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Metal-insulator transition in highly conducting oriented polymers

N. Dupuis*
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 3 December 1996!

We suggest that highly conducting oriented polymers with a fibril structure can be modeled by a regular
lattice of disordered metallic wires with a random first-neighbor interwire coupling which mimics the cross
links between fibrils. We determine the position of the metal-insulator transition~MIT ! as a function of
interwire cross-link concentration, interwire couplingJ, and numberM of polymer chains in a wire. Two
different approaches are used. The first one is based on the self-consistent diagrammatic theory of Anderson
localization. In the second approach, we show that the MIT can be described by a nonlinears model. For
M51, we find that a small value ofJ favors the metallic state while a large value ofJ induces localization in
agreement with recent numerical calculations. WhenM@1, an increase ofJ always favors a delocalization of
the electronic states in agreement with a previous analytical analysis.@S0163-1829~97!08630-X#
ty
te
m
b
-

d
e
c.
ity
a
r

s
o

irt

n
-
d
e

nt
P
he
ir

s
ow
th

te
la
t-

g

n

his

am-

de-

an

cal
he

of

ted
we
lar

en
ly-
os-
r a
en

lar
el,

of
rep-
a
gs
I. INTRODUCTION

Highly conducting doped polymers based on polyace
lene, polypyrrole, and polyaniline have recently attrac
considerable interest. Due to the advent of improved che
cal processing, their room-temperature conductivity can
comparable to that of copper. AT-independent Pauli suscep
tibility, a linearT dependence of thermoelectric power, an
large negative microwave dielectric constant further sugg
that highly conducting polymers are intrinsically metalli
However, in contrast to traditional metals, their conductiv
decreases with temperature. This latter property is usu
explained by the fact that highly conducting polymers a
close to a metal-insulator transition driven by disorder.1 The
decrease of the conductivity withT then results from
phonon-controlled localization effects. Motivated by the
experimental results, many explanations of the transp
properties of highly conducting polymers are based on d
quasi-one-dimensional conductors~i.e., weakly coupled
chains systems!.2 The assumption of a periodic arrangeme
of the one-dimensional~1D! polymers chains which under
lies such explanations is however quite unrealistic. Prigo
and Efetov~PE! have recently proposed a model which tak
into account the irregular structure of the polymers.3 In
highly conducting polymers, single chains are coupled i
fibrils which are bent in space in a very complicated way.
model the fibrils by weakly disordered metallic wires. T
cross links between the fibrils are described by interw
junctions. In the absence of junctions, all electronic state
the wires are localized by any weak disorder. PE have sh
that the interwire junctions lead to a MIT and determined
position of the transition and the critical behavior.

We suggest in this paper that highly conducting orien
polymers with a fibril structure can be modeled by a regu
lattice of disordered metallic wires with a random firs
neighbor interwire coupling.~In oriented polymers, the
fibrils, although randomly bent in space, follow on avera
the direction of highest conductivity.! The case where the
wires contain a single chain has been recently studied
merically by Zambetaki, Economou, and Evangelou~ZEE!.4

We use two different approaches to study the MIT in t
560163-1829/97/56~6!/3086~8!/$10.00
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system. The first one is based on the self-consistent diagr
matic theory~SCDT! introduced by Vollhardt and Wo¨lfle.5

In the second approach, we show that the MIT can be
scribed by a nonlinears model ~NLsM!. Both approaches
yield the same phase diagram. For a large numberM of 1D
chains in the fibrils, we recover the main result of PE:
increase of the interwire couplingJ favors a delocalization of
the electronic states. However, we obtain a different criti
behavior and the position of the transition differs from t
result of PE. WhenM51, we show that a small value ofJ
favors the metallic state while a large value ofJ induces
localization in agreement with the numerical calculation
ZEE.

II. THE MODEL

We consider PE’s model in the case of strongly orien
polymers and make the following Gedanken experiment:
stretch the wires in such a way that they form a regu
~square! lattice of straight and parallel wires~Fig. 1!. The
interwire junctions now correspond to couplings betwe
neighboring wires. In the case of a strongly oriented po
mer, these couplings will have a short range. It is then p
sible, without inducing any qualitative change, to conside
simpler model where the couplings are allowed only betwe
first-neighbor wires and in a direction which is perpendicu
to the direction of the wires. To further specify the mod
we assume that at each positionx of a given wire, the cou-
pling strength with a neighboring wire is equal toJ with

FIG. 1. ~a! Schematic representation of a random network
metallic disordered wires. Each intersection between solid lines
resents an interwire junction.~b! Stretching the wires, we obtain
regular lattice. The interwire junctions become interwire couplin
~dashed lines!.
3086 © 1997 The American Physical Society
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56 3087METAL-INSULATOR TRANSITION IN HIGHLY . . .
probability c ~presence of an interwire junction! and van-
ishes with probability 12c ~absence of a junction!. For
M51, this model exactly corresponds to the one stud
numerically by ZEE. It is clear that the model is meaning
only if the probability to have a junction at a given positio
along a wire is weak (c!1). As pointed out in Ref. 3, the
existence of a delocalized phase is a highly nontrivial p
nomenon. Indeed, the random interwire coupling increa
the dimensionality~which favors the delocalized phase! but
is also an additional source of scattering.

We first consider the case where each fibril reduces
single chain (M51). We will show at the end of Sec. II
how the results can be straightforwardly extended to an
bitrary numberM of chains. The intrachain disorder is take
into account via a random potentialVl(x) with zero mean
and Gaussian probability distribution:

^Vl~x!Vl 8~x8!&5„2pN1~0!t…21d l ,l 8d~x2x8!, ~2.1!

whereN1(0) is the density of states of the chains andt the
elastic scattering time which originates in the random pot
tial V. The integersl[( l 1 ,l 2) refer to the positions of the
chains andx to the position along the chains. In the absen
of interchain coupling, the electronic states are localized w
a localization lengthR0; l where l 5vFt is the mean free
path andvF the Fermi velocity of the 1D chains.@Notice that
N1(0)51/pvF .#

The mean value of the neighboring chain coupling
t̄ '5cJ. Deviations from this mean value are taken into a
count via a random hoppingVl ,l 8

' (x) with second cumulan
equal to

^Vl 1 ,l 2
' ~x!Vl

18 ,l
28

'
~x8!&5 t̃ 'd~x2x8! d̄ l 1 ,l 261~d l 1 ,l

18
d l 2 ,l

28

1d l 1 ,l
28
d l 2 ,l

18
!, ~2.2!

where t̃ '5ac(12c)J2. a is the lattice spacing along th
chains axis.d̄ l 1 ,l 261 means thatl 1 andl 2 are first neighbors.

Higher order cumulants of the random variableV' are ne-
glected, i.e., we assume thatV' has a Gaussian probabilit
distribution.

In second quantized form, the Hamiltonian of the syst
can be written asH4Hpure1Hdis1Hdis

' where~for simplic-
ity we consider spinless fermions!

Hpure5(
l
E dxĉ l

†~x!~vFu2 i ]xu2kF!ĉ l~x!

2 t̄ ' (
l ,l 85 l 61

E dxĉ l
†~x!ĉ l 8~x! ,

Hdis5(
l
E dxVl~x!ĉ l

†~x!ĉ l~x! ,

Hdis
' 52(

l ,l 8
E dxVl ,l 8

'
~x!ĉ l

†~x!ĉ l 8~x!. ~2.3!

Hpure describes the 1D chains@with dispersion law
vF(ukxu2kF) wherekF is the Fermi momentum# coupled by
the transfer integralt̄ ' . Hdis and Hdis

' correspond to the
d
l

-
s

a
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-

e
h

-

intrachain disorder and the random interchain coupling,
spectively. Averaging over the random potentialsV andV'

is performed by introducingN replica of the system. Using
Eqs. ~2.1! and ~2.2!, we can write the averaged partitio
function of the replicated system as a functional integral o
Grassmann variablesca(* ) (a51, . . . ,N):

Z5E Dc*Dce2Spure2Sdis2Sdis
'

, ~2.4!

where

Spure52 (
a,l ,l 8

E dxdtdx8dt8c l
a* ~xt!

3Gl ,l 8
21

~xt,x8t8!c l 8
a

~x8t8! ,

Sdis52
„2pN1~0!t…21

2 (
a,b,l ,l 8

E dxdtdt8c l
a* ~xt!

3c l
a~xt!c l

b* ~xt8!c l
b~xt8! ,

Sdis
' 52

t̃ '

2 (
a,b,l ,l 8

d̄ l ,l 861E dxdtdt8

3@c l
a* ~xt!c l

b* ~xt8!c l 8
b

~xt8!c l 8
a

~xt!

2c l
a* ~xt!c l

b~xt8!c l 8
b* ~xt8!c l 8

a
~xt!#. ~2.5!

t,t8P@0,1/T# are imaginary times.Gl ,l 8
21(xt,x8t8) is the

Fourier transform of G21(k,vn)5 ivn2e(k). e~k!

5vF(ukxu2kF)22 t̄ '„cos(kyd)1cos(kzd)… (d is the inter-
chain spacing! and vn5pT(2n11) (n integer! is a Mat-
subara frequency. As usual, the averaging overV generates
an effective local~intrachain! electron-electron interaction
The averaging overV' generates an effective interchain in
teraction. Equivalently, one can view this latter interaction
hoppings of particle-particle or particle-hole pairs betwe
neighboring chains. For later calculations, it is convenien
expressSdis

' as a function of the Fourier transformed field
c (* )(kvn):

Sdis
' 52

1

2LN'
2 (

k,k8,q
(

vn ,vm
(
a,b

t̃ '~q'!@ca* ~kvn!

3cb* ~q2kvm!cb~q2k8vm!ca~k8vn!2ca* ~kvn!

3cb~k2qvm!cb* ~k82qvm!ca~k8vn!#, ~2.6!

where t̃ '(q')52 t̃ '„cos(qyd)1cos(qzd)… is the Fourier
transform of t̃ ' d̄ l ,l 861. Here L is the length of theN'

2

chains.

III. SELF-CONSISTENT DIAGRAMMATIC THEORY

In this section, we determine the phase diagram using
SCDT of Anderson localization.5 We first obtain the diffu-
sive modes in the semiclassical approximation conside
both sources of disorder (V and V') on an equal footing.
From the results of Prigodin and Firsov,6 we then deduce the
position of the MIT.

The first step is to calculate the self-energy correction
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3088 56N. DUPUIS
the Born approximation~Fig. 2!. The contribution of the in-
trachain disorderV is given by

S15
„2pN1~0!t…21

LN'
2 (

q
G~k1q,vn!52

i

2t
sgn~vn!

~3.1!

neglecting a nonessential shift of the chemical potential
keeping only terms which do not vanish in the replica lim
(N→0). In the same way, we obtain the contribution of t
random potentialV':

S25
1

LN'
2 (q

@ t̃ '~q'!G~q2k,vn!

1 t̃ '~q'50!G~k1q,vn!#. ~3.2!

The first contribution toS2 vanishes when summing overq
and we therefore obtain

S252 i4pN1~0! t̃ 'sgn~vn![2
i

2t8
sgn~vn!. ~3.3!

FIG. 2. Self-energy in the Born approximation.~a! S1 ~obtained
from Sdis). The dashed line gives a factor„2pN1(0)t…21. ~b! S2

~obtained fromSdis
' ). The wavy line gives a factort̃ '(q') for the

first diagram and a factort̃ '(q'50) for the second diagram~see
text!.
-

r

th
d

The total self-energy can be written a
S52( i /2t9)sgn(vn) where the scattering rat
1/t951/t11/t8 depends on 1/t and 1/t8}c(12c)J2.

The diffusive modes~diffuson and cooperon! are obtained
by summing the ladder diagrams shown in Fig. 3. The dif
son is therefore given by the Bethe-Salpeter equation

Gph~q,vn!5@„2pN1~0!t…211 t̃ '~q'!#

3@11P~q,vn!Gph~q,vn!#

5
„2pN1~0!t…211 t̃ '~q'!

12@„2pN1~0!t…211 t̃ '~q'!#P~q,vn!
,

~3.4!

where vn5n2pT (n integer! is a bosonic Matsubara fre
quency. We have introduced the particle-hole bub
„ṽn5vn1sgn(vn)/2t9…

P~q,vn!5
1

LN'
2 (k

G~k,ṽn!G~k1q,ṽn1n!

52pN1~0!t9@12uvnut92D9t9qx
2

2D't9„sin2~qyd/2!1sin2~qzd/2!…#, ~3.5!

for vnvn1n,0 andvn ,q→0. D95vF
2t9 andD'9 58 t̄ '

2 t9.
Settingq'50 in the numerator of Eq.~3.4! ~which is justi-
fied close to the diffusive pole!, we obtain

FIG. 3. Diagrammatic representation of the Bethe-Salpe
equation for the diffuson (Gph) and the cooperon (Gpp). The wavy

line representst̃ '(q').
Gph~q,vn!5
„2pN1~0!t92

…

21

uvnu1D9qx
21~D'9 11/t8!„sin2~qyd/2!1sin2~qzd/2!…

. ~3.6!
v.

lts

nd
th
-

The effective transverse diffusion coefficient in Eq.~3.6! is

the sum of two terms.D'9 58 t̄ '
2 t9 is generated by single

particle hoppings. 1/t8} t̃ ' comes from particle-hole pai
hopping as described by Eqs.~2.5! and ~2.6!.

Due to time-reversal invariance, the cooperon has
same expression as the diffuson:Gpp(q,vn)5Gph(q,vn)
where the definition of the external variablesq,vn is given
by Fig. 3. Gpp(q,vn) and Gph(q,vn) are characteristic of a
weakly coupled chains system with Fermi velocity~along the
chains! vF , elastic scattering timet9, and anisotropic diffu-
sion coefficientsD9 and D'9 11/t8. The SCDT has already
e

been applied to a quasi-1D system by Prigodin and Firso6,7

The position of the MIT is determined by

S D'9 1
1

t8
D t958 t̄ '

2 t921
t9

t8
52g2, ~3.7!

where g is a constant of order 1. Since our final resu
strongly depend on the precise value ofg for M51, we
considerg as an adjustable parameter. Following Refs. 3 a
4, we introduce the number of junctions per unit leng
p54c/a, the number of junctions within the chain localiza
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56 3089METAL-INSULATOR TRANSITION IN HIGHLY . . .
tion length r5pR054cl/a, and the dimensionless inte
chain couplinga5(paN1(0)J)2. For c!1, we have

t̄ 't85
1

8~12c!Aa
.

1

8Aa
,

t8

t
5

1

2~12c!ra
.

1

2ra
,

~3.8!

so that the equation which determines the position of
MIT is a function ofa andr only:

1

r
52aS 1

4g2
21D 1

a

2g2S 11
g2

a D 1/2

. ~3.9!

In general, Eq.~3.7! involves a, r, and txt where tx is the
intrachain transfer integral~since c5ra/4l 5r/8txt).8 For
g,1/A2, r is a decreasing monotonous function ofa. For
g.1/A2, r decreases fora!1 but increases whena;1.
Choosingg.1/A2, we reproduce the numerical results
ZEE which show a nonmonotonous behavior ofr as a func-
tion of a ~Fig. 4!. Whena!1, t8@t on the transition line.
The main source of scattering comes from the intrachain
order. The main effect of an increase ofa is then to increase
the effective transverse diffusion coefficient 8t'

2 t911/t8.

Using t/t8!1 and t9;t, Eq. ~3.7! reduces to 2t̄ 't;g

which involves only t̄ '5cJ in agreement with the numeri
cal calculation of Ref. 4. Whena;1, the random interchain
coupling becomes the main source of scattering (t8&t).
This effect dominates over the increase of the effective tra
verse diffusion coefficient and favors the localized phase
this regime, the position of the transition line depends
both t̄ '5cJ and 1/t8}c(12c)J2. We can also obtain from
Eq. ~3.7! the critical intrachain disorderW5(12tx /t)1/2 as a
function of J (c fixed! or c (J fixed! ~Figs. 5 and 6!. We
obtain a very good~qualitative! agreement with the numeri
cal calculations of ZEE~compare Figs. 5 and 6 with Ref. 4!.

To conclude this section, we consider the case where
fibrils contain M 1D chains~i.e., M transverse conducting
channels!. At the semiclassical level, the expression of t
diffuson and cooperon are unchanged and are given by
~3.4!. Including localization effects, we obtain a MIT dete
mined by

FIG. 4. Phase diagram obtained in the SCDT (g51). The solid
line corresponds to the transition line obtained from Eq.~3.7! for
M51 (txt51000). The dashed line corresponds to the approxim
tion ~3.9! valid for c!1. Long-dashed lines: transition lines fo
M510 andM520.
e

s-

s-
n
n

he

q.

S D'9 1
1

t8
D t958 t̄ '

2 t921
t9

t8
52

g2

M2
. ~3.10!

The dependence onM can be obtained from standard scalin
arguments.9 In the diffusive regime, an electron diffuses
the neighboring wire within a timetx determined by
d25(D'9 11/t8)(d2/4)tx . The corresponding diffusion
length along the wire isLx5(D9tx)

1/2. The MIT in the sys-
tem of coupled wires occurs whenLx;R0 whereR0;Ml is
the localization length of an isolated wire. This leads to E
~3.10!.

Whatever the value ofg;O(1), for M@1 we obtain
from Eq. ~3.10! a monotonous decrease ofr for increasing
a in agreement with PE’s results.3 However, the position of
the MIT does not correspond exactly to the one obtained
PE. In particular, we find thatr approaches zero whe
a@1 while PE obtainedr;1 in that limit. Along the tran-
sition line, the main source of scattering is always the int
chain disorder~i.e.,t!t8). Fora&1, the interchain electron
hops are primarily due to single-particle hoppings (t̄ ')
while for a*1 they are mostly due to particle-particle o
particle-hole pair hoppings (t̃ ').

IV. NONLINEAR s MODEL

In the preceding section, we have considered both sou
of disorder (V andV') on an equal footing. We now propos
a different approach whereSdis

' is treated in perturbation

-

FIG. 5. Critical intrachain disorderW5(12tx /t)1/2 @tx51# in
the SCDT vsJ for c51, 0.5, and 0.1~from top to bottom!.

FIG. 6. Critical intrachain disorderW5(12tx /t)1/2 @tx51# in
the SCDT vscJ for various values ofJ ~J50.5, 3, and 10 from left

to right!. Dashed line:W5(24tx t̄ ' /g)1/2 vs cJ.
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3090 56N. DUPUIS
while Spure1Sdis is treated~at least in principle! exactly. To
do that, we decouple the quartic termSdis

' by means of a
Hubbard-Stratonovich transformation.~A similar approach
has been used recently to study the MIT in quasi-2D dis
dered conductors.10,11! We then show that the low-energ
fluctuations of the auxiliary field are governed by a NLsM
from which we can deduce the position of the MIT. W
consider in this section only the caseM51.

We introduce spinorsf,f̄ defined by

f ln
a ~x!5

1

A2
S c l

a* ~xvn!

c l
a~xvn!

D ,

f̄ ln
a ~x!5~Cf!T5

1

A2
„2c l

a~xvn!,c l
a* ~xvn!…, ~4.1!

where C is the charge conjugation operator.12 The action
Sdis

' is rewritten as

Sdis
' @f̄,f#5E dxTr@B~x! t̃ 'B~x!#, ~4.2!

where we have introduced the matrix fieldBlnm
ab (x)

5f ln
a (x) ^ f̄ lm

b (x). In Eq. ~4.2!, t̃ ' should be understood a

the matrix t̃ ' l ,l 85 t̃ ' d̄ l ,l 861 ~diagonal in the indicesa,n,i
wherei 51,2 refers to the two components of the spinors!. Tr
denotes the trace over all discrete indices. Introducing
auxiliary matrix field Qlnm

ab (x) to decouple Eq.~4.2!, we
write the partition function as

Z5E Df̄Dfe2S0[ f̄,f]

3E DQe2*dx†Tr[Q~x! t̃ '
21Q~x!] 12iTr[B~x!Q~x!] ‡, ~4.3!

where t̃ '
21 is the inverse matrix oft̃ ' andS05Spure1Sdis.

~One can verify that different decouplings ofSdis
' would not
r-

n

lead to any nontrivial phenomena.! The auxiliary field has
the same structure as the fieldB(x) and therefore satisfies th
conditionsQ15CTQTC5Q.12

We first determine the value ofQ in the saddle point
approximation. Assuming a solution of the form

i j (Q
SP) lnm

ab (x)5Q0da,bdn,md i , j @i , j 51,2 label the four com-
ponents ofQlnm

ab (x)# we obtain the saddle point equation

Q05
i

2
t̃ '~q'50!

1

LN'
2 (

k
GSP~k,vn!. ~4.4!

GSP(k,vn) is the single-particle Green’s function calculate
with the saddle point action

SSP5S012i E dxTr@B~x!QSP#52 (
a,k,vn

ca* ~kvn!

3~ ivn2e~k!12iQ0…c
a~kvn!1Sdis. ~4.5!

Taking into accountSdis perturbatively in the Born approxi
mation, we obtain

GSP~k,vn!5F ivn2ek1
i

2t
sgn~vn!12iQ0G21

. ~4.6!

The saddle point equations~4.4! and ~4.6! yield Q0

5(1/4t8)sgn(vn) where 1/t858pN1(0) t̃ ' was obtained in
Sec. III. Within the saddle point approximation, we therefo
obtain a change of the elastic scattering time due to the
dom interchain hopping. The total scattering rate becom
1/t951/t11/t8.

We now consider the fluctuations around the saddle p
solution. As in the standard localization problem,12 the
Sp(2N) symmetry of the Lagrangian is spontaneously b
ken to Sp(N)3Sp(N). Our aim is to obtain the effective
action of the~diffusive! Goldstone modes associated wi
this spontaneous symmetry breaking. Following Ref. 12,
shift the field according to Q→Q1QSP2V/2, with

i j V lnm
ab (x)5da,bdn,md i , jvn , and expand the action to lowes

order inV andQ. The partition function can be written as
Z5E DQe2*dx†2Tr[QSPt̃ '
21Q~x!] 1Tr[Q~x! t̃ '

21Q~x!] 2Tr[V t̃ '
21Q~x!] ‡^e22i *dxTr[Q~x!B~x!]& S̃0

, ~4.7!
where the averagê•••& S̃0
should be taken with the action

S̃05S012i E dxTr@B~x!~QSP2V/2!#

52 (
a,k,vn

ca* ~kvn!„2e~k!1~ i /2t8!sgn~vn!…

3ca~kvn!1Sdis. ~4.8!

Performing a cumulant expansion of^•••& S̃0
in Eq. ~4.7! and

using the stationarity conditions~4.4! and ~4.6!, we obtain
the effective action of theQ field
S@Q#5E dxTr@Q~x! t̃ '
21Q~x!2V t̃ '

21Q~x!#

12E dx1dx2^Tr@Q~x1!B~x1!#Tr@Q~x2!B~x2!#& S̃0

5E dxTr@Q~x! t̃ '
21Q~x!2V t̃ '

21Q~x!#

2E dx1dx2 j i Ql 1mn
ba ~x1! i jRnm

ab~x1l 1 ,x2l 2!

3 i j Ql 2nm
ab ~x2!, ~4.9!
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56 3091METAL-INSULATOR TRANSITION IN HIGHLY . . .
where a sum over repeated indices is implied.Rnm
ab is defined

by

Rnm
ab~1,2!5S Rnm

ab~2,1u1,2! Rnm
ab~2,2u1,1!

Rnm
ab~1,1u2,2! Rnm

ab~1,2u2,1!D ,

Rnm
ab~x1l 1 ,x2l 2ux3l 3 ,x4l 4!

5^c l 1
a ~x1vn!c l 2

b ~x2vm!cb
l 4
* ~x4vm!ca

l 3
* ~x3vn!& S̃0

.

~4.10!

For a system with time reversal symmetry, the Fourier tra
formRnm

ab(q) has all its components equal toRnm
ab(q). In the

diffusive regime, it is easy to obtain the expression
Rnm

ab(q) from the actionS̃0. In the replica limit (N→0), we
have for the diffusive~Goldstone! modes (vnvm,0)

Rnm
aa~q!21udiff[R̃~q!21udiff5

1

2pN1~0!S 1

t8
1vF

2t9qx
2

18 t̄ '
2 t9„sin2~qyd/2!1sin2~qzd/2!…D .

~4.11!

The saddle pointQ0 introduces a ‘‘mass’’ term in the diffu-
sive propagator. The exact propagatorRnm

aa(q) can be ex-
pressed as in~4.11! but with renormalized diffusive coeffi
cients D̃9 and D̃'9 replacing the bare coefficientsvF

2t9 and

8 t̄ '
2 t9, respectively:

R̃~q!215
1

2pN1~0!S 1

t8
1D̃9qx

21D̃'9 „sin2~qyd/2!

1sin2~qzd/2!…D . ~4.12!

Notice that the ‘‘mass’’ term 1/t8 plays the same role as
finite frequency.Rnm

aa(q) can be obtained either fromS̃0 or
from S09 but at a finite frequency 1/t8. HereS09 is the action
obtained fromS0 by the replacementt→t9. Equations~4.9!
and ~4.12! yield

S@Q#5(
q
„ t̃ '

21~q'!2R̃~q!…Tr@Q~q!Q~2q!#

2Tr@V t̃ '
21Q~q50!#, ~4.13!

where we have introduced the Fourier transformed fi
Q(q). In Eq. ~4.13! and in the following, Tr does not includ
a sum over the integersl ~chain positions! any more. We
now define a low-energy regime by the conditionsq'd,
D̃9t8qx

2 , D̃'9 t8q'
2 d2/4&1 which can also be written as

qx&Lx;~D̃9t8!21/2, q'&L';S d2

4
1D̃'9 t8

d2

4 D 21/2

.

~4.14!

In that regime we can expandt̃ '
21(q')2R̃(q) to lowest or-

der in q. Rescaling the fieldsQ→Q/4t8, we thus obtain
s-

f

d

S@Q#5
p

8
N1~0!(

q
S D̃9qx

21S D̃'9 1
1

t8Dq'
2 d2

4 D
3Tr@Q~q!Q~2q!#2

p

2
N1~0!Tr@VQ~q50!#.

~4.15!

Notice that the ‘‘mass’’ term 1/t8 in the propagator
Rnm

aa(q) is canceled by the uniform part o

Tr@Q(x) t̃ '
21Q(x)# @see Eq.~4.9!#. The fluctuations ofQ

around its saddle point value are massless forvnvm,0, i.e.,
the low-energy excitations correspond to~diffusive! Gold-
stone modes as expected from general symm
arguments.12 On the other hand, it is clear that the fluctu
tions are massive forvnvm.0. Having identified the Gold-
stone modes, we now follow the conventional NLsM ap-
proach. We suppress the massive fluctuations imposing
the field Q the constraintsQ251I ~with 1I the unit matrix!
and TrQ50.12 These constraints and the action~4.15! define
a NLsM.

Notice that as in the preceding section the effective tra
verse diffusion coefficient appearing in Eq.~4.15! is the sum
of two terms.D̃'9 is generated by single particle intercha

hopping (t̄ ') and 1/t8} t̃ ' comes from particle-particle o
particle-hole pair hopping as described by Eqs.~2.5! and
~2.6!.

Equation~4.13! shows that the propagator of the Gol
stone modes isP5( t̃ '

212R̃)215 t̃ '1 t̃ 'R̃ t̃ '1••• ~see

Fig. 7!. SinceR̃ is given by the exact result~4.12!, it is clear
that our approach does not simply consider the two sou
of disorder on the same footing, but is able to take in
account strong intrachain disorder effect. From this point
view, the present approach is much more satisfactory t
the SCDT of the preceding section.

Going to real space and taking the continuum limit in t
perpendicular directions, we eventually come to

S@Q#5
p

8
N3~0!E d3r F D̃9Tr@¹xQ#21S D̃'9 1

1

t8Dd2

4

3Tr@¹'Q#2G2
p

2
N3~0!E d3rTr@VQ#, ~4.16!

where N3(0)5N1(0)/d2 is the 3D density of states. Th
anisotropy of the diffusion coefficients being the same as
of the cutoffs (Lx and L'), we can rescale the lengths a
cording to

x→xS D̃9t8

11D̃'9 t8

4

d2D 1/3

, r'→r'S D̃9t8

11D̃'9t8

4

d2D 21/6

,

~4.17!

in order to obtain an isotropic NLsM:10

FIG. 7. Diagrammatic representation of the propagatorP of the

Goldstone modes. The wavy line representst̃ '(q').
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S@Q#5
p

8
N3~0!D̄E d3rTr@¹Q#2

2
p

2
N3~0!E d3rTr@VQ#, ~4.18!

where

D̄5F S D̃'9 1
1

t8
D d2

4 G 2/3

~D̃9!1/3. ~4.19!

The isotropic cutoff is

L̄;S 4

~11D̃'9 t8!d2D 1/3
1

~D̃9t8!1/6
. ~4.20!

The dimensionless coupling constant of the NLsM ~4.18! is

l5
4

pN3~0!D̄
L̄5

4

pN3~0!

1

~DiD'
2 !1/3~DiD'

2 t83!1/6
,

~4.21!

whereDi5D̃9 and D'5(D̃'9 11/t8)d2/4 are the effective
diffusion coefficients of the model before the length resc
ing leading to the isotropic action~4.18!. The second line of
Eq. ~4.21! clearly shows that the dimensionless coupling
volves the geometric mean of the diffusion coefficients a
the geometric mean of the diffusion lengths within a tim
t8. The MIT occurs whenl equals a critical valuelc ~of
order unity!. To completely determine the position of th
MIT, one has to obtain the diffusion coefficientsD̃9 and
D̃'9 . As mentioned above, these coefficients can be obta
from S09 at a finite frequency 1/t8. We thus have to calculat
diffusion coefficients in a weakly coupled chains system
that we can use again the results of Ref. 6. We assume
when the system is at the MIT,S09 corresponds to an insula
ing phase. We have verified that this assumption is true
a→0 anda;1, and holds everywhere on the transition li
if l is sufficiently large with respect tog. For simplicity we
shall consider only the latter case by choosingg51 and
l58. The MIT for S09 is given by 122 t̄ 't9/g50 and

therefore our assumption implies 122 t̄ 't9/g.0. The lo-
calization lengths in the insulating phase arej; l 9/ueu and
j';jA2 t̄ 'd/vF along and perpendicular to the chains, r

FIG. 8. Same as Fig. 4, but in the NLsM (g51 andl58).
l-

-
d

ed

o
at

r

-

spectively, withueu5122 t̄ 't9/g. The finite frequency dif-
fusion coefficients can be approximated by5

D9~vn!5
vF

2t9

11
l 92

j2uvnut9

; D'9 ~vn!5
8 t̄ '

2 t9

11
l 92

j2uvnut9

.

~4.22!

D̃9 and D̃'9 are obtained from Eq.~4.22! with uvnu51/t8.
Equation~4.21! then gives the position of the MIT:

S 16

lc
D 2

5
t9/t8

11ueu2t8/t9
S 11

8 t̄ '
2 t9t8

11ueu2t8/t9
D 2

. ~4.23!

The preceding equation is a function ofr, a, and txt. For
c!1, we can use Eq.~3.8! to obtain an equation involving
only r anda.

Figures 8–10 show that the agreement with the SCDT
very good. The only difference is the behavior of the critic
disorderW as a function ofc for c;1 ~Fig. 10!. We how-
ever believe this behavior to be spurious. It follows from t
fact that we have mixed results from the SCDT and from
NLsM. @When c→1, 1/t8→0 and Eq.~4.23! reduces to
ueu5122 t̄ 't/g50, i.e., W5(24tx t̄ ' /g)1/2. Thus, by us-
ing the results from Ref. 6, we impose the boundary con
tion W(c51)5(24tx t̄ ' /g)1/2 which turns out not to be
completely compatible with our analysis based on
NLsM.# Since the transition is described by a NLsM, we
expect the critical behavior to be the usual one in agreem
with the numerical calculation of ZEE,4 but in disagreemen
with PE’s results.

FIG. 9. Same as Fig. 5, but in the NLsM.

FIG. 10. Same as Fig. 6, but in the NLsM.
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V. CONCLUSION

Using two different methods, we have studied the MIT
a system of randomly coupled wires. Our results clea
show the dual role of the random interwire coupling. On t
one hand, it generates an effective transverse bandw
t̄ '5cJ and gives a contributiond2/4t8 to the transverse
diffusion coefficient. On the other hand, it increases the sc
tering rate by 1/t8}c(12c)J2. We have derived a phas
diagram which agrees with the numerical calculation of ZE
~performed forM51) and with the analytical analysis of P
~valid for M@1) although we have found a different critica
behavior in this latter case.

As emphasized by PE, the model studied in this paper
only yields a MIT starting from arealistic description of the
polymer structure, but also allows one to reconcile the
perimental controversy between the low- and hig
temperature conductivities of polymers.3 Our zero tempera-
ture study shows that the intrafibril localization effects a
suppressed by the interfibril electron hops which occur a
characteristic frequency 1/t818 t̄ '

2 t9 ~note that forM@1
and a&1, this characteristic frequency is;1/t8). At finite
temperature, localization effects are also suppressed by
elastic electron-phonon collisions. Thus, at sufficien
high temperature, whenV51/t818 t̄ '

2 t911/t in(T)*1/t
@t in(T) is the electron-phonon collision time#, intrafibril lo-
i

g

y
e
th

t-

ot

-
-

a

in-

calization effects are completely suppressed: the conduc
ity is determined by band transport and therefore increa
for decreasing temperature as in a traditional metal. W
V&1/t, localization effects become important. For a syst
close to the MIT, they lead to a decrease of the conductiv
as the temperature is lowered~see Ref. 3 for a more detaile
discussion!.

Since M@1 for polymers, our main conclusion agree
with PE with respect to the experimental situation in re
materials: an increase of the number of interfibril contacts
the strength of the interfibril coupling should move th
sample towards the metallic state. Experimentally, this
confirmed by the significant enhancement of the lo
temperature conductivity under stretching or application
pressure.3,13,14
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