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Magnetic-Field-Induced Anderson Localization in a Strongly Anisotropic Conductor
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The weak-localization correction to the conductivity for a strongly anisotropic 2D electron gas is stud-

ied in the presence of a magnetic field. %e find that the low-field regime with usual negative magne-
toresistance is followed by an increase in the localization with a crossover to a 1D regime. In a 3D aniso-

tropic conductor, the magnetic field will induce a transition from a diffusive 3D regime to a localized 2D
or 1D regime.

PACS numbers: 71.55.3v, 72. 15.Rn

For the past decade, the study of the disordered two-

dimensional electron gas in a magnetic field has been a
major topic in condensed matter physics. An important

aspect of this subject has been the physics of the so-called
"weak localization, " which describes localization as due

to constructive interferences between electronic paths and

their time-reversed counterparts [I]. This picture holds

at finite temperature in the limit of small disorder when

the mean free path I is large so that kFl » I. A magnetic
field, breaking the time-reversal invariance, destroys the
interference effect and suppresses the weak-localization
correction (in the absence of spin-orbit coupling, the only

case which will be studied throughout this paper) [2,3].
In a strong magnetic field, the interplay between localiza-
tion and Landau quantization plays a crucial role and

leads to the quantization of the Hall effect [4].
On the other hand, the two-dimensional anisotropic

electron gas such as can be found experimentally in

weakly coupled chains systems also has spectacular prop-
erties in a magnetic field, which have also been studied
intensively during the past years. The quasi-ID conduc-
tors of the Bechgaard salt family present a spectacular
phase diagram which results from an interplay between
the quasi-ID and -2D aspects [5]. It presents a cascade
of spin-density-wave phases appearing for increasing
field. Although a lot of theoretical work has been devoted
to the thermodynamics of the quasi-1D electron gas in a
field [5], transport properties have received much less at-
tention. On the experimental side, many results are still
unexplained. For example, the metallic phase of the
Bechgaard salts exhibits an extremely large positive mag-
netoresistance [61. On the other hand, another quasi-ID
conductor with similar architecture shows a negative
magnetoresistance in small field [7].

In this Letter, we show that the quasi-1D aspect also
leads to new developments in the physics of localization.
To be more specific, the magnetic field acting on an open
Fermi surface makes the electronic motion more and
more one dimensional in the sense that it confines the
wave functions along the chains. When increasing the
field, it is thus natural to expect a crossover to a strongly
localized 1D regime. We have calculated the conductivi-
ty and the first quantum correction in a strongly aniso-

tropic conductor (weakly coupled chains), where the
transverse motion (perpendicular to the chains) is as-
sumed to be coherent: I/r « t, where t is the hopping
rate between chains. An interesting theoretical aspect of
the quasi-ID problem is that the Green's functions have a

very simple form. We can go beyond the usual semiclas-
sical phase integral (also called eikonal) approximation,
originally introduced by Gor'kov [8]. Starting from the
exact Green's functions, we derive the eikonal approxima-
tion in the low-field limit tu„r «1. We show that a weak
magnetic field destroys the weak-localization effects, as in

the isotropic case [2,3]. In the high-field regime where
the eikonal approximation breaks down, the field localizes
the electrons on the chains. As a result, the transverse
conductivity (perpendicular to the chains) is strongly re-
duced and the first quantum correction to the longitudi-
nal conductivity again diverges at low temperature. Al-

though our perturbative calculation breaks down when

the system becomes 1D, it shows that the magnetic field
induces a transition from a weakly localized 2D regime
towards a strongly localized ID regime. Note that the
other limit I/r » t has already been studied by Na-
khmedov et al. [91. However, because they used the
eikonal approximation, their calculation cannot be ex-
tended in the high-field regime to the coherent limit we

are considering here.
We consider a strongly anisotropic 2D gas with an

open Fermi surface, described by the dispersion law

(h I) E1, i (~ki~ —kF)+tcos(k~b), where v is the ve-

locity at the Fermi level. In the presence of a magnetic
field H along the third direction, the semiclassical equa-
tions of motion lead to the following trajectory in real
space: y =b(t/co, )cos(Gx), where G=eHb and co, =Gv
is the frequency of the electronic motion. When the field
is such that co, -t, the electronic motion becomes 1D.
Therefore, we expect that the (Boltzmann) conductivity
and the first quantum correction will be strongly affected
in the high-field limit co, ~ t. On the other hand, since
the motion perpendicular to the chains is coherent
I/r « t, the gas is really 2D in zero field. Thus, we ex-
pect no essential difference with the isotropic case for
very weak field (tu, r « I ).

In a quantum picture, the magnetic field is taken into
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account by the usual Peierls substitution. Using the Lan-
dau gauge A(O, Hx, 0), the Hamiltonian is written as

'H=v(~k,
~

—kF)+tcos(k~b —Gx)+g V(r —R/), (1)
I

where the last term describes the interaction with impuri-
ties located at points RI. We assume this interaction to
be pointlike V(r —R/) =Vb(r —R/) and no correlation
between the positions of the different impurities. The
Green's functions for the clean system have been previ-
ously calculated in other contexts [10,1ll. Calculating
the self-energy to lowest order in n; (impurity concentra-
tion) and V (Born approximation), the retarded Green's
function is written as

(a)

where

e"(k ~,x,x') =a(r/a), )

x [sin(k3. b —Gx) —sin(k&b —Gx')] .

We have introduced the one-dimensional Green's func-
tion G, (x' —x) defined by

G)i ( ') ( '/ ) /a(~F+~/' +//2/)(x
(3)

if a(x —x') & 0, and 0 otherwise. Here l =vr is

mean free path and T: is the elastic scattering time given
by 1/r =2irN(0)n;V .N(0) is the density of states per
spin at the Fermi level and a =+ ( —) refers to the right
(left) sheet of the Fermi surface. To take advantage of
the conservation of the transverse momentum in the Lan-
dau gauge, we have used a mixed representation (x,k~)
for the Green's function.

Neglecting any localization effect, we obtain the longi-
tudinal and transverse dc conductivities cri(H) =2e'
xN(0)Di and crj (H) =2e N(0)D~(H). The factor 2
comes from spin degeneracy. The effect of the field can
be taken into account by renormalizing the transverse
diff'usion coefficient D&(H) =D&/(I+(v„r ). Di=v r
and D3 t b r/2 are the anisotropic dilfusion coeffi-
cients in zero field. As could be expected from the
preceding semiclassical arguments, (Ti(H) does not de-
pend on H, but o3 (H) is strongly aff'ected by the mag-
netic field in the quantum regime co, ~))1. This reflects
the one dimensionalization induced by the magnetic field.

%'e now consider the first quantum correction to the
longitudinal conductivity in the weak-scattering limit.
This correction is obtained by summing the maximally
crossed diagrams, which give rise to a logarithmic diver-
gence of the conductivity at low temperature in zero field
[12). In the particle-particle channel, the propagator P

the (the so-called Cooperon) becomes a ladder diagram and
is determined by the following integral equation:

P(xlrx2rq J.) ni V ~(xl x2)+ni V dx3Q(xlrx3rql )P(x3ix2rq J. ) i (4)

where Q(x(,xi, q J ) is the usual pair propagator. The conductivity is calculated at finite frequency, and we adopt the in-

terpretation that at finite temperature, —ia) has to be replaced by the inelastic scattering rate I/r;„. Using expressions
(2) and (3) of the Green's functions, the kernel Q of the preceding equation is given by

Q(x,y, q&) = e ' "'/ cos —(y —x) J() —sin —(y —x) sin q~ ———(x+y)4t. 6 . b 6
bv coq 2 2 2

where J() is the zeroth-order Bessel function. For any value of the magnetic field, the quantum correction to the conduc-
tivity is written as

2

b(ri(H) = — v Ib g
2n m, q~ 1 —niV ~m, q

where k q, are the eigenvalues of the integral operator Q(x),x3,q&). A very interesting feature is that we only need to
know the eigenvalues A, q, in order to calculate boi(H). We now calculate these eigenvalues in the two limits of in-

terest: the low-field limit a), r «1 and the high-field limit 0)„»t.
We first examine the eff'ect of a weak magnetic field. Before we calculate the contribution of the maximally crossed

diagrams to the conductivity, we consider the Green s function in real space,

G (a) (x x y nb) einG( +x')/2x—inn/2 J 2a sin (x' x) G ( ) (x x')
'9 0

b
l1

Nc

where J„ is the nth-order Bessel function and G ' is given by (3) and does not depend on the magnetic field. The field

has two different effects. On the one hand, it adds a phase factor to the Green s function. It can be verified that this

phase factor is equal to

G ~ {x',y)
n (x+x') =e— ds. A(s),

2 ~ {x,o)

where the path of integration is a straight line between the two points (x,O) and (x',y =nb) On the other h. and, it
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modifies the argument of the Bessel function J„. Clearly, this latter effect is related to the one dimensionalization in-

duced by the magnetic field. Since the Green's function G, ' (x —x') introduces a cutoff tx —x't-l, in the limit

to, z =Gl « 1 it is possible to neglect the second effect. Consequently, the field effect reduces to the addition of the phase

factor (8) in the Green s function. Thus, we recover the semiclassical (or eikonal) approximation [8]. The kernel Q is

then given by

Q
""(x,y, q&) = e t 't~ cos —(y —x) Jp (y —x)sin q& ——Gx(eik) 1 — —x /I ~ 2& ~

bL, 2 L1 V 2

As can be seen from the general expression of bat(H) (6), the main contribution comes from the eigenvalues A~ q,
where 1 n—; V A, q, &, 1. For the corresponding eigenstates y q„ the integral equation (4) reduces to a second-order

differential equation,

—v (x)+t [1 —cos(q&b —2Gx)ly(x) (1 n; V—X+itpz)y(x) .1

X t2
(lo)

As in the isotropic case [2], the effect of the magnetic field is to replace the operator iV b—y iV —2eA—, where 2e is
the charge of the particle-particle pair. Using again the condition 1 n; V —

A, q, & 1, the sinusoidal potential appearing
in (10) can be approximated by a set of uncoupled harmonic potentials centered at points x„=q~b/2G ntr/—G The. ei-
genvalues are then given by 1 n; V—Aq, =

,
—itoz+4eD, ttHz(m+ —,

' ) where we have introduced the effective diffusion

coefficient D,s (DiD&) ' . For sufficiently small magnetic field, the eigenvalues A. q, appearing in the numerator of
(6) can be replaced by 1/n; V . The correction to the conductivity is then given by (introducing a factor of 2 for spin de-

generacy)

bat(H) -—e'
D~

' 1/2
1—+

2 4eD,ffHr

1 1—+
2 4eD,gHr;„

&/2

S~„(H)=a~""/ i+ "" '
c
2

(12)

w here @ is the digamma function. itpz has —been re-
placed by z/z;„. Equation (11) yields a characteristic
field Hp defined by D,sz;„Hp-pp. Here pp=2tz/e is the
flux quantum. Equation (11) is analogous to the result
for the isotropic 2D gas, except for the diffusion coeffi-

cients which take into account the anisotropy of the gas
[if we set Di =D~ we exactly recover the expression of
ba(H) for an isotropic 2D gas]. Thus Eq. (11) is con-
sistent with our assumption that the transverse motion is

coherent (I/z « t).
We now consider the high-field regime (cp, » t), where

the physics of localization presents new aspects due to the
quasi-1D Fermi surface. In the limit rp, » t, the magnet-
ic field localizes the electrons on the chains of highest
conductivity. The term in the Hamiltonian (1) which

breaks time-reversal symmetry oscillates too fast and can
be ignored. The gas becomes 1D and time-reversal sym-

metry is restored. As a result, the maximally crossed dia-
grams diverge at low temperature and lead to a strong
correction to the conductivity.

In the limit co„»t»1/z, the eikonal approximation
does not hold any more and we have to consider the exact
kernel Q as defined by (5). For an infinite field, Q has
the usual 1D expression and the corresponding eigenval-
ues A.q„q are given by 1

—n;V A.q, q
= —imr+Dttsqt~ for

coz, Dttsqt & l. In the liroit co, &&t, the first correction to
Xq, q is given by &q„q = (t /co )Aq„q The condu.c-
tivity is then given by

Here ba ' 1= eL;„/tr—b is the usual 1D result for the
first quantum correction to the conductivity and L;„

(Diz;„)'t2 is the inelastic coherence length. Equation
(12) yields a crossover field H i between a 2D regime and
a 1D regime defined by co, -t(z;„/z) '~2. The expression
of H~ can be interpreted as follows. Since the transverse
motion is diffusive with a diffusion coefficient D&(H), it
takes a time ht(H)-z(pi„/t) for an electron to hop to
the nearest chain. When At(H) & z;„, all the coherent
orbits which lead to localization are 1D. In this case, the
magnetic field does not destroy the localization. In the
other limit where At(H) & z;„, some of the orbits are 2D
and the corresponding interference between an electronic
path and its time-reversed counterpart is destroyed by the
field.

As pointed out in the introduction, our perturbative ap-
proach breaks down in the high-field limit due to the ab-
sence of a diffusive regime in 1D. Although it is useful to
understand qualitatively the expression (12) of the first
quantum correction to the conductivity, the preceding ex-
planation, based on the assumption that the motion is

diffusive on a given chain, is not valid. However, it is

possible to obtain more information on the ground state
of the system from the following argument. The result
(12) has been explained by the fact that the electron has
to diffuse on a length L(H) =[Diht(H)]'~ on a given
chain before it diffuses to the neighboring chain. This
picture remains meaningful as long as L(H) is smaller
than the 1D localization length (' -I. If (' «L(H),
the electron becomes localized on the chain before it
diffuses to the neighboring chain: The diffusion in the
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FIG, l. Eigenvalues 1
—n; V k„,,~, vs magnetic field. Inset:

First quantum correction to the conductivity (Ba'it(H)) vs mag-
netic field.

transverse direction is frozen. At zero temperature, we
therefore expect a crossover between a 2D and a ID be-
havior for L (H) —( ' (to„-t)

We have also calculated numerically the spectrum of
the integral operator Q. Figure I shows the eigenvalues
1
—

n; V X„,q, for q j =0 and to =0 versus magnetic field.
The eigenstates can be chosen as Bloch functions y= Itt„q„„„where n is a band index and qt is a vector be-
tween —G and G. Figure I shows the first two bands
(n = I and n=2) for different values of qi (note that since
we have chosen values for qi uniformly distributed be-
tween —G and G, the value of each qt increases with the
magnetic field). For very weak field, each band is disper-
sionless and the Landau regime I —n; V X„,~„,v, =4eD,n

xHr(n+ —, ) is clearly visible. When the field is in-

creasedth, e pole in the Cooperon is suppressed and the

degeneracy of each band is lifted. In the high-field re-

gime, the pole is restored. The eigenvalues of the lowest
band are distributed between 0 and 1 and we recover the
continuous 1D spectrum. The eigenvalues of the higher
bands tend to 1. Figure 1 also shows the conductivity
Sot(H) versus magnetic field. In the low-field regime,
the conductivity is given by the analytical result (11). In

the high-field regime, the conductivity has been obtained
from the eigenvalues of the kernel (5) shown in the same
figure.

In conclusion, the magnetic field has a new and re-
markable effect on the electronic properties of disordered
quasi-1D systems. Such systems can exhibit negative
magnetoresistance in low field followed by strong positive
magnetoresistance in large field. In the limit where the
magnetic field localizes the electrons on the chains of
highest conductivity, all the states are localized in the

presence of an arbitrarily weak disorder. The strongly
anisotropic 3D gas (weakly coupled chains with a hierar-
chy of hopping rates t: « t~) can be analyzed in the same
way. In this case, the field localizes the electrons in
planes or on chains, depending on its direction. There-
fore, in the limit of weak disorder, the magnetic field may
induce a transition from a diffusive 3D regime towards a
localized 2D or 1D regime.

It should be noted that both effects (negative magne-
toresistance in low field and positive magnetoresistance in
high field) are related to the disappearance and the reen-
trance of the superconducting phase in strongly aniso-
tropic 3D superconductors in a magnetic field [13]. In
each case, the effect of the field can be understood as the
suppression and the restoration of the Cooper pole for in-
creasing magnetic field.

Since t~-300 K and /, —10 K in Bechgaard salts, the
high-field limit is accessible only in the configuration
where the magnetic field is along the y direction. In this
case, the crossover between 3D and 2D regimes should be
reached for a reasonable value of the magnetic field
(H-20-30 T). Thus, we expect a strong decrease of the
conductivity o:.-(H) along the z direction and also a de-
crease of the conductivity along the x direction due to an
enhancement of the localization effect in the 2D regime.
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