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Quasi-One-Dimensional Superconductors in Strong Magnetic Field
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We determine the phase diagram of a quasi-one-dimensional superconductor (weakly coupled
chains system with an open Fermi surface) in a magnetic field. The usual Ginzburg-Landau regime
is followed, when the field is increased, by a cascade of superconducting phases separated by first-
order transitions, which ends in a strong reentrance of the superconducting phase. These new phases
show a novel kind of symmetry of a laminar type. The Zeeman splitting does not completely suppress
the reentrance in very strong field, the ground state being in this case a Larkin-Ovchinnikov-Fulde-
Ferrell state.
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According to the conventional view, superconductivity
and magnetic Beld are incompatible. The fundamental
reason is that in an external magnetic field the order
parameter becomes frustrated. This orbital frustration
raises the free energy of the superconducting state leading
ultimately, as the field is increased, to a transition back to
the normal state. The equilibrium state of type II super-
conductors was first described by Abrikosov using a phe-
nomenological Ginzburg-Landau (GL) theory [1], which
was later justified by Gor'kov in a microscopic model [2].
The Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) the-
ory treats the magnetic field in the semiclassical phase
integral (also called eikonal) approximation. It neglects
the quantum effects of the magnetic Geld and is valid
only when ~, && T, 1/~ (io, is the characteristic magnetic
energy and ~ the elastic scattering time). In sufficiently
clean materials, it is expected to break down at low tem-
perature. The exact determination of H,q(T) then re-
quires an exact treatment of the magnetic field.

The inHuence of Landau level quantization in isotropic
superconductors, first investigated many years ago [3],
has recently received a lot of attention. It has been pro-
posed by Rasolt and Tesanovic that superconductivity
can exist in very strong magnetic field [4]. When only
one I andau level is occupied, the supercurrents can be
made to coincide with the orbital motion of the electrons
in this Landau level if the periodicity of the vortex lattice
is approximately equal to the orbit radius of the lowest
Landau level. In this case, the orbital frustration van-
ishes and superconductivity is only limited by impurity
scattering and the Pauli pair breaking effect.

It is well known that 3D strongly anisotropic conduc-
tors (i.e. , weakly coupled chains systems) such as can be
found experimentally in the organic conductors of the
Bechgaard salt family show unusual properties in a mag-
netic field because of their quasi-1D open Fermi surface
[5]. In these conductors, the semiclassical orbits in the
presence of the GeM are open. Consequently, there is no
Landau level quantization but the field induces a 3D/2D
crossover [6,7]. Therefore, an interesting question is to

know if there is also in this case a mechanism which will
naturally suppress the orbital frustration, leading to the
possible existence of superconductivity in strong mag-
netic field. A first answer was given a few years ago
by Lebed' [8], who has shown that the superconducting
phase is always stable at low temperature and exhibits
a strong reentrance in high magnetic field for equal spin
triplet pairing. This reentrance can be simply under-
stood with the following argument. Consider a strongly
anisotropic superconductor described by the dispersion
law (5 = k~ = 1 throughout the paper)

Ek = v~ k
~
+ t„cos(k„b) + t, cos(k, c) . (1)

v is the Fermi velocity for the motion along the chain
and t„,t, are the coupling between chains separated by
the distances 6, c. For a magnetic field along the y axis,
the semiclassical electronic trajectories obtained from the
equation of motion dk/dt = ev x H are of the form
z = c(t, /co, ) cos(Gx), where G = eHc and w,—= Gv.
The field localizes the electronic motion in the z direc-
tion. In very strong field (io, )& t, ), the amplitude of the
trajectories becomes smaller than the distance between
chains, showing that the electronic motion becomes local-
ized in the (x, y) plane. The magnetic field being parallel
to the plane of the electronic motion, the orbital frustra-
tion vanishes [there is no magnetic flux inside the 2D
Cooper pairs located in the (x, y) plane]. In Bechgaard
salts, the small value of t, 20 K allows one to reach the
very strong field limit (io, )) t, ) for reasonable values of
the field (H 20 T).

In this Letter, we first determine the transition line
T, (H) of a singlet or triplet quasi-1D superconductor.
Our calculation goes beyond the semiclassical phase inte-
gral approximation and takes into account the quantum
effects of the magnetic Beld. We show that the phase
diagram originally proposed by Lebed' [8] is not com-
plete: the GL regime is followed, when increasing the
field, by a cascade of superconducting phases separated
by first-order transitions, which ends with a strong reen-
trance of the superconducting phase. A description of
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the ordered phase is given for temperatures slightly be-
low T,(H): in strong field, the vortex lattice is replaced
by a new superconducting state with a laminar structure.
Moreover, it is shown that the reentrance at high field for
a singlet superconductor is not completely destroyed by
Zeeman splitting, the ground state being in this case a
Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state. Finally,
we discuss the application of our calculations to some or-
ganic conductors.

We consider a type II quasi-1D superconductor with
the dispersion law E~ and the critical temperature T, (&
t, (( t„. This latter condition ensures that the small-
est coherence length in the system is always much larger
than the spacing between chains [(,(T) ) $, (0) )) c].
When quantum effects of the field are not taken into ac-
count, the discrete aspect of the system does not play an
important role: the superconductivity is well described
by the anisotropic GLAG theory. The superconducting
state is an anisotropic vortex lattice, the normal state
being restored at a field H 2(T) = Pp /2w(' (T)(,(T) (Pp
is the fiux quantum) [9].

In order to take into account the quantum effects of the
magnetic field, we start from the Hamiltonian 'Rp+'8;„1, ,

where 'Rp = E(k —+ iV' —eA) is—the standard Hamilto-
nian of a noninteracting quasi-1D system obtained by the

Peierls substitution [6]. A is the magnetic vector poten-
tial. For the interacting part 'H;„i of the Harniltonian, we
use the (gi, g2) model where the constants gi and g2 de-
scribe backward and forward scattering of two particles
on opposite sides of the Fermi surface [10]. We look for
a BCS mean field solution of the Hamiltonian 'Ho + 'H;„t
with an order parameter corresponding to singlet or equal
spin triplet pairing state. Since we are interested in the
strong field regime, we do not consider the possibility of
triplet pairing with opposite spin which is strongly sup-
pressed by Zeeman splitting contrary to equal spin pair-
ing. Since the dispersion law Eg corresponds to a perfect
electron-hole nesting with the vector (2k~, vr/b, 7t /c), one
should in principle consider on an equal footing the log-
arithmic divergences appearing in the electron-hole and
electron-electron channels. We could consider a more re-
alistic dispersion law with imperfect electron-hole nesting
allowing the usual ladder approximation in the electron-
electron channel [ll]. However, these deviations from a
perfect electron-hole nesting do not affect the supercon-
ducting instability and can therefore be discarded in the
calculation. For a uniform magnetic field, 'Rp can be di-
agonalized [6] and the transition line T, (H) is given in
the gauge A(0, 0, Hx) by the—linearized gap equation

A 'A(x, q, ) = dx'K (z, x', q, )4(x', q, ), (2)

T cos[(o —o') p~H(x —x')/v] 4t, . G, . c G
Jp i

'
sin —x —x' sin q, ———x+ x'

bcv2 sinh[)x —x'(2~T/v] ( u), 2
(3)

where Jp is the zeroth-order Bessel function. A(x, q, )
is the Fourier transform of the order parameter with re-
spect to z. We have also used the fact that the high-
est T, (H) is obtained for a uniform order parameter
along the field. o. = o' = 1 (o = —o' = 1) for triplet
(singlet) superconductivity. Ags = —(gi + gz)/2 and
ATg = (gi —g2)/2 are the coupling parameters for sin-
glet and triplet superconductivity, respectively. T,(H)
is clearly independent of q, (which only shifts the ori-
gin of the x axis by q, c/2G) allowing us to set q, = 0.
Using K(x, x') = Is(x+ vr/G, x'+ 7r/G), the solution of
Eq. (2) can be written without any loss of generality as

4g(x) = e'q*3 g(x) where Ag(x+ ~/G) = Aq(x) and
—G ( Q & G. This form of Aq(x) is more general than
Lebed's choice [8] which corresponds to Q = 0. In or-
der to determine T, (H) and Aq(x), we have to solve Eq.
(2) numerically. We first consider triplet pairing. In the
low field regime (w, (( T), all the possible values of Q
correspond to the same T,(H). In the quantum regime
(~, )) T), this degeneracy is lifted. The highest T,(H) is
always obtained for Q = 0 or Q = G. The phase diagram
is shown in Fig. 1. The GL regime is followed by a regime
where the solutions Q = 0 (Lebed's line) and Q = G al-

ternate for increasing magnetic field, the last phase (very
strong field) corresponding to Q = 0. Because these two
solutions are characterized by a different structure of the
order parameter, the field induces a cascade of supercon
ducting phases separated by first order transitio-ns. The
resulting phase diagram is somehow reminiscent of the
field-induced spin-density-wave phases [5,12]. For sin-
glet pairing, the best values of Q are +2prsH/v and
+(G —2p~H/v). The shift +2p~H/v of the value of
Q displaces the Fermi surfaces of spin t' and spin $ rela-
tive to each other and compensates partially the effect of
Zeeman splitting as is the case in a LOFF state (note that
the order parameter remains uniform along the magnetic
field direction) [13]. As a result, one half of the phase
space is again available for pairing so that the reentrance
in high field is not completely suppressed as shown in
Fig. 1 [in the singlet case, the cascade also exists but
at very low temperature: T,(H)/T, 10 s). In the
preceding discussion, we have assumed that the type of
superconductivity remains the same as the field is in-
creased. If Agg & ATg & 0, one would observe singlet
superconductivity in weak magnetic field and triplet su-
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FIG. 1. Critical temperature T,(H)/T, vs magnetic field
(t, = 20 K and t, /T, 13). (a) The solutions Q = 0 (solid
line) and Q = G (dashed line) alternate for increasing rnag-
netic field in the triplet case. Each phase is labeled by an
integer N (see text). In the singlet case, T,(H) is strongly
reduced but the reentrance in very strong field is not sup-
pressed (long-dashed line). (b) The low temperature region
for the triplet case.

perconductivity in strong magnetic field as a consequence
of the Zeeman splitting eKect.

The periodic part AQ(x) of the order parameter is
shown in Fig. 2. In the GL regime, AQ(x) is local-
ized around the points x = n7r/G Using. the de-
generacy of T,(H) with respect to Q, it is possible to
recover the Abrikosov Gaussian solution f(x —x„)
p& e 'Q "AQ(x). In the quantum regime where the

degeneracy with respect to Q is lifted, Aq(x) becomes
extended. This suggests that the usual vortex lattice
structure is strongly modified or even suppressed when

u, » T. In very strong field (w, » t~), Aq(x) is almost
uniform.

In order to understand more precisely the evolution
of the vorte~ lattice in the quantum regime, it is neces-
sary to determine the order parameter for temperatures
slightly below T,(H). To do this, we proceed as follows
(we only consider the triplet case). We first consider the
GL regime and construct the Abrikosov vortex lattice
by taking a linear combination of the Gaussian functions

f (x x„—q, c/2G)—(we have restored the q, dependence).
Using the relation between f and Aq, we can express the
order parameter as a linear combination of the functions
AQ(x, q, ). We then take into account the discreteness
along the z direction by requiring the vortex lattice to
have the periodicity a, = Nc (N integer) so that the
vortex cores can lie between two planes (which will min-
imize the free energy). In this case, only the Q = 0 or
Q = G solution is necessary to describe the Abrikosov
vortex lattice:

xG/&

PIG. 2. Periodic part Ag(x) of the order parameter. (a)
H=013T, Q=O. (b) H=048T, Q=O. (c) H=58T,
Q = 0. Note that Ag=p(x) is real.

Aq~(x, z=mc) =C
L=m mod N

~q i(Q+2lG)z

where Q = 0 (G) if N is odd (even). For simplicity, we
consider a square lattice, but a similar analysis can be
made for a triangular lattice. The solution (4) is nat-
urally extended to the quantum regime where the best
solution corresponds to Q = 0 or Q = G depending on
the value of the field. It can be seen that ~AQ iv(x, m)

~

has periodicity a = 7r/NG and a, = Nc for every value
of the field. We have the usual relation Ha a,
showing that there is one flux quantum in the unit cell

(a~, a, ). In order to know completely the order param-
eter, we have to determine the value of N. In the GL
regime, the periodicity is given by the coherence lengths.
We have a~/a, = (~/(~ = v~2/t, c, which leads to
NGi, (t, /w, ) / In the qu. antum regime, N labels
the successive superconducting phases and decreases by
one unit at each phase transition. In this regime, N is
found to vary as NQR t, /w, : the periodicity a, is not
given by the coherence length (, anymore, but by the
amplitude of the semiclassical orbits (or equivalently the
extension of the one-particle quantum states in the z di-
rection). The cascade of phase transitions is then due to
commensurability eKects between the crystalline lattice
spacing c and the periodicity a, of the order parameter.
In very strong field, the electrons become localized in the
planes z = mc. Therefore, the last phase corresponds
to NQR = 1 (this choice NQR = 1 is possible because
of the square symmetry of the order parameter). The
relation between the value of Q and the parity of N ob-
tained in the GL regime remains true for every value of
the field. Since T, &( t„N cannot be a monotonic de-
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(TMTSF)2PFs, the phase diagram proposed in this pa-
per could be observed. The intermediate phases involve
a low temperature range [T,(H) 10 mK] which can
be reached experimentally only in the case of triplet
superconductivity. The reentrance in high field should
be visible even in the case of singlet superconductivity
[T,(H) 50 mK]. As previously noticed [8], the pre-
cise alignment of the magnetic field along the y axis
(Ae & 1') required in this field regime might be an ex-
perimental diKculty.

Finally, we would like to mention the case of quasi-2D
superconductors described by the dispersion law Ek =-

k~~/2m+ t, cos(k, c). Although the situation is different
due to the presence of open and closed semiclassical orbits
at the Fermi surface, we may wonder whether the phase
diagram in the presence of a magnetic field parallel to
the superconducting planes bears some similarities with
the one of the quasi-1D superconductors which has been
proposed in this Letter.

One of us (C.A.R. Sa, de Melo) acknowledges support
from NSF via STCS Grant No. STC 88-09854. Labora-
toire de Physique Solides is associe au CARS.

FIG. 3. Order parameter ~Ag, iv(x, m)[. (a) H = 0.13 T,
N = 9, Q = 0. (b) H = 0.48 T, N = 13, Q = 0.

creasing function of the field, but has to increase strongly
at the transition between the CL and quantum regimes.
With the parameters used to obtain Fig. 1, NGL = 6 at
the end of the GL regime, while it is possible to distin-
guish 21 phases in the quantum regime. This increase of
N corresponds to the disappearence of the vortex lattice
as shown in Fig. 3 (the phase of the order parameter and
the current distribution also support this analysis). In
the quantum regime, the order parameter shows a sym-
metry of Laminar type consistent with the one-particle
quantum states which are localized in the z direction. In
the last phase (iV = 1), the electrons are mainly local-
ized in the planes z = mc which interact by 3osephson
coupling. This coupling arises when t, « w, and follows
from the magnetic field induced 2D localization. When
t, « w„ the order parameter corresponds to a square lat-
tice of Josephson vortices. For a superconducting state
with a triangular symmetry, the system evolves from a
triangular Abrikosov vortex lattice (for co, « T) towards
a triangular Josephson vortex lattice (for w, )) t, ). N is
always even and the last phase corresponds to N = 2.

In Bechgaard salts like (TMTSF) q C104 and
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