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We show that the renormalization-group~RG! approach to interacting fermions at one-loop order recovers
Fermi-liquid-theory results when the forward scattering zero sound and exchange channels are both taken into
account. The Landau parameters are related to the fixed point value of theV limit of the forward scattering
vertex. We specify the conditions under which the results obtained at one-loop order hold at all orders in a loop
expansion. We also emphasize the similarities between our RG approach and the diagrammatic derivation of
Fermi-liquid theory.@S0163-1829~96!10526-9#

Much of our understanding of interacting fermions is
based on Fermi-liquid theory~FLT!.1,2 Although the latter
was first formulated as a phenomenological theory, its mi-
croscopic foundation was rapidly established using field
theoretical methods.2,3 The discovery of new materials show-
ing non-Fermi-liquid behavior, like high-Tc superconductors,
has motivated a lot of theoretical work in order to clarify the
validity and the limitations of FLT.

Several authors have recently applied renormalization-
group ~RG! methods to interacting fermions~see Refs. 4–7
and references therein!. While these methods are well known
in the context of one- and quasi-one dimensional interacting
fermion systems where they have been very successful,8 their
application to isotropic systems of dimensiond greater than
one is more recent. In his study of interacting fermions in
d52,3, Skankar used both RG methods and a standard per-
turbative calculation.5 While RG arguments were used to
identify the relevant couplings, the low-energy degrees of
freedom were explicitly integrated out in the Landau inter-
action channel by means of standard diagrammatic calcula-
tions. Extending Shankar’s approach to finite temperature,
Chitov and Se´néchal have recently shown how this interac-
tion channel can be treated by the RG method without use of
any additional perturbative calculation.7 Moreover, the
finite-temperature formalism clearly establishes the differ-
ence between theQ andV limits of the forward scattering
vertex and therefore differentiates the Landau function~i.e.,
the Landau parametersFl

s andFl
a) from the ~physical! for-

ward scattering amplitude. It is clear that both approaches5,7

amount to summing the series of bubble diagrams in the
forward scattering zero sound channel. Since it is well
known that such a random-phase-approximation-~RPA! type
calculation reproduces the results of FLT,9 the agreement
between the FLT and RG approaches isa posteriorinot sur-
prising. Although the selection of Feynman diagrams appear-
ing in the RG procedure was justified on the basis of an
expansion in the small parameterL0 /KF (KF is the Fermi

wave vector andL0 a low-energy cutoff!, it is nevertheless
rather unexpected that the RG approach reduces to a RPA
calculation while the diagrammatic microscopic derivation
of FLT ~Refs. 2,3! is obviously more than a simple RPA
calculation.

The aim of this paper is to reconsider the RG approach to
interacting fermions along the lines developed in Refs. 5,7 in
order to clarify its connection with FLT. First, we derive the
RG equation for theQ (V) limit of the forward scattering
vertex GQ (GV) at one-loop order. In order to respect the
Fermi statistics, the forward scattering zero sound~ZS! and
exchange~ZS8) channels are both taken into account. As a
result, we find that both flows ofGQ andGV are nonzero. We
show that the antisymmetry ofGQ under exchange of the two
incoming or outgoing particles is conserved under the RG
equation, while the antisymmetry ofGV is lost. We then
solve ~approximately! the RG equations to obtain a relation
between the fixed point~FP! valuesGQ* andGV* . The stan-
dard relation betweenGQ* and the Landau parametersFl

s ,
Fl
a ~which is one of the key results of the microscopic dia-

grammatic derivation of FLT! is recovered if one identifies
these latter withGV* . This result differs from previous RG
approaches5,7 where the Landau parameters were identified
with the bare interaction of the low-energy effective action
~which is the starting point of the RG analysis!. We show
that the relation betweenGV* and the Landau parameters
obtained at one-loop order holds at all orders if one assumes
that the only singular contribution to the RG flow is due to
the one-loop ZS graph.

We consider a two-dimensional system of interacting
spin-12 fermions with a circular Fermi surface~the results
obtained in this paper can be straightforwardly extended to
the three-dimensional case!. Following Refs. 5,7, we write
the partition function as a functional integral over Grass-
mann variables,Z5*Dc*Dce2S, whereS is a low-energy
effective action~we set\5kB51):
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where the dots denote terms which are irrelevant at the tree
level.5 Here K is a two-dimensional vector with
uK2KFu,L0!KF . m is the chemical potential,KF the
Fermi wave vector, and the cutoffL0 fixes the energy scale
of the effective action.K̃5(K ,v) andv is a fermionic Mat-
subara frequency.b51/T is the inverse temperature andn
the size of the system.s5↑,↓ refers to the electron spins.
The antisymmetrized coupling function
Us1s2 ,s3s4

(K1 ,K2 ,K3 ,K4) is assumed to be a nonsingular
function of its arguments. Ignoring irrelevant terms, we write
the single-particle energy ase(K )5m1vFk where
K5KF1k and vF is the Fermi velocity. The summation
over the wave vectors is defined by

1

n(K 5E d2K

~2p!2
[KFE

2L0

L0 dk

2pE0
2p du

2p
, ~2!

keeping only the relevant term in the integration measure at
the tree level. Shankar’s analysis of the coupling functions of
the quartic interaction shows that only two such functions
survive under the RG flow forL0!KF : the forward scatter-
ing coupling function and the BCS coupling function. In the
following, we neglect this latter by assuming it is irrelevant
at one-loop order so that no BCS instability occurs. The for-
ward scattering coupling function is denoted by
Gs i

(K̃1 ,K̃2 ,K̃22Q̃,K̃11Q̃) whereQ̃5(Q,V) with Q!KF

andV is a bosonic Matsubara frequency~we use the notation
Gs i

[Gs1s2 ,s3s4
). Since the dependence onk1,2 andv1,2 is

irrelevant, we introduce the coupling function
Gs i

(u1 ,u2 ,Q̃)5Gs i
(K1

F ,K2
F ,K2

F2Q̃,K1
F1Q̃) where

KF5KFK /K5KF(cosu,sinu) is a wave vector on the Fermi
surface. The forward scattering coupling function can be de-
composed into a spin-triplet amplitudeG t and a spin-singlet
amplitudeGs :

10,11
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We now introduce theQ limit ( GQ) andV limit ( GV) of the
forward scattering vertex:

Gs i

Q ~u12u2!5 lim
Q→0

@Gs i
~u1 ,u2 ,Q̃!uV50#,

Gs i

V ~u12u2!5 lim
V→0

@Gs i
~u1 ,u2 ,Q̃!uQ50#. ~4!

Gs i

Q andGs i

V can be decomposed into singlet and triplet am-
plitudes according to~3!. The only remnant of the antisym-
metry of Gs i

is then the conditionG t
Q,V(u50)50 for the

bare vertices.7

We now derive the RG equation~using the Kadanoff-
Wilson approach5! for the couplingGs i

when the cutoffL0

is reduced according toL(t)5L0e
2t. Three diagrams have

to be considered at one-loop order, corresponding to the ZS,
ZS8, and BCS channels. As pointed out in Ref. 7, the ZS
graph alone does not respect the Fermi statistics. Indeed, if
one exchanges the two incoming or outgoing lines, the ZS
graph transforms into the ZS8 graph and vice versa~Fig. 1!.
It is therefore necessary to consider the ZS and ZS8 graphs
on the same footing. We ignore momentarily the symmetry-
preserving contribution of the BCS diagram which will be
discussed later.

The contribution of the ZS graph is7

dGs i

Q ~u12u2!

dt
U
ZS

52
N~0!bR

cosh2~bR!

3E du

2p (
s,s8

Gs1s8,ss4

Q
~u12u!Gss2 ,s3s8

Q
~u2u2!,

dGs i

V ~u12u2!

dt
U
ZS

50, ~5!

wherebR5vFbL(t)/2 is a dimensionless inverse tempera-
ture andN(0)5KF/2pvF the density of states per spin.
Since limb→`(b/4)cosh

22(bx/2)5d(x), the ZS graph gives
a singular contribution to the RG flow ofGQ when T→0.
Consider now the contribution of the ZS8 graph. For a given
Q̃, this graph involves the quantity~Fig. 1!

T(
v

G~K̃ !G~K̃1K21
F 2Q̃!

5
1

2

tanh@~b/2!e~K1K21
F 2Q!#2tanh@~b/2!e~K !#

2 iV1e~K !2e~K1K21
F 2Q!

.

~6!
HereG(K̃)5( iv2vFk)

21 is the one-particle Green’s func-
tion andK21

F 5K2
F2K1

F . In general, the limitQ̃→0 can be

FIG. 1. One-loop diagrams for the renormalization of the vertex
Gs i

in the ZS and ZS8 channels~the spin indices are not shown!.
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taken without any problem~and is independent of the order
in which the limits Q,V→0 are taken! and ~6! gives a
smooth contribution to the flow ofGQ andGV. As pointed
out by Mermin,12 problems arise whenK21

F is small since the
limits Q̃→0 and K21

F→0 do not commute. For small
K2
F2K1

F , i.e., for uu12u2u!T/EF , ~6! becomes

vFK̂•~K21
F 2Q!

2 iV2vFK̂•~K21
F 2Q!

b/4

cosh2~bvFk/2!
, ~7!

whereK̂5K /K is a unit vector. This quantity@apart from the
thermal factorbcosh22(bvFk/2)# has been analyzed in detail
by Mermin who showed that the antisymmetry of the vertex
is strongly related to the order in which the different limits
are taken. Following Ref. 12, we first take the limitQ̃→0
~which is well defined forK1

FÞK2
F) and thenu12u2→0.

This ensures thatGs i

Q,V(u) is a continuous function atu50.

We then have (Q̃50)

lim
u1→u2

FT(
v

G~K̃ !G~K̃1K21
F !G52

b

4cosh2~bvFk/2!
.

~8!
Equation~8! shows that whenT→0 the ZS8 graph gives a
singular contribution to the RG flow ofGQ,V(u) for
uuu!T/EF .

13 Taking into account the spin dependence of
the coupling, we obtain that the contributions of the ZS and
ZS8 graphs to the RG flow ofG t

Q(u50) cancel each other.
Consequently,G t

Q(u50)50 for any value of the flow pa-
rametert. The antisymmetry ofGQ is therefore conserved
under the RG equation. Since the contribution of the ZS
graph to the RG flow ofGV(u50) vanishes, while the con-
tribution of the ZS8 graph does not, the antisymmetry of
GV is not conserved under RG. This result agrees with stan-
dard diagrammatic calculations.12

Taking into account both the contributions of the ZS and
ZS8 graphs, the RG equations ofGQ,V can be written

dGs i

Q

dt
5
dGs i

Q

dt
uZS1

dGs i

Q

dt
uZS8,

dGs i

V

dt
5
dGs i

V

dt
uZS85

dGs i

Q

dt
uZS8. ~9!

The two preceding equations can be combined@using also
~5!# to obtain

dGs i

Q ~u12u2!

dt
5
dGs i

V ~u12u2!

dt

2
N~0!bR

cosh2~bR!
E du

2p (
s,s8

Gs1s8,ss4

Q
~u12u!

3Gss2 ,s3s8
Q

~u2u2!. ~10!

In order to solve this RG equation, we Fourier transform
Gs i

Q,V(u) and introduce the spin symmetric (AQ,V) and anti-

symmetric (BQ,V) parts:

Gs i

Q,V~ l !5E du

2p
e2 i l uGs i

Q,V~u!,

2N~0!Gs i

Q,V~ l !5Al
Q,Vds1 ,s4

ds2 ,s3
1Bl

Q,Vts1s4
•ts2s3

,

~11!

where t denote the Pauli matrices. Equation~11! holds
when the spin-dependent part of the particles interaction is
due purely to exchange. Equation~10! then takes the simple
form

dAl
Q

dt
5
dAl

V

dt
2

bR

cosh2~bR!
Al
Q2, ~12!

and the same equation relatingBl
Q andBl

V . Integrating these
equations between 0 andt, we obtain~writing explicitly the
t dependence!

Al
Q~ t !5Al

V~ t !2E
0

t

dt8
bR

cosh2~bR!
Al
Q~ t8!2 ~13!

and a similar equation forBl
Q(t). The RG equations in their

symmetry-preserving form~12!, ~13! relate two FP’sGs i

Q*

andGs i

V* in a fashion more general than the standard RPA-

like form @see Eq.~15! below# with all harmonics decoupled.
Deferring study of such a fixed point, which is beyond the
scope of the present paper,14 we concentrate now on the
approximation leading to the standard FLT results. Because
of the thermal factorbR /cosh

2(bR), the second term of the
right-hand side~RHS! of ~13! becomes different from zero
only whenL(t)&T/vF . On the other hand, we have shown
above thatGs i

V (u) is a smooth function ofL(t) except for

uuu!T/EF . The Fourier transformGs i

V ( l ) is also a smooth

function ofL(t). At low temperature, we can therefore make

the approximation Al
VuL(t)&T/vF

.Al
V* , where

Al
V*5Al

VuL(t)50 is the FP value ofAl
V . This allows us to

rewrite ~13! for L(t)&T/vF as

Al
Q~ t !5Al

V*2E
0

t

dt8
bR

cosh2~bR!
Al
Q~ t8!2. ~14!

Equation ~14! is solved by introducing the parameter
t5tanhbR. The FP values ofAl

Q andBl
Q are given in the

zero-temperature limit by

Al
Q*5

Al
V*

11Al
V* , Bl

Q*5
Bl

V*

11Bl
V* . ~15!

Equation ~15! shows that the standard results of the micro-
scopic FLT are recovered if one identifies the Landau param-
eters with the FP values ofAl

V andBl
V :

Fl
s5Al

V* , Fl
a5Bl

V* . ~16!

Alternatively, ~16! can be written asf s i
(u)5Gs i

V* (u) where

f s i
(u) is Landau’s quasiparticle interaction function. Since

the singular contribution~8! of the ZS8 graph toGs i

V was

neglected when approximating~13! by ~14!, Gs i

Q* (u) ob-

tained from~15! is correct only foruuu*T/EF . The deter-
mination ofGs i

Q* (u) for uuu&T/EF would require the con-

sideration of the singular contribution of the ZS8 graph. It
should be noted that the diagrammatic derivation of FLT
~Refs. 2,3! also neglects the zero-angle singularity in the ZS8
channel and therefore does not respect the antisymmetry of
theQ limit of the forward scattering vertex. The condition
G t
Q(u50)50 is usually enforced, giving the ‘‘amplitude
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sum rule’’ of FLT.10 For physical quantities~like collective
modes or response functions! which probe all values of the
angleu, it is nevertheless justified to neglect the singularity
of the ZS8 channel.

The relation~15! betweenGQ* and the Landau param-
eters has been obtained at one-loop order. It appears there-
fore as an approximate relation whose validity is restricted to
the weak-coupling limit. However, it turns out that~15!
holds at all orders in a loop expansion if we assume that the
only singular contribution to the RG flow comes from the
one-loop ZS graph~again we neglect the singular contribu-
tion of the ZS8 graph!. Note that the same kind of assump-
tion is at the basis of the diagrammatic derivation of FLT.2,3

In this case, the RG flows ofGQ andGV are determined by

dGs i

Q

dt
5
dGs i

Q

dt
U
ZS

1
dGs i

Q

dt
U
ZS8,BCS,2 loops . . .

, ~17!

dGs i

V

dt
5
dGs i

V

dt
U
ZS8,BCS,2 loops . . .

5
dGs i

Q

dt
U
ZS8 ,BCS,2 loops . . .

.

~18!

The contribution of the one-loop ZS graph@first term of the
RHS of ~17!# has been separated from the nonsingular con-
tributions. Note that we have included in this latter the one-
loop BCS graph which had been neglected up to now. Equa-
tions ~17!, ~18! can be combined to obtain

dGs i

Q

dt
5
dGs i

V

dt
1
dGs i

Q

dt
U
ZS

, ~19!

where the second term of the RHS of~19! is given by~5!.
Since, according to our assumption,Gs i

V is a nonsingular

function ofL(t), Eq. ~19! is similar to Eq.~10! and can be
solved in the same way, yielding again the result~15!. Thus,

higher-order contributions change the FP valueGs i

V* obtained

at one-loop order, but not the relation~15! betweenGs i

Q* and

Gs i

V* .
It should be pointed out that the Landau parameters are

not determined by the bare coupling function
Us i

(K1 , . . . ,K4) of the effective action~1!, but are related

to the FP valueGs i

V* . Usually, the FP values of physical
quantities are related to some bare effective values, so that
their calculation by means of the RG~within the framework
of a loop expansion! is approximative and valid only in the
weak-coupling regime. FLT, which assumes that the only
singular contribution to the RG flow is due to the one-loop
ZS graph, does not rely on any kind of weak-coupling con-
dition.

The approximation~14! is equivalent to the Bethe-
Salpeter equation in the ZS channel for the vertexGs i

Q ,

Gs i

V* being the two-particle-irreducible~2PI! vertex. The re-
arrangement of diagram summations leading to the Bethe-
Salpeter equation in FLT~Refs. 2,3! is based on the assump-
tion that this 2PI vertex is a regular function of its variables,
neglecting the zero-angle singularity in the ZS8 channel. As
a consequence, the antisymmetry of theQ limit of the for-
ward scattering vertex is not guaranteed in the final result,
and ‘‘the amplitude sum rule’’ must be imposed. From this
point of view, there is a strict equivalence between the
present RG approach and the diagrammatic microscopic
derivation of FLT.
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