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Localization and magnetic field
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The semiclassical Boltzmann conductivity and the first quantum correction are calculated for a
strongly two-dimensional (2D) anisotropic conductor (weakly coupled chains system) in the presence
of a magnetic field. From scaling arguments, the ground state of the system at zero temperature
is determined. When the coupling t between chains is much smaller than the elastic scattering
rate 1/r, the system behaves as a set of uncoupled 1D chains. In the other limit where 1/r « t,
the gas shows a 2D (anisotroplc) behavior in zero field. A weak magnetic field leads to a negative
magnetoresistance. As a consequence of the quasi-1D aspect of the Fermi surface, a strong magnetic
field induces a transition from a 2D regime towards a 1D insulating state. The calculations are
extended to the 3D case, where a magnetic field perpendicular to the chains can induce an Anderson
localization.

I. INTRODUCTION

Among the numerous studies devoted to the physics
of localization in noninteracting disordered conductors,
the effect of a magnetic field has been one of the ma-
jor topics. i s An important aspect has been the study
of the effect of a weak magnetic field. In the weakly
localized regime (where pertubative calculations are pos-
sible) a negative magnetoresistance was predicted in two-
dimensional (2D) and 3D systems. 4 ~ However, a weak
magnetic field does not destroy the localization in a 2D
system. s s In a strong magnetic field, the interplay be-
tween localization and Landau quantization plays a cru-
cial role and leads to the quantization of the Hall effect. s

On the other hand, the 2D anisotropic electron gas that
can be found experimentally in weakly coupled chains has
revealed spectacular properties in a magnetic field, which
have been studied extensively during the past years. For
example, the quasi-1D conductors of the Bechgaard salts
family present a surprising phase diagram: a cascade of
spin-density wave phases appearing for increasing mag-
netic field. The spectrum of these field-induced spin-
density wave phases is quantized, leading to a mecha-
nism for the quantized Hall effect. More generally, the
thermodynamic properties of these quasi-1D conductors
result from an interplay between the 2D (or 3D) and 1D
aspects of the Fermi surface.

In this paper, we investigate the interplay between dis-
order and magnetic field in a strongly anisotropic conduc-
tor in the absence of electron-electron interaction. It is
shown that the quasi-1D aspect of the Fermi surface leads
to new developments in the physics of localization. ii

We consider 6rst a system of parallel chains arranged in
one plane (2:,y) with interspacing b When the amp. litude
of the hopping t between the neighboring chains is small
(t « y„pbeing the Fermi energy), the Fermi surface is
made of two slightly warped sheets and is well described

by the dispersion law (5 = 1 throughout the paper)

E(k) = v(ikz i

—k~) + t cos(k„b)+ p.

Here v is the Fermi velocity. i2 The linear dispersion (1) is
a standard form in the field of quasi-1D conductors in a
magnetic field. is In presence of a magnetic field H along
the third direction, the semiclassical equations of motion
lead to the following trajectory in real space

y = b cos(G—x),c
where G = eHb and io, = Gv is the frequency of the
electronic motion. When the field is such that u, » t,
the electronic motion becomes 1D, confined along the di-
rection of the chains. In presence of impurities, this 1D
regime is defined by io, » t and u, r » 1, where r is
the elastic scattering time. This point will be precised
below when considering the impurity averaged one parti-
cle Green's function. This one dimensionalization should
strongly modify the electronic properties of the conduc-
tor in presence of impurities. More precisely, we expect
a strong magnetic field to induce a transition towards a
1D regime where the wave functions are one dimensional
and localized on a length of the order of the mean free
path.

In the weak-field limit io,r « 1, the magnetic field
can be treated semiclassically and the one dimension-
alization can be neglected. However, the question arises
whether the results for the isotropic 2D gas can be simply
extended by introducing two anisotropic difFusion coeffi-
cients (or equivalently two anisotropic masses). A first
answer can be given by comparing the elastic scattering
time r and the hopping time (of the order of 1/t) to the
neighboring chain in the clean system. When r » 1/t,
the electronic motion in the y direction is coherent from
one chain to another and becomes difFusive on a length
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scale much larger than b. In this case, we expect no es-
sential difference with the isotropic case. On the other
hand, when w (& I/t, the electronic motion along the y
direction is incoherent (there is no coherent band mo-
tion). The hopping of an electron to the neighboring
chain is a diffusive process. The broadening 1/~ of the
Fermi surface is bigger than the energy dispersion t along
k&, so that the 2D aspect of the Fermi surface is lost. In
this case, the physics of localization (in a weak magnetic
field) is expected to be different from that of the isotropic
gas.

The magnetoresistance of a planar array of edge dislo-
cations described by the dispersion law (1) has been stud-
ied by Nakhmedov, Pridogin, and Firsov in the weak-field
limit. i4 These authors have calculated the contribution
of the maximally crossed diagrams to the conductivity.
Starting from a 2D anisotropic diffusion equation for the
cooperon in zero field, they have taken into account the
effect of the magnetic field by a Peierls substitution for
a particle of charge 2e. We show in this paper that the
diffusion equation obtained in this way is correct in the
weak-field limit where the semiclassical phase integral
(also called eikonal) approximation for the one-particle
Green's function is valid. However, this diffusion equa-
tion cannot describe the high-field limit where the elec-
tronic wave functions become one dimensional. There-
fore, in order to describe the effect of a strong magnetic
field, it is necessary to use the exact Green's functions as
will be done in this paper.

In Sec. II, we determine the one-particle Green's func-
tions in presence of a magnetic field and calculate the
self-energy due to the elastic scattering. The lifetime
of an electron at the Fermi surface does not depend
on the magnetic field. We then calculate the semi-
classical (Boltzmann) conductivity. Since we use the
exact Green's functions, the expressions for the con-
ductivity are valid for any value of the magnetic field.
It is shown that the only field effect is to reduce the
transverse (perpendicular to the chains) difFusion coef-
ficient: this is explained by the magnetic-field-induced
one dimensionalization. In Sec. III, we calculate the
weak-localization correction her»(H) to the semiclassi-
cal conductivity o»(H) which is given by the maximally
crossed diagrams. In the weak-field limit (Sec. IIIA),
we show that the exact Green's functions are correctly
described by the eikonal approximation. The expres-
sion for bo»(H) is compared with the one obtained in
the case of a closed Fermi surface. In the high-Geld
limit (Sec. IIIB), the pole of the cooperon is restored
because of the magnetic-field-induced one dimensional-
ization. The contribution of the maximally crossed dia-
grams is calculated. In each case (weak-field and high-
field limits), we give a simple physical explanation for the
expression of the Grst quantum correction to the conduc-
tivity. In order to determine the nature (localized or
delocalized) of the ground state at zero temperature, we

construct a scaling procedure based on the calculation
of the weak-localization correction (Sec. IV). Our main
result is that a strong magnetic Geld induces a transition
from a 2D regime (where the localization lengths are ex-

ponentially large compared to the mean free paths) to-
wards a 1D regime where the electronic wave functions
are one dimensional with a localization length of the or-
der of the mean free path. In Sec. V, we consider the case
of a strongly anisotropic 3D conductor. In this case, it is
shown that the magnetic field induces a transition from a
3D metallic regime towards a 2D or 1D insulating regime
depending on the direction of the field. In conclusion, we
comment on the observability of the effects described in
this paper in two physical systems: the quasi-1D organic
conductors and the systems of weakly coupled quantum
wires.

II. CONDUCTIVITY

ik r+ia ~ [sin(k„b—Gz) —s|n(ksb)]~c (5)

tk n = 'U(Akz —kF) + P. (6)

Each eigenstate is labeled by the vector k = k~, k„,where

k„is restricted to the first Brillouin zone ]
—7r/5, 7r/6]

and n = sgn(k ). 8 = I is the size of the system. Note
that the eigenenergies (6) do not depend on the field.
This can be understood by noting that the semiclassical
orbits in the magnetic Geld are open: as a consequence,
there is no Landau quantization, the density of states is
field independent and it is possible to find another set of
eigenstates with field independent eigenvalues [Eqs. (5)
and (6)]. Since ek does not depend on k„,it is possible
to define a set of eigenfunctions

The Hamiltonian of the system is obtained from the
dispersion law E(k) by the Peierls substitution. Using
the Landau gauge A(O, H2:, 0) the Hamiltonian in ab-
sence of disorder is written as

'H = v(~ —i8~~ —kF) + t cos(—ib8„—Gz) + p. (3)
In the chosen gauge, the transverse momentum k„is still
a good quantum number so that the eigenstates can be
written as PI,„(r)= e'"»Pb (z) where P& (z) js solution
of the equation

[v(~ —i8~
~

—kF)+t'cos(k&b Gz)+p]pb (z) ega (z)

(4)

We have now to solve a one-dimensional Schrodinger
equation with a periodic potential. In first order in t,
this periodic potential couples the 1D plane wave state
~k~) with the state ~k, +G). Since t && p, and G && kF for
any value of the magnetic field, a state ~k ) around the
Fermi level is mostly coupled with the states ~k') such
that ~k~ —k~ ~[/kF &( 1. Consequently it is possible to ne-
glect the coupling of the two sheets of the Fermi surface
by the magnetic field. The condition G (& kF ensures the
validity of the Peierls substitution. The operator j

—i8~
~

appearing in the Hamiltonian can be replaced by —ia8~
for the sheet o; = +, —of the Fermi surface. The eigen-
states and the corresponding eigenvalues are then given
by
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xk. ,iv, (z, v =») = —) e '"""'4k, (r)
A:„

1 ik x—i(N —n)Gx/2+i(N —n)m/2

fvS
Gz')i

x Jiv n —2o!—sin
~~c E2)

(a)

k, e

q=O, N=O

k, u

6Jg, N, e = t'-k, n (8) q, N -q, -N

Here J„is the nth order Bessel function. The 1D behav-
ior of the system is clearly visible on the states )('k. ,N, .
For infinite magnetic field, the electrons are localized on
chains. The crossover between the 2D and 1D regimes
is reached when u, is of the order of t,. We note ctk

and ck a the operators of creation and annihilation of a
particle in the state pk a. The corresponding Matsubara
Green's function is then equal to

k, o,
f

k+q u k, o,

FIG. 1. Diagrams for the self-energy in the Born approx-
imation. Each interaction line with an impurity is labeled by
a vector q and an integer N [see Eq. (10)].

P
g( )(k, e„)= — d~e"" {Tck (r)ck (0))

0
Z( )(k, e„)= n, VAo( '

)(A;w, k„), (13)

W

Mn —(k,a

where (k = ik —p, and e„=2n T(n+1/2) is a fermion
Matsubara frequency.

The effect of disorder is taken into account by adding
the term V~w = V Ql 6(r —RI) in the Hamiltonian (3).
We assume that there is no correlation between the posi-
tions RI of the difFerent impurities. In second quantiza-
tion, V; w

can be written as a function of the operators

ck,a aild Ck

x) g (P +q, &„).

(14)
In the preceding equation, we have used the fact that
the Green's function g( )(k, e„)depends only on k .
Za (k en) and Zb (k, e„)are calculated using the prop-

(~) (a)

erties

Vimi,
—

& ) ) A&' (k» kw+ qw)

k,g N

x p;(q —NG)cd+, ck a.
(10)

Ai(i
' )(kw, kw) =1,

~ ) IAII" '(kw kw+qw)I' =—
q„,N

(15)

Here p, (q) = Ql exp( —iq Rr) is the Fourier transform
I

of the density of impurities. The coefficients AN(' ) are
defined by

I I

A~("'(kw, kw+qw) = ) V( )(I:w)&.'+~(kw+qw)'

Z (k, e„)is real and can be absorbed in a renormaliza
tion of the chemical potential. Performing the sum over
q~ as in the isotropic case, we come to the following
expression for the self-energy:

Z( )(k, e„)= ——sgn(e„),
27-

2 d(a) If q
+ inn+ia [sin(k„b—n) sin(k„b)]- —

n 4 QJ
0

ink„b ia 'sin(k„b)J——
(12)

The self-energy Z(a) (k, e„)associated with the impurity
averaged single-particle Green's function is calculated in
lowest order in n, (the impurity density) and V (Born
approximation) as shown in Fig. 1. The impurity average
is carried out by standard methods. The contributions
of the diagrams of Figs. 1(a) and 1(b) are given by

—= 2m.N(0)n;V,
7

(18)

where N(0) = I/z bv is the density per spin of the states
at the Fermi level. We recover the usual expression

for the lifetime of an electron at the Fermi surface. v is
not afFected by the magnetic field: this is due to the fact
that the density of states does not depend on the Geld.

In order to calculate the conductivity, we need an
expression for the current operator associated with the
Hamiltonian (3). To take advantage of the conservation
of the transverse momentum in the Landau gauge, we
define the fermion operators @( ) (x, kw) and their conju-
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gated operators Q(~) (z, k„)by (x, qy) = ev ) nQ( ) (z, ky —qy) Q( ) (x, ky), (21)

L

(z, ki, ) = dye '"~"@( )(r),
v& o

~"()= ). ).~..()~,.
ak &0 k„

(20)

js(z, qy) = — ) ) sin(kgb —Gx)
I(k'y CL ~ 0!

+ sin(k„b—q„b—Gx)

xq( '(x, k„—q„)tj(
'

(x, k„).
(22)

The current operators are obtained from the velocity op-
erators v, = i['R, x) and v„=i['R, y]. The Fourier trans-
forms with respect to y of the current operators j~(r) and
j„(r)at point r are given by (Appendix A)

In Eqs. (21) and (22) and in the following, it is assumed
that the size L of the system is normalized to unity. The
conductivity at q = 0 and T = 0 is given by the Kubo
formula~5

2

( vvHt)v= —$ ) $ fdvdv'v~ ( Ikv)vJ~vV ~(v', kv )(Gv ~ (v v', k„,kv)Gv,
'

(v', v k„',k ));
~l p p/ Jg jul

(23)

v( ")(x,k„)=nvb ...,

v( ' )(x, ks) = —btsin(k„b —Gx).

(24)

(25)

GR( )
(x xI) ) iId (z z')GR( )

(-k )
Ic

F+ +~)(
'U

(28)

I

H«e G, '
'

(x, x', k„,k„') are the retarded and ad-
vanced Green's functions in the representation (x, k„)be-
fore impurity averaging.

The semiclassical (Boltzmann) conductivity is ob-
tained by replacing the product (GRG+); ~ by the
product of the impurity averaged Green's functions.
The impurity averaged single-particle Green's functions

I)
(GR "'"'(x, x', k„,k„'));,=b....~,„,, G,"""(x,x', k„)
are directly obtained from the definition of the operators
Q(~)(x, k„),Q(~) (x, k„)and from the impurity averaged
Green's function g(~) (k, e„).The retarded Green's func-
tion is written as

G, (x, x', k„)= e'~ *'* '" )GR (x —x'), (26)

if n(x —x') & 0, and 0 otherwise. Here t

vr is the mean free path. Noting that the prod-

uct GR (x, x', k„)G+' (x', x, k„)is equal to GR (x-
x')G+ (x' —x), (r„((d,H) is written as

+2vU 2

g„(~,H) = ) dxdx'Q ' (x —x'),
2mb

(29)

q: (x x') = G~-„.(x-x')G", (x'-x). (30)

The integrals over x and x' yield Q ' (q~ = 0), where

Q 'p(q ) is the Fourier transform of Q p(x —x')

Q' q* =b,p 1 —l4)7 + inv'rq~
(31)

(p ) (x, x', k„)= n—sin(k„b—Gx) —sin(k„b—Gx') . The dc conductivity (T is then independent of H and is
given by

(27)
cr, (H) = 2e N(0)D . (32)

We have introduced the one-dimensional Green's func-
tion GR (x' —x) defined by

The factor 2 comes from spin degeneracy and D~ = vzr
is the diffusion coeKcient along the 2: direction in zero
field. The conductivity cr„„(u)is written as

g2 2 2

( H) ) ) ~ ) d d Ippl iidyb(p+p') iG(pz+p'x'—)qala (x x )
Sm'

a,a' p p' k„
(33)
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Performing the sum over k„and the integrals over x and
x' leads to ++ + +, +

e2bt2 ).) Q:"(&G).'-,- p

(34)

Eventually, introducing a factor 2 to take into account
the spin degeneracy, the dc conductivity (ryy(H) can be
written as

ky qy ky

Xl X2 +X P
)
)

oyy(H) = 2e N(0)Dy(H), (35) qy ky ky

where we have introduced the magnetic-field-dependent
transverse difFusion coefficient D„(H)= D„/(1+~,r ).
D„=t2b2r/2 is the diffusion coefficient along the y direc-
tion in zero field. o»(H) can be calculated in a similar
way and is seen to be zero. There is no Hall efFect be-
cause the curvature of the dispersion law at the Fermi
level is zero. Thus, the efFect of the magnetic field on the
transport properties can be taken into account by renor-
malizing the transverse diffusion coefficient. The coef-
ficient D„(H)defines a magnetic-field-dependent mean
free path in the y direction ly(H) = ly/(1 + u, r ) ~

)

where t„=tbr/~2 is the mean free path in zero mag-
netic field. In the incoherent limit (tr « 1), ty « b The.
hopping of an electron to the neighboring chain is diffu-
sive for every value of the magnetic field. In the coherent
limit (tr )) 1), t„))b In this .case the localization on
the chains of the electrons in high field leads to a decrease
of the mean free path t„(H),which becomes of the order
of bt/(d, when ~,r && 1. Therefore, the hopping to the
neighboring chain becomes difFusive when t ~ ac.

III. WEAK LOCALIZATION

We now consider the first quantum correction to the
conductivity. This correction is obtained by summing
the maximally crossed diagrams which give rise to a di-
vergent correction to the conductivity (in 2D and 1D)
at low temperature in zero field. As pointed out in the
Introduction, these diagrams have to be considered in
both the low-field limit ~,r && 1 and the high-field limit
cuc )& t, 1/r. The maximally crossed diagrams define a
propagator P (the cooperon), which becomes a ladder
diagram in the particle-particle channel (Fig. 2). In the
representation (x, k„),P is determined by the following
integral equation:

FIG. 2. (a) Maximally crossed diagrams. (b) Dyson equa-
tion for the cooperon P(x1, x2, q„)in the particle-particle
channel.

into account by replacing i(d by —1/rm) where r;„is the
shortest inelastic relaxation time in the system. 1r 2 The
temperature is assumed to be low enough so that r « r;„.
Using expressions (26)—(28) of the Green's functions, the
kernel Q is given by

dX2Q~(X1) X2) qy)gv, q„(X2)= &v,q„kv,q„(X1)' (39)

Here, v is a quantum number which indexes the eigen-
functions Q„q and the eigenvalues A„,q„.The propagator
is then given by

, .@:,,„(*.)v.,„(*)
P~(X1,X2, qy) = n, V )

A~ »qv
(4o)

When the propagator P (X1,X2, q„)is known, the first

quantum correction 6(r» to o» is given by

lQ.(» *2,q ) = e-~*'-*'~' cos~ —(X, -X,) ~bv' (v )
4t. /G

x Jp —sin~ —(X2 —X1)
~

r~c (2
b G

x»nl q„-——(xl+X2)
~

(3S)
i, "2 2

where Jo is the zeroth-order Bessel function. In order to
solve the integral equation (N), it is ne:essary to solve

the eigenvalue problem defined by the kernel Q

P (x1,x2, qy) = n;V 6(X1 —X2)

+nV x3 xg, x3, qy

xPur(X3) X2) qy)) (36)

g2 )U2

6~..(H) = ) d»dx2&(», », qy)2'
qy

XP)v=O(X1) X2) qy), (41)

where the kernel

Q (»» qy) =).).Gz + (»» py)
CL, CL Py

( ')
xGa (X1,xs, qy

—py) (37)

is the usual pair propagator. The cooperon is calculated
at finite frequency, and the inelastic processes are taken

) ( zg, q„)2= ) aa') f dzdx'Gf (x, xi, ))„)
cl ~cx ky

(~')
xG~ (X2, X,q„k„)

g(~')
xG~ (x, X1,q„—k„)
x G~~ (x2, x, k„). (42)
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F(+lt 221 qy) = 2r Qtst=o(&lt &21 qy). (43)

Using the preceding result, the integration over 2:q and
z2 in Eq. (41) can be done. bo»(H. ) is given by

In Eq. (41), P~ o is obtained from P~ by replacing i,~—

by I/r;„.The function I" (zl, x2, q„)is calculated in Ap-
pendix B and turns out to be proportional to the kernel

Q =o(*1,*2,q„)

A very interesting feature is that we only need to know
the eigenvalues A, ~„in order to calculate 6cr»(H). A
similar expression has been obtained by Kawabata for
the 2D isotropic electron gas.

In order to explain qualitatively the e8ect of the mag-
netic field on the electronic motion, we start considering
the Green's function in real space

GRI &

(
!

t,)
1 tn~~(2:+x') —tn~

6o„(H)=—e~v2

2' - 1 —n, V~A (44)
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where GP is given by (28) and does not depend on
the magnetic field. G+ (x, x', y = nb) describes the
propagation of an electron from the point (z',0) to the
point (x, y = nb). The field has two different efFects.
On the one hand, it adds a phase factor to the Green's
function. It can be verified that this phase factor is equal
to

G (* w)

n —(x+z') = e ds A(s),
2 (+t 0)

(46)

where the path of integration is a straight line between
the two points (z', 0) and (z, y = nb). This phase factor
is responsible for the breakdown of time-reversal symme-
try. On the other hand, the field modifies the argument
of the Bessel function J„.Clearly, this latter efFect is re-
lated to the one dimensionalization induced by the mag-
netic field. For infinite magnetic field, the argument of
the Bessel function vanishes and the Green's function is
equal to zero unless n = 0: the electronic motion is one
dimensional. The phase factor (46) vanishes and time-
reversal symmetry is restored. Since the Green's func-

tion G+ (z —x') introduces a cutoff ~z —z'~ l, in the
limit u, r = Gl « 1 it is possible to neglect the second

effect. Consequently, the field efFect reduces to the ad-
dition of the phase factor (46) in the Green's function.
Thus, we recover the semiclassical phase integral (also
called eikonal) approximation. s Note that in the limit
u, r = Gl « 1, it is always possible to neglect the field
dependence of the argument of the Bessel function, even
if cu, )& t. Therefore, the crossover to the 1D regime
is defined by the two conditions u, r » 1 and u, » t.
In the semiclassical picture described at the beginning of
this paper, these conditions can be understood as follows.
When the condition u, » t is fullfilled, the semiclassical
orbits become 1D. However, for the electron to be sensi-
ble to the 1D aspect of the orbits, it has to cover more
than one spatial period between two elastic diffusions.
This latter condition leads to u, r » 1. Figure 3 shows
the amplitude of the Green's function for difFerent values
of the magnetic field. In high field, the electronic motion
is localized on a single chain.

A. Low-Beld limit

We first consider the low field limit u, r « 1, where
the eikonal approximation is valid. The kernel Q is then
given by

Gq-'""'(» z2 qw) = z' *' *' cosI —(zz —») I
Jp —(x2 zl)»nl qw- ——(»+x2) Iv (47)

The integral equation (39) can be rewritten as
I

Expanding Q(z + xz) and Jp in second order in zz leads
to the equation

1 2t . ( b G
d»Jp —xz»nl qw- - Gx- —z,

~

b v ("2 2 ) ) q

x ) e' **'g (q. )y(x+—z ) = &y(z),
a,q

(48)

where xz is now the distance over which the particle-
particle pair propagates. We have introduced the 1D
part of the kernel and its Fourier transform

gran,
—a 1 gzq

+ (0)i8, ——
z (0)gz g(x) = Ag(z).

qz 2 q~

(51)

Using Eq. (50), we come eventually to the following dif-
fusion equation for the particle-particle pair:

2
—v (x) + t 1 —cos(q„b—2Gx) Q(x)

(*)= Gz + (z)Gz (*) (49)

7/vQ' q, =b
1 —icur + iovrq

(50)
= —z(1 —n, V A+ icur)Q(x). (52)

As can be seen from Eq. (44), the main contribution to
6o»(II) comes from the eigenvalues A„~ which verify
1 —n;VzA„,~„&&1. Thus, it is sufficient to take into ac-
count the contribution of the states @„,~„,v & vp, where
the cut ofF vp is defined by 1 —n; V A„,~„~1. As will be
verified latter, for weak enough magnetic field cu,tr && 1,
the two terms @(x+xz) and Jp appearing in Eq. (48) are
slowly varying for ~x2

~

& l. The slow variation of Jp when
tr » 1 is due to the fact that 2tr sin(q„b/2 —Gx) « 1 in
the region where @~~„(x)(v & vp) has a nonzero value.

The preceding equation was used as starting point by
Nakhmedov, Prigodin, and Firsov. We have shown that
this equation is correct for weak magnetic field ur, tr
].. As in the isotropic case, 4 the efFect of the magnetic
field is to replace the operator —iV' by —iV —2eA, where
2e is the charge of the particle-particle pair. Equation
(52) is the well known Mathieu equation. The spectrum
1 Az V A~ q& + iu~ is well approximated by a continu-
ous spectrum above the sinusoidal barrier and a discrete
spectrum below the barrier. The eigenvalues and eigen-
states are then approximated by (replacing iu by 1/r;„—)



9610 NICOLAS DUPUIS AND GILLES MONTAMBAUX

1 —n, V Aq, q„=D~rq + t r + r/r;

& , ,q, (x) = f (x —x ) (56)

below the barrier. Here x„=q„b/2G —nn/G and f (x)
is the mth level of the harmonic oscillator with "fre-
quency" 2~2m, t and "mass" 1/2v . We have introduced
the effective diffusion coefficient D,g = (D~D„)i/s. Ac-
cording to the relative values of 1/t, r, and r;„,we dis-
tinguish the three difFerent limits: (a) coherent limit,
1/t « r; (b) incoherent limit (low temperature), r « 1/t
and r « 6tp « r;„;(c) incoherent limit (high tempera-
ture), r « 1/t and r « r;„«Atp. In the coherent limit,
the electronic motion from one chain to the neighboring
chain is ballistic (the mean free path fs is much larger
than the spacing between chains b). In the incoherent
limits (b) and (c), the electron diffuses to the neighbor-
ing chain in a time Atp = 1/2t r b /D„The sp. ectra
corresponding to these three different limits are shown in
Fig. 4. In the coherent limit, all the levels of the spec-
trum which have to be considered (1 —n, V A,q„&1)
are discrete [Fig. 4(a)]. In the incoherent limit, both the

/
/

/
/

(a)

2 2 E

/ X /
/ X )/

)' X /
~/~ X l j

(b)

~q. , q, (x) = e

above the barrier, and

n&V A~ ~ qy: 4eD&frHr(m + 2 ) + r/ri& ) (55)

discrete part and the continuous part of the spectrum
contribute to 6o~ (H) [Figs. 4(b) and 4(c)]. However, in
the high-temperature limit (c), the discrete part of the
spectrum is cut off by the inelastic processes and does
not contribute to b|r»(H).

We consider first the coherent limit (a). In this case,
the sum over the discrete levels has to be cut ofF at
mp I/4eD, sHr. When a,tr~ && 1, mp && 1 and the
state Q„,~, q„(x)centered at point x„has a width of
the order of (Q„,~, q„~(x—x„)~Q„,~„q„)/ 1/Gtr &&

1/G. For all the states @„,~ q„,m & mp, we then have
t7. sin(q„b/2 —Gx) & 1. Moreover, it can be easily veri-
fied [also in limits (b) and (c)] that the states Q„,q„(x),
v & vp, are slowly varying on a length scale equal to the
mean free path f. Therefore, the assumptions leading to
Eq. (52) are justified when ~,tr~ && 1.~4 Since mp && 1,
the pole of the cooperon is not completely suppressed
and the eigenvalues A„,q„appearing in the numerator of
(44) can be replaced by 1/n, Vs. Taking into account the
degeneracy G/n of the level A„,~ q„,the correction to the
conductivity is given by (introducing a factor 2 for spin
degeneracy)

2n'2 kD~) (2 r )
(I At&)

rin ) (57)

e' fD. t (I 6t~'i
2n2 i,Dy) (2 &tp )

btH lt

E2 r; )

where e is the digamma function. We have introduced
the time b,t~ ——1/4eD, AH. Equation (57) is analogous
to the one obtained for a gas with anisotropic masses.
Therefore, in the limit tr » 1, the fact that the Fermi
surface is open does not play an essential role. The sys-
tem behaves like a gas with an elliptic Fermi surface.

In the incoherent limits (b) and (c), the cutoff mp is
determined by mp 6tH/Atp. The levels Aq. ,q„which
contribute to bo' ~(H) are such that t/v & ~q ~

& qp,
where qp I/l. As in the preceding case, the eigenvalues
A, q„appearing in the numerator of (44) are replaced by
1/n, V In the inc. oherent limit (b), the correction to the
conductivity is given by

I L
(c)

FIG. 4. Schematic spectrum 1—n; V A„,~„+Au~at ~ = 0.
The shaded regions correspond to the continuous part of the
spectrum. (a) Goherent limit: tr » 1. (b) Incoherent limit
(low temperature): tr «1 and 2t r » r/7;„. (c) Incoherent
limit (high temperature): tr « 1 and 2t r « r/v;„.

In the incoherent limit (c), the contribution of the dis-

crete levels vanishes. ho~' (H) does not depend on the
magnetic field and is given by the 1D result

(59)

The preceding expressions for her»(H) agree with
those of Najchmedov, Prigodin, and Firsov in the limits
(a) and (b), but differ in the limit (c).i4 For each of the
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limits (a) and (b), it is possible to define a characteristic
field Hp by 6tH, r;„.

We now adopt the physical interpretation of the
weak localization as introduced originally by Altshuler,
Aronov, and Bergmann. '2p The propagation of an elec-
tron from r to r' can be described by a Feynmann path
integral over all paths connecting r to r'. Each closed
path r = r' can be covered clockwise (with amplitude Ai)
or counterclockwise (with amplitude A2). When time-
reversal symmetry holds, the two amplitudes Ai and
A2 are coherent and lead to constructive interferences.
Therefore, the probability for an electron to return to
its starting point during its diffusive motion is enhanced.
The divergence of the maximally crossed diagrams orig-
inates in these interferences. In presence of a magnetic
field, the constructive interferences are destroyed when
the magnetic flux across the area of the closed path is of
the order of the flux quantum Pp.

Consider first the coherent limit (a). The paths lead-
ing to the weak localization in zero field correspond to a
propagation time ht between r and r;„.Since 1/t « r
(1/t is of the order of the hopping time to the neighbor-
ing chain in the clean system), all these paths are two
dimensional. A given closed path of area S ~ D,ght
will contribute to the weak localization if SH & Pp. This
condition can be rewritten as b,t & 6tH. Therefore, the
closed paths which contribute to the weak localization in
presence of the magnetic field correspond to a propaga-
tion time ht between r and 6tH.

Consider now the incoherent limits (b) and (c). Since
r &( 1/t, the electronic motion to the neighboring chain
is diffusive. The diffusive time is given by b /Dy htp.
In the limit (b), the paths are 1D if r & b,t & b.tp and
2D if 6tp (6t ( r;„.The one-dimensional paths are not
affected by the magnetic field and therefore contribute to

I

We now consider the other limit of interest: the high-
field regime u, » t, 1/r. In this limit, the magnetic field
localizes the electrons on the chains of highest conduc-
tivity. The term in the Hamiltonian (3) which breaks
time-reversal symmetry oscillates too fast and can be ig-
nored. The gas becomes 1D and time-reversal symmetry
is restored. As a result, the maximally crossed diagrams
diverge at low temperature and lead to a strong correc-
tion to the conductivity.

In the limit ur, » t, 1/r, the eikonal approximation
does not hold any more and we have to consider the ex-
act kernel Q defined by (38). Noting that Q(z + z2) =
e*&s*Q(z), the integral equation for the functions Q(z)
can be written as

dx2Q (x, xz, qy)y(z) = Ay(z) (60)

with

the weak localization for every value of the magnetic field.
On the other hand, the two-dimensional paths which con-
tribute to the weak localization correspond to a propa-
gation time Atp & bt & At~. Clearly, the 2D and 1D
paths are associated with the discrete and the continuous
parts of the spectrum 1—n; V A„~„.In both the limits (a)
and (b), we have ba»(H) —6o~ (0) ~ e ln(eHD, gr; )
for b, tH & r;„.

In the incoherent limit (c), the diffusion time 6tp to the
neighboring chain is larger than the inelastic scattering
time r;„.Therefore, all the paths are one dimensional
and are not affected by the magnetic field. As a result,
the correction to the conductivity does not depend on
the magnetic field.

B. High-field limit

1 4t . (G ) . ( b G
Q~(z) z2p qy) = alp sin

i

—x2
~

sin
~
q„———(2x + z2)

~ ) e' *'Q ' (q )e*'
b ~, k2 ) ( "2 2

(61)

In the limit u, » t, the argument of the Bessel function in Eq. (61) is small. The kernel of the integral equation can
be written as

(t4i
Q~(z z2 qy) —Q (z x2 qy) + ~Q&u(x z2 qy) + 0

IE~')
(62)

g2
bQ~ (z, z2, q„)= —

2 (1 —cos(Gx2) —cos [q„b—G(2x + x2)]
4J

+cos(Gx2) cos[q„b—G(2z+ x2)]) ) e'q *'Q ' (q, )e*' *. (63)

1 —n;V A = iver+ D~rq, — (64)

Here Q~(x, x2, q„)is the kernel for infinite magnetic
field. It has the usual 1D expression. The corresponding
eigenvalues and eigenfunctions are given by

In first order in bQ (z, x2, q„),the eigenvalues are given

by

= A™~+ (cPPz f dz~bQ (z, z~, S) cP, , ).

(x) = e'q *. (65) (66)
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Retaining only the first correction in t/~„the eigenvalues
Aq. ,q„aregiven by (Appendix C)

2
V Aq~iq„———l4)7-+ Dx7q~ + 2

in the limits (a) and (b) and (c) (u,r &) 1), and

1 —n, U Aq. q„———icu~+ D~7.q +t 7. (68)

I

5t
I

20t

in the limits (b) and (c) (ur, r « 1). In this latter case, we
recover the continuous spectrum derived in the eikonal
approximation. Since in the limit t « u, « 1/r, the
discrete spectrum (55) does not contribute to the weak
localization, the two approaches (eikonal approximation
and limit ~, )& t) are in agreement. In the limit u, ))
t, 1/r, the conductivity is given by

bo (H) =6o(' l '= (Q—D—,r;„—QD r) (69)

if 7;„«htp(H), and

g26'0, (H) = —[QD —b, tp(H) —QD r] (70)

if b, tp(H) « r;„.We have introduced the time Atp(H) =
ruz/t2. Since Eqs. (69) and (70) are valid only in the
limit u, r » 1, bo»(H) bcr( & = bo~2; in the incoher-
ent limit (c), for every value ~, )& t, 1/r of the magnetic
field. This result agrees with the preceding considera-
tions from which it follows that the correction to the
conductivity does not depend on the magnetic field. In-
deed, in this limit, all the closed paths leading to the weak
localization are 1D and are not affected by the magnetic
field. As in the low-field case, the expression of bo (H)
can be interpreted with very simple arguments. In the
limit ~, &) t, 1/r, the hopping to the neighboring chain
is diffusive [in both the limits (a) and (b)] with a diffu-
sion coefficient D„(H)~ b2t2/ruz. Therefore, it takes a
time of the order of b,tp(H) for an electron to diffuse to
the neighboring chain. In this high-field limit, the weak
localization is due to the 1D closed paths. These paths
have a propagation time r & At & htp(H). As in the
weak-field limit, we introduce a characteristic field Hi
defined by b,tp(Hi) r;„.For H & Hi, all the paths
such that b,t & r;„are1D: be» ——bcr& D&.

We have also calculated numerically the spectrum of
the integral operator Q in the limit tr )) 1. Figure 5
shows the eigenvalues 1 —n, V2A„q for q„=0 and cu = 0

FIG. 6. Absolute value of the first quantum correction to
the conductivity ~bo (H)~ versus magnetic field in the limit
t7» .1 (L;„=7.5l). The critical field Hi corresponds to

7.5t.

versus magnetic field. Writting the integral equation as
Og„=A„tP„,where 0 is a difFerential operator of infinite
order, it is easily seen that the operator 0 commutes with
the translation operator of qr/G. Consequently, the eigen-
states can be chosen as Bloch functions Q„q„=Q„q.q„
where n is a band index and q is a vector between —G
and G. Figure 5 shows the two first bands (n=l and n=2)
for difFerent values of q~ (note that since we have chosen
values for q uniformely distributed between —G and G,
the value of each q increases with the magnetic field).
For very weak field, each band is dispersionless and the
Landau regime 1 —n, V A„q q„=4eD~gHr(n+ 1/2) is
clearly visible. When the field is increased, the pole of the
cooperon is suppressed and the degeneracy of each band
is lifted. In the high-field regime, the pole is restored.
The eigenvalues of the lowest band are distributed be-
tween 0 and 1 and we recover the continuous 1D spec-
trum. The eigenvalues of the higher bands tend to 1.
Figure 6 shows ~bo, (H)] versus magnetic field. In the
low-field regime, the conductivity is given by the analyti-
cal result (57). In the high-field regime, the conductivity
has been obtained from the eigenvalues of the kernel (38)
shown in Fig. 5.

It should also be noted that both effects (negative mag-
netoresistance in low field and positive magnetoresistance
in high field) bear similarities with the disappearance and
the reentrance of the superconducting phase in strongly
anisotropic 3D superconductors in a magnetic field. zs 2r

In each case, the effect of the field can be understood as
the suppression and the restoration of the Cooper pole
for increasing magnetic field.

IV. SCALING

FIG. 5. Numerical calculation of the eigenvalues 1—
n;V A,~„versus magnetic field in the limit t7. && 1.

Up to now, we have calculated the first quantum cor-
rection to the conductivity, without considering the va-

lidity of this pertubative calculation. In the weakly local-
ized regime, where the pertubative approach is valid, the
weak-localization correction gives the temperature (via
r;„)and magnetic-field dependence of the conductivity.
In order to obtain more information on the ground state
of the system, we apply a scaling procedure following
the approach of Apel and Rice.2s We first note that the
quantum correction at zero temperature for a system of
finite size L,L„=[D„(H)/D ]irzL is obtained from
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the preceding calculation by replacing L;„=(Dzr;„)~

by L . We consider a system of microscopic size t, t„(H).
From the form of bo (H), it is possible to deduce the
behavior of the system at length scales t, t„(H).We then
increase the size of the system. Using the known results
in 2D and 1D, we can deduce the ground state of a system
of macroscopic size.

We first consider the case where t7. (& 1 in zero mag-
netic field. We start the scaling procedure with a system
of size t, I„.According to Eq. (59), the system has a 1D
behavior as long as Iz is smaller than Lp = (D,htp) i~~.

Lp is the length along which the electron has to diffuse on
a given chain before it diffuses to the neighboring chain.
Therefore, for Lz « Lp, the chains can be considered
as decoupled. When increasing the length of the chains,
the dimensionless conductance gz will evoluate according
to the 1D scaling function PiD(g ) = din(g )/din(L ).
Since tr « 1 implies l « Lp, the system will reach a 1D
insulating state for L~ (iD l, where (iD is the local-
ization length for a 1D system. This result agrees with
the one of Firsov and Prigodin, ~s who have calculated the
localization lengths in a strongly anisotropic conductor,
using the self consistent diagrammatic treatment origi-
nally introduced by Vollhard and Wolfe. sP Consequently,
the magnetic field will have no efFect in the limit tr « 1.

Consider now the case tr » 1 in zero field. From
Eq. (57), it is clear that a system of microscopic size l, t
will have a 2D behavior. Since boz /0 = bo»/o», ~

it is possible to use a one parameter scaling procedure if
we keep the ratio Lz/L„constant. When increasing its
size, the system will evoluate according to the 2D scaling
function and will reach a 2D insulating state for L /t =
Lij/t„( /l = (v /f& The 2D. localization lengths can
be estimated by her»((P) = cr» and bp»((z+) = z»
where o'» and cr» are the Boltzmann conductivities. We
then obtain (~~+/t = (~+/tv ~ exp(contr), where n is of
the order of unity. This is in agreement with the result
of Firsov and Prigodin. zs As for a 2D gas, we expect that
a small magnetic field u, « r i (which can be treated
in the eikonal approximation) will not destroy the local-
ization but will increase the localization lengths. When

i, the transverse difFusion coefficient D„(H)be-
comes magnetic-field dependent and the eikonal approx-
imation breaks down. The effects associated with the
one dimensionalization have to be taken into account.
As long as r i « u, « t, 6a»(Lz) vanishes, so that
it seems difficu to obtain some information from our
calculation. However, since the mean free path in the
transverse direction is still well defined, t„(H))& b, we
expect the gas to have a 2D (anisotropic) behavior. In
the limit where u, )& t, Eq. (69) shows that the system
has a 1D behavior when Lz « Lp(H) = [Dzktp(H) j ~ .
Lp(H) has the same physical meaning as the length Lp
previously introduced For Lz «. Lp(H), the chains can
be considered as decoupled. When increasing the size of
the chains from t, the system will reach an insulating 1D
state for Lz (iD « Lp(H). Therefore, the magnetic
field will induce a transition from a 2D regime towards
a 1D regime, the crossover field being defined by u, ~ t.
It should be noted that the 1D regime is reached as soon

as the pole of the cooperon is restored. This is related
to the absence of diffusive regime ((io ~ l) in 1D. As
will be shown in the next section, the 3D case can differ
considerably.

V. 3D ANISOTROPIC CONDUCTOR

It is also possible to extend the preceding calculations
to the case of a 3D anisotropic conductor described by
the dispersion law

E(k) = v(ik i
—k~) +t„cos(k„b)+ t, cos(k, c) + p, ,

(»)

where t„and t, are the hopping rates in the y and z
directions. A strong magnetic field H(O, H„,H, ) will
localize the electrons in the (x, y) planes (H, = 0) or
on the chains (H„g0 and H, g 0). In the gauge
A(0, H, x, H„x),t—he Hamiltonian is given by

Q = v(~ —i8,
~

—k~) + t„cos(—ib8„—G„x)
+t, cos(—ic8, —G,x) + p„ (72)

where G& ——eH, b and G, = eH&c. —The Green's
functions in the representation (x, kz, k, ) are given by
Eq. (26), where the phase &pi l(x, x', k„)has to be re-
placed by

yf~&(x, x', k„,k, ) = cr " sin(k„b—G„x)
cy

—sin(k„b—G„x')

+o, ' sin(k, b —G,x)
cz

—sin . —,x', (73)

where ~,„=G„vand tdzz = Gzv.
The Boltzmann conductivity can be calculated as in

the 2D case and is given by

rr„„(H)= 2e N(0)D„(H). (74)

Here D (H) = D, D„(H) = D„/(1+ sr~„rz), and

D, (H) = D, /(1 + uz, rz) are the anisotropic diffusion
coefficients renormalized by the magnetic field. The co-
efficients D„arethe difFusion coeKcients in zero field.
N(0) = 1/vrvbc is now the 3D density of states per spin.
v is the elastic scattering time calculated in the Born ap-
proximation and is given by Eq. (18). To obtain the first
quantum correction to the conductivity, it is necessary to
solve the integral equation for the cooperon. The kernel
Q is now given by
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1

r
q„(xp,x2, q„,q, ) = ze *' *' 'cos~ —(xz —xq)

l

4t„.(G„ i. ( b G„
xylo "sinl "(» —») l

s'Dl q, —— "(»+»))
lucy ( 2 ) ( 2 2

4t, . t'G, l . ( c G.x Jp
'

»nl (» —») l»nl q. —— '(»+»)
I.~cz (, 2 r

As in the 2D case, 6o (H) is a function of the eigenval-
ues A, q„q, of the integral operator defined by q

6o„(H)=—2 2

lbc )2qr 1 —naVsAv, q„,q,
(76)

In the following, we only consider the ease of a magnetic
field along the y direction [in strong field, the electrons
are localized in the (x, y) planesj. Several cases are to
be considered according to the relative values of t&, t„
1/r and 1/7",„.We assume that 1/t& « r. According
to Sec. IV, the behavior of the gas in the (x, y) planes is
then 2D. We shall consider the three different limits (a)
coherent limit, 1/t, « r; (b) incoherent limit (low tem-
perature), r « 1/t, and r « +tp « r;„;(c) incoherent
limit (high temperature), r « 1/t, and r &«;„«+tp.,
according to the nature (diffusive or not) of the electronic
motion along the z direction. 6tp ——1/2t, r is now the
diffusive time between two neighboring (x, y) planes. In

I

the limit ~,r && 1 (in the following we write ~, = ~„
and G = G, ), the eikonal approximation is valid. The
eigenvalues A„,q q, are then determined by the following
equation:

2

s (x) + t, 1 —cos(q, c —2Gx) g(x)

= —(1 —n, V A+i~r —D„rq„)g(x) (77)

for 1 —n, VsA„,q„q, & 1. Except for the additional term

D„rq„,this equation is identical to Eq. (52) obtained in
the 2D case. The eigenvalues and eigenvectors are then
directly deduced from Eqs. (53)—(56), where D,g is now
equal to (D D,)~)s. The correction to the conductivity
(including spin degeneracy) will be obtained by adding
the two contributions

mP qp
1

2 - —1

27r2 qD, ) q, 2qr 2 4eDsHr;„4eDsH (78)

2e Dr dq dq„1
qrc 2rr 2n r/r(„+tsrz+ D,rq s+~D„rq„ (79)

In Eq. (78), rnp is equal to At~/r„where 6tH
1/4eD, AH. r, = r in the limit (a) and r, = btp in the
limt (b). In Eq. (79), the sum over q, q„is restricted to
D~rq, + D„rq2 & 1 and lq~l ) t, /v. However, since the
pole of the cooperon is cut off by r/r;„+t,r, the domain
of integration can be extended to 0 & D~rq~~+D„rq„&1.
The cutofF qp is of the order of 1/I„. After integration

over qz, 6rr~~~~(H) is given by

F(x) = ) 2(rn+ 1+x) ) —2(rn+ x)
m=0

—(m+1/2+x) ')' (82)

and F(Q) = Q.6Q5. Taking into account ihe two contri-

butions 6o~~~l and 6o~~) leads to the following results in

the different limits

2
6(T& l(H) —bo.& l(0) = CgeHF(0)

27r2
(81)

for r, & AtH & r;„.The function F(x) is defined by

1

x arctan
l + 2+;")

(80)

where C = D~ /(D„D, ) Following Kaw.abata, we
can write

1

6~&'.~)(H) =6~~". &(H) — ',
l

*
l

inl»'EDy) (, r )' (84)

6 ~l(H) =6 &' l = —'
2~2 D„) (85)

where 6(r (H) is given by Eq. (81). The expression of
6a~ (H) in the limit (a) is similar to the one obtained
for a gas with anisotropic masses. ~ 2 It is also similar
to the one obtained by Szott, Jedrzejek, and Kirk in the
case of a superlattice with an open Fermi surface with the
assumption (although not said explicitly) that t, 7 )) 1.3~
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A.s iii the 2D case, the preceding results can be simply
understood by considering the nature (2D or SD) of the
closed paths which contribute to the weak localization.

We now consider the effect of a strong magnetic field.
In the limit u, && t, the electrons are localized in the
pianes (x, y) and the pole of the cooperon is restored.
The calculation of the first quantum correction to the
conductivity follows the same steps as in the 2D case. In
the limit u, » t„1/v, the conductivity is given by

60„(H)= 2 (

*
/

in/ +
ez /'D &

2vr2c (Ds) (7;„ to H ) ' (86)

where bto(H) = ruz/tz is the difFusive time between
two neighboring (x, y) planes. When v,„«hto(H), all
closed paths are 2D and are not affectixi by the magnetic
field: we recover the 2D result. When b,to(H) « 7;„,
some of the closed paths are 3D and do not contribute to
6cr~ (H). The first quantum correction is due to the 2D
closed paths with a propagation time 7 & 6t & b,to(H).

As in the 2D case, we apply a scaling procedure to the
system. The quantum correction at zero temperature for
a system of size L„L„=L~t„(H)/t,L, = L~l, (H)/l
is obtained from the preceding calculation by replacing
L;„=(D~7;„)i~ by L~. We first consider the zero-field
case where ~ && 1/t, . We start with a system of size
t, t„,t, . It follows from Eq. (85) that the system has a
2D behavior as long as L, « Lo = (D,b,to)i~z. In this
limit, the (x, y) planes can be considered as decoupled.
Since 6o /o = 6cr„„/o„„(o»is the Boltzmann con-
ductivity), we can use a one parameter scaling procedure.
When increasing its size, the system will reach a 2D in-
sulating state if ( +/t = (sz+/t„« Lo/t. This condition

can be rewritten as t, « t, r exp( —nt„7'), where

o. is of the order of unity. This value of t~~ agrees with
the one obtained by Prigodin and Firsovsz for the case
of weakly coupled isotropic planes.

In the presence of a magnetic field along y, the only
case of interest is the case where t, » t, . When
the system is in the metallic state, the pertubative cal-
culations are valid. According to Eqs. (83) and (84),
a small field will give rise to a negative magnetoresis-
tance. In the limit of strong field u, » I/7, t„Eq.(86)
shows that the system has a 2D behavior as long as
I, « Lo(H) —[D hto(H)]iiz and L„«Lo(H)t„/l
When increasing its size from t, ts, the system will reach
a 2D insulating state if (zD/t = („D/t„«Lo(H)/t. This

condition can be rewritten as u, » cuP t, exp(at„r).
Thus, the magnetic field will induce a metal-insulator
transition (MIT), the critical field being of the order of

. It should be noted that the restoration of the pole
of the cooperon appears well before the MIT. Therefore,
there will be a regime of positive magnetoresistance for
1/7. , t, « ~, & ~,

It is also possible to consider the case where the mag-
netic field has nonzero components along the y and z
directions (H„g0 and H, g 0). The scaling procedure
is based on the Grst quantum correction to the conduc-
tivity and on the zero-field diagrammatic calculationsss

applied to the case of weakly coupled chains with an
isotropic coupling t„=t, = t. In zero field, the self-
consistent diagrammatic treatment predicts a MIT when
t becomes smaller than t~sl I/r. We assume here
that t„,t, & t~s&: in zero field, the system is metallic.
A weak magnetic field leads to a negative magnetoresis-
tance. A strong magnetic field localizes the electrons on
the chains of highest conductivity: the system has a 1D
behavior when u,„»t„andcu„»t, Th. us, there is a
magnetic-field-induced MIT. The critical field is defined
by u~ t„and cu„ t, As. in the 2D case, the gas
becomes localized as soon as the pole of the cooperon is
restored.

VI. CONCLUSION

We have studied the effect of impurities in a quasi-1D
conductor in a magnetic field. First, we have calculated
the semiclassical (Boltzmann) conductivity and the first
quantum correction. Then, using a scaling procedure,
we have determined the ground state at zero tempera
ture. DifFerent cases have been examined according to
the dimensionality (2D or 3D) and the relative values of
the elastic scattering time and the hopping rate between
chains.

In 2D, a strongly anisotropic conductor behaves as a
set of uncoupled 1D chains if t7 « 1. In the limit tr » 1,
the gas shows a 2D (anisotropic) behavior in zero field.
It exhibits a negative magnetoresistance at finite temper-
ature in a weak magnetic field. A strong magnetic field
induces a crossover from a 2D regime (where the local-
ization lengths are exponentially large compared to the
mean free paths) towards a 1D regime where the wave
functions are one-dimensional and localized on a length
of the order of the mean free path along the chain. The
crossover field is defined by ur, t.

In 3D, we have studied the case where t„7.» 1. The
system can be seen as a set of weakly coupled parallel
anisotropic 2D planes. The magnetic field is assumed
to be along the y axis and tends to localize the elec-
trons in the (z,y) planes. If t, « t, = 7 i exp( —nt„r),
the gas behaves as a set of uncoupled anisotropic 2D
planes. Since the magnetic field is parallel to the (z,y)
planes, it has no effect in this case. If t, & t, , the
gas shows a SD (anisotropic) behavior in zero field and
exhibits a negative magnetoresistance in a weak field.
In strong Geld, a regime of positive magnetoresistance is
reached for u, » I/v, t, . In higher field, the gas under-
goes a MIT. The critical field associated with this MIT
is of the order of u, ~ t, exp(nt„r). In very high field

, the gas has a 2D behavior. The high-field(o)

regime has also been examined when the field has nonzero
components along the y and z axis and t„,t, & 1/r. In
this case, there is a MIT with a critical field defined by

t& and u„ t, . In very high field u,& )& t„andu„»t„the gas has a 1D behavior.
For the quasi-1D conductors of the Bechgaard salts

family, we have t„/2 300 K, t, /2 10 K, 1/«& 1
K, and b, c ~ 10 A. The gas has to be described by
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a 3D model. The high-field limit is accessible only in
the configuration where the field is along the y direc-
tion. In this case, the regime with positive magnetore-
sistance (~, ) t, ) should be reached for H 20—30
T. In the weak-field limit, our model predicts a nega-
tive magnetoresistance for any direction of the magnetic
field. Most of the experimental results on the Bechgaard
salts seem not to present weak-localization effects. They
show a very large positive magneto resistance on a large-
field scale, which has to be explained by other mecha-
nisms. The absence of weak-localization effects can be
explained by the very large value of the elastic scattering
time r v;„.Nevertheless, a negative magnetoresistance
was observed in a quasi-1D conductor with an architec-
ture similar to the one of the Bechgaard salts. s4

The high-field regime is difficult to reach in quasi-
1D organic conductors because of the small value of
the interspacing between chains and the large value of
the coupling. This difficulty could be avoided by con-
sidering weakly coupled quantum wires. For example,
the 2D gas described in Ref. 35 has a period between
wires b = 102 A and the coupling between wires t„is
equal to 150 K. This gas exibits quantum Hall carac-
teristics because the Fermi level lies in a region where
the semiclassical orbits are closed (the Fermi surface is

I

closed). In order to observe a magnetic-field-induced An-

derson localization, the Fermi surface has to be open.
This could be achieved by increasing the spacing between
wires (t„would then decrease) and increasing the elec-
tron density.
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v, = v sgn( —iB,),

v„=—bt sin( —ibB„—Gz). ( 2)

Since ~Pkf 1) is built from the plane-wave states ~k', k„),
where k' is positive (negative) if n = +(—), it is an eigen-
state of the operator v with the eigenvalue nv. Equation
(21) follows straightforwardly. In second quantization,
the operator j„(z,q„)is written as

APPENDIX A

The current operators are obtained from the velocity
operator

js(r) = — ) ) f d r'sbi i (e', bs)e '"""[b(r —r')sie( ibBst ——G )e
A)A kg sky

+ sin( —ibB&s —Gx')b(r —r')]e'"~" Q (x', k&). (A3)

I I

Noting that e' ~ is an eigenfunction of the operator sin( —ibB„—Gz') with the eigenvalue sin(k„'b —Gx'), the first
term in the right-hand side of (A3) gives the contribution (after integration over z' and y')

) ) e'f" ""l"sin(k„'b —Gx) Q (x, k„)Q (z, k„)
O. ,a' k„,k'„

(A4)

In order to calculate the contribution due to the second term of the right-hand side of Eq. (A3), we write the operator
sin( —ibBy —Gz') as

oo 2n+1

sin( —ibB„—Gx') = ) a„)Cz„+i( Gx') "+ ~ (—kgb)~, (A5)

where the coefficients a„comefrom the series expansion of the function sin(z). Letting the operator sin( —ibB„—Gx )
act on the function 6'(r —r')e'"~'" yields

oo 2n+1

) a„)Cz„+,(—Gz') "+' '(—ib) ) C"b(x —z')bf" (y —y')(ik„')0 "le'" ". (A6)

Here 6'i"~
(y —y') is the k'" derivative of the Dirac distribution b(y —y'). Summing over x' and y' yields the contribution

) ) e'~"~ "&)"sin(k„b —Gx)g~ (z, ky)Q (x, k„).
a,o.' k„,k'„

Adding the two contributions and taking the Fourier transform with respect to y lead to Eq. (22).

(A7)
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APPENDIX B

In this appendix, we calculate the function F(xI, x2, q„)defined by Eq. (42). Using expressions (26) and (27) of
the Green's functions, E can be written as

( ') ( I

F(z&ze, d, e) = ) xx') f dzdz'e' Gx (z —z, )Gx (ze —z')Gx (z' —z&)Gx (ze —z),
a,a' av

(BI)

C = (p (x, xi, k„)+ (p (x2, x', q„—ky) + (p (x &xi&qy ky) + (p (x2&x&ky)& (B2)

where the function (p(n&(x, x', ky) is defined by (27). Since the singularity of the maximally crossed diagrams is

associated with the backscattering of the electrons, we only evaluate Ii for n = —n'. The phase 4 is then equal to

t . (G l . (qyb G ) . fqyb
@ = —4rr —»n

I

—(» —») 1»n
I

" ——(» +») I
»n

I

" —kyb
I(2 j (2 2 ) (2 "j

and the sum over ky yields

14t. (G&. (bG) e' = - JQ —siilI —(xi —x2) I
siilI qy- ——(xi + x2) I

b ur, E2 y g
"2 2 )

(B3)

(B4)

The product of the four functions G can be written as

G~', '(x —x, ) Gg (x2 —x')G~ (x' —xi)G~, (x2 —*)
] &1++2 ~ + ~ !+

& 1f AS, AS 4 AS]) AS2
otherwise.

(B5)

(B6)

The integration over x and x' yields

dxdx'Gg (x —xI)Gg (x2 —x')G@ (x' —xi)G@ (x2 —x) = t e (Bs)

Equation (43) follows from (B4) and (B8).

APPENDIX C

According to Eq. (63), there are four contributions to bQ~(x, x2, qy). The first contribution is equal to

bQ(il(x, x„qy)= ——,Q."(x,», q„).7 ) Q (C&)

The other contributions are equal to

2 OO

$Q( l(X, X2, q„)= ) e 'pG*~ ) e'qz*~Qn' n(q ) ) —g~
C Axp=+, a,q n=o

(C2)

2
bQ(S)(z X q ) q ip[q~b G—(22yzg)-] y iqxzgp)n, —n( ) ~ 2 gn

C AeP=+- A IQX n=O
(C3)

2
bQ( )(X Z2 q ) ) e ip *z )e e ip'[qpb G—(2m+22)j—'(e iq 22&n, —xnd i X 2 n&

4L)' @=+,— ICE n, =O

Using the equality

Ctp n, —n) dx2x2e'q *'Q (q ) = P „(0)
(((t~

qP

ere have

(C4)

(C5)
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t2 ill $7LQc1,—ct'

dxz6Q( )(x, x2, q„)= ) ) — (PG)B",
c apn=o" qz

(C6)

t2 'A clnQA, —cx

PQ 3
( ) ) ) iP(q„b 2—G2:) ~

(PG) gn
n!

a,P n=o Qqn
(C7)

t2 in Cin ck, —0.'

dx, pQ( &(x x, q„)= ) ) ) e'~'«v~- &*) ' ~
[(P P')G]cin.

n P,P' n=o n! qn
(CS)

The contributions 6Q~ and 6'Q~ vanish when we evaluate the averaged values in the state g~ . Noting that

i" 8"Q (q ) cr ( nl
n! Bq," vs I 1 —i~r+ialq )

the contribution of bQ is given by

(C9)

n;V (Qq q
(2)

t~ 1 t 1 —3u~w2
~Q*qy 21 2 2 2 (1 2 2)3c ~+c7 (dc (1+(dc (C10)

in the limit u, q~ -+ 0. Equations (67) and (68) follow from Eqs. (Cl) and (C10).
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