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Renormalization-group approach to Fermi-liquid theory
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We show that the renormalization-grodRG) approach to interacting fermions at one-loop order recovers
Fermi-liquid-theory results when the forward scattering zero sound and exchange channels are both taken into
account. The Landau parameters are related to the fixed point value ©f lingit of the forward scattering
vertex. We specify the conditions under which the results obtained at one-loop order hold at all orders in a loop
expansion. We also emphasize the similarities between our RG approach and the diagrammatic derivation of
Fermi-liquid theory[S0163-182606)10526-9

Much of our understanding of interacting fermions is wave vector and\y a low-energy cutoff it is nevertheless
based on Fermi-liquid theoryFLT).22 Although the latter rather unexpected that the RG approach reduces to a RPA
was first formulated as a phenomenological theory, its micalculation while the diagrammatic microscopic derivation
croscopic foundation was rapidly established using fieldof FLT (Refs. 2,3 is obviously more than a simple RPA
theoretical method® The discovery of new materials show- calculation.

ing non-Fermi-liquid behavior, like higfi;, superconductors, The aim of this paper is to reconsider the RG approach to
has motivated a lot of theoretical work in order to clarify the interacting fermions along the lines developed in Refs. 5,7 in
validity and the limitations of FLT. order to clarify its connection with FLT. First, we derive the

Several authors have recently applied renormalizationRG equation for theQ (Q) limit of the forward scattering
group (RG) methods to interacting fermiorisee Refs. 4-7 vertexI'? (I'®) at one-loop order. In order to respect the
and references thergirWhile these methods are well known Fermi statistics, the forward scattering zero so(#8) and
in the context of one- and quasi-one dimensional interactingxchangeZS’) channels are both taken into account. As a
fermion systems where they have been very succedtfielr  result, we find that both flows dfQ andT"® are nonzero. We
application to isotropic systems of dimensidrgreater than  show that the antisymmetry ®1° under exchange of the two
one is more recent. In his study of interacting fermions inincoming or outgoing particles is conserved under the RG
d=2,3, Skankar used both RG methods and a standard pegquation, while the antisymmetry df" is lost. We then
turbative calculatioft. While RG arguments were used to solve (approximately the RG equations to obtain a relation
identify the relevant couplings, the low-energy degrees ofjenveen the fixed poirEP) valuesI'?* andl'®*. The stan-

fre(_edom were explicitly integrated out in the Land.au |nter—dard relation betweefi® and the Landau parameters,
action channel by means of standard diagrammatic calcula:z, o . T
[ (which is one of the key results of the microscopic dia-

tions. Extending Shankar's approach to finite temperature, ) L ) , X o
Chitov and Saéechal have recently shown how this interac- grammatic derivation of FLJTis recovered if one identifies
2% This result differs from previous RG

tion channel can be treated by the RG method without use dhese latter with’
any additional perturbative calculatién Moreover, the approaches’ where the Landau parameters were identified
finite-temperature formalism clearly establishes the differwith the bare interaction of the low-energy effective action
ence between th® and Q limits of the forward scattering (Which is the starting point of the RG analysisVe show
vertex and therefore differentiates the Landau functian, that the relation betweeRl®" and the Landau parameters
the Landau parametefs’ and F{') from the (physica) for-  obtained at one-loop order holds at all orders if one assumes
ward scattering amplitude. It is clear that both approathes that the only singular contribution to the RG flow is due to
amount to summing the series of bubble diagrams in théhe one-loop ZS graph.

forward scattering zero sound channel. Since it is well We consider a two-dimensional system of interacting
known that such a random-phase-approximati&RA) type  spin fermions with a circular Fermi surfacghe results
calculation reproduces the results of F¥. The agreement obtained in this paper can be straightforwardly extended to
between the FLT and RG approaches igosteriorinot sur-  the three-dimensional cgsd-ollowing Refs. 5,7, we write
prising. Although the selection of Feynman diagrams appearthe partition function as a functional integral over Grass-
ing in the RG procedure was justified on the basis of armann variablesZ= [Dy* Dye” >, whereS is a low-energy
expansion in the small parametég/Ke (Kg is the Fermi  effective action(we sethi=kg=1):
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FIG. 1. One-loop diagrams for the renormalization of the vertex
where the dots denote terms which are irrelevant at the tree, in the ZS and ZS channelgthe spin indices are not shoyvn

level> Here K is a two-dimensional vector with

|[K—Kg|<Ay<Kg. u is the chemical potentialkg the ng(el—ﬁz)z lim ['.(61,602,Q)a=0l,

Fermi wave vector, and the cutoff, fixes the energy scale Q-0 _
of the effective actionK = (K,®) andw is a fermionic Mat- ng(al_ 02)=lim [T (01,6,,Q)|q=0l- 4
Q-0

subara frequencyB=1/T is the inverse temperature and Q Q , i i
the size of the systemr=1,| refers to the electron spins. r"i androi can be decomposed into singlet and triplet am-
The antisymmetrized coupling function Pplitudes according t@3). The only remnant of the antisym-
U0102'0304(K1'K2'K3'K4) is assumed to be a nonsingu|ar metry Ofro._ is then the ConditiorT‘tQ‘Q(0=0)=0 for the

function of its arguments. Ignoring irrelevant terms, we writebare vertices. ) o

the single-particle energy ase(K)=u+uvegk where ‘We now derive the RG equatiofusing the Kadanoff-
K=Kg+k and vr is the Fermi velocity. The summation Wilson approach for the couplingl’,, when the cutoffA

over the wave vectors is defined by is reduced according ta (t)=Aqe"!. Three diagrams have

to be considered at one-loop order, corresponding to the ZS,
ZS', and BCS channels. As pointed out in Ref. 7, the ZS
graph alone does not respect the Fermi statistics. Indeed, if
one exchanges the two incoming or outgoing lines, the ZS
graph transforms into the Zyraph and vice versgrig. 1).

It is therefore necessary to consider the ZS and g&aphs

keeping only the relevant term Iin the integrat_ion measure al, the same footing. We ignore momentarily the symmetry-
the tree Ie_ve_l. Shan_kar’s analysis of the coupling functlorjs Ohreserving contribution of the BCS diagram which will be
the quartic interaction shows that only two such functionsyiscyssed later.

survive under the RG flow foA g<Kg: the forward scatter- The contribution of the ZS graph’is
ing coupling function and the BCS coupling function. In the

1 Ao dk

d2K
2 ZJ(ZNEKF .

2rd O
2rlo 2m

)

following, we neglect this latter by assuming it is irrelevantdrgi(ﬁl— 62) N(0) Br
at one-loop order so that no BCS instability occurs. The for- dt == cosH(Br)
ward scattering _coupling function is denoted by z5 R

I, (K1.K; K;—Q,K;+Q) whereQ=(Q,0) with Q<K
and{} is a bosonic Matsubara frequen@ye use the notation
U5 =Ty 0,.040,)- Since the dependence &n, and w , is
irrelevant, we introduce the  coupling
I,.(61,0,,Q)=T, (K} K5 ,K5~Q,Ki+Q) where

KF=KeK/K=Kg(coss,sind) is a wave vector on the Fermi

function

de
Q _ Q _
X | 52 Tg 0001~ O3, (6= 65),

dré (6, 6,)
dt

:O,
ZS

®

surface. The forward scattering coupling function can be dewhere Br=vgBA(t)/2 is a dimensionless inverse tempera-

composed into a spin-triplet amplitudg and a spin-singlet
amplituder : 101

~  Ty6,,6,,0)
Foi(01!02-Q):%

(50'1,0'4 05,03 0'1,0'350'2,0-4)

+TS(6’1,02.Q)

2 01,04%0,,03

— B 0300y00): 3
We now introduce th€ limit (T'?) andQ limit (I'?) of the
forward scattering vertex:

ture andN(0)=Kg/27ve the density of states per spin.
Since Iirrbﬂw(ﬁ/4)cosﬁ2(,6'x/2)= 4(x), the ZS graph gives
a singular contribution to the RG flow df® when T—0.
Consider now the contribution of the Z§raph. For a given
Q, this graph involves the quantitfFig. 1)

T, G(K)G(K+K5—Q)

_ 1 tani(BI2)e(K+Kj—Q)]—tanH (B/2)e(K)]
T2 —iQ+e(K)—e(K+K5—Q) '

(6)

HereG(R)=(iw—ka)_1 is the one-particle Green's func-
tion andK5,=K5—K¥ . In general, the limitQ—0 can be
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taken without any problenfand is independent of the order where 7 denote the Pauli matrices. Equatighl) holds

in which the limits Q,Q0—0 are takeh and (6) gives a when the spin-dependent part of the particles interaction is
smooth contribution to the flow df? andT'®. As pointed  due purely to exchange. Equati@h0) then takes the simple
out by Mermin;? problems arise whek5, is small since the ~ form

limits Q—0 and Kgl—>0 do not commute. For small dA|Q dA,“ Br
F_WF - - = - AR? (12
K5—K7, i.e., for|6,— 6,|<T/Eg, (6) becomes dat dt  cosR(gn) T
vFR -(K5,—Q) Bla and the same equation relatiB§ andB|” . Integrating these
—i0—veK-(K5,—Q) cost(Buek/2)’ () equations between O andwe obtain(writing explicitly the

whereK =K /K is a unit vector. This quantithapart from the t dependende

thermal factorBcosh %(Bvek/2)] has been analyzed in detail AQ(t) = A%(t) — f t_ PR AQ(t7)2 1
by Mermin who showed that the antisymmetry of the vertex rO=AW odt cost(Bg) " (t") (13
is strongly related to the order in which the differgnt limits and a similar equation delQ(t)_ The RG equations in their
are taken. Following Ref. 12, we first take the linQt—0 symmetry-preserving forni12), (13) relate two FP'SFSi*

(which is well defined fork{#K%) and thend,— 6,—0. o .
This ensures thﬁ%”(ﬁ) is a continuous function a#=0.  andI';  in a fashion more general than the standard RPA-

= like form [see Eq(15) below] with all harmonics decoupled.
We then have Q=0) 8 Deferring study of such a fixed point, which is beyond the
: TN L wFy - scope of the present papérwe concentrate now on the
01'?02 T% GCKIG(K+Kz) 4cosﬁ(,8v ekl2)” approximation leading to the standard FLT results. Because

(8) of the thermal factoiBr/cosH(Bg), the second term of the

Equation(8) shows that wheiT—0 the ZS graph gives a fight-hand side(RHS) of (13) becomes different from zero

singular contribution to the RG flow of ®?(4) for only whenA (t)<T/vg. On the other hand, we have shown

|6|<T/Eg.™3 Taking into account the spin dependence ofabove thatl'y (6) is a smooth function ofA(t) except for

the coupling, we obtain that the contributions of the ZS and 9| <T/Eg. The Fourier transfomf{}iu) is also a smooth

ZS' graphs to the RG flow of 2(6=0) cancel each other. ¢;nction of A(t). At low temperature, we can therefore make

Consequentlyl“tQ(9=O)=0 for any value of the flow pa- th roximation AQ| ~ A0 where

rametert. The antisymmetry of'? is therefore conserved e* appro HIAM=Tlog =5

under the RG equation. Since the contribution of the ZA! =A|Q|A(t):o is the FP value ofA”*. This allows us to

graph to the RG flow of (#=0) vanishes, while the con- rewrite (13) for A(t)<T/vg as

tri(t)aution of the ZS graph does not, the antisymmetry of t 8

I'** is not conserved under RG. This result agrees with stan- _ pQ0* , R 2

dard diagrammatic calculations. ° ARD=A —Jl)dt cosH(Br) AR()?. (14

Taking into account both the contributions of the ZS and ) ) _ )

ZS' graphs, the RG equations BR® can be written Equation (14) is solved by introducing thg pa.rameter

r=tanh3g. The FP values oA? and BX are given in the

Q Q Q
dr”i _ dr"i st drffi | zero-temperature limit by
dt — dt 'sS7 dt 'z

A B
dre dro dro AV =1 _ gL _ 15
T o T | o* | Q* " ( )
T:T|ZS’:T|ZS“ (g) 1+A| 1+B|
The two preceding equations can be combifiesing also Equation (15) shows that the standard results of the micro-
(5)] to obtain scopic FLT are recovered if one identifies the Landau param-
drQ(6,— 6,) dre(e,— 6, eters with the FP values @ andB;*:
dt - dt FP=AY, F2=B"". (16)

_ N(O)Br ﬁE ) (6, 6) Alternatively, (16) can be written aigi(a)zl“f}i*(e) where
cosif(Br) ) 2m, 7 1707 f,.(6) is Landau’s quasiparticle interaction function. Since
T (6—6,). (10) the singular contribution8) of the ZS' graph tol“f}i was

00,030’ X i 0%
In order to solve this RG equation, we Fourier transformnegleCte‘j when approximating.3) by (14), F‘Ti (6) ob-

I'3(6) and introduce the spin symmetrié?”) and anti- ~ tained from(lgl is correct only for|)|=T/Er. The deter-
symmetric 82%) parts: mination of I' 7 (6) for |6|<T/Er would require the con-
de sideration of the singular contribution of the Z§raph. It
FS.’Q(|)=J' —e 1r%%g), should be noted that the diagrammatic derivation of FLT
: 27 : (Refs. 2,3 also neglects the zero-angle singularity in thé ZS
channel and therefore does not respect the antisymmetry of
2NO)T (M) =ARS,, 4,60, 0, BE 70 0 Topory the Q limit of the forward scattering vertex. The condition
(11 F?(0=O):O is usually enforced, giving the “amplitude
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sum rule” of FLT*’ For physical quantitieglike collective pigher-order contributions change the FP vl obtained
modes or response functionshich probe all values of the !

. L . . ; Q*
angle, it is nevertheless justified to neglect the singularity & One-loop order, but not the relatiots) betweenl”; and
of the ZS' channel. rer

The relation(15) betweenl'®" and the Landau param- |t should be pointed out that the Landau parameters are
eters has been obtained at one-loop order. It appears theneet determined by the bare coupling function
fore as an approximate relation whose validity is restricted tdJ (K1, ... Ky) of the effective actior(1), but are related
the weak-couplmg. limit. However,. It Furns out thats) to the FP vaIueI’“_*. Usually, the FP values of physical
holds at all orders in a loop expansion if we assume that the . 7i )
only singular contribution to the RG flow comes from the guantities are related to some bare effective values, so that

one-loop ZS grapliagain we neglect the singular contribu- tN€ir calculation by means of the R@ithin the framework
tion of the ZS graph. Note that the same kind of assump- ©f @ 100P expansionis approximative and valid only in the
tion is at the basis of the diagrammatic derivation of FT. weak-coupling regime. FLT, which assumes that the only

: ) Q . singular contribution to the RG flow is due to the one-loop
In this case, the RG flows df* andI'™" are determined by ¢ graph, does not rely on any kind of weak-coupling con-

Q Q Q dition.
dF‘Ti:dF‘Ti +dFUi (17) The approximation(14) is equivalent to the Bethe-
dt dt |, dt 25/.BCS.2 loos. .. ’ Salpeter equation in the ZS channel for the verfé%,
o o 9 Ff}_ being the two-particle-irreduciblePl) vertex. The re-
dar:’ dr, drg i : i .
i_ __“ arrangement of diagram summations leading to the Bethe-
dt dt dt 28’ BCS.2 loos ' Salpeter equation in FLTRefs. 2,3 is based on the assump-

28 BCS.2lo0p .- (18  tion that this 2PI vertex is a regular function of its variables,

o i neglecting the zero-angle singularity in the Z&annel. As
The contribution of the one-loop ZS grapfirst term of the 5 consequence, the antisymmetry of @dimit of the for-
RHS of (17)] has been separated from the nonsingular congard scattering vertex is not guaranteed in the final result,
tributions. Note that we have included in this latter the one-and “the amplitude sum rule” must be imposed. From this

loop BCS graph which had been neglected up to now. Equgpoint of view, there is a strict equivalence between the

tions (17), (18) can be combined to obtain present RG approach and the diagrammatic microscopic
9 derivation of FLT.
daro dré drQ , .
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