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Metal-insulator transition in highly conducting oriented polymers
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We suggest that highly conducting oriented polymers with a fibril structure can be modeled by a regular
lattice of disordered metallic wires with a random first-neighbor interwire coupling which mimics the cross
links between fibrils. We determine the position of the metal-insulator transiitif) as a function of
interwire cross-link concentration, interwire couplidg and numbem of polymer chains in a wire. Two
different approaches are used. The first one is based on the self-consistent diagrammatic theory of Anderson
localization. In the second approach, we show that the MIT can be described by a noalineadel. For
M =1, we find that a small value df favors the metallic state while a large valueJoihduces localization in
agreement with recent numerical calculations. Wher 1, an increase aof always favors a delocalization of
the electronic states in agreement with a previous analytical andl$€i$63-18207)08630-X]

I. INTRODUCTION system. The first one is based on the self-consistent diagram-
matic theory(SCDT) introduced by Vollhardt and Wte >
Highly conducting doped polymers based on polyacetydn the second approach, we show that the MIT can be de-
lene, polypyrrole, and polyaniline have recently attractedscribed by a nonlineas- model (NLoM). Both approaches
considerable interest. Due to the advent of improved chemivield the same phase diagram. For a large nunibesf 1D
cal processing, their room-temperature conductivity can p&hains in the fibrils, we recover the main result of PE: an
comparable to that of copper. rindependent Pauli suscep- increase of the interwire couplinhfavors a delocalization of
tibility, a linear T dependence of thermoelectric power, and athe electronic states. However, we obtain a different critical
large negative microwave dielectric constant further suggedtehavior and the position of the transition differs from the
that highly conducting polymers are intrinsically metallic. result of PE. WherM =1, we show that a small value df
However, in contrast to traditional metals, their conductivity favors the metallic state while a large value bfinduces
decreases with temperature. This latter property is usuangpcalization in agreement with the numerical calculation of
explained by the fact that highly conducting polymers areZEE.
close to a metal-insulator transition driven by disorti@he
decrease of the conductivity witd then results from Il. THE MODEL

phonon-controlled localization effects. Motivated by these _ , . .
experimental results, many explanations of the transport We consider PE’'s model in the case of strongly oriented

properties of highly conducting polymers are based on dimpolymers and.mak.e the following Gedanken experiment: we
quasi-one-dimensional conductor§.e., weakly coupled stretch the'W|res in ;uch a way that th'ey fprm a regular
chains system$ The assumption of a periodic arrangement_(squar_ée Ia_ttlce_of straight and parallel W|re(sF|g. 1). The

of the one-dimensionallD) polymers chains which under- INt€rwire junctions now correspond to couplings between
lies such explanations is however quite unrealistic. Prigodif?€/ghPoring wires. In the case of a strongly oriented poly-
and Efetov(PE) have recently proposed a model which takesTe': these couplings will have a short range. It is then pos-
into account the irregular structure of the polymers s!ble, without inducing any qua_llltatlve change, to consider a
highly conducting polymers, single chains are coupled intgMPIer model where the couplings are allowed only between
fibrils which are bent in space in a very complicated way. I:,Eﬂrst-nelg_hbo_r wires and ina direction which |s_perpend|cular
model the fibrils by weakly disordered metallic wires. The 0 the direction of the wires. To further specify the model,

cross links between the fibrils are described by interwireVe @ssume that at each positierof a given wire, the cou-

junctions. In the absence of junctions, all electronic states o9 strength with a neighboring wire is equal Jowith
the wires are localized by any weak disorder. PE have shown
that the interwire junctions lead to a MIT and determined the

position of the transition and the critical behavior.
We suggest in this paper that highly conducting oriented
polymers with a fibril structure can be modeled by a regular

lattice of disordered metallic wires with a random first- ®)

neighbor interwire coupling.(In oriented polymers, the @)

fibrils, although randomly bent in space, follow on average FiG. 1. (a) Schematic representation of a random network of
the direction of highest conductivilyThe case where the metallic disordered wires. Each intersection between solid lines rep-
wires contain a single chain has been recently studied nuesents an interwire junctiorib) Stretching the wires, we obtain a
merically by Zambetaki, Economou, and Evange{g&E).* regular lattice. The interwire junctions become interwire couplings
We use two different approaches to study the MIT in this(dashed lines
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probability ¢ (presence of an interwire junctiprand van- intrachain disorder and the random interchain coupling, re-
ishes with probability +c (absence of a junction For  spectively. Averaging over the random potentilsind V*

M =1, this model exactly corresponds to the one studieds performed by introducind\ replica of the system. Using
numerically by ZEE. It is clear that the model is meaningful Egs. (2.1) and (2.2), we can write the averaged partition
only if the probability to have a junction at a given position function of the replicated system as a functional integral over

along a wire is weakd<1). As pointed out in Ref. 3, the Grassmann variableg**) (a=1, ... N):

existence of a delocalized phase is a highly nontrivial phe-

nomenon. Indeed, the random interwire coupling increases :J' * ~Spure Sais— Shi

the dimensionalitywhich favors the delocalized phadeut z Dy Dye . @4

is also an additional source of scattering.
We first consider the case where each fibril reduces to a
single chain M=1). We will show at the end of Sec. llI

where

how the results can be straightforwardly extended to an ar- Spre=— 2| dxdrdx'd 7’ yi* (x7)
bitrary numbemV of chains. The intrachain disorder is taken all’
into account via a random potenti&}(x) with zero mean XGl_,l,(XT,x’T’)wf‘,(x’r’),
and Gaussian probability distribution: ’
’ -1 ’ (27TN1(0)T)
(Mi(X) V) (X"))=2aN(0)7) "8 1 s(x—x"), (2.1) Sgie= — ————— > dxdrd 7’ ¢* (x7)

whereN,(0) is the density of states of the chains anthe = pL

elastic scattering time which originates in the random poten- X Y (X7) z/;,ﬁ*(Xq- )¢//| (x7"),
tial V. The integerd=(l,,l,) refer to the positions of the

chains and to the position along the chains. In the absence
of interchain coupling, the electronic states are localized with Stis= — Z J) |/+1f dxdrd7’
a localization lengthR,~1 wherel=vg7 is the mean free 2 apll’
path andv ¢ the Fermi velocity of the 1D chainfiNotice that X[ ™ (x7) yf* (x7' )l/f (X7 g5 (X7)
N1(0)=1/mvE.]
The mean value of the neighboring chain coupling is — I (xT) PP (x7 ) gl (x7)]. (2.5)

=cJ. Deviations from this mean value are taken into ac-

count via a random hopping, ,,(x) with second cumulant " 7' €[0,1/T] are imaginary timesG, ,;(xr.x'') is the

Fourier transform of G 1(k, wn)—lwn e(k). ek)

equal to e _
=ve(|ky —kg) =2t (coskd)+coskd) (d is the inter-
<V 5 (x)V (X! ))—t S(x—x )5| 1yea(8i, |/5| i chain spacingand w,=#T(2n+1) (n intege) is a Mat-
112 "2 subara frequency. As usual, the averaging ovegenerates
) 2.2 an effective local(intrachain electron-electron interaction.

The averaging ove¥! generates an effective interchain in-
where T, = ac(l c)J2. a is the lattice spacing along the terac_tion. Equival_ently, one can view_this latter in_teraction as
hoppings of particle-particle or particle-hole pairs between
chains axis 5I1,l2tl means that; andl; are first neighbors. eighhoring chains. For later calculations, it is convenient to
Higher order cumulants of the random variable are ne-  expressSy, as a function of the Fourier transformed fields
glected, i.e., we assume thdt has a Gaussian probability ) (kwp):
distribution.
In second quantized form, the Hamiltonian of the system .
can be written a8t ="Myt Hais+ Hes Where(for simplic-  Sais™ ~ SLNE > 2 2 (g™ (Kwp)
ity we consider spinless fermions L kK'\q @nom @F

X PP* (q—kom ¥P(q— k' om) y*(K' on) = ¢** (ko)

_ ot - -
Hpure_zl fdx'r//I(X)(UF|_|‘9X|_kF)‘//I(X) X P (K= qwm) P* (K’ — Qo) (K’ wp)], (2.6)
e where T,(q,)=2Tt, (cos@,d)+cos@d)) is the Fourier
||§|+1 dxiy (X) ¢ (X) transform of T, &,,..,. Here L is the length of theN?
T chains.
HdiSZZ deW(X)¢F(X)¢|(X), Ill. SELF-CONSISTENT DIAGRAMMATIC THEORY

In this section, we determine the phase diagram using the
SCDT of Anderson localizationWe first obtain the diffu-
Heis= Z dXVh/(X) B (X) P (X). (23 sive modes in the semiclassical approximation considering
) both sources of disorde(and V') on an equal footing.
Hpure describes the 1D chaingwith dispersion law  From the results of Prigodin and Firsbwe then deduce the
ve(|ky —kg) wherekg is the Fermi momentuircoupled by position of the MIT.

the transfer integraﬂ Hgis and Hys correspond to the The first step is to calculate the self-energy correction in
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(b) \AA\MH% % FIG. 3. Diagrammatic representation of the Bethe-Salpeter
+

equation for the diffusonl{y, and the cooperonl{,,). The wavy
k q-k k k kiq k line representd | (q, ).

FIG. 2. Self-energy in the Born approximatida) 3, (obtained ~The  total  self-energy ~ can  be  written as
from Syo. The dashed line gives a fact@7N,(0)n) L. (b) 3, ==—(i/27")sgn(w,) where the scatterlnzg rate
(obtained fromSj,). The wavy line gives a factot , (q,) for the Ur"= 1/7f+ 1/_7" depe”ds_ on ¥ and 1f'=c(1-c)J”. _
first diagram and a factot , (g, =0) for the second diagrarisee The dnffuswe mOdeéd'f_fuson and coopgrc)n;re Obta'”ed
text). by summing the ladder diagrams shown in Fig. 3. The diffu-

son is therefore given by the Bethe-Salpeter equation
the Born approximatioiiFig. 2). The contribution of the in- =
trachain disorde¥ is given by I'pr(@,@,) =[(27N(0)7)""+ t (q,)]
X[1+11(q,0, )T o, o,
(27N (0)7) L i [ (q,0,)'pn(q,0,)]
= 2, G(k+,00) =~ 550Mw;)
q T

ST _ 27Ny (0)7) T+ T. ()
3.1) 1-[@aNy(0) 1) 1+ T, (q)]T(qw,)’
neglecting a nonessential shift of the chemical potential and (3.4)

keeping only terms which do not vanish in the replica limit

(N—0). In the same way, we obtain the contribution of theWNere @,=v2zT (v intege) is a bosonic Matsubara fre-
random potential/": guency. We have introduced the particle-hole bubble

(0= w,+sgn(w,)/27")

1 —_
— =3 [T .(q,)6(q— k@, 1 - -
Yo [T@)GE—koey (@0, = =5 GkaG(k+4.5p..)
1

+TL(qL:O)G(k+q1wn)] (32) :27TN1(0)T”[1_|(O |T//_D//T//q2
14 X
The first contribution t&, vanishes when summing over o .
and we therefore obtain —D, 7(sin?(q,d/2) +sir?(q,d/2))], (3.5

for whwn,,<0 andw,,q—0.D"=v27" andD’=81t27".

S,=—i47Ny(0) 1T, sgnw,)=— I—sgr(wn). (3.3  Settingq, =0 in the numerator of Eq3.4) (which is justi-
27 fied close to the diffusive polewe obtain

(2N, (0) 7)1
|w,|+D"g2+ (D] +1/7")(sir(q,d/2) + sir’(q,d/2))

Fon(0,0,)= (3.6)

The effective transverse diffusion coefficient in E§.6) is  been applied to a quasi-1D system by Prigodin and FifSov.
the sum of two termsD” =8t2 7" is generated by single- The position of the MIT is determined by

particle hoppings. ¥ =t , comes from particle-hole pair
hopping as described by Eq2.5 and(2.6).

Due to time-reversal invariance, the cooperon has the
same expression as the diffusof,(q,w,)=1",n(q, ®,)

where the definition of the external variablgso, is given  \yhere y is a constant of order 1. Since our final results
by Fig. 3.T'py(d,w,) andI'yi(g,w,) are characteristic of a strongly depend on the precise value pffor M=1, we
weakly coupled chains system with Fermi velodiyong the  considery as an adjustable parameter. Following Refs. 3 and
chaing vg, elastic scattering time”, and anisotropic diffu- 4, we introduce the number of junctions per unit length
sion coefficientd” and D' +1/7'. The SCDT has already p=4c/a, the number of junctions within the chain localiza-

!

,T/
=827+ — =27, 3.7

n
T

T
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FIG. 5. Critical intrachain disordew=(12t,/7)*? [t,=1] in
FIG. 4. Phase diagram obtained in the SCO#=(1). The solid ~ the SCDT vsJ for c=1, 0.5, and 0.Xfrom top to botton.
line corresponds to the transition line obtained from E37) for

M=1 (t,7=1000). The dashed line corresponds to the approxima- 1 7 7,2
tion (3.9 valid for c<1. Long-dashed lines: transition lines for D'+ - 7J’=8t_f 7%+ —,=2—2. (3.10
M =10 andM = 20. T ™ M

tion length p=pR,=4cl/a, and the dimensionless inter- The dependence dvl can be obtained from standard scaling

chain couplinga= (mwaN,(0)J)2. Forc<1, we have arguments. In the diffusive regime, an electron diffuses to
’ the neighboring wire within a timer, determined by
L 1 1 - 1 1 d?=(D +1/7')(d*/4)7,. The corresponding diffusion
T = = Y2 I = , length along the wire is,=(D"7,)Y2 The MIT in the sys-
8(1-c)Ja 8Ya' 7 2(1-c)pa ZPE; 8 tem of coupled wires occurs whén~ R, whereRy~MI is

the localization length of an isolated wire. This leads to Eq.
so that the equation which determines the position of thd3.10.

MIT is a function ofa andp only: Whatever the value ofy~O(1), for M>1 we obtain
from Eq. (3.10 a monotonous decrease pffor increasing
1 a y2\ 12 a in agreement with PE’s resuftsdowever, the position of
—=2a| — 1)+ —| 1+ ;) (3.9  the MIT does not correspond exactly to the one obtained by
P 4y 2y PE. In particular, we find thap approaches zero when

In general, Eq(3.7) involves a, p, andt,r wheret, is the ~ @>1 while PE obtaine¢p~1 in that limit. Along the tran-
intrachain transfer integralsince c= pa/4l = p/8t,7).8 For  Sition line, the main source of scattering is always the intra-
y<1I2, p is a decreasing monotonous functionaf For ~ chain disordefi.e., 7<7"). Fora=<1, the interchain electron
y>12, p decreases forr<1 but increases when~1.  hops are primarily due to single-particle hoppings §
Choosingy>1/\/2, we reproduce the numerical results of while for a=1 they are m~ostly due to particle-particle or
ZEE which show a nonmonotonous behaviopads a func-  particle-hole pair hoppingst( ).

tion of « (Fig. 4. Whena<1, 7'> 7 on the transition line.
The main source of scattering comes from the intrachain dis-
order. The main effect of an increasewfs then to increase
the effective transverse diffusion coefficientfsﬂ+ 1/7. In the preceding section, we have considered both sources

Using /7' <1 and 7'~ 7, Eq. (3.7) reduces to 2_N~ y of disorder ¥ andV+) on an equal footing. We now propose
a different approach wher&, is treated in perturbation

IV. NONLINEAR o MODEL

which involves onlyt | =cJ in agreement with the numeri-
cal calculation of Ref. 4. Whea~ 1, the random interchain
coupling becomes the main source of scattering<{(7).
This effect dominates over the increase of the effective trans-

verse diffusion coefficient and favors the localized phase. In 10
this regime, the position of the transition line depends on =

both t | =cJ and 1F «c(1—c)J?. We can also obtain from
Eq. (3.7) the critical intrachain disordétv= (12t,/7)¥? as a y
function of J (c fixed) or ¢ (J fixed) (Figs. 5 and & We /
obtain a very goodqualitative agreement with the numeri- 0
cal calculations of ZEEcompare Figs. 5 and 6 with Ref).4 5 10

To conclude this section, we consider the case where the
fibrils containM 1D chains(i.e., M transverse conducting cJd
channels At the semiclassical level, the expression of the
diffuson and cooperon are unchanged and are given by Eq. FIG. 6. Critical intrachain disordew=(12t,/7)*? [t,=1] in
(3.4). Including localization effects, we obtain a MIT deter- the SCDT vscJ for various values o (J=0.5, 3, and 10 from left
mined by to right). Dashed lineW= (24t t , /y)¥2vs cJ.

(@



3090 N. DUPUIS 56

while Syt Suis i treated(at least in principleexactly. To  lead to any nontrivial phenomenarlhe auxiliary field has
do that, we decouple the quartic terfij, by means of a the same structure as the fi@dx) and therefore satisfies the
Hubbard-Stratonovich transformatiopd similar approach ~conditionsQ*=C'Q'C=Q.*?

has been used recently to study the MIT in quasi-2D disor- We first determine the value d@ in the saddle point
dered conductor®') We then show that the low-energy approximation. Assuming a solution of the form
fluctuations of the auxiliary field are governed by adl  ij(Q5)) {5 (X) = Qo8 gdn mdi ; [i,j=1,2 label the four com-
from which we can deduce the position of the MIT. We ponents ofQ*?(x)] we obtain the saddle point equation
consider in this section only the cabk=1.

We introduce spinors&,gTdefined by Qo=|§T¢(QL=0) Llil 2 GSRK, wp). (4.4)
24
ak
b (X)= 1 Yi (xen) GSAk,w,) is the single-particle Green’s function calculated
In NAYACCH IS with the saddle point action

_ 1 Sep= 2i | dxTrB SPl=— “*(kowy,
T = (C) =5 U x4 (o), (4 5P~ S0t 'f XTBOOQ™== 2 ™ (kan)

. . . . X (i w,— e€(K)+2i “(k + Syis - 4.
where C is the charge conjugation operatérThe action (i0n=e(k) +2iQo) 1" (ken) + S “.9
Séis is rewritten as Taking into accounBy;s perturbatively in the Born approxi-

mation, we obtain
Sid o, =J dxT{B(x)t,B(x)], 4.2) i -1
i ¢4 : 1B f0n— et 559 w) +2iQp| . (4.6)
where we have introduced the matrix fielB{ (x)
=2 (X)® L (X). In Eq.(4.2), T, should be understood as

the matrix'tvl”,:'t"L 41/ +1 (diagonal in the indices,n,i

Gk, wp) =

The saddle point equation$4.4) and (4.6) yield Qg
=(1/47")sgn(w,) where 14’ =8xN,(0)t, was obtained in

- i Sec. Ill. Within the saddle point approximation, we therefore
wherei = 1,2 refers to the two components of the spinofs obtain a change of the elastic scattering time due to the ran-

denotes the trace over all discrete indices. Introducing alom interchain hopping. The total scattering rate becomes
auxiliary matrix field Q{f,(x) to decouple Eq(4.2, we 1, n_q/ 1 1/

write the partition function as We now consider the fluctuations around the saddle point

o _ solution. As in the standard localization problémthe

Z=f D¢pDpe Sol¢9] Sp(2N) symmetry of the Lagrangian is spontaneously bro-
ken to SpN)XSp(N). Our aim is to obtain the effective

action of the(diffusive) Goldstone modes associated with
this spontaneous symmetry breaking. Following Ref. 12, we
_ _ shift the field according toQ—Q+QS"— /2, with
wheret [ ! is the inverse matrix of | and Sy= Syyret Sgis- i]-Q,ﬁ'fm(x): Oa,5%0,mdi jn, and expand the action to lowest
(One can verify that different decouplings &f would not  order inQ andQ. The partition function can be written as

XJ DQefde[Tr[Q(XWfQ(X)]+2iTr[B(X)Q(X)]], 4.3

- — [dx2TQSPT Q001+ T T | 1001 - TMQT [ 20011/ @— 2i fAXTTQ(X)B(X)]\ <
z JDQe L L L (e )30 (4.7)

where the average - -)3, should be taken with the action

S0 [ axTIQe0T oM - 0T o))

"s'o=30+2iJ dXTI[B(X)(QSP—Q/2)]
+2 f dxdx{Tr{ Q(x1) B(x1) T Q(X2)B(x2) )5,

== 2 ¢ (kwg)(— (k) + (i/27")sgn wp)) - .
ak.on =deTr[Q(X)M QX)) =0t "Q(x)]
X zﬁ“(kwn) + SdiS' (48)
Performing a cumulant expansion(of- ->§O in Eq.(4.7) and _J XmdX2JiQﬁﬁwn(xl)ingﬁw(xll1’X2|2)

using the stationarity condition@l.4) and (4.6), we obtain B
the effective action of th€ field Xij Qijnm(X2), (4.9
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where a sum over repeated indices is impligg” is defined -
by P = + R + ves
af af
B an(2,]J1,2) an(Z,ﬂl,l) FIG. 7. Diagrammatic representation of the propag@af the
Ram(1,2)= Rr‘f,ﬁ(l,lIZ,Z) Rﬁrﬁ(l,ﬂ 2,0 | Goldstone modes. The wavy line representq, ).
ap ™ N ~2 N 1 2 d2
RAm(Xal 1,%l 5] X3l 5, X4l 4) S[Q]:gNl(O)E D"g5+ Di+Zjai7
q
= (2 (Xg0n) P (Xowm) Y2 (Xawm) 5 (Xawn)) 5, _
(4.10 XTQ(AQ(=a)]= 7 N1 (0)TTQQ(q=0)].
For a system with time reversal symmetry, the Fourier trans- (4.15

form R&5(q) has all its components equal R§4(q). In the _ . ) _
diffusive regime, it is easy to obtain the expression ofNofice that the “mass” term I in the propagator

Rﬁﬁ(q) from the action§0. In the replica limit N—0), we Rim(0) ~151 canceled by the uniform ) part of
have for the diffusiveGoldstong¢ modes o,wn<0) TTQ(X) t,"Q(X)] [see Eq.(4.9]. The fluctuations ofQ
around its saddle point value are masslessdgap,<0, i.e.,

1 )2 the low-energy excitations correspond (@iffusive) Gold-
7+UFT Ox stone modes as expected from general symmetry
arguments? On the other hand, it is clear that the fluctua-
— ) tions are massive fab,w,>0. Having identified the Gold-
+8t 7 7(sinf(qyd/2) +sir’(q,d/2)) |. stone modes, we now follow the conventional &\ ap-
proach. We suppress the massive fluctuations imposing on
(41D the field Q the constraintQ?=1 (with 1 the unit matriy

The saddle poin@, introduces a “mass” term in the diffu- and TIQ=0."? These constraints and the actighl5 define
sive propagator. The exact propagaRff*(q) can be ex- @& NLoM.

pressed as it4.11) but with renormalized diffusive coeffi-  Notice that as in the preceding section the effective trans-
cientsD” and 51 replacing the bare coefficientsf;f’ and Verse d|ffu3|orlco.eff|0|ent appearlng in E(@}.l@ is the sum .
8t_f 7', respectively: of two terms.D/ is generated by single particle interchain

hopping (t ;) and 14’ =t , comes from particle-particle or

aa -1 =R -1 !
RAm(A)  Haw=R(q) |diﬁ:m

- 1 1 - particle-hole pair hopping as described by E(5) and
R(Q)fl:m 7+D"Q§+DI(Sin2(de/2) (2.6).
! Equation(4.13 shows that the propagator of the Gold-
i = ~7l—~ 71:~ T Rt oo
+sirf(q,d12))) . 4.12 stlone mt.)deswllsP—.(tL R) ti+thtL+. . (see
Fig. 7). SinceR is given by the exact result.12), it is clear

that our approach does not simply consider the two sources
o wo ? ] — of disorder on the same footing, but is able to take into
finite frequency Ri;(q) can be obtained either frofS, or  account strong intrachain disorder effect. From this point of
from S; but at a finite frequency /. HereS; is the action  view, the present approach is much more satisfactory than
obtained fromS, by the replacement— 7’. Equations4.9)  the SCDT of the preceding section.

and(4.12 yield Going to real space and taking the continuum limit in the
perpendicular directions, we eventually come to

Notice that the “mass” term I/ plays the same role as a

SQI=2 (t1%(a)-R@)TIQ@)Q(-a)] - ~ Y
4 B S[Q]:§N3(0)f d3f[D”Tf[VxQ]2+(DI+7 T
~TQt'Q(q=0)], (4.13
where we have introduced the Fourier transformed field XTr[VLQ]Z}_gNS(O)J' d*rTrQQ], (4.1

Q(q). In Eq.(4.13 and in the following, Tr does not include
a sum over the integers (chain positions any more. We  where N3(0)=N,(0)/d? is the 3D density of states. The
now define a low-energy regime by the conditiogsd, anisotropy of the diffusion coefficients being the same as that

D"r'q2, D r'q?d¥4=1 which can also be written as of the cutoffs (A, and A, ), we can rescale the lengths ac-
cording to
~ dz _ g2\ —12
qXSAXN(DHT')*l/Z, qlSALN(Z—FDIT’Z 5,,7_, 4 1/3 5”7, 4 —1/6
X=X\ — =" 7, l r - = T4 y
(4.14 1+D7 7 d? S 14D, 2
(4.17

In that regime we can expanid, *(q,) —R(q) to lowest or-
der ing. Rescaling the field— Q/47’, we thus obtain in order to obtain an isotropic N£M:*°
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5000
1000 10
a 500 =
100
50 0
INSULATOR 0 5 10
0.00001 0.001 0.1 1
o FIG. 9. Same as Fig. 5, but in the NM.

FIG. 8. Same as Fig. 4, but in the HM (y=1 and\=8). _
spectively, with|e|=1—21t , 7'/. The finite frequency dif-
fusion coefficients can be approximatec® by

S[QI= g Ns(0)D | @I TVQF

2 _n vt 2 0
. VT , 8tir
- , D'(w,)=——p=z— Dile)=——m—.
- —N3(0)f drTrQQ], (4.18 14— 14—
2 &l w7
where (4.22
42122 D” and D’ are obtained from Eq4.22 with |w,|=1/7".
D= 5I+ il el IS TORIE (4.19 Equation(4.22) then gives the position of the MIT:
Tz . .
r
2 1y T2 2
The isotropic cutoff is (1_6) __ 7T / 1+ Btirs 4.23
U3 N¢ 1+|6|27"/7'”\ 1+|el?7' 17"
— 4
A~ (1+D/ )2 (D7) (4.20  The preceding equation is a function pf «, andt,r. For

c<1, we can use Eq3.8) to obtain an equation involving

The dimensionless coupling constant of thedMll (4.18 is  Only p anda. ) )
Figures 8—10 show that the agreement with the SCDT is

4 4 1 very good. The only difference is the behavior of the critical
A= —A= N0 T BTN, disorderW as a function oft for c~1 (Fig. 10. We how-
7Ng(0)D  7N3(0) (D D?)¥3( Dy’ 7'3) ever believe this behavior to be spurious. It follows from the

(4.21) fact that we have mixed results from the SCDT and from the
where DH=5” and DL:(BI+1/T’)d2/4 are the effective NLoM. [When c—1, 1/'—~0 and Eq.(4.23 reduces to

diffusion coefficients of the model before the length rescal €l =1-2t, 7/y=0, "e"W:(ZLI.tth/V)llz‘ Thus, by us-
ing leading to the isotropic actiof#.18. The second line of N9 the results from Ref. 6, we impose the boundary condi-
Eq. (4.21) clearly shows that the dimensionless coupling in-tion W(c=1)=(24t,t , /y)"* which turns out not to be
volves the geometric mean of the diffusion coefficients andcompletely compatible with our analysis based on the
the geometric mean of the diffusion lengths within a timeNLoM.] Since the transition is described by a &, we

7. The MIT occurs when\ equals a critical valuea., (of  €xpect the critical behavior to be the usual one in agreement
order unity_ To Comp|ete|y determine the position of the with the numerical calculation of ZEEbUt in disagreement

MIT, one has to obtain the diffusion coefficien®’ and  With PE's results.

D’ . As mentioned above, these coefficients can be obtained
from S; at a finite frequency ¥/. We thus have to calculate .-
diffusion coefficients in a weakly coupled chains system so
that we can use again the results of Ref. 6. We assume that
when the system is at the MIB; corresponds to an insulat- = 10
ing phase. We have verified that this assumption is true for

a—0 anda~1, and holds everywhere on the transition line

if \ is sufficiently large with respect tg. For simplicity we /
shall consider only the latter case by cﬂoos'mgl and 0
A=8. The MIT for S; is given by 1-2t, 7"/y=0 and 0 5

therefore our assumption implies—]2t_L 7'[y>0. The lo- cJ
calization lengths in the insulating phase @rel”/|e| and

& ~§&V2t  dlvg along and perpendicular to the chains, re- FIG. 10. Same as Fig. 6, but in the KM.
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V. CONCLUSION calization effects are completely suppressed: the conductiv-

Using two different methods, we have studied the MIT in|ty is determined by band transport and therefore increases

a system of randomly coupled wires. Our results cIearI)/‘;;Ldﬁchas'?g t(_ampeﬁrcaturebas n a_tradltlonaIFmetaI. When
show the dual role of the random interwire coupling. On the':=1/7, localization effects become important. For a system

one hand, it generates an effective transverse bandwidff{oSe o the MIT, they lead to a decrease of the conductivity
t_L:CJ and gives a contribution2/47' to the transverse as the temperature is loweréskte Ref. 3 for a more detailed

diffusion coefficient. On the other hand, it increases the scatg'scyss"o')1 . .
Since M>1 for polymers, our main conclusion agrees

tering rate by 1#'<c(1—c)J? We have derived a phase . | . o

diagram which agrees with the numerical calculation of ZEEWIth PE with respect to the experimental situation in real
(performed forM = 1) and with the analytical analysis of PE materials: an increase of the number of interfibril contacts or
(valid for M>1) although we have found a different critical the strength of the interfibril coupling should move the
behavior in this latter case. sample towards the metallic state. Experimentally, this is

As emphasized by PE, the model studied in this paper ndtonfirmed by the significant enhancement of the low-
only yields a MIT starting from aealistic description of the temperatulgemconductlwty under stretching or application of
polymer structure, but also allows one to reconcile the expressuré:t®
perimental controversy between the low- and high-
temperature conductivities of polymer©ur zero tempera-
ture study shows that the intrafibril localization effects are
suppressed by the interfibril electron hops which occur at a

characteristic frequency 4/+8t7 " (note that forM>1 g, giscussions. I also wish to thank . Zambetaki for sending
and a=<1, this characteristic frequency is1/7’). At finite  me Ref. 4 prior to publication, C. Bourbonnais for discus-
temperature, localization effects are also suppressed by ikjons on the work reported in Ref. 11, and D. Boies for
e|aStiC electron—phonon CO||iSi0nS. ThUS, at Sufﬁcientlysending me a Copy of h|s Ph.D. thesis_ Th|S Work was par-
high temperature, wher)=1/7' +8Tf 7'+ 1, (T)=1/r  tially supported by the NSF under Grant No. DMR-9417451
[7in(T) is the electron-phonon collision timentrafibril lo-  and by the David and Lucile Packard Foundation.
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