV=Ay sir(9y) + Ay cog(Hy) —B sin(29y)

 ANtAY
2

1
— 5 SOMAN—AQ)[(Ay—Ay)*+4B?]*

The transition temperatureT(V
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is determined by
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(N)
luN2=— Ay _ uN=p
+ K[1—(1/2sirf(29y)]
(4.22
AV

- 2K[1—(1/2)sir?(29y)]"

Comparing Eqs(4.21) and(4.23, we conclude that the heli-
coidal phase is more stable than the sinusoidal phase when
Sirf(29y)>2/3, i.e., when v2|B|>|Ay—Ay]. When

minQ{Y A%)=0. In this section, the sign df has not been sin2(21f'}\‘N)<2/3rll the minimum ofy, for \{N'<0 corresponds
specified yet, since both phasisand —N correspond to a 0 [uM=]u™]. When sif(29y)>2/3, there are two

phase with two SDW’s at wave vectorQ{"¥,Q{™) and
(QM,—Q{M). In the following, we fix the sign oN by the
condition y(Qn)=x(Qy) (i.e., in the absence of um-
klapp processes, the phadewould be more stable than the
phase—N). Then we have &Ay<Ay and 0<\{M=<\{V
for T=T") (assuming 8g3<g,). The transition tempera-
ture T is determined by, (=0, i.e., AyAy=B2. Using
Egs. (2.19, we recover the resul2.18 obtained from the

RPA calculation of the susceptibility.

Since A\V>0 for T=TM™, we can puwM=0 in the

expansion of the free energy. This leads to

K .
Fu=A 2 U2+ 2 [cog () +sirf(9y)]

X X, JuN4+ K sirt(29y) [uMu™M2 (4.18

The minimum of the free energy is determined by

dFy

= U NN + K[ cog( ) +sint(9y) T|uN|?

+K sir(20y)|uY[2]=0.

For \(N<0 (i.e., T<TM), there are two solutions corre-

sponding to a SDW phase:
(@) [uM=]u™|(#0). Using v{¥=0, we find [A}Y|
=[AM], [AW|=1AN)], and also|A)|=]AMN)], [AMY|

(4.19

minima located on the lines™'=0 andu™=0.

In the absence of umklapp processgg=£0), 9=0 and
the SDW’s are sinusoidal. For values @ such thatQ{"
=7/b, the polarization of the waves depends on the details
of the Fermi surface. In our model, it is determined thy
(see the numerical calculation of Seg. Il

The results obtained in this section are very simple when
N=0. Sincex(f)(QN)=X(f)(Qm for N=0 (the susceptibil-
ity does not change whe®,— —Q,), Ay=Ay and d,
=m/4. The phas&=0 (with Q,# =/b) is therefore always
helicoidal. This result does not hold wh&y= /b (see Sec.
IV B).

Using v{Y=0, we obtain the ratio of the amplitudes of
the two SDW's:

y= =tan( & 4.2
Y= oo =tardy), (4.24
al
N)  ~
A In—rlIy
al YIN N
) iw (V) = (4.2
A(aT IN—ryln

Since 9ye]— w/4,7/4], |y|,[7|<1. The SDW with wave
vectorQy has the largest amplitude. This simply results from
the fact that we have choseN such that x(9(Qy)

= x(O(Qy). The transition from the sinusoidal phase to the
helicoidal phase occurs when &&d,)=2/3, i.e., wher|7/|
=0.518.

Note that in the positive phases, itysand noty which is

=|A™)]. From the results of Sec. lll, we conclude that theyanishingly small. When®)(Qx) < x‘“(Qu), the minimum

two SDW's are linearly polarized.

(i) uM=0 and uU™=0 (or the symmetric solution:

u™=0 and uMM=0). v{¥=0 then impliesA™M=A

=0, andA™=AM=0. This corresponds to two helicoidal

SDWs of opposite chiralities.
For the sinusoidal wavegsolution(i)], we find

(N)|2 )\(1N)
U= - R r s e (4.20
)\(N)2
Fn=— . ;
K[1+ (1/2)sirf(29y)]
(4.21)

while for the helicoidal wavegsolution (ii)], we have

of the free energy corresponds &{})=0 (and notA(Y

=0), since itis the potentizflaT (and notA ;) that couples
to the electrongsee Eq(4.1)]. =0 implies|y|=r.

B. PhaseN=0, Q{”=/b

We now consider the cagé=0 with Q{”)= /b, which
corresponds to the phade=0 terminating the cascade.
There is only one SDW in that case, so we can choose

A@=A© (alternatively, we could choosa@=0). The
free energy is then given by

Fo= 42 (Aol B2+ BRDALY* + 2K [AQ)].
(4.26
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The quadratic part of the free energ{f) is diagonalized by
introducing the order parametensandv defined by

AQ) 1(1 —1)(u> 45
30/ m e 1 le) (4.27
This leads to
F&=an P ul?+aPv|?, (4.28
with
1
A=+ —x (Qo))
+
0192703 (4.29
\NY=5 . ( —x@(%)).
1519203

T is determined byA{”=0, i.e., 1-(g,+93) x'(Qo)
=0. This agrees with the RPA resi.18 when y'©(Qy)
=xP(Qn) = xA(Qo).

Since N>\, v=0 for T=T. This impliesA(®)
=A© . Thus, the phastl=0, Q,= /b is always linearly
polanzed. FoN=0 (andQ{®=m/b), g3 couplesA?) and
A As a result, we cannot havk(’}#0 andZ(,O%ZO, )
that the polarization cannot be circular. The case=0 is
special since then{?)=\{? and bothu andv become non-
zero belowT(). Nevertheless, Eq4.26 shows that the

sinusoidal wave is more stable than the helicoidal wave in

this case too.
Settingv =0, we obtain the free energy

Fo=4N"|ul?+ 4K |u|*. (4.30
Minimizing Fg with respect tau, we obtain
)\(0) ()\(0))2
2 _ 01 -1

(N
e IaQ A

HF = 2 fdx

up to a constant term. Introducing new field§) defined by

we rewrite the Hamiltonian as
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V. SPECTRUM

In the absence of umklapp processes, the spectrum con-
sists of Landau subbands separated by gaps opening at the
Fermi level, and ahw /2 (n intege) above and below the
Fermi level>®~"In this section we show that for sinusoidal
SDW'’s the gaps opening at the Fermi level depend on the
transverse momenturk, (in this section, we use a gauge
wherek, is a good quantum numbeiOn the other hand, the
spectrum of the helicoidal phase remains independeky of
As shown below, this provides a natural explanation of the
instability of the sinusoidal phase with respect to the helicoi-
dal phase.

In this section we use the gaudge=(0,Hx,0) where the
calculations are simpler. In the next section this will also
allow us to calculate the QHE using previous results derived
in this gauge. Using the Peierls substitution, we obtain

Ho= >
a,o’,ky

+t, (kb= GX) + opgH]an(x.ky), (5.0

where we have taken the Fourier transform with respect to
the y direction. In the absence of electron-electron interac-
tion, the eigenstates and the spectrum are given by

Xl o (X, ky) [0~ i iy — k)

|k r+i(alwg) Ti(k b— Gx)

oy (r)=
\/§ (5.2

€k~ Vr(aky—kg) +ougH.

The dispersion law is now one-dimensional and the states are
extended in both th& andy directions. However, since the
energy does not depend &p, we can take the Fourier trans-
form with respect tk, and obtain localized wave functions
similar to those obtained in Sec. Il. The Wannier-Stark lad-
der can then be recovered by a simple gauge transformation.

Using Eg. (4.1, the interacting part of the mean-field
Hamiltonian can be written as

~ . ~ ; ; (N)
Hue= 2, | DX, (0 (—iaved) Pae(Xky) = 2, f dxgfeN@x-Tan(lyb=GxraQyTbi2)
a,o,ky a,ky,n

A (N)
x|

We have used

QYY) (k) Tra (. + QYY)+

N@
(
(x Ky) o (X,K +aQ<N))+e'“Q m Ty P (K + QM) [ +H.c.

(5.3

lﬁ,ag(x,ky):eiakFX—ia(r(,u,BH/vF)X+i(a/wc)TJ_(kyb—GX)'lZ,aU(X,ky)' (54)

~®
Ln<Q<N>>¢aL<x Ky) o (X, ky+ QM) +H.c.|. (5.5
(5.6)

s | (qy)e U+ aybI2) — il T, (W T, (urayb)]
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which follows from Eq.(2.11). To proceed further, we use the QLA. This amounts to retaining only the gaps that open at the

Fermi level neglecting those opening above and below the Fermi level. In the QLA, only theteNnis retained in Eq.
(5.5). This leads to

M =— 2k dxe  NPLRNGT (x,ky— aQMV12) i, (x Ky + aQYV12)
Y

FR0PE Ok aQV2) i (xky + aQYVI2) T+ Hec. &7

In the case of sinusoidal SDW's, E(5.7) shows thak, is coupled tok,+ Q™ , k,=2QM), ... sothat the Hamiltonian
cannot be straightforwardly diagonalized. For very srggllthe system is not significantly affected by umklapp proce&bes
SDW with wave vectoQy has a very small amplitugleand therefore we expect that the spectrum will not be very sensitive
to g3. Thus, the most interesting situation arises when umklapp processes are strong enough so that the FISDW phase become:
commensurate in the transverse directi@f/“t)zw/b) (which implies thatN is even. In that casek, is coupled only to
ky+ m/b, and both the sinusoidal and helicoidal phases are described by the Hamiltonian

HMF:KEK ('NAT(Kx’ky—Fﬂ'/Zb)’ N‘#ii(Kx’ky_ﬂ'/Zb))
Xy

X

U (K ky— /20)

veKy B _eiNkbe&NT)*_efiNkbeiﬁT)* Vi1 (Ky kg + m/2b)
_e—lNkybA(_FNT)_e|NkybA(+NT) _UFKx

+ 2 L (K ky—mi20), BT (Kyky+ mi2))

Xy

y veK, B _e—iNkbe(_ﬁT)_eiNkbe(_NT)) Al/'/+l(Kx1ky_7T/2b) 5.8
—eNIyPR (N> — g~ INky DR (N —veKy P (K ky+ 7/2b) ) '
|
where K, is now measured with respect tatkg |A1(K) min ~ [A2(Ky)|[min  1—[tan(9y)]
+ ugH/ve . In the metallic phase, the dispersion law is given = = (5.10

by e,=*veK,, e,=*veK,. The +/— corresponds to [Aa(kplmax [A2(k)lmax L +[tar(dy)]
right/left moving electrons and the degeneracy is due to spirFor | 9y/<1, which corresponds to a largg, (Sec. I,
In the SDW phase, gaps openzatzthe Fermi I/evel, and thix (V| <|A(MY|. The dispersion in the transverse direction is
d|sper§|or21 law beczoq;lzdg]_.:i[UFKx_I_Al(ky)z]lz andE,  weak. Everywhere on the Fermi surface, the gap is of the
= = [vEKi+ Aa(ky) "] with order of [A{Y|=[AM|. For larger values ofdy|, the dis-
persion becomes significant. In particular, wHely|= /4
(which occurs when there is a degeneracy betwideand
—N, i.e., whent,y=0), we have|AM)|=|AM)| and the
(N)|cos{2Nk b+ ;) spectrum becomes gapled€quations(5.9) show that there
+1 yu T 1) are AN values ofk, for which A; or A, vanish.
However, the occurrence of the helicoidal phase prevents
o N (5.9 the spectrum from becoming gapless. Indeed, the stability of
Ay(ky)?=]eNKPAN) + g INKPR(N)|2 the sinusoidal phase requires %ih%)<2/3. From Eq.
(5.10, we then deduce

. ~ (N . = (N
Al(ky)2:|e INkybA(—%—I)—’—elNkybA(-%—T)lz

=352+ [R5 2+ 2]A0VA

=AM 2+ [AN]24 2]ANA N |cog 2Nk b + @),

|A1(ky)|min

———=0.32. 5.1
T (613

where; and ¢, depend on the phases &%V .

_ _ B. Helicoidal waves
A. Sinusoidal waves

icoi AN_FN = i
For sinusoidal waves, as follows from E&.9), there are For helicoidal WazvefA—J(N)A;lT/z 0. The spectru2m2|S
interferences between the two SDW’s, and the dispersioiVen by E;==[vEKi+[ALF[*]¥* and E,==[vK
depends ork, . Using|Z&N%|/|Z(+N%|=|tan(f},\])| [Eq. (4.24)], +|A(_NT)|2]1’2. Contrary to the sinusoidal phase, the gaps at

we obtain the Fermi level A% andA™), remain independent of the
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transverse momenturk, . Since the sinusoidal phase be- ~ ~
comes gapless gty|=/4, it is natural to expect that, HMF:KEK (i (Kyky), o2 [ (Ky ky))
above a certain value dfy|, the system prefers to form Xy

helicoidal SDW's in order to lower the free energy by open- veK, AjeiPatky) FJIH(KX k)
ing a large gap on the whole Fermi surface. This is precisely X A eibi(ky) —veK ) (K ky
the result we have obtained in Sec. IV by considering the ! P (Kioky)

Ginzburg-Landau expansion of the free energy. - ~
In general, the two gapd (| and|A™Y| differ (they are +sz (P (Ko ky), 924Ky ky))
equal only whert,,=0 or N=0). As shown in Sec. VII, Y

this property gives rise to a kinetic magnetoelectric effect. UFK Aze—i¢2<ky)) <?”+1(Kxaky)

A el pa(ky) —veKy ’J/_T(Kx,ky)

where A, A,, ¢4, and ¢, are real. We apply the same

In this section, we use the results of Ref. 9 to study theeasoning as before to the wave functjm(kio) .ky)) of the
quantum Hall effect. At zero temperature, the off-diagonallower band. After the trip around the Brillouin zone, we ob-
conductivity is given by the formula tain the wave functiore'1()|y (k) k,)). Repeating this
procedure once more, we obtain the wave function
el h1)+idak)| (kO k,)). This yields

——ie? 2
3 [ o7 oo Ty p [ 1(271/0) + ol 21D) ~ 41(0)~ b(O)].

_aky<’r/fa|‘9kx|‘//a>)- (6-1) (65)

It was shown in Ref. 9 that E@6.5) does not depend on the
The summation is taken over all completely occupied bandgalue of the transverse wave vectors of the SDW’s. More-
and the integral is taken over the Brillouin zohg,(ky ,k,)) over, the global contribution of the gagd any) located
are the normalized eigenvectors of the Hamiltonian. below the Fermi level vanishésWe are therefore now in a
Before calculatingo,, in the FISDW phases, we recall position to calculater,, for the FISDW phases, using the
the main result of Ref. 9 and generalize it to the case of twaHamiltonian derived in the QLASec. V.
SDW'’s. We consider the Hamiltonian

| s

VI. QUANTUM HALL EFFECT

A. Sinusoidal waves
Comparing Eqs(5.8) and(6.4), we deduce
Hue= 2 L(Kyoky), 9K Ky))

Kx Ky Ae” 14a(k =Aze ety
MEGS Aei¢(ky)> Py (Ky ky) (6.2 :_eiNkyb|Z(+NT)|_eiiNkyblzﬁ)" ©0
“lae ok, Gk, k)

We have usedAPM|=[A®N|. Whenk, varies from 0 to

describing spinless electrons in presence of a charge-densig /b, the change¢1(27-r/b) $1(0)= ¢2(27T/b) ¢2(0)
wave at wave vector (& ,Q,=0). HereA and #(k,) are 1S determined by the term with the largest amplitude in Eq.

real. K, =k, kg for = electrons. The spectrum is given by (6.6). Since|A{Y/A{Y|=[7|<0.518 in the sinusoidal phase,

E+=(vFK +A2)1’2 for the upper(empty band andE_=  we obtain

— (vEK2+ A?) Y2 for the lower(filled) band. The wave func-

tions are defined on the Brillouin-zone torjkg| <kg and 0O $1(27Ib)+ po(27/b) — h1(0) — hp»(0) = —47N.
<ky<2m/b. Consider now a wave functigns(k{"’ k,)) in (6.7)

the lower band. Whelk, is changed along the closed line

encircling the torus at fixe#t,, the wave function changes This yields o2
and transforms |ntce'¢(ky)|z,0(k(°) ky)) when we return to = —2N—, 6.9)
the starting point:?’ Noting that the second term in the right- h

hand side of Eq(6.1) vanisheqsince the Hamiltonian is the

same fork,=0 andk,=2), we obtaifd where we have restored the dimensional Planck constant

Thus, in the sinusoidal phase, the QHE is determined by the
SDW with the largest amplitude.

e .-
ny:m[¢(277/b) —#(0)]. 6.3 B. Helicoidal waves
For helicoidal waves, we deduce from E§.7)

We now consider electrons with spin in presence of two itk iNK.bT (N)
SDW's (with zero transverse wave vecto@;=0): Ao = —eTHPALY, (69)
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jx=eve>, (dn, ,—dn_ ),
7 (7.2)

5MZ=% S (60, — N, ).

Here we denote the electron gyromagnetic factorgbfas-
sumed to be equal to 2 in the preceding sec)ioAs low

temperature, T<|Ay .|,|AN _|, the electrons are excited
solely above the lowest energy gaﬁ;{, in Fig. 7). This
FIG. 7. Spectrum of electronic excitations in the helicoidal implies thatén, ;=én_ =0 and

FISDW phase. The soliddashedl line corresponds to updown)
spins. Only the gaps at the Fermi level are shown. For clarity, we

have not shown the Zeeman splitting. 5Mz: _ 9us 7.3
_ Ix 2evg’ .
Ajeialy) = _e_'NkybA(—NT)- Equation(7.3) can be rewritten as

This yields ¢1(27/b) — ¢1(0)=—[ d,(27/b) — ¢,(0)] so
that M, gl

=— , (7.9

MB ZEUFLyLZ
Txy=0. (6.10 wherel =j,L L, is the current passing through the sample of

Thus, we come to the conclusion that the QHE vanishes i§70SS sectiorL,L,. For|1~1 A [which is slightly below
the helicoidal phase. the critical current for the depinning of the SDW(Ref.

30)], LyL,~1 mn?, ve~3x 10 ° m/s, andg=2, we obtain
VIl. MAGNETOELECTRIC EFFECT

A magnetoelectric effect may exist if time-reversal and oM ~2x10 A3 (7.5
space-inversion symmetries are brokB@or’kov and Sokol MB
found the kinetic magnetoelectric effect for a single helicoi-
dal SDW?° The effect also exists in the presence of two
helicoidal SDW's of opposite chiralities, provided their am-
plitudes are not equal. An electric currgptalong the chains
induces a uniform magnetizatio® along the vecton that M|

This should be compared with the ground-state magnetiza-
tion density

characterizes the spin polarization of the helicoidal SDW's. ~10 % A~3, (7.9
: S MB

In our case, the vectar is parallel to the magnetic field,

which is oriented along the axis, thus that we obtain from Ref. 7. Thus, we obtaiaM,|/|M,|

~2x107".

The reentrant phased=0 are somehow special since
[AQ[=|A©)| independent oft,,. Consequently, these
Here 6M, is the additional spin-magnetization density in- Phases do not exhibit the magnetoelectric effect, although
duced byj, in excess of the magnetization densiy, in-  they are helicoidal.
duced by the magnetic field withoii;. The effect can be
understood by considering the spectrum of electronic excita- VIll. COEXISTENCE BETWEEN SUCCESSIVE PHASES
tions in the helicoidal FISDW phase shown in Fig. 7. The
+ kg electrons with spin up and thekg electrons with spin
down have the energy gd@y .|, whereas thet kg elec-
trons with spin down and the-kg electrons with spin up

M, (7.0

It has been shown by Lebed’ that under certain circum-
stances, umklapp processes can lead to the simultaneous ex-
istence of two successive sinusoidal phalesg andN.%’

) - The system then evolves from the ph&se 8 to the phase
have the different energy gdpy -|. To produce a current N via a region of the phase diagram where both the phases

jx along the chains, electrons need to be transferred fromy 4 g andN exist. The transitions to the coexistence region
—kg to +keg (we assume that the electric field is weak gre of second order.

enough so that the SDW's remain pinned by impurjtiésr In this section, we reconsider the problem of the coexist-
[An+|#|AN -] (AN +|#]AN -] if t4p#0 andN#0), this  ence between two successive SDW phases, distinguishing
redistribution of electrons affects up and down spins in abetween sinusoidal and helicoidal waves. We analyze all
different way, which results in a uniform magnetizatigh . possible case@epending on the polarization of the SDW's
Denoting the deviation of the distribution function of elec- The coexistence of two phases implies the simultaneous
trons with spine and momenta neakke from the equilib-  formation of four SDW's. Therefore Eq$4.7) and (4.10

rium one byén, ,, we have should be replaced by
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~ (N —iaO®N+ )
Aao’(W11W2):pZi 7:2” Oy iyt QPN 7(D2 APNT 4 gy Aflp(, F)eiaQy PlatlD) |2)(Q§N+7)).
(8.1
- 20P(N+7) «
Aaa(W11W2)|QLA:p2i y:EOB Sty Ky aQPNFMEL 1~ ap(n+ )€ iaQy b{2l3 ~ap(N+y)I2§ (P(N+7)
The free energy becomes
Fan+g=Fnt FN+B+FirG,tN+,ga 8.2
with the interacting part
Fite g= 2K 2[R0+ B2 AN 02+ |32
+2K cos{(N+[3)Q§,N)b—NQ§,N+B)b]§ ANANANA*RNTA* 4 ¢ c)
+6n0 E B[O, nﬂ)KZ [22 |ALPA)] 2A<°>A<°>*+cosﬁQ;°>b)[(Z;%>)2+(Zg?)z]z;ﬁ)*zgﬁ)*+c.c..
(8.3

Without loss of generality, we have assumed that the phase is not the last phase of the cascdie., we do not
consider the casd+ 8=0 andQ(N“;)— 7/b). In order to study the possible coexistence of phasasdN+ 3, we consider
a region in the phase diagram where the ph¥is& more stable than the phale- 8 (T(N)>T(N+B)) Assuming that the order
parameters of the phadé+ 8 are infinitesimal, we derive an effective free energy for this phase, from which we conclude

about the coexistence of the two phases. The same reasoning is applied to regions of the phase diagrarf‘where
<T(N*A),

A. Sinusoidal waves
1. N#0

Introducing the order parameten§” , v, uUN*# andv(N*#) defined in Sec. IV A, and setting!™=vN"A=0, we
rewrite Eq.(8.3) (for N#0) as

Fil 5= 2K 2 [ooS(0y)|uf|? + i (9) [ UL |21 coS(O 1 ) [UNTA) |2+ sin( 3y o) UL P12]

+K cod (N+8)Q)b—NQN P b]sin( 29y sin( 29y g) (U uNuN A+ M+ A* tc c). (8.4)

For sinusoidal waves, we haya{™|=[u™| and |[uN*#)|=|uN*A)|. We consider a region of the phase diagram where
TN >TN*A) and assume thatN*#) is infinitesimal. To lowest order in{N*# | the effective free energy for the phalse
+Bis

FRs 5= 20 UM 124 aku P u 2|2
+K cod (N+8)QPVb—NQN " #b]sin( 29y sin( 29y, ) (U uNuN T A* N +A* 1 c ), (8.5
whereu™ is not changed by the infinitesimaf*#) and is therefore given by E¢4.20 for T<T(N). The free energy is
minimal if the phase ofiN*#) is such that
cod (N+8)Q\Nb— NQN*Ab]sin(29y)sin( 29y ) u N uNMuNA* y(N+A*
—|cod (N+B)QMb—NQN"#b]sin(29y)sin( 29y, g)| [u uN A2, (8.6
which yields

FR 5= 2luM PRIV 4 2K U2 = K [u]2|cog (N+ 8) Q)b — NQN Pb]sin(29y)sin(20y. p)|]. (8.7
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A second-order phase transition to a phase where bt 2. N=0, Q§O)=ﬂ'/b

andu{*#) are nonzero occurs if the coefficient jo |2 We can study the coexistence of the last two phases of the
in Fﬁ,ﬁ+’\F becomes negative. Since in all cases,cascade following the same procedure. Using the result of
QM ,QN*A~ /b (see Sec. ), we make the approxima- Sec. IV B, we have

tion |cog(N+B)QMb—NQN*Pb]|=1. Using(see Appendix
C)

Fols=8K]u[?|u'?|?

A= MO ), ©8 +2K cog Bm)sin(29 ) (uPuP*uf* +c.c).
2Te 8.15
ite th ist ition o= TN . . .
we can write the coexistence condition fo=Tc™ as Choosing the phases of” andu® in order to minimize
T—T(CN“” T—T(CN) the free energy, we obtain
TNB) = TN X+ (8.9
¢ ¢ int _ i 2[,,(8)|2
Fop=4K[2—sin(294)[]|ul?[u'|. (8.1
where '
) ] We deduce that the coexistence region is determined by
2—|sin(29y)sin(2 9y )|
XTI (U2)sink(29 8.19
(1/2)sin’(29y) 1 T-T® T-TO T-T®
E . . . : S =@ S = <X_. =@ (8.19
or the coexistence in regions of the phase diagram where X', Tcﬁ L TCB
TN<TN*A) " we obtain by the same method the condition
(for T<T(NA) where
_T1N) _T(N+pB) .
T 'IN's sT 'Li g .10 o - 2—|sin(29 )|
T TP “ T 1 (U2)siP(29 )
where (8.18
. : X =2—|sin(2%)|.
2—|sin(20)SIN(2 9+ ) + B
_2-lsm2onsinang)l o

X 1+ (1/2)sir (29 5) The coexistence occurs ¥, <1 or x' <1. Since sii(21,)
<2/3, X_|min=0.89. In principle, the coexistence between
the phasedl= 8 andN=0, Q,= /b is therefore possible in

Mhe region of the phase diagram wha® >TO provided
that x’ <1. If B=1, then our numerical calculations show
that siﬁ(263)<2/3 (the latter inequality holds for all phases
with N odd). Therefore, the coexistence region does not exist
if the phaseN=0 is preceded by the phage=1. In the case
where the phas&l=0 is preceded by the phage=2, the

(N coexistence region exists provided that< 1. This situation

(1—x)(—N§'s0, (8.13  however requires strong umklapp scattering and is therefore

T guite unlikely.[Note that for siﬁ(2ﬁﬁ)=1, Eq.(8.17) agrees
with Lebed'’s resultd’]

On, Onyp are determined by, Ay, andB, and there-
fore depend on temperature and magnetic field. To veri
that the region of the phase diagram defined by E§9)
and (8.11) exists, we consider a point in théd(T) plane
slightly below the intersection point of the two Curvﬁg\')
andTN*A) . For this poinfT™=TMN*#) and the coexistence
conditions can be rewritten as

wherex=x_,x, . SinceT— TN <0, the coexistence is pos-
sible only if x_<1 orx,<1. The existence of linearly po- _ (N+B)
larized SDW's requires sf@dy),sirP(20y. ) <2/3 and 3. N+£=0 Q" # /b
therefore impliesx_|n=x:|mn=1. Consequently, there is  The coexistence between the phageand the reentrant
no coexistence between phases for sinusoidal waves. ThughaseN+ =0, QN*# = 7/b can be studied by setting
our results invalidate Lebed’s conclustdrconcerning the =—N. This case is special since the phaser3=0,
coexistence of two successive sinusoidal phases. QN*A =« /b is always helicoidal whegs;# 0 (see Sec. IV.

If we discard the existence of helicoidal waves, then theusing |u(+N)|:|u(_N)| andu®=0, we have
coexistence between phases may be possible depending on
the geometry of the Fermi surface. Let us take for instance int ()1 (N2
QM =QN*P=m/b andt,,=0, which is the case consid- FNo= 2K|ui w7 (819
ered by Lebed'. Thery= dy, = 7/4. The region of coex-

i (N) ~7(0) i i
istence does exist and is determined by In the regionT,’<T.”’, we find the effective free energy

for the phaseN (for T<T())

3T-TNA 7TV 2 T7-TN*A

> =W <3 T (814 N 0
2 TR T 3 TN e 1 ()12 -V  T1-TO

This is precisely the result obtained by Lebé'.
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The coefficient offu{N)|? is always positive so that there is
no phase coexistence. In the regiof?’< T, we find the
effective free energyfor T< Tg’\'))

0 —TN

Fe“:|u(°)|2N(0) T-T, B 2 T-Tg

o2 T 14 (12)sirP(29y) TN )
(8.21)

which shows that there is no coexistence.

B. Helicoidal waves

1. N#0, or N=0 and % # ar/b

EFFECT OF UMKLAPP SCATTERING ON TH. ..
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IX. SUMMARY AND CONCLUSION

Our main results can be summarized as follows:

In the presence of umklapp processes, the instability of
the metallic phase at the temperatméé‘) corresponds to the
formation of two SDW's, with quantized longitudinal wave
vectors QN =2k-+NG and Q{N)=2k-—NG. For very
weak umklapp scattering, both SDW’s are incommensurate
in the transverse directionQ("=—Q{" # m/b) except
whenN=0. If we label each phase by the inted¢rcorre-
sponding to the SDW with the largest amplitude, we have
sgnfN)=sgnt,,). The amplitude of the SDW at wave vector

Q™ is vanishingly small. The quantum Hall conductivity is
termined by the SDW with the largest amplitude, i.e.,

. . .. de
First we study the coexistence between the two hehcmdajjfxy_ —2Ne?/h.

phasesN and N+ 8. For simplicity, we consider only the
casety= 9y g= /4. For helicoidal waves, we haug"
=0 andu™"# =0 (we could also choosaN"# =0, this
would not change the resultEquation(8.3) then yields

int  _ N), (N+ )2
FH,N+;§_K|U(+ )U(+ B)l .

(8.22
In the regioriT™>TMN*A) “we find the effective free energy

for the phaseN+ 8 (for T<T(V)

N(0)
2

_T(N+pB)
Feff T Tc _
N+B8~—

U2 N
+ TE; +B)

(8.23

The coefficient ofu™*#)|2 is always positive so that there is
no phase coexistence. In the regiofl)<T(N"#) | we find
the effective free energgfor T<T(N*A))

N
T-TNV
TV

N+ﬁ

FR=luM? , (8.29

N(0)
2

which shows that there is no coexistence.

2.N=0, Q,=m/b

For the coexistence between the helicoidal phidses
and the sinusoidal phasd=0, Q,==/b terminating the
cascade, we have

Fols=4K][u[?u'?|2. (8.29
This yields(for T<T()
_T1B (0)
Feff:|u(,3)|2N(0) T-Te T (8.26
e I A T
in the regionT)>T® | and(for T<TY))
f_ 2 ¢ ¢
Fo =4[ul*— TO ST (8.27)

in the regionT<T®) . The coexistence is therefore not
possible.

For evenN, there exists a critical value afj (typically
gs/g, of the order of a few percenabove which the system
prefers to form two transversely commensurate SDW'’s

(QNW=-QN=n/b). When ty,>0, the SDW with the
largest amplitude is then determined by S —sgn(yy):

the QHE changes sign. The two SDW’s have comparable
amplitudes wheny,, is not too large {4;,=<1.5 K). When the
umklapp scattering strength increases, the first negative
phase to appear is the phddes — 2.

Umklapp scattering also tends to suppress the phases with
an oddN and produce some reentrances of the phsd®
within the cascade. Unlike the last phase of the cascade, the
reentrant phased =0 are incommensurate&,# m/b).

The negative phases are likely to become helicoidal when
the umklapp scattering strength is further increased. Experi-
mentally, this situation could be achieved by decreasing
pressure. The appearance of these helicoidal phases is en-
tirely controlled byt,,. The QHE vanishes in the helicoidal
phases, but a magnetoelectric effect appears. These two char-
acteristic properties may be utilized to detect the helicoidal
phases experimentally. The reentrant phades0 are al-
ways helicoidal but do not exhibit the magnetoelectric effect.

In the sinusoidal phases, umklapp processes modulate the
gap on the Fermi surface as a function kf. When
|A(Ky) | min/|A(K,)|max=0.32, the sinusoidal phase becomes
unstable against the formation of a helicoidal phase.

The conclusion of Lebed” that, in the presence of um-
klapp scattering, adjacent FISDW phases are separated by
two second-order phase transitions and an intermediate phase
with coexistence of four SDW's is incorrect, because he did
not consider helicoidal SDW's.

In conclusion, the consideration of umklapp scattering
naturally explains the appearance of negative FISDW phases
in quasi-one-dimensional organic conductors. These phases
are characterized not only by a sign reversal of the QHE, but
also but the simultaneous presence of two SDW'’s with com-
parable amplitudefprovided thatt,;, is not too largé This
leads to the possible stabilization of helicoidal phases. But
even in the sinusoidal phaséshich are the ones that have
been observed up to ngywwe expect the presence of two
SDW's to give rise to different physical properties.
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APPENDIX A

We calculate in this appendix the pairing amplitudes

Za’o’(Wl 1W2) = j er ¢§: (r)(ﬁ\;lvz(r)zao'(r)

=3 | drgar(n g, (1(gpA Ve W+ gga PVe TetkexieQu ). (A1)
p==+

Using — 4ke + QP = —QPY and Q{PNV = - Q{PY) | we have

Boolwywo)= 2 (008" + 050 ) f 0Pr gt (r) b (r) e “onT. (A2)
p=

Using Eq.(2.11), we have

(pN) i oPN)
f or it (1) S (r)e"“Qp“r——JdXéx( R ORI E

— —iaQ\b(l{+15)/2 N
_5k2x'klx+aQ§(pN)e | Qy (1+ 2) |a(|l_|2)(aQ§/p )) (A3)

Sincely(qy) =1,(—ay), Eq. (A3) leads to Eq(4.7).
APPENDIX B

In this appendix, we give the main steps in the calculation of the fourth-order term of the free energy leading4dlBgs.
and(8.3). We consider the case where there are simultaneously four SDW's at wave \@gtoRy, Qn+ 5, Qnrz:

~ (E1(N+y))X (P2(N+72))% % (P3(N+73)% (P4(N+
FF\I4)_ 2 2 2 ) AipTl( ‘)’1))A51PT2( ¥2))* Aist( 73))A51PT4( Ya))*
a Py, Pg=F y1.00,74=08

X expli (b/2)[P1(N+y) QPN 70— [2p, (N+ 1) — PN+ 5,) QPN 72)

+[2p3(N+ y2) = 2p2(N+ ¥2) +pa(N+ 73) JQ{P¥ ™ 79— py(N+ ) QPN 70y

X 6(91_ P2+ P3=P)N+P1y1=Po¥otP3Y3— P47410; 5Q;p1(N+ ") Q;pz('w 2 Q;ps('\H 7s)_ Q;p““\H 74D n2/b - (B1)

We write F{P=F|,+ F{P|3+ F{P|,+ F]1. F{P|4 corresponds to the case where all tie,¢;) in Eq. (B1) are identical
(p1=p2=""", Y1=72="""). F§4)|3 corresponds to the case where three of the¥;) are equal and different from the fourth

one...F(N“)|1 corresponds to the case where all tipe, ;) are different. Skipping the details of the calculation, we only give
the final result for={(")]; :

Fidlamy 3 (B8NP,

a,p,y

4 T (0K (0)12% (0% | K (0)| K (0)27% (O
Fifls=oud 3 soons K (BQEDPET +BTAGIES* +ec),

— (P(N+ YA (D (N+y")
Wl=K |A Ay 2+ Sn o

@ py#p'y’

2 5Q(, nw>KE {22 |A p5>|2AM R (A(O)A(O)*)Z

+eos BQP DB+ BE)IBA B L oo

Fii=2K cof (N+B8)QMb—NQM Pb]> (RNWENWENA*ENTA* 1 c.c). B2

a
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APPENDIX C

In this appendix, we calculate{™) for T=T) . Since
AN vanishes foiT=T(Y | we have

(9)\(N)
(N (T TNy 1
AMU=T-T T
C
Jd [AytANy 1
(T TN)y L [ONTTN 2 A
X[(Ay—ARN)2+4B?]Y? (CD
T(N)
c
From Eq.(2.19 we deduce’B/dT=0 and
T-Te” ox'(Qu)
AN:AN|T(N)_ 2C i N ‘ 3 (CZ)
¢ IN aT |T(N)
c
with
(0>
0 “ T
(C3

Equation(2.10 yields

Ix"(2ke—nG)

aT

~ N(O) 1+R inwcq}, 1_i_inwc
T2 | T T 4aT2 (27 4T

|

(C4
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whereV’ is the derivative of the digamma function. Using
W' (2)=1/z+1/22? for |z|>1, we obtain forw>T

dx P(2ke—nG) N(0)
h T =~ 7 SnotO(T/wd).  (CH)
To leading order inl/ ., we therefore have
ax?(Qn) _ 2 NO -
oT N 2T
from which we deduce
N(0)
An=AnT0+ = (T TN, C
N= N|TN> 2TV S (T ) (C?
In the same way, we can show that
A= Axltv+ NC) T-TMV C8
NT ‘|TN> 2-I-(N)( ¢ ) (C9
This yields
(0)
MY = o (T-TEY) (C9)
Cc
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