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The statistics of levels in a metallic ring presents a transition from the Gaussian orthogonal en-
semble to the Gaussian unitary ensemble, when it is pierced by a magnetic flux ¢. This transition is
driven by the dimensionless parameter /" E(p, where E, is the Thouless energy expressed in units of
the interlevel distance and ¢ is the reduced flux ¢=27¢d/¢,. It is very well described by a E, X E,
random matrix #=7%£(S)+i@#f( 4), where #(S) and #( 4) are symmetric and antisymmetric ma-

trices whose elements have variance V' E,.

I. INTRODUCTION

Electronic disordered systems are characterized by
spectra with universal behavior. The statistics of energy
levels in complicated systems have been initially studied
by Wigner, Dyson, Mehta, and others, to describe the
spectra of nuclei.! ”® These authors describe the proper-
ties of a matrix Hamiltonian, with random elements
which fluctuate around zero with a Gaussian distribution.
Since this random matrix theory (RMT) is independent of
any specified microscopic model, it is thought to apply to
a variety of very different physical situations, for exam-
ple, to describe as well nuclear, atomic, or molecular
spectra.*> It has been also used in “simple” models of
chaos like billiards to understand how the complexity is
generated and to describe how the nature of spectrum in
quantum mechanics is related to the associated classical
problem.! ™3

The relevance of these ideas to describe the spectrum
of small metallic particles was first pointed out by Gor-
kov and Eliashberg.® Later, starting from a microscopic
model of disorder and using a supersymmetry formalism
and the nonlinear o model, Efetov could derive the corre-
lation function of the energy levels and show that they
are identical to the correlation functions derived from the
RMT.” A remarkable feature of the RMT is that the dis-
tribution of levels only depends on the symmetry proper-
ties of the Hamiltonian. If there is time-reversal symme-
try, the matrix Hamiltonian has real symmetric elements.
The corresponding statistical ensemble is called the
Gaussian orthogonal ensemble (GOE) because it is invari-
ant under every orthogonal transformation. The statis-
tics of the levels can be characterized in particular by the
following.

(1) The spacing distribution between consecutive levels
which is very well described by the Wigner surmise,’
found for a 2 X2 random matrix

m
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4 ) (1.1)

(s)=Zsex
p D) P

where s is the distance between levels in units of the aver-
age interlevel distance. The fact that p(s)—0 when s —0
expresses the well-known repulsion between levels. Sivan
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and Imry found that this repulsion law is observed in the
Anderson disordered tight-binding model.

(2) The fluctuation of the number of levels N(E) in a
strip of width E which measures the rigidity of the spec-
trum. It varies as®
SHE)=(N?)—(N)’=~

2
2 |n@2rE) - T4y +1] ,
m? 8

Ez1, (12

where E is in units of the average interlevel distance 7.
(In this paper, we will set n=1, most of the time.) ¥ is
the Euler constant. For disordered conductors, this rigi-
dity in the spectrum is at the origin of the universal con-
ductance fluctuations.’

When time-reversal symmetry is broken, in a presence
of a magnetic field, for example, the Hamiltonian matrix
is now complex Hermitian. The statistical ensemble is in-
variant under unitary transformations and is called
Gaussian unitary ensemble (GUE). Realizations of this
statistical ensemble have been studied mainly in quantum
billiards. The main effect of a non-time-reversal invari-
ance is that the spectrum becomes more rigid. The
short-distance repulsion is stronger. It is now character-
ized by a quadratic (instead of linear) behavior. More
precisely

p(s)=§%s2exp 2
T

(1.3)

4
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T

The fluctuations of the number of levels is also reduced,
roughly by a factor of 2:

32(E)~—[InQaE)+y+1], E>1. (1.4)
T

The transition between these two ensembles in the ran-
dom matrix theory has been solved by Pandey and Meh-
ta.!® They studied the statistics of the eigenvalues of an
N X N matrix Hamiltonian of the form

FH=H(S)+iaF(A) . (1.5)
F£(S) is a real symmetric matrix and #£( A4) is a real an-
tisymmetric matrix, « is a parameter which interpolates
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between the two ensembles. a=0 describes the GOE
statistics and a=1 describes he GUE statistics. The pur-
pose of this work in the context of nuclear physics was to
detect possible time-reversal symmetry breakdown in nu-
clear forces.

It has also been noticed that a magnetic flux can
change the symmetry of the Hamiltonian, and this effect
has been studied in the case of a quantum billiard pierced
by a magnetic flux line.!! Remarkable in this case is that
the classical motion is not altered by the flux while the
energy levels are.

In this paper, we study the transition between the two
ensembles in a metallic system in a magnetic flux. Con-
sider a metallic loop pierced by a magnetic flux. It has
been predicted a long time ago and found experimentally
very recently that a persistent current is induced by the
magnetic flux ¢.'>!3 The current measures the sensitivity
of the spectrum to the magnetic flux:!?

= 0E, ’
9¢

where E7 is the total energy. It is well known that, using
a gauge transformation, the spectrum of the electrons in
such a ring is identical to the spectrum of electrons in
zero flux, with a change in the boundary conditions. In-
stead of having perlodlc—boundar¥ condmons, the wave
function obeys W(x +L)=W¥(x ¢°, where L is the
perimeter of the ring, ¢ the magnetlc flux, and ¢, the flux
quantum /4 /e. As a consequence, the persistent current
directly measures the sensitivity of the spectrum to the
boundary conditions.!*

This sensitivity has been emphasized by Thouless who
showed that the conductance is a measure of the sensi-
tivity to the boundary conditions: !’

(1.6)

g= . (1.7
n
g is the dimensionless conductance, 7 is the mean inter-
level spacing, and the “Thouless energy” E, is the typical
curvature of the levels

()
From the Einstein relation, E, is related to the diffusion
coefficient E,=D /L% As we will see later, this quantity
also measures the correlation between levels.’

Our goal in this paper is to describe the crossover be-
tween the two statistics induced by a magnetic flux.
More precisely, one wants to know how the interpolating
parameter o of the random matrix theory is related to the
reduced magnetic flux ¢=27¢/$,. From Thouless, one
knows that at small flux, the energy of a level typically
varies as 8E ~E,@?. When this excursion becomes of the
order of the interlevel distance, we expect a qualitatively
different spectrum so that the relevant parameter to de-
scribe the transition from GOE to GUE should be pro-

portional to E.@?. The crossover is thus expected to
occur when p=~1/1E,.
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E =
3¢’

(1.8)
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II. METALLIC RING AND RANDOM MATRIX THEORY

The fluctuations in the spectrum can be characterized
by the density-density correlation function, for two ener-
gies x and y:
K(x,y)=K(x—y)=K )Y —{p(x){p(y)) .

(2.1)

r)={p(x)p(y

This function is related to the probability R (7) of finding
two levels distant of r:*

K(r)=p3[8(r)—1+R(r)] . (2.2)

po is the average density of states. In principle all
higher-order correlation functions could totally charac-
terize the spectrum, but we will use only this one. From
this function, one can derive the variance S%(E) of the
number of levels in a slab of width E, as defined in the In-
troduction. It can be easily shown that

~ [F [ PR,
—Zf E—s)K(s)ds
=E—E +2f0 (E—s)R(s)ds .

y)dx dy

(2.3)

The function R has been calculated by Efetov for a mi-
croscopic model of disorder.” In the orthogonal and uni-
tary ensembles, this function is

_ sin’x

R, (r)=1 5> 2.4)
x
. 2 . o .

R,(r)=1— sm2x _d |sinx sinxt 2.5
x dx | x t

with x =mr. The spectral rigidity is derived from the in-
tegration [Eq. (2.2)] (Refs. 3 and 4)

22(E)— 5 [In(27E)+y +1—cos(27E ) —Ci(27E )]
7T'
+E 1—%Si(27TE) (2.6)
S2AE)=232(E)+ Si(:E) —S‘(ZE). @.7)

These results exactly coincide with the expressions ob-
tained from the random matrix theory.>!® R(r) and
3%(E) have been calculated for the two limits and in prin-
ciple could be also known in the cross-over regime. This
crossover is more easily seen in the formulation of
ATl tshuler and Shklovskii of the fluctuation of energy lev-
els.” The correlation function K(r) can be calculated
from microscopic theory, using a diagrammatic tech-
nique where only a class of diagrams is kept. They get

1

_ (2.8)
(r+i8+iDg?)?

Po
K(r)=~———Re
272 2

a=D,C

0 is a cutoff which originates, for example, from inelastic
collisions. In the absence of such processes, and in a
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closed system, it is taken of the order of the interlevel dis-
tance. The sum over a corresponds to the diffusion prop-
agator (so-called diffuson) and particle-particle propaga-
tor (so-called cooperon) diagrams. The wave vectors g,
are quantized by the boundary condition g
=2mn, /L., n, €Z, along the direction x of the ring, and
qb,=mn p/Ly,n, €N, along the transverse directions.
When r < E, =D /L%, the correlation function is

2
Po 1
K(r)y=——Re———— . (2.9)
m (r+i8)?
This form of the correlation function leads to
1. E*+8°
zg(E)z?mT, 1<E<E, . (2.10)

This expression approximates the result of Efetov [Eq.
(2.7)] and has asymptotically the same behavior. In the
presence of a magnetic flux, the boundary conditions are
changed. The momentum of the diffuson is still the same
but the cooperon propagator momentum along the direc-
tion of the ring gets a shift proportional to the flux
qX=Qwn, /L )+ (4w /L, )¢ /py) =(1/L,)2n,7+2¢).
The factor 2 in front of ¢ comes from the fact that g is
the momentum of a pair of particles. In a flux, the corre-

lation function thus becomes!” 18
2
Po 1 1
K(r,p)=——>Re
)= AR T8 | (r 1ib+4E. o™
(2.11)
- _
2
sinmr

R(r)=1—
Tr

This expression differs from Eqgs. (2.4) and (2.5) for R, (r)

and R,(r), only by the two exponential factors.
R(r)—>R,(r) when A—0 and R(r)—R,(r) when
A— 0.

Again, one can deduce the spectral rigidity X E,A)
from the integration of R(r,A). An extremely good ap-
proximation of the result can be written as'®

E2

SAE,AM~EXE)+In |1+ —F———
(27 /m+47A?)?

(2.15)

with 7=~0.615. Expressions (2.12) and (2.15), respective-
ly, deduced from the microscopic theory and RMT are
very similar. This suggests the following correspondence
between the parameters of the RMT and the microscopic
model:

5=2T (2.16a)
a
4T\ =4E ¢* . (2.16b)

Equation (2.16a) shows that the cutoff & of the pertur-
bation calculation is of the order of the interlevel dis-
tance.

1 pr . 2p 2y [, sin(tr)
+?f0 dk k sin(kr)exp(2A°k )f —_—
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One can now derive the spectral rigidity, when £ <E_:

2 U
SYUE,p)= Py In

2 2
1+—E? +In 1+———E—7
8 (8+4E,¢?)

|

1<E<E,. (.12

When ¢ is large, the second term vanishes so that the
spectral rigidity is roughly divided by a factor 2, as we
expect from the more sophisticated calculation.’

On the other hand, the crossover between GOE and
GUE ensembles has been completely solved in the RMT
by Pandey and Mehta.!® Starting from the N X N matrix
Hamiltonian (1.5), they introduce the parameter A as (for
small a):

=N (2.13)
w

which expresses the variance of the imaginary part of the
matrix elements in units of the average spacing. (In the
RMT, the average spacing actually depends on the posi-
tion in the band since the density of states is a semicircle.)
In terms of this parameter, the function R(r) has been
calculated exactly:

dt exp(—2A%?) . (2.14)

III. NUMERICAL RESULTS

We have studied the statistics of levels numerically
within the Anderson model. The transfer term is taken
as a constant ¢ between first neighbors. The field effect is
simply to change the boundary condition along the ring
so that the transfer term gets a phase factor
exp(2imd/d,) after one loop along the ring. Open
boundary conditions are taken in the two other direc-
tions. The disorder is given by a random choice of the
on-site energy between — W /2 and W /2. This model
has been used recently to calculate numerically the am-
plitude of the persistent currents.”’ Here, we show re-
sults for a 64X 14 X 14 sample. We have chosen values of
W so that the system is metallic. The crossover to local-
ized and ballistic regimes will be described in a forthcom-
ing paper. The transition-metal insulator in zero field has
already been described by Al'tshuler er al.?! We have
calculated S%(E)=(N(E,e)*).—(N(E,e))2 where { ),
is the average on disorder. The ergodic hypothesis as-
serts that this quantity is equal to the ensemble average
done at fixed €.2> This hypothesis certainly holds for
E<E, and becomes wrong when E=E, It is also
known that when E > E,, the spectrum loses its rigidity’
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FIG. 1. Zz(E,(ﬁ) for three values of the magnetic flux.
Squares, ¢=0; circles, ¢=m/2; stars, p=m. Here W/t=1.5.
The two solid lines are the RMT results for the orthogonal (top
line) and unitary (bottom line) ensembles, given by Egs. (2.6)
and (2.7).

so that it cannot be described by the RMT. For these
reasons, we limit our numerical investigation to E <E..
Figure 1 shows the quantity 3*(E ) for three values of the
magnetic flux: 0,¢,/4, and ¢,/2. It is seen that for =0
and ¢,/2, the fluctuations are very well described by the
orthogonal ensemble while for ¢ =¢/4, it is clearly fitted
by the unitary case. The half-quantum case has no time-
reversal symmetry breaking since the phase factors in the
Hamiltonian become real (—1) for this flux. This situa-
tion 1lsl named by Berry and Robnick as “false T break-
ing.”

Then we have studied the crossover between GOE and
GUE by varying the magnetic flux. Figure 2 shows the
fluctuations for increasing values of the flux. In this case
where W/t =2, the curves for finite ¢ are very well fitted
by the RMT, if one chooses ¢=2mA/5.6 which implies

1.00 . 1 | 1

075 20008

TN 0501 : =
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T

0.0y i 2 3 i ;

energy

FIG. 2. 3% E,¢) for increasing values of the flux in the cross-
over region. Squares, ¢=0; pluses, ¢ =m/20; solid squares,
@=m/10; crosses, ¢=31/20; solid circles, ¢=m/5. These
curves are very well fitted by the RMT crossover curves with a
parameter A=5.6¢ /2. Here W/t =2.
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FIG. 3. 3%E,¢) for increasing values of the flux in the
cross-over region, for three values of the disorder W. Squares,
W=1.5, =0, ¢=7/20, and p=m7/10; circles, W=2, ¢=0,
and ¢=3/20; triangles, W=3, =0, ¢=1/10, and p=1/5.
These three series look exactly the same, provided ¢/W has
been kept constant. This shows that the transition is driven by
the parameter V' E, .

E_.~8/m. Since one knows that E_ varies like 1/W?, one
can deduce the relationship between the flux and the
coefficient A of the RMT:

172
E 112 ¢
T =W om

c

A= (3.1)

We have checked this E, dependence of A. Figure 3
shows 3%(E, @) versus E for various values of the disor-
der, W/t=1.5, 2, and 3, so that ¢ /W is kept constant.
The fact that we get a universal behavior proves that the
transition GOE-GUE is governed by the unique parame-
ter V' E.@. In Fig. 4, we have plotted =X E, ) versus ¢
for constant E._We see that the transition is completed
when ¢~1/1/E, and that for higher flux the statistics
remain GUE until the vicinity of the half-flux quantum is
reached.

075 . [ [ :
06

T 0.50F .
R 00 00 0% 00 050

magnetic flux

FIG. 4. =X E,$) vs ¢ at constant E. The transition GOE-
GUE is completed when ¢/27=0.05, i.e., from Eq. (3.1),
A=0.4.
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Figure 5 shows the distribution function p(s) of the
spacing s between nearest levels and its integral
f oP(u)du. The excellent agreement with the RMT pre-
diction is seen more easily on the integrated distribution
function (5b). In zero flux, or when ¢ =¢,/2, it follows
the GOE Wigner surmise [Eq. (1.1)], as found already in
Ref. 8 for ¢=0. When ¢ =¢,/4, the distribution follows
the GUE behavior with a quadratic departure at the ori-
gin [Eq. (1.3)]. When the flux increases from zero, the
distribution progressively shifts from the GOE behavior.
The crossover to a finite value of the parameter A has
been calculated in the literature only for a 2X2 matrix
for which we know that, in the two limits, the calculated
p(s) is a very good approximation of the distribution in
large size matrices.*!® In between the distribution is!®
172
§2

8v?

1—a?

8a?v?

p(s,a)= erf

s
————exp
V1 —a?
(3.2)

By connecting the values of A,(a) for this 2 X2 matrix'?
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T

T i T80 20 300

FIG. 5. (a) p(s,¢) for extreme values of the flux so that the
distribution is GOE (squares, ¢ =0; stars, ¢ =) or GUE (cir-
cles, =m/2). The solid lines are the Wigner surmises. Here
W=2. (b) ff)p(r,(ﬁ)dr, for the same values of flux and disor-
der. The curves are the RMT result. They start as s#*!, with
B=1 for the GOE and =2 for the GUE.
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FIG. 6. (a) p(s,¢) for g=m/20. Two of the solid lines show
the extreme behaviors corresponding to the orthogonal and uni-
tary ensembles and the intermediate one is the analytical result
of the RMT of a 2X2 matrix for «=0.31 [instead of a=0.37
that we would expect from A,(a)=A(p)]. (b) f;p(r,¢)dr, for
the same values of the flux and disorder. (c) f;p(r,zﬁ)dr, for
the same values of flux and disorder, at small separation s. It is
seen that, as soon as A is nonzero, the distribution deviates from
GOE and follows the GUE behavior in s3. Then it comes closer
to the GOE behavior.
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M=av/d=a (1—a?)~2arctan

172
T
8

to the A(g) of our physical problem A=1"E. /7@, one
deduces the correspondence between @ and al(g) and
then the distribution p(s,a)=p(s,V E.@). Figure 6
shows that the numerical p(s) in a finite flux is very well
fitted by the function p(s,a) of RMT [but the value of a
is slightly different from the one deduced from the condi-
tion A,(a)=A(¢), Fig. 6]. It is also seen that for small s,
the distribution behaves as the GUE as soon as A is finite.

a

IV. CONCLUSION

We have shown that the statistics of levels in a metallic
ring pierced by a magnetic flux presents a transition from
GOE to GUE. This transition is characterized by the di-
mensionless parameter /' E, . The transition can be de-
scribed by a random N XN matrix ##=F(S)+iaF( A).
Since the physical spectrum to be described loses its rigi-
dity on an energy range wider than E_, the size N of the
random matrix has to be proportional to E, /7. The vari-
ance v? of the matrix elements is proportional to nE, (so
that the interlevel distance 7 is independent of E,). a is
proportional to the dimensionless magnetic flux ¢. The
mapping between the parameters of the RMT and of the
metallic ring is

a’xq) N
v<VE,,
N<E, ,

and the parameter A which describes the transition is, for
small a

(1_a2)1/2
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—1

ta (3.3)

as found from Eq. (2.16). The transition is completed
when A=1, i.e., when the typical shift of a level is of the
order of the average spacing.”® This happens when
VE p=1.

When « increases, the variance v2 must be divided by
140a? to keep the average interlevel distance fixed. Thus
the random matrix must have the form

1
V1+a?

Since the spectrum is periodic with period ¢, and since it
has GOE statistics around ¢ =nd¢,/2, we conjecture that,
for larger flux, the parameter a which describes the
statistics of levels is a=tg@, so that A=(E, /7)!"*sinp
and

F=cospF(S)+isingH(A4) .

H= [H(S)+iaF(A4)] .
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