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Thermodynamics and excitation spectrum of a quasi-one-dimensional superconductor
in a high magnetic Beld
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At high magnetic field, the semiclassical approximation which underlies the Ginzburg-Landau
theory of the ~axed state of type-II superconductors breaks down. In a quasi-one-dimensional
superconductor with an open Fermi surface, a high magnetic Beld stabilizes a cascade of supercon-
ducting phases which ends in a strong reentrance of the superconducting phase. Prom a microscopic
mean-field model, we determine the theraxodynamics and the excitation spectrum of these quantum
superconducting phases.

It has recently been proposed that quasi-one-
dimensional (quasi-1D) superconductors should exhibit
an unusual phase diagram in a high magnetic field. i 2

In a quasi-1D conductor (weakly coupled chains system)
with an open Fermi surface, the magnetic Beld does not
quantize the semiclassical orbits which are open but it in-
duces a dimensional crossover in the sense that it tends
to confine the wave functions along the chains. This
quantum efFect of the field strongly modifies the phase
diagram predicted by the Ginzburg-Landau-Abrikosov-
Gor'kov (GLAG) theory which is based on the semi-
classical phase integral (or eikonal) approximation. s The
usual Ginzburg-Landau (GL) regime is followed, when
the field is increased, by a cascade of superconducting
phases separated by first-order transitions which ends in
a strong reentrance of the superconducting phase where
the chains interact by Josephson coupling. The supercon-
ducting state evolves from an Abrikosov vortex lattice in
the GL regime towards a Josephson vortex lattice in the
reentrant phase. Between these two limits, the ampli-
tude of the order parameter and the current distribution
show a symmetry of a laminar type while the vortices still
describe a triangular lattice. The cascade of phase transi-
tions originates in commensurability efFects between the
periodicity of the order parameter and the crystalline
lattice spacing. This high-field superconductivity can
survive even in the presence of Pauli pair breaking be-
cause the quasi-1D Fermi surface allows one to construct
a Larkin-Ovchinnikov-Fulde-Ferrell state which can ex-
ist far above the Pauli limited field. A very important
aspect is that the temperature and magnetic field scales
are determined by the coupling between chains. 2 This
means that the temperature and magnetic Geld ranges
where high-field superconductivity is expected can be
experimentally accessible if appropriate (i.e., sufficiently
anisotropic) materials are chosen.

In this paper, we derive the thermodynamics and the
excitation spectrum of these quantum superconducting
phases &om a microscopic model in the mean-6eld ap-
proximation. We consider a strongly anisotropic super-
conductor described by the dispersion law (5 = kgb = 1
throughout the paper) E(k) = v(~k~~ —k~) + t cos(k, c)
where the Fermi energy is chosen as the origin of the en-
ergies. v is the Fermi velocity for the motion along the

e'" J) (at),cl
eP ) = v(ak* —kF) + al(o, ,

(2)

where r = (x, m), t = t, /ur„a = sgn(k ), and J~ is the
lth-order Bessel function. I is the length of the system
in the x direction. The spectrum consists in a discrete
set of 1D spectra. The state P& &

is localized around
the lth chain with a spatial extension in the z direction
of the order of tc which corresponds to the amplitude
of the semiclassical orbits. Note that the states PP
can be obtained &om the localized states introduced by
Yakovenko by a gauge transformation. The supercon-
ducting instability can be qualitatively understood &om
the spectrum (3). In zero field, time-reversal symmetry
ensures that E~(k) = E~(—k) so that the pairing at zero

chains and t, is the coupling between chains separated
by the distance c. For a linearized dispersion law, the y
direction parallel to the magnetic field does not play any
role (as long as the Cooper pairs are formed with states
of opposite momenta in this direction) so that we restrict
ourselves to a 2D model. We assume that the zero-field
critical temperature T,o is smaller than t, so that the
superconductor is really 3D: In the GLAG description,
there is no Josephson coupling between chains even at
T = 0. We consider singlet pairing but we neglect the
Zeeman term (i.e., we put the g factor equal to zero).
The Pauli pair breaking effect can easily be incorporated
in the present description.

In the gauge A(Hz, 0, 0), the one-particle Hamiltonian
obtained from the Peierls substitution 'Ro ——E(k +

iV —eA) is gi—ven by

Ro = v( taBs —k—p) + arn4Jg + ts cos( xcBs) )

where a = + (—) labels the right (left) sheet of the Fermi
surface and m is the (discrete) position operator in the
z direction. We have introduced the energy ~, = Gv
where G = —eHc is a magnetic wave vector and H the
external magnetic Beld perpendicular to the system. 'Ro

can easily be diagonalized by noting that the momentum
along the chains is a good quantum number and by taking
the Fourier transform with respect to m. The eigenstates
and the corresponding eigenenergies are
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total momentum presents the usual (Cooper) logarithmic
singularity which results in an instability of the metal-
lic state at a finite temperature T,o. A finite magnetic
field breaks down time-reversal symmetry. Nonetheless,
we still have e& & &

——e
& & &

for q = —(li + l2)G.
Thus, whatever the value of the field, some pairing chan-
nels will present the Cooper singularity ln(2pO/AT)
(p 1.781 and 0 is the cutoff energy of the attractive
interaction) if the total momentum along the chain q
is a multiple of G. This results in logarithmic diver-
gences at low temperature in the linearized gap equa-
tion which destabilize the metallic state at a tempera-
ture 0 & T, & T,o.'2 Besides the most singular channels
which present the Cooper singularity, there exist less sin-
gular channels with singularities in~A/nu,

~
(n g 0)

for T (( ~, In t.his high-field limit (ur, )) T), a nat-
ural approximation consists in retaining only the most
singular channels. Such an approximation has been used
previously in the mean-field theory of the field-induced
spin-density-wave phases observed in some organic con-
ductors (single gap approximation) (Ref. 5) and in the
mean-field theory of isotropic superconductors in a high
magnetic field where it is known as the quantum limit
approximation (QLA). In the following, we shall adopt
this latter designation.

In order to obtain the critical temperature when u, ))
T, we consider the two-particle vertex function in the rep-
resentation of the eigenstates of 'Rp. In the chosen gauge,
the total momentum q along the chains is a constant of
motion. Since in the QLA we consider only the most sin-

gular pairing channels, the center of gravity of the Cooper
pair in the perpendicular direction is related to the to-
tal momentum q by Li2 ——(li + lz)/2 = —

q /(2G) as
explained above, and therefore becomes also a constant
of motion. Thus the two-particle vertex function can be
written as I'

(&) &(liz, li2) with q (L) = 2LG, where-

li2 ——li —12 and l&2
——lz —I& describe the relative motion

of the pair in the z direction. In the ladder approxima-
tion, the integral equation for I' then reduces to (1 = li2,
1'—:l', z)

I II'
(L) &(1,1') = —AVE

+—y(0) ). VPP~ I'q. (r, ) L, (l") l'), (4)
~II f II

cxc ' lwhere Vi l,
——o. n' VI, ,l and

"d
Vg i = —Ji (2t cos 2:)Ji {2tcos a) .

0 2K

—AV& &, is the matrix element of the local electron-
7

electron interaction —Ab(ri —r2) (A ) 0) in the rep-
resentation of the states gP& &. Note that V& &, is in-
dependent of the center of gravity of the Cooper pair.
y(0) = N(0) ln(2pO/z T) is the pair susceptibility at zero
total momentum in zero field and N(0) is the density of
states per spin at the Fermi level. The preceding integral
equation is solved by introducing the orthogonal trans-
formation U~ ~ which diagonalizes the matrix Vj ~ . One
obtains

I aa'
() (I) p l tl ) i,l" i",I" ( )l",l'

(6)

where V is the diagonal matrix U VU. The metal-
lic state becomes instable when a pole appears in the
two-particle vertex function which leads to the critical
temperature

(L) L / (r) ) n Ui l,C., r,

(8)

where we note a = —a. Noting that the matrices V
and U have a range of the order of t (i.e., Vj i, U~ ~ are
important for )I ~, )I'( ( t), one can see that Az (I,) I, ~, has
the form of a strip extended in the direction of the chains
and localized in the perpendicular direction on a length

q 10-4-
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FIG. 1. Solid lines: critical temperature vs magnetic Geld

for lp = 0 and lo —— 1 in the +LA. Dashed line: exact
mean-field critical temperature.

T Y AN(0) $'i

7r

where V~, i, is the highest eigenvalue of the matrix V.
The critical temperatures are shown in Fig. 1 for the
two highest eigenvalues of V. This clearly indicates that
there are two lines of instability competing with each
other and leading to a cascade of first-order transitions in
agreement with the exact mean-field calculation of T, .
Except for the last phase, T, calculated in the QLA is
several orders of magnitude below the exact critical tem-
perature: It has been pointed out previously that the
QLA strongly underestimates the critical temperature. "
The existence of two lines of instability results from the
fact that V~ ( = 0 if I and I' do not have the same parity.
Diagonalizing the matrix V~ i is then equivalent to sep-
arately diagonalizing the matrices Vz& zi and V2(+i, z& +i.
In the following, we label these two lines by lp ——0, 1 so
that Vio, t, = max' V2l+lo, 2~+~, . Since 2L = lq + l2 and
l i —l2 have the same parity, L is integer (half-integer) for
lp = 0 (lp = 1) and can be written as L = —lp/2 +p with

p integer. Correspondingly, we have q (L) = (lp —2p)G.
It is clear that the instability line lp corresponds to the
instability line Q = lpG which was previously obtained
in another approach. z From Eq. (6), one can see that the
superconducting condensation in the channel qe(L) ~ L~ ~p

corresponds to the following spatial dependence for the
order parameter:
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of the order of ct. This is not surprising since b,q ~L,& L, l,
results Rom pairing between the localized states PP

Following the original approach proposed by
Abrikosov, we construct the order parameter for T ( T,
as a linear combination of the solutions (8): b, (r)
P& p(L)b, q ll, & I. l, (r) where 2L, must have the parity of
lo. Since 6& ~L, ~ I, ~, is localized in the z direction with

an extension of the order of ct, a natural choice for the
coefficients p(L) is to take p(L) g 0 if L = —to/2+pN' (p
integer) where the unknown integer N' is expected to be
of the order of t. In order to correctly describe the trian-
gular Josephson vortex lattice in the last phase (t « 1),2
we choose p(L) = p(p) = 1 (i) for p even (odd) which
leads to (noting N = 2N')

where N, is the number of chains. The eigenenergies
are e l ——e l . q is restricted to the first mag-
netic Brillouin zone: ~q~~

—kp p] —z/a, z'/a ] and
q 6) —vr/a„x/a ]. There are N branches ( N/—2 &
l & N/2) at the Fermi level. The order parameter (9) is
entirely described by the pairing between the states P
and )Pi& l l where G = (G, O). Consequently, the
Gor'kov equations (10) become diagonal in the represen-
tation of the magnetic Bloch states and their solutions
are

+!o,N(r) = &).U2l+4, lo'Ype Jp~+l (t)—
L,p

xJ ~ ~—t&
p q

—1—lo —ma (9) where the pairing amplitude 6 (q, l) is defined by

(12)

where the amplitude 6 is chosen real. Equation (9) de-
fines a variational order parameter where the two un-

known parameters b, and N have to be determined by
minimizing the free energy. It can be seen that ~6(r)~
has periodicity a = 2z/NG and a, = Nc so that the
unit cell contains two fiux quanta: Ha a, = 2go (when
a triangular lattice is described with a square unit cell,
the unit cell contains two fiux quanta). In Ref. 2, the
order parameter was constructed by imposing that it de-
scribe both the triangular Abrikosov vortex lattice in a
weak field ((d), « T) and the triangular Josephson vortex
lattice in a very strong field (~, && t, ). Both approaches
lead to the same order parameter when only the Cooper
singularities are retained.

In order to derive the thermodynamics and the excita-
tion spectrum in the superconducting phases, it is nec-
essary to determine the normal and anomalous Green's
functions from the Gor'kov equations

(q, l) = f d rc, (r)'d&, z ~ 4 &(r)'6 (r)

+l, l ) +pe U2l+Io+pN lo (13)

Here At —— —A~ —— A. The functions G and
F t appearing in (12) are the Fourier transforms

of the correlation functions —(T b l (q)b l (0)) and

(T b —
l (q)b& & l l (0)) where b l (b l ) are

annihilation (creation) operators of a particle with spin
0 in the state P

Prom the knowledge of the Green's functions, we can
calculate the free energy of the system. Close to T„ the
difference between the free energies of the superconduct-
ing and normal states can be obtained in a GL expansion
FN[b, ] = AA + Bb, /2 where

2 E(r)
(iu —'Ro)G (r, r', ~) —b, (r)F~~ (rt, r', u) = b(r —r'),

(—i~ —'Ro t)F~t (r, r', ~) + 6' (r)G (r, r', ~) = 0, (10) T ) ~b, (q, /)/6~4

((u2+ e~ 2)2 '
q, l,~ q, l, cr

(14)

where S = L N, c is the area of the system. The two pre-
ceding equations can be further simpled by using (13).
Minimizing the free energy FN[h] with respect to b„we
obtain FN = A /2B. In the r—eentrant phase where the
approximation B = H is justified, we find that the mini-
mum of EN is obtained for N = 2.8 When the field is de-
creased &om its value in the reentrant phase, the system
undergoes a first-order phase transition and the minimum
of FN is then obtained for N = 4. This result is in agree-
ment with Ref. 2 where it is argued that the first-order
phase transitions are due to commensurability efFects be-
tween the crystalline lattice spacing and the periodicity
of the order parameter. Unlike what was expected, 2 the
best value of N switches to 6 before reaching the next
first-order transition. This indicates the importance of
the screening of the external field in calculating the free
energy in the phases N & 4.

The specific heat jump at the transition is obtained

with the self-consistency equation b, ' (r)
AT+ F t(r, r, ur). Here 6 (r) = AP (g (r)g—(r))
where the Q (r)'s are fermionic operators for particles
moving on the sheet a of the Fermi surface. b,t(r) =
—b,l(r) is the variational order parameter defined by
(9). G and F t are the Fourier transforms with re-
spect to the imaginary time 7 of the correlation functions

(T Q (r, q )g t (r—, 0)) and (T g t (r, q )@—(—r, 0)) . In
(10), it is assumed that the magnetization M = (B-
H)/4' is equal to zero. This approximation is justified
in the last phase (t « 1) where M is of the order of P
and its contribution to the Gibbs f'ree energy G(T, H) of
the order of t . In the other phases, we expect that the
approximation B = H will give reliable results at least
not too far from the reentrant phase.

In order to have a simple description of the supercon-
ducting state, we introduce the magnetic Bloch states

N
i,l dN ) 4'q +pNG, l pN ~ ( )—

p
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FIG. 2. Ratio r = (AC/Civ)/(hC/C~)sos vs magnetic
field.
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from b,C = TB F—/BT . The ratio AC/Civ where CN
is the specific heat of the normal state is found to be
always smaller than the (BCS) zero-field value and dis-
continuous at the first-order phase transitions (Fig. 2).
The discontinuity can be related to the slope b,T/6H of
the 6rst-order transition line: The slope is positive for
the last transition and negative for the other transitions.
The magnetization is obtained from M = BF~/B—H
Since T, is determined by F~ = 0, M has the sign of
dT, /dH. io Each phase will therefore first be paramag-
netic and then diamagnetic for increasing field, except
the reentrant phase which is always paramagnetic. ii

From the Green's functions (12), we deduce the
quasiparticle excitation spectrum F

&

——+[e i +
~b, (q, I) ( j

/ . A gap 2A (q, I) opens at the Fermi level
in each branch /. The spectrum is shown in Fig. 3 for
the last three phases N = 2, N = 4, and N = 6. In
the very-high-field limit (t « 1), the spectrum is almost
flat, the dispersion of the quasiparticle band being of the
order of P When th. e field is decreased within a given
phase, the dispersion increases. The minimum excitation
energy decreases when N increases. Thus Fig. 3 clearly

N=6, H=2. 7 T
-1 0

q, a, /~

N=6, H 2.3 T
1 -1 0

q,a, /s

FIG. 3. Excitation spectrum in the phases N = 2, N = 4,
and N = 6. The units are chosen so that max ~b, (q, I)

~

= 1.
In the phase N, there are N/2 distinct branches.

shows how the system evolves from a quasi-1D (quasi-2D
if the magnetic field direction is taken into account) be-
havior in very high magnetic field (t « 1) towards the
GL regime (ur, « T) where the spectrum is known to be
gapless.

In conclusion, we have solved the BCS theory for a
quasi-10 superconductor in a high magnetic field. The
theory can easily be extended to include the pairing chan-
nels which are not considered in the /LA: The results
presented in this paper are not qualitatively modified.
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