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N. Dupuis
Laboratoire de Physique des Solides, Universite Paris Su-d, 91/05 Orsay, France

(Received 11 October 1994; revised manuscript received 20 December 1994)

The properties of a quasi-one-dimensional (quasi-1D) superconductor with an open Fermi sur face
are expected to be unusual in a magnetic field. On the one hand, the quasi-1D structure of the
Fermi surface strongly favors the formation of a nonuniform state [Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state] in the presence of a magnetic field acting on the electron spins. On the other hand,
a magnetic field acting on an open Fermi surface in.duces a dimensional crossover by confining the
electronic wave functions along the chains' of highest conductivity, which results in a divergence of
the orbital critical field and in a stabilization at low temperature of a cascade of superconducting
phases separated by first-order transitions. In this paper, we study the phase diagram as a function
of the anisotropy by taking into account on the same footing the paramagnetic and the orbital effects
of the field. We discuss in detail the experimental situation in the quasi-1D organic conductors of
the Bechgaard salts family and argue that they appear as good candidates for the observation
of the LOFF state, provided that their anisotropy is large enough. Recent experiments on the
organic quasi-1D superconductor (TMTSF)2C104 are in agreement with the results obtained in this
paper and could be interpreted as a signature of a high-fieM superconducting phase. We also point
out the possibility to observe a LOFF state in some of the recently discovered quasi-2D organic
superconductors due to the particular topology of their Fermi surface.

I. INTRODUCTION

In 1963, Larkin and Ovchinnikov, and independently
Fulde and Ferrell, predicted the existence of a nonuni-
form superconducting state [hereafter referred to as the
Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state] in the
presence of a magnetic field acting on the electron spins.
These authors noted that the destructive in8uence of
Pauli paramagnetism on superconductivity can be mit-
igated by pairing spin-up and spin-down electrons with
a nonzero total momentum whose value depends on the
magnetic Geld. In this way, the pairing condition, which
requires that opposite spin electrons with equal energy
and a given total momentum should be paired, can be
fulfilled with improved accuracy over some parts of the
Fermi surface. On other parts of the Fermi surface, it
may then not be possible to pair electrons at all, but the
LOFF state can nonetheless be more stable than the uni-
form solution. This superconducting state occurs only at
temperatures smaller than To 0.56 T 0 where T o is the
zero-Geld superconducting transition temperature. The
phase transition is of first order from the LOFF state to
the ordinary uniform superconducting state and of sec-
ond order to the normal metallic phase.

Although this nonuniform state was predicted many
years ago, there has been up to now no unequivocal ex-
perimental evidence of its existence. This can be ex-
plained by several reasons. For an isotropic disper-
sion law, the LOFF state leads only to a small increase
of the zero-temperature critical field as given by the
Shandrasekhar-Clogston (or Pauli) limit, s and its region
of existence in the H-T plane, although not known ex-
actly, is very narrow. Moreover, when orbital effects of
the Geld are considered in a type-II superconductor, the

LOFF state can only exist if the diamagnetic effect is
weak enough compared to the paramagnetic effect. The
precise criterion obtained by Gruenberg and Gunther4 for
clean superconductors with an isotropic dispersion law is
H, zb (0)/Hp ) 1.28, where H, 2b(0) and Hp are the zero-
temperature orbital critical field and the Pauli limited
Beld, respectively. Finally, the LOFF state is very sensi-
tive to impurities and is destroyed when the elastic mean
free path becomes smaller than the coherence length.

Quasi-one-dimensional (quasi-1D) superconductors
(weakly coupled chains systems with an open Fermi sur
face consisting in two quasi-1D sheets) appear very par-
ticular with respect to the existence of a LOFF state.
The fundamental reason is that, because of the quasi-1D
structure of the Fermi surface, the partial compensation
of the Pauli pair-breaking (PPB) effect by a spatial mod-
ulation of the order parameter is much more eKcient than
in a system with an isotropic dispersion law. ' ' More-
over, it has been shown recently that the magnetic Geld
induces a dimensional crossover which makes the orbital
critical Beld H 2 diverge, " thus increasing the relative
strength of the PPB effect compared to the orbital ef-
fect. Noting also that quasi-1D systems such as can be
found experimentally in the organic conductors of the
Bechgaard salts family can be made very clean, strongly
anisotropic superconductors should be very good candi-
dates for the observation of a LOFF state.

The effect of a magnetic field on the phase diagram
of a quasi-1D superconductor has recently received a lot
of attention. 0 It was shown that for T o && t a high
magnetic field stabilizes at low temperature a cascade of
superconducting phases separated by first-order transi-
tions, which ends in a strong reentrance of the supercon-
ducting phase (the magnetic field is parallel to the y axis;
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t is the coupling in the z direction between the chains
parallel to the x axis). The existence of this cascade of
superconducting phases in high magnetic field is a conse-
quence of the two properties of a quasi-1D superconduc-
tor noted above: the magnetic-field-induced dimensional
crossover which freezes the orbital mechanism of destruc-
tion of the superconductivity and the eKciency of the
LOFF state in compensating the PPB effect. In the
reentrant phase, the dimensional crossover is almost com-
plete: The system exhibits a quasi-2D behavior and the
critical temperature is mainly determined by the PPB
effect. For small enough t, (t, T,o), the cascade of
phase transition disappears and the reentrant phase ap-
pears more as a slow decrease of the critical temperature
than as a real reentrance of the superconducting phase.
The critical temperature T, then decreases as 1/H, a
consequence of the existence of a LOFF state, leading to
an upward curvature of the critical field H,2(T).

In this paper, we determine the transition line T, (H)
[or H, (2T)] as a function of the parameter t, /T, o in
the presence of both orbital and PPB effects. The
present work is an extension of the work of Dupuis and
Montambaux (DM) with special attention devoted to
the appearance of a LOFF state and to the crossover be-
tween the low-field regime and the high-field regime (or
quantum regime in the terms used in Ref. 9).

In the next section, we determine the transition line in
the absence of orbital effects of the field. At low field,
T —T,o (p~H)2/T, o which leads to a downward cur-
vature of the upper critical field. . We show that below
Tp 0.56T p, the LOFF state is more stable than the
uniform superconducting state. For @~H )) T, the criti-
cal temperature between the LOFF state and the normal
state varies as 1/H, leading to an upward curvature of
the critical field H,2(T). The effect of disorder is dis-
cussed. In Sec. III, we study the effect of a small coupling

T p between chains on the phase diagram obtained
in Sec. II. For a large anisotropy (i.e. , t, /T, o 1),
the phase diagram obtained in Sec. II is only slightly
modified by the orbital effects. At low field, the critical
temperature T is now dominated by the orbital effects
of the field and decreases linearly with H. However, the
upward curvature of H, (Tz) at p~H )) T, which re-
sults from the existence of a LOFF state, subsists when
the quantum effects of the field are fully taken into ac-
count in the calculation of T . For a smaller anisotropy
(i.e., t, /T, o ) 2), the phase diagram becomes more com-
plicated due to the stabilization at low temperature of
the cascade of superconducting phases studied by DM.
The interplay between this cascade, which is induced
by the orbital effects of the field, and the appearance
of the LOFF state is studied in detail as a function
of the anisotropy t /T 0. In Sec. IV, we discuss the
experimental situation in the quasi-1D superconductors
of the Bechgaard salts family and argue that they ap-
pear as good candidates for the observation of a LOFF
state, provided that their anisotropy is large enough. Re-
cent experimental results obtained. by Lee et al. with
the organic quasi-1D superconductor (TMTSF) 2C104
(TMTSF=tetramethyltetraselenafulvalene) are dis-
cussed. In the Conclusion, we point out the possibility to

observe a LOFF state in some of the recently discovered
quasi-2D organic superconductors due to the particular
topology of their Fermi surface.

1 T 1
—(uu„+ h) + b, 2 '

k)(dri

(2)

where A ) 0 denotes the BCS attractive interaction and
h = p~H is the Zeeman energy (the g factor is assumed
to be equal to 2). w = vrT(2n + 1) is a Matsubara
frequency and S is the area of the system. The difference
F(T, H) between the free energies of the superconducting
state and of the normal state can be obtained from

~/2d~f (3)F(T, H) =

where the function g(A) = I/A is defined by (2). Ex-
panding the self-consistency equation in powers of 4, we
obtain the Ginzburg-Landau (GL) expansion of the free
energy,

where
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where ((a, z) = P o(n + z) is the generalized zeta
function. N(0) is the density of states per spin at the
Fermi level. y(0) is the Cooper pair susceptibility,
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II. PAULI PARAMAGNETISM
In this section, we consider a strongly anisotropic su-

perconductor subject to a magnetic field acting on the
electron spins. The open Fermi surface is described by
the dispersion law (h = k~ = 1 in the following and the
Fermi energy is chosen as the origin of the energies)

ek = v(Ak~ —kp') + ti cos(k~c),

where v is the Fermi velocity for the motion along the
chains (x axis) and c the distance between chains. n =
sgn(k ) = +/ —labels the right/left sheet of the Fermi
surface. We do not consider explicitly the y direction
parallel to the magnetic field which does not play any
role for a linearized dispersion law.

At high temperature (or low magnetic field), the order
parameter 4 is uniform. Its value is obtained from the
self-consistency equation
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where ((3) 1.20. As pointed out by Maki and
Tsuneto, ' the transition between the normal state and
the uniform superconducting state becomes of first order
when the coefFicient of the quartic term in the GL expan-
sion changes sign. This corresponds to the point (hp, Tp)
of the transition line determined by

(Re( 3, —+ . ~ =OandA=O.
2 2x7l'To )

(8)

The first equality in (8) leads to ho/2' Tp 0.304092.
From A = 0 and A = N(0) ln(2pO/vrT, o), we then
deduce Tp 0.56T p.

Up to now, we have ignored the possibility to observe
a nonuniform superconducting state. It is therefore nec-
essary to consider the more general equation

1—= x(q) (9)

where y(q) is the Cooper pair susceptibility defined in
(6). In principle, one should also consider the possibil-
ity of a nonuniform superconducting state with a finite
momentum of the Cooper pair along the z direction. We
have verified that in our model such a state is never sta-
ble. The wave vector of the modulation of the order
parameter at the transition is determined by the maxi-
mum of the susceptibility, which can be obtained from
the derivatives

evaluated at zero total momentum, and 4 is the digamma
function. Here q is the momentum along the chains. p is
the exponential of the Euler constant and 0 is the cutoff
energy for the attractive interaction. The GL expansion
(5) agrees with the one obtained by Maki and Tsuneto
in the case of an isotropic system with the dispersion law
ek ——k /2m. As long as the Cooper pairs are formed
with states of opposite momenta, the shape of the Fermi
surface does not play any role. This appears clearly when
we make the usual replacement S P& ~ N(0) J de in
the self-consistency equation (2). The critical temper-
ature is determined by A = A —y(0) = 0. For low
field h « T, using A i = N(0) 1n(2pA/vrT, o), we obtain
a downward curvature of the transition line [or equiva-
lently of the critical field H 2(T)]:

(4~T1 R'~" ( '+ **-*)-
v i Ree('~( ', + „".7)- (12)

where 4~ ~ is the fourth derivative of the digamma func-
tion. For large field 6 )& T, Eq. (6) shows that the
maximum of the susceptibility should be reached for

q +2h/v. This leads to the critical temperature

FT p

a result which was previously obtained by DM. Thus, at
low temperature, the variation of T, as 1/H, which is
a consequence of the existence of the LOFF state, leads
to a divergence and an upward curvature of the critical
field H,2(T). The susceptibility y(q) as a function of q is
shown in Fig. 1 for different values of the magnetic field.
The transition line T and the wave vector q of the order
parameter are shown in Fig. 2.

The divergence of the critical field is of course not phys-
ical. At low temperature, the effect of disorder will be-
come more and more important and will lead to a G-

nite critical field. Following the standard treatment,

to a maximum of the susceptibility. For h,/T & ho/To,
y" (0) & 0, showing that q = 0 corresponds to a lo-
cal minimum of the susceptibility. The maximum of
y(q) is reached for a finite value of the total momentum.
Thus, the temperature Tp below which the LOFF state
is more stable than the uniform superconducting state
corresponds exactly to the temperature below which we
showed that the transition between the normal state and
the uniform superconducting state would have become of
first order in the absence of the LOFF state. An anal-
ogous result has been obtained by Dieterich and Fulde
in their study of the magnetic field dependence of the
Peierls instability in one-dimensional conductors, a prob-
lem which bears some similarities with the one considered
in this section. For h,/T slightly above ho/To, we find
using Eq. (10) that the maximum of the susceptibility is
obtained for

nvq+ 2~

0.9-

0. 8

where 4' and 4" are the first and second derivatives of
the digamma function. The last equation was obtained
using @"(z) = —2((3, z). It can be seen from Eq. (10)
that y'(0) = 0 independently of the value of the field.
For h,/T ( ho/To, y" (0) & 0, so that q = 0 corresponds

FIG. 1. Cooper pair susceptibility y(q) on the transition
line (H, T, ) as a function of q/G for difFerent values of the
magnetic 6eld. G = —eHc is the magnetic wave vector intro-
duced in Sec. III.
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—q a t cos(k~a) && T,122
0.75.

0. 5-

where q +2h/v is the total momentum of the Cooper
pair in the LOFF state. Using k~a 1 and t vk~,
this inequality can be rewritten as

0.25. 62&&Tt .

0

H (Tes].a)

For t /2 3000 K and using 6 = p~H = 0.67H K, we
obtain the condition H && 30 T at T = 100 mK. Thus, in
the magnetic field and temperature ranges which can be
experimentally reached, the use of a linearized dispersion
law is justified.

FIG. 2. Transition line T, and wave vector q of the mod-
ulation of the order parameter vs magnetic field without the
orbital effect. The dotted line corresponds to q = 2h/v. III. ORBITAL AND PAULI EFFECTS

impurity scattering is taken into account by including
self-energy and vertex corrections in the Cooper pair sus-
ceptibility. Using the results of Ref. 9, we find that the
critical temperature in presence of disorder T " is given
by

In this section, we study how the orbital effects of the
magnetic field modify the phase diagram obtained in the
preceding section. In the gauge A(0, 0, Hx), th—e order
parameter is determined by the integral equation

'A(x, q, ) = dx'K(x, x', q, ) A(x', q, ), (19)
Tdls

C

T
7j 3~ T.'

32Tc~ 32Tc~ h
+

ei, = t cos(k a) + t& cos(k&b) + t, cos(k, c) —p, , (15)

where p is the Fermi energy and a, b, and c the lattice
parameters. The transfer integrals t, t„, and t verify
the condition t„,t, (( t which ensures that the Fermi
surface is open for a sufficient filling (p, t ). If we
expand ek around 6k~ defined by p, = t cos(k~a), we
obtain

e~ = v(1k*i —k~) + -(Ik*l —k~)'a't cos(k~a)
2

+t„cos(k„b) + t, cos(k, c), (16)

where v = at sin(k~a) is the Fermi velocity along the
chain direction. Because of the curvature of the disper-
sion law around the Fermi level, it is not possible to find a
particular value of q, allowing us to fulfill the pairing con-
dition eg + 6 = ez g —6 for one-half of the phase space.
However, it will be possible to neglect the curvature of
the dispersion law if

for lT, "—T,
l
« T, « h. Thus, the disorder becomes im-

portant at low temperature when T, 7r/32m. In Bech-
gaard salts where I/w can be of the order of 100 mK, the
disorder will be inefIicient down to very low temperature
so that the upward curvature of the upper H,2(T) will
persist in a very broad range of temperature.

In the present model, the stability of the LOFF state
strongly relies on the use of a linearized dispersion law. It
is therefore necessary to verify that a finite curvature of
the dispersion law at the Fermi level does not modify sig-
nificantly the preceding results. Instead of the linearized
dispersion law given by Eq. (1), we consider the following
tight-binding model:

N(0)AT cos[2p~H(x —x')/v]
v sinh[l x —x'l 27r T/v]

G
x Jo ' sin —(x —x')

c 2

c G
x sin q, ———(x+ x')

2 2 )
(20)

where K takes into account both the PPB and orbital ef-
fects. Jo is the zeroth-order Bessel function, G = —eHc,
and u = Gv. The cutoff d is related to the energy O.
Taking advantage of the conservation of the transverse
momenta in the chosen gauge, we have introduced the
Fourier transform E(x, q, ) of the order parameter with
respect to z. q only shifts the origin of the x axis and
can therefore be set equal to zero when determining the
critical temperature. Without any loss of generality, the
solution of the integral equation (19) can be written as a
Bloch function

b,g (x) = e'~ Ag (x), (21)

where Ag(x) has the periodicity m/G and the magnetic
Bloch wave vector Q is restricted to ]

—G, G]. Each phase
is characterized by this vector Q which plays the role of
a pseudomomentum for the Cooper pairs in the mag-
netic field. The kernel K(x, x') takes into account all the
quantum effects of the Beld. In Sec. IIIA we will com-
pare the exact mean-field results obtained with K(x, x')
with those obtained in the eikonal (or semiclassical phase
integral) approximation where the quantum effects of the
Beld are completely neglected. In this approximation, the
kernel becomes9
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N(0)mT cos[2p~H(z —x')/v]
v sinh[]z —z']2nT/v]

c
x Jo '(x —x') sin q, —

'U '2

G——(x+ z')
2

If t = 0, the orbital effects vanish for a field parallel to
the y direction and the phase diagram is then as shown
in Fig. 2. In the following, we study the orbital effects of
the field for increasing coupling between chains.

A. Large anisotropy

We first consider the case of a small coupling t, /T, o ——

1.33. For each value of the field, we determine numer-
ically from Eq. (19) the vector Q which maximizes the
critical temperature and the corresponding T .

In a first step, we neglect the PPB effect. The re-
sults are shown in Fig. 3 for the eikonal approximation,
where quantum effects of the field are not taken into
account. We recover the standard results for a system
of weakly coupled superconducting chains (or planes). i~

Close to T,o, the critical temperature decreases linearly
with H. In this regime, the coherence length (, (T) is
much larger than the spacing c between chains and the
superconducting state is a triangular Abrikosov vortex
lattice. At lower temperature, the coherence length be-
comes of the order of the spacing between chains so that
vortices can fit between chains, thus quenching the or-
bital mechanism of destruction of the superconductivity
and leading to a divergence of the critical field. The su-
perconducting state is then a triangular Josephson vortex
lattice with a periodicity in the transverse direction equal
to 2C. The crossover between these two regimes is some-
times referred to as a (temperature-induced) dimensional
crossover. It should be noted here that this dimensional
crossover is different from the magnetic-field-induced di-
mensional crossover which results from the magnetic-
field-induced localization of the wave functions and which

is not taken into account in the eikonal approximation.
The values of Q corresponding to the highest T, are
shown in Fig. 3. At low field, all the values of Q lead to
the same critical temperature. As pointed out by DM,
this degeneracy allows one to construct the Abrikosov
vortex lattice by taking a linear combination of the func-
tion Ag(z, q, ). In Fig. 3, the degeneracy of T, with re-
spect to Q is shown symbolically by a shaded triangle. At
higher field, when the superconducting state becomes a
Josephson vortex lattice, the degeneracy is lifted in favor
of Q = 0. It is worth pointing out that these results ob-
tained in the eikonal approximation can also be obtained
in the Lawrence-Doniach model where the critical tem-
perature is obtained from (restoring the q depen4ence)

—v + t, 1 —cos(q, c —2Gz)
204

Bx

16~2, &, T. )
T,'o 1 — ' . (23)

The results obtained in the exact calculation are similar
to those obtained in the eikonal approximation, except
for the reentrance which occurs at high field (u, )) t„
which corresponds to H ) 1 T for the parameters used
in Fig. 3) as a consequence of the magnetic-field-induced
dimensional crossover.

We now consider both the PPB and orbital effects
(Fig. 4). In both descriptions (exact and eikonal), we
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o
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H (Tesla)
FIG. 3. Transition line T, and magnetic Bloch wave vector

Q for t /T 0 = 1.33 without the PPB efFect in the eikonal
approximation [Eq. (22)]. The degeneracy of T with respect
to Q at low field is shown symbolically by a shaded triangle.
The three dotted lines correspond to Q = 2h/v, G —2h/v, G.

H (Tesla)
FIG. 4. Transition line T and magnetic Bloch wave vector

Q for t /T, s = 1.33 with both the PPB and orbital efFects.

(a) Exact calculation [Eq. (20)]. (b) Eikonal approximation
[Eq. (22)].
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obtain a linear behavior at low field showing that the
critical temperature is limited by the orbital effect. The
value of Q is degenerate in this field range. At higher
field, the degeneracy is lifted in favor of Q = 0 when
the periodicity of the vortex lattice becomes of the order
of 2c. This temperature-induced dimensional crossover
&om the Abrikosov vortex lattice towards the Josephson
vortex lattice is accompanied by a weak upward curva-
ture of H 2(T). At lower temperature, the two descrip-
tions differ considerably. In the exact description [Fig.
4(a)], the orbital effect appears very weak and the phase
diagram in this field range is similar to the one obtained
by considering only the PPB effect (Fig. 2). We observe a
transition to a LOFF state characterized by a finite value
of Q which means an additional spatial modulation for
the Josephson vortex lattice. For very high field, we find
Q 2h/v. The transition line shows a pronounced up-
ward curvature which is a consequence of the existence
of the LOFF state. In the eikonal description [Fig. 4(b)],
the orbital effect modifies in an important way the phase
diagram shown in Fig. 2. The divergence of the critical
field H~2 is suppressed and the region of stability of the
LOFF state is very narrow. The upward curvature of the
transition line is now restricted to very low temperatures.

Thus, the pronounced upward curvature of H 2(T)
found in the preceding section, which was a consequence
of the existence of the LOFF state, persists only if the
quantum efFects of the Geld are fully taken into account.
In the following, we shall not consider the eikonal ap-
proximation any more.

0.75

0. 5

0.25.

H (Tesla)

0.75

0.25

H (Te.la)
FIC. 5. Transition line T, and magnetic Bloch wave vector

q for t, /T, O ——2.67 in the exact calculation [Eq. (20)]. (a)
Without the PPB efFect. (b) With both the PPB and orbital
e8'ects.

B. Smaller anisotropy

For larger values of the coupling between chains
t, /T, o

——2.67 and 2.93, the phase diagrams are shown
in Figs. 5 and 6. The low-field regime, where the value
of Q is degenerate, is now followed by a phase Q = G,
which is itself followed by a phase Q = 0. This is the
cascade of superconducting phases which has been stud-
ied by DM. This cascade appears between the low-Geld
regime where the superconducting state is an Abrikosov
vortex lattice and the very-high-field regime where the
superconducting state is a Josephson vortex lattice. The
transition to the LOFF state appears in the last phase
Q = 0: The GL regime and the cascade of phases are
dominated by the orbital effects of the field. Figures 5
and 6 show that the shape of the transition line is very
sensitive to the value of t, /T, o.

If we further increase the coupling between chains
(Figs. 7 and 8), the number of phases in the cascade in-
creases. The transition to the LOFF state appears before
the reentrant phase. In Fig. 7(b), the transition corre-
sponds to a shift of Q within a phase Q = G.

For t, /T o = 6.67 (Fig. 9), the cascade of phase tran-
sitions appears at lower temperature. The transition to
the LOFF state occurs in the beginning of the cascade.
At low temperature, we thus observe an alternance of
phases Q = 2h/v and Q = G —2h/v. In Fig. 10, we have
shown the eigenvalue Ag of the kernel K(x, x') associated
with the eigenfunction Ag(x) for di8'erent values of the

(a)

0.75

0. 5

0.25- P

H (Tesla)

0.75

0. 5

0.25
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FIG. 6. As in Fig. 5, but for t /T o ——2.93.
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material with respect to the effects discussed in this pa-
per. Several comments are in order here. First we should
wonder whether the model we have used is adequate to
describe the superconductivity in the Bechgaard salts.
Many experimental results seem to show that the in-
trachain interactions are repulsive and indicate that the
superconductivity is not of conventional type 2x,22 For
example, NMR measurements obtained by Takigawa et
al.~3 are clearly not compatible with isotropic s-wave
pairing in zero field. However, DM argued that a model
based on local attractive interactions (which would lead
to isotropic s-wave pairing in zero field) should remain
valid from a qualitative point of view. The reason is that
the unusual behavior of a quasi-1D superconductor in
a high magnetic Geld is due only to the magnetic-Geld-
induced dimensional crossover (i.e. , the localization of the
one-particle wave functions along the chains of highest
conductivity) and does not rely on a particular model of
superconductivity. Second, one should wonder whether
a BCS mean-Geld analysis can be justified in a system of
weakly coupled chains. Such an analysis requires well-
defined quasiparticles in the normal state and in partic-
ular a coherent transverse (in the y and z directions)
electronic motion. From a theoretical point of view, this
problem has recently attracted a lot of attention. Many
authors have given some arguments in favor of a Fermi
liquid behavior at low enough temperature in a system of
weakly coupled chains while the opposite point of view
has been adopted by Anderson and collaborators. 2" In
(TMTSF)zC104, the NMR relaxation rate shows that
the behavior of the system changes drastically when the
temperature decreases below about 10—30 K. This re-
sult, together with the absence of a correlation gap as
can be seen &om resistivity measurements, strongly sug-
gests that this compound undergoes a single-particle di-
mensionality crossover at a temperature T 1 10 K,
below which the transverse electronic motion becomes
coherent. Other convincing experiments are those con-
cerned with the angular Lebed' resonances. The origin
of these resonances, which occur in various physical quan-
tities (thermodynamics or transport) when the field is
tilted in the (y, z) plane, can be simply understood &om
a semiclassical argument. The semiclassical electronic
trajectory is of the form y = b(tz/w, &) cos(u, „y/v) and
z = c(t, /ur„) cos(ur„z/v), where u,„= eHccos(0) and-

eHb sin(0—). Here b is the spacing between chains
in the y direction and 0 is the angle between H and the
z axis. For certain orientations 8 of the field ("magic"
angles), the two magnetic &equencies ~,„a dna„are
commensurate, w„/ur, „=p/q (p, q integer), leading to
a periodic electronic motion which results in the Lebed'
resonances. Clearly, this analysis based on the consider-
ation of the semiclassical orbits is meaningful only if the
electronic motion is coherent in both the y and z direc-
tions. From our point of view, the absence of coherent
transverse electronic motion in the Bechgaard salts would
therefore be very difficult to reconcile with the existence
of these angular oscillations.

Since the shape of the transition line very strongly de-
pends on the value of the ratio t, /T, o, one should won-
der what the value of this parameter is in the Bechgaard

salts. There are two opinions in the literature concern-
ing the values of the transfer integrals ts = t„/2 and t, =
t, /2, According to many authors, ti, =200—300 K and
t =5—10 K, as obtained &om band calculation. These
values seem to be supported by recent measurements of
a new type of angular oscillations of the conductivity.
The second opinion is that the values of tg and t, are
strongly reduced with respect to their bare values, due to
1D fluctuations. ' From a renormalj. zation group cal-
culation and using experimental results of the NMR re-
laxation rate, Bourbonnais et al. estimated tg 30 Ky
which leads to t 0.5—1.5 K. While the Grst point of
view yields values of the transfer integrals which would
make the observation of the LOFF state difficult or even
impossible (see the numerical calculations in Sec. III and
Ref. 9), the second point of view makes the compound
(TMTSF) zC104 a very good candidate for the effects dis-
cussed in this paper.

Lee et a/. have recently investigated the supercon-
ducting transition in (TMTSF) zC104 &om resistive mea-
surements performed between 1.2 K and 60 mK and up
to 7 T. ~ The magnetic Geld was oriented along the b'

axis, since this corresponds to the orientation for which
quantum effects of the field are expected. Although they
do not give a d.efinite answer for the existence of high-
field superconductivity in (TMTSF)2C104, these results
might be interpreted as the signature of a high-Geld su-
perconducting phase (see Ref. 11 for a detailed analysis of
the experimental results). Such an interpretation would
imply an anisotropy t, /T, o 3.5—4 which leads to t, 2
K. For this value of the anisotropy, the GL regime and
the reentrant phase are separated by a few superconduct-
ing phases separated by first-order transitions [see Figs.
7(b) and 8(b)].

V. CONCLUSION

We have presented a detailed analysis of the inter-
play of the Pauli paramagnetism and the orbital effects
of the field in a quasi-1D superconductor with an open
Fermi surface. We have calculated the transition line
(H, T,) as a function of the anisotropy t, /T, o. As a re-
sult of their quasi-1D Fermi surface, quasi-1D supercon-
ductors appear as very good candidates for the obser-
vation of a LOFF state, provided that their anisotropy
is large enough. We have shown that when the inter-
chain coupling is sufficiently weak, the transition be-
tween the LOFF state and the normal state is character-
ized by an upward curvature of the critical field H,2(T).
We have also argued that the organic superconductor
(TMTSF)2C104 is a good candidate for the observation
of a LOFF state. The experimental results of Lee et
al. on this compound are in agreement with the results
obtained in this paper and could be interpreted. as a sig-
nature of high-Geld superconductivity. Since the zero-
Geld critical temperature T 0 decreases with pressure,
it should be possible to study the evolution of the resis-
tivity curves R(H, T) measured by Lee et aL as a func-
tion of the anisotropy t, /T, o. A disappearance of the
high-field "anomalies" of the resistivity when pressure
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is increased would support the existence of a high-field
superconducting phase at ambient pressure. Although
we only considered in this paper the case of quasi-1D
systems, the results can easily be extended to the case
of quasi-2D conductors. DM argued that similar quan-
tum effects of the field should be present in a weakly
coupled-planes system in a magnetic Geld perpendicu-
lar to the low-conductivity axis, leading to a cascade of
superconducting phases similar to the one predicted for
quasi-1D systems. They also pointed out that for a dis-
persion law which is isotropic in the highest-conducting
plane (for example, e1

~~|

——k~~/2m[~ where k~~ and m~~ are
the wave vectors and the effective mass in the highest-
conducting plane), the LOFF state will not compensate
significantly the PPB effect so that its region of stability
in the H-T plane will be very narrow or even nonexistent.
This means that both the LOFF state and the cascade
will be very difficult to observe in this case. However,
some of the recently discovered quasi-2D organic super-
conductors, like, for example, the salts of the BEDT-TTF

family, present some Bat parts on their Fermi surface.
While such a topology of the Fermi surface is usually
expected to favor the formation of a spin-density-wave
state, it could also increase the efficiency of the LOFF
state in compensating the PPB efFect. Experimental re-
sults indicate that the critical field parallel to the highest-
conducting planes is closed to the Pauli limit. Thus, the
existence of a LOFF state in quasi-2D materials cannot
be a priori excluded.

Tote added. After completion of this work, the author
became aware of a related work on the LOFF state in
quasi-2D superconductors.
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