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We propose a nonperturbative renormalization-group (NPRG) approach to fermion systems in the two-particle-
irreducible (2PI) effective action formalism, based on an exact RG equation for the Luttinger-Ward functional.
This approach enables us to describe phases with spontaneously broken symmetries while satisfying the Mermin-
Wagner theorem. We show that it is possible to choose the Hartree-Fock random phase approximation theory
as initial condition of the RG flow and argue that the 2PI-NPRG is not restricted to the weak-coupling limit.
An expansion of the Luttinger-Ward functional about the minimum of the 2PI effective action including only
the two-particle 2PI vertex leads to nontrivial RG equations where interactions between fermions and collective
excitations naturally emerge.
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I. INTRODUCTION

The renormalization group (RG) has proven to be a system-
atic and unbiased method to study interacting fermion systems.
In contrast to standard (ladder- or bubble-type) diagrammatic
resummations, it treats various types of instabilities on an
equal footing and does not require any a priori knowledge of
the ground state of the system. The RG has been particularly
useful to understand one- and quasi-one-dimensional systems
[1,2] in connection with the physics of strongly anisotropic
organic conductors (see, e.g., Refs. [3–8]). It has also been
used to study the two-dimensional Hubbard model (see, e.g.,
Refs. [9–14]) as well as other models of strongly correlated
fermions (for a review, see Ref. [15]).

Nevertheless, the fermionic RG meets with some difficul-
ties: (i) it is usually formulated in the one-particle-irreducible
(1PI) formalism where the basic quantity of interest is the
1PI effective action �[φ∗,φ] (the generating functional of
1PI vertices). While for a classical system or bosons φ is
a real or complex field, for fermions it is a Grassmannian
(anticommuting) field. The effective action is therefore defined
only via its Taylor expansion about φ∗ = φ = 0. Such an
expansion, truncated to a given order, is equivalent to a loop
expansion. Expansions about a nontrivial minimum, which are
very efficient in the standard implementation of the nonpertur-
bative renormalization group (NPRG) even with low-order
truncations [16–18], are not possible with fermions. This
makes calculations beyond one- or two-loop order difficult
and restricts the fermionic RG to the weak-coupling limit.
(ii) The existence of a Fermi surface implies that the interaction
amplitudes strongly depend on the fermion momenta, so
that the renormalized interaction vertices necessary become
functionals of momenta [19,20]. This considerably increases
the complexity of the method, even to one-loop order. (iii) The
fermion field ψ is not an order parameter. Order parameters
are defined by composite fields: ψ∗

σψσ ′ for a charge- or
spin-density wave, ψσ ψσ ′ for a superconductor (ψσ denotes
the fermion field and σ the spin index). Phase transitions are
signaled by a divergence of the order-parameter susceptibility

and a concomitant divergence of some interaction vertices.
In the standard implementation of the fermionic RG, these
composite fields are not explicitly considered since the RG
procedure deals only with the fermionic degrees of freedom
[21]. This explains why some vertices or susceptibilities may
diverge at a finite-energy scale with no possibility to continue
the flow into the broken-symmetry phase [22]. Even in the
absence of a phase transition, the one-loop fermionic RG
becomes uncontrolled when strong collective fluctuations with
a large correlation length set in.

To circumvent some of these difficulties, one can partially
“bosonize” the fermionic degrees of freedom via a Hubbard-
Stratonovich transformation of the interaction term in the ac-
tion S[ψ∗,ψ] [26–30]. This transforms the original interacting
fermion system into a system of free fermions interacting with
a bosonic field. While the difficulty to consider various types of
instabilities on an equal footing is well known (see, however,
Refs. [31–33]), it is possible to treat the bosonic degrees of
freedom with the standard methods of the NPRG. There are
then no difficulties to study phases with spontaneously broken
symmetries since the bosonic Hubbard-Stratonovich field
plays the role of an order parameter. Furthermore, the approach
is not restricted to the weak-coupling limit as it partially relies
on the NPRG. Both the Hubbard model [26–28,31–33] and the
BCS-BEC crossover [34–41] have been studied along these
lines.

The main purpose of this paper is to discuss a NPRG
approach in the two-particle-irreducible (2PI) formalism
following general ideas put forward by Wetterich [42]. We
restrict our aim to a discussion of the general aspects of
the method and postpone practical applications to future
work. In condensed-matter physics, the 2PI formalism [43–
48] was introduced as a means to systematically set up
self-consistent approximations that satisfy conservation laws
(conserving approximations [45]). The basic quantity of
interest is the 2PI effective action �[G] or equivalently the
Luttinger-Ward functional �[G], a functional of the one-
particle propagator G defined perturbatively as the sum of the
2PI (or skeleton) diagrams. �[G] is the generating functional
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of the 2PI vertices from which we can obtain both 1PI
vertices and correlation functions. The 2PI formalism in the
context of the NPRG has been considered in various contexts
[49–52], but few works have focused on interacting fermions
[42,53,54].

To set up a NPRG approach in the 2PI formalism, we
add to the action S[ψ∗,ψ] a regulator term �Sk which
suppresses both fermionic and (bosonic) collective low-energy
fluctuations. This allows us to define a scale-dependent 2PI
effective action �k[G] and a scale-dependent Luttinger-Ward
functional �k[G], where k is a momentum scale varying
between a microscopic scale � and 0. �Sk vanishes for k = 0
and is chosen such that the action S + �S� is noninteracting
and therefore trivially solvable. With a suitable definition
of �k[G] (slightly differing from the Legendre transform of
the free energy), ��[G] can be made to coincide with the
Hartree-Fock random phase approximation (RPA) theory. The
Luttinger-Ward functional �k=0[G] of the original model is
obtained from ��[G] using a RG equation. By (approxi-
mately) solving the latter, we can then obtain the physical
properties of the system we are interested in. In this paper,
we discuss the main properties of the 2PI-NPRG approach:
(i) the “classical” variable is the one-particle propagator G,
i.e., the mean value of a composite field, and is bosonic in
nature. It is itself an order parameter and there are therefore
no difficulties to describe phases with spontaneously broken
symmetries. It is even possible to start the RG flow in a
broken-symmetry phase (with the Hartree-Fock RPA theory as
the initial condition). Moreover, the Mermin-Wagner theorem
is satisfied by the renormalized theory at k = 0. (ii) The
2PI-NPRG approach is not restricted to the weak-coupling
limit as is already apparent when using the Hartree-Fock RPA
theory as the initial condition of the RG flow. (iii) Simple
expansions of the Luttinger-Ward functional about the (pos-
sibly degenerate) equilibrium state, including only the two-
particle 2PI vertex, lead to nontrivial RG equations where
interactions between fermions and collective excitations nat-
urally emerge. Furthermore, it is possible to parametrize
the two-particle 2PI vertex by means of a small number of
coupling constants. The (full, i.e., 1PI) momentum-frequency-
dependent two-particle vertex is computed from the 2PI vertex
by solving a Bethe-Salpeter equation. Thus, contrary to the
fermionic 1PI RG approach, there is no need to discretize the
momentum space into patches to keep track of the momentum
dependence of the two-particle 1PI vertex when solving
numerically the flow equations.

The outline of the paper is as follows. In Sec. II, we intro-
duce the scale-dependent 2PI effective action �k[G] as well as
the Luttinger-Ward functional �k[G]. We show how correla-
tion functions are related to the 2PI vertices (i.e., the functional
derivatives of �k[G]) and discuss the initial condition of the
flow at k = �. In Sec. III, we derive the RG equations satisfied
by �k[G] and �k[G], and the one- and two-particle 2PI vertices.
In Sec. IV, we propose an approximation scheme to solve the
RG equations based on a truncation of the Luttinger-Ward
functional �k[G] where only the two-particle 2PI vertex is
taken into account. A summary of our approach is given in
Sec. V. For clarity, many technical details are included in the
Appendices.

II. SCALE-DEPENDENT LUTTINGER-WARD
FUNCTIONAL

A. Scale-dependent 2PI effective action

We consider a spin- 1
2 fermion system with the Euclidean

action S = S(0) + Sint:

S(0)[ψ] = −1

2

∑
α,α′

ψαG(0)−1
αα′ ψα′ ,

Sint[ψ] = 1

4!

∑
α1...α4

Uα1α2α3α4ψα1ψα2ψα3ψα4 ,

(1)

defined on a d-dimensional lattice (with N sites). The ψα’s are
anticommuting Grassmann variables and the collective index
α = {r,τ,σ,c} stands for the lattice site coordinate, imaginary
time, spin projection along a given axis and charge index. The
latter, c = ±, is such that

ψα =
{
ψσ (r,τ ) if c = −,

ψ∗
σ (r,τ ) if c = +.

(2)

We use the notation
∑

α

=
∫ β

0
dτ

∑
r,σ,c

(3)

with β = 1/T the inverse temperature (we set kB = � = 1
throughout the paper). G(0) denotes the (bare) propagator and
U the fully antisymmetrized interaction [55]:

G(0)
αα′ = −G(0)

α′α,
(4)

Uα1α2α3α4 = −Uα2α1α3α4 = −Uα3α2α1α4 , etc.

We assume that the action is invariant under translation,
(global) SU(2) spin rotation and (global) U(1) transformation.

To implement the RG approach, we add to the action (1)
the “regulator” term

�Sk[ψ] = −1

2

∑
α,α′

ψαR
(F )
k,αα′ψα′

+ 1

4!

∑
α1...α4

Rk,α1α2α3α4ψα1ψα2ψα3ψα4 , (5)

with both quadratic and quartic terms. R
(F )
k and Rk will be

referred to as cutoff functions. They should be such that �Sk

satisfies the global symmetries of the action.
The quadratic “fermionic” regulator R

(F )
k can be included

in the definition of the bare propagator

G(0)−1
k,αα′ = G(0)−1

αα′ + R
(F )
k,αα′ . (6)

The role of this regulator is to remove low-energy fermionic
states, i.e., states near the Fermi surface. A standard choice is

G(0)
k;−σ,+σ (p,iωn) = (|ξp| − εk)

iωn − ξp
(7)

( denotes the step function), where ωn is a fermionic
Matsubara frequency, p the band momentum, and εp = ξp + μ

the bare dispersion (μ is the chemical potential). εk is a
characteristic energy scale (e.g., εk = tk2 in the Hubbard
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model with t the hopping amplitude between nearest-neighbor
sites) which vanishes for k = 0 so that G(0)

k=0 = G(0). Instead
of the sharp cutoff (7), one could choose a soft cutoff. In
some cases, it is possible not to include a fermionic cutoff; for
instance, when there is a spontaneously broken symmetry, the
gap in the fermionic spectrum may provide a natural regulator
for the fermionic degrees of freedom. In the following, we
shall use G(0)

k and not refer to R
(F )
k anymore. We denote by S

(0)
k

the quadratic action with propagator G(0)
k , and by Sk the action

S + �Sk .
As for the “bosonic” quartic regulator, which modifies the

fermion-fermion interaction, we require the following three
properties: (i) for k equal to a microscopic scale � (of the
order of the inverse lattice spacing), the model with action
S� = S + �S� must be exactly solvable. In practice, we
choose R� = −U (the system is then noninteracting) [42],
which ensures that the model is exactly solvable regardless
of the choice of G(0)

k [56]; (ii) for small k, Rk must act
as an infrared regulator for the (potentially dangerous) low-
energy collective fluctuations, thus preventing any divergence
in two-particle vertices and correlation functions for k > 0;
(iii) Rk=0 must vanish so that the action Sk=0 = S reduces
to the action (1) of the original model. To relate the (exactly
solvable) model with action S� = S

(0)
� to the model with action

Sk=0, we will use a RG equation (Sec. III).
Although quartic regulators, modifying the fermion-

fermion interaction, have been used in other works
[49,50,54,57,58], we want to stress that Rk should primarily
be seen as an infrared regulator for collective fluctuations. In
this respect, its k dependence is expected to be crucial.

The scale-dependent partition function reads as

Zk[J ] =
∫

D[ψ] e−S[ψ]−�Sk [ψ]+ 1
2

∑
α,α′ ψαJαα′ ψα′ (8)

in the presence of an external (antisymmetric) bilinear source
Jαα′ = −Jα′α . The one-particle propagator Gk,γ = −〈ψαψα′ 〉
is then obtained from

Gk,γ [J ] = −δWk[J ]

δJγ

, (9)

where Wk[J ] = ln Zk[J ] and

γ = {α,α′} (10)

is the bosonic index obtained from the two fermionic indices
α and α′. Higher-order propagators are defined by

W
(n)
k,γ1...γn

[J ] = δnWk[J ]

δJγ1 · · · δJγn

(11)

and satisfy the symmetry properties

W
(n)
k,γ1...γi ...γj ...γn

[J ] = W
(n)
k,γ1...γj ...γi ...γn

[J ],

W
(n)
k,γ1···{αi ,α

′
i }...γn

[J ] = −W
(n)
k,γ1...{α′

i ,αi }...γn
[J ].

(12)

By inverting the “equation of motion” (9), we can express
the source J ≡ Jk[G] as a k-dependent functional of the
propagator. We define the scale-dependent 2PI effective action

�k[G] = −Wk[J ] − 1

2

∑
γ

JγGγ − 1

8

∑
γ1,γ2

Rk,γ1γ2Gγ1Gγ2 (13)

(with J ≡ Jk[G]) as the Legendre transform of Wk[J ] to
which we subtract 1

8

∑
γ1,γ2

Rk,γ1γ2Gγ1Gγ2 . The reason for this
subtraction is explained in the following.

For k = �, the system is noninteracting, S� = S
(0)
� , and the

effective action can be computed exactly using

Z�[J ] = det
(−G(0)−1

� − J
)1/2

= exp 1
2 tr ln

(−G(0)−1
� − J

)
, (14)

where tr denotes the fermionic trace [59]. Equation (9) then
gives G = (G(0)−1

� + J )−1 and in turn

��[G] = 1

2
tr ln(−G) − 1

2
tr
(
G(0)−1

� G − 1
)

− 1

8

∑
γ1,γ2

R�,γ1γ2Gγ1Gγ2 . (15)

For k < �, the system is interacting and we write the
effective action in the form

�k[G] = 1
2 tr ln(−G) − 1

2 tr
(
G(0)−1

k G − 1
) + �k[G], (16)

where the scale-dependent Luttinger-Ward functional �k[G] is
independent of the bare propagator G(0)

k [60]. It can be defined
perturbatively as the sum of the 2PI (or skeleton) diagrams
with interaction vertices U + Rk (i.e., diagrams that can not be
separated into two disconnected pieces by cutting at most two
lines [61]) to which we subtract 1

8

∑
γ1,γ2

Rk,γ1γ2Gγ1Gγ2 . Since
U + R� = 0, all 2PI diagrams vanish and the Luttinger-Ward
functional for k = � reduces to

��[G] = 1

8

∑
γ1,γ2

Uγ1γ2Gγ1Gγ2 (17)

in agreement with (15), which reproduces the Hartree-Fock
RPA theory. We further discuss the initial condition in Sec. II E.
On the other hand, �k=0[G] coincides with the usual Luttinger-
Ward functional (sum of the 2PI diagrams with interaction
vertex U ) since Rk=0 = 0.

The 2PI vertices are defined by the functional derivatives

�
(n)
k,γ1...γn

[G] = δn�k[G]

δGγ1 · · · δGγn

(18)

and satisfy the same symmetry properties as the propagators
W

(n)
k,γ1...γn

[Eq. (12)]. To mth order in perturbation theory, they
are given by 2PI diagrams with n external (bosonic) legs γi ,
m interaction vertices U + Rk , and 2m − n propagators (these
diagrams can not be separated into two disconnected pieces
by cutting at most two lines, considering every external leg
γi = {αi,α

′
i} as a connected piece). Because of the definition

of �k[G] as a slightly modified Legendre transform of Wk[J ]
[Eq. (13)], �(1)

k,γ and �
(2)
k,γ γ ′ include the additional contributions

− 1
2

∑
γ ′ Rk,γ γ ′Gγ ′ and −Rk,γ γ ′ , respectively.

B. One- and two-particle propagators

From Eq. (9), we deduce that �k[G] satisfies the “equation
of motion” (see Appendix A)

δ�k[G]

δGγ

= −Jγ − 1

2

∑
γ ′

Rk,γ γ ′Gγ ′ . (19)
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Together with (16), this implies Dyson’s equation

G−1
γ = G(0)−1

k,γ − �k,γ [G] (20)

with the self-energy functional

�k,γ [G] = −�
(1)
k,γ [G] − Jγ − 1

2

∑
γ ′

Rk,γ γ ′Gγ ′ . (21)

Note that at this stage, J ≡ Jk[G] is still a functional of G
whose value must be specified to obtain the propagator in the
equilibrium state (Sec. II D).

By differentiating Eq. (19) wrt the source J and using
Eq. (9), we obtain

1

2

∑
γ3

(
�

(2)
k,γ1γ3

[G] + Rk,γ1γ3

)
W

(2)
k,γ3γ2

[J ] = Iγ1γ2 , (22)

where I is the (bosonic) unit matrix defined by Eq. (A1)
and �

(2)
k [G] the second-order functional derivative of the 2PI

effective action �k[G]. Equation (22) can be rewritten as a
bosonic matrix equation (see Appendix A)

(
�

(2)
k + Rk

)−1 = W
(2)
k . (23)

From now on, in order to alleviate the notations, we suppress
the G (or J ) dependence of the functionals �

(n)
k , �(n)

k , and W
(n)
k .

From (16), we find

�
(2)
k,γ1γ2

= �−1
γ1γ2

+ �
(2)
k,γ1γ2

, (24)

where

�−1
γ1γ2

= −G−1
α1α2

G−1
α′

1α
′
2
+ G−1

α1α
′
2
G−1

α′
1α2

(25)

is the inverse (in a bosonic matrix sense) of the pair propagator
� ≡ �[G]:

�γ1γ2 = −Gα1α2Gα′
1α

′
2
+ Gα1α

′
2
Gα′

1α2 . (26)

This allows us to rewrite the bosonic propagator W
(2)
k as

W
(2)
k = (�−1 + Xk)−1 = � − �XkW

(2)
k , (27)

where

Xk = �
(2)
k + Rk. (28)

W
(2)
k = � − �Yk� can also be related to the 1PI two-particle

vertex Yk

Yk = (
X−1

k + �
)−1 = Xk − Xk�Yk. (29)

Equations (27) and (29) are Bethe-Salpeter equations relating
W

(2)
k and Yk to the (regularized) 2PI vertex Xk = �

(2)
k + Rk .

Equation (27) can also be seen as a Dyson equation for the
(bosonic) pair propagator W

(2)
k , with bare propagator � and

“self-energy” Xk = �
(2)
k + Rk . Since W

(2)−1
k = �−1 + �

(2)
k +

Rk , we see that Rk naturally appears as a regulator for the
bosonic fluctuations.

C. Particle-particle and particle-hole channels

So far, we have used a compact notation where all fermionic
indices are gathered in the collective index α. In fine it is,

however, necessary to explicitly introduce the singlet and
triplet particle-particle (pp) channels, as well as the charge
and spin particle-hole (ph) channels. To this end, we define the
matrices

τ ν
−− = τ

ν†
++ = iσ νσ y, τ ν

−+ = τ νT
+− = σ ν (30)

(ν = 0,x,y,z), where σ 0 is the 2 × 2 unit matrix and σx , σy ,
σ z the Pauli matrices. They satisfy the property

1
2 tr

(
τ

ν†
cc′τ

ν ′
cc′

) = δν,ν ′ . (31)

In the following, we use the notation x = (r,τ ) and X = (x,σ )
so that ψ+(X) = ψ∗

σ (x) and ψ−(X) = ψσ (x). To alleviate the
notations, we drop the index k in this section.

Let us first consider the composite field Occ′ (X,X′) =
ψc(X)ψc′ (X′). It can be decomposed on various spin channels
using

Occ′ (X,X′) = 1

2

∑
ν

(
τ ν
cc′

)
σσ ′O

ν
cc′ (x,x ′), (32)

where

Oν
cc′ (x,x ′) =

∑
σ,σ ′

(
τ

ν†
cc′

)
σ ′σOcc′ (X,X′). (33)

In the ph channel (c = −c′), ν = 0 corresponds to the charge
component and ν = x,y,z to the three spin components, while
in the pp channel ν = 0 and ν = x,y,z correspond to the
singlet and triplet components, respectively [62].

The Fourier-transformed field is defined by

Oν
cc′ (x,x ′) = 1

βN

∑
p,p′

e−i(cpx+c′p′x ′)Oν
cc′ (p,p′), (34)

where p = (p,iωn) with ωn a fermionic Matsubara frequency
and px = p · r − ωnτ . It is convenient to introduce the total
and relative momentum frequency of the pair,

q = p′ + cc′p, l = 1
2 (p′ − cc′p), (35)

which allows us to define the following pp and ph composite
fields:

Oν
pp(q,l) = Oν

−−(q,l), Oν†
pp (q,l) = Oν

++(q,−l),

Oν
ph(q,l) = Oν

+−(q,l). (36)

These operators are particularly useful when dealing with the
pair propagator W

(2)
k or the 1PI vertex Yk .

1. Propagators

The one-particle propagator reads as

Gcc′ (X,X′) = −〈Occ′ (X,X′)〉 = 1

2

∑
ν

(
τ ν
cc′

)
σσ ′Gν

cc′ (x,x ′),

(37)

where

Gν
cc′ (x,x ′) = −〈

Oν
cc′ (x,x ′)

〉
. (38)
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Using more standard notations, we introduce the normal and
anomalous propagators

Gσσ ′(x,x ′) = −〈ψσ (x)ψ∗
σ ′(x ′)〉 = G−+(X,X′),

Fσσ ′(x,x ′) = −〈ψσ (x)ψσ ′(x ′)〉 = G−−(X,X′),

F
†
σσ ′(x,x ′) = −〈ψ∗

σ (x)ψ∗
σ ′(x ′)〉 = G++(X,X′).

(39)

The normal propagator can be decomposed into charge and
spin components

Gσσ ′(x,x ′) = 1
2σ 0

σσ ′Gch(x,x ′) + 1
2σ σσ ′ · Gsp(x,x ′), (40)

where Gch = G0
−+ and Gν

sp = Gν
−+ (ν = x,y,z). The anoma-

lous propagator can be decomposed into singlet and triplet
components

Fσσ ′(x,x ′) = 1
2 (iσy)σσ ′Fs(x,x ′) + 1

2 (iσσy)σσ ′ · Ft(x,x ′),

F
†
σσ ′(x,x ′) = 1

2 (iσy)†σσ ′F
†
s (x,x ′) + 1

2 (iσσy)†σσ ′ · F†
t (x,x ′),

(41)

where Fs = G0
−−, F †

s = G0
++, Fν

t = Gν
−−, and F

ν†
t = Gν

++ (ν =
x,y,z).

The two-particle propagator is defined by

W
(2)
c1c

′
1c2c

′
2
(X1,X

′
1; X2,X

′
2)

= 〈
Oc1c

′
1
(X1,X

′
1)Oc2c

′
2
(X2,X

′
2)

〉
c

(42)

or

W
(2)ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2) = 〈

O
ν1

c1c
′
1
(x1,x

′
1)Oν2

c2c
′
2
(x2,x

′
2)

〉
c
, (43)

where 〈OO ′〉c = 〈OO ′〉 − 〈O〉〈O ′〉 (similar expressions hold
for the pair propagator �). When the global U(1) invariance
is not spontaneously broken, we can distinguish between
pp (c1 = c′

1 = −c2 = −c′
2) and ph (c1 + c′

1 = c2 + c′
2 = 0)

propagators:

W (2)ν1ν2
pp (x1,x

′
1; x2,x

′
2) = W

(2)ν1ν2−−++(x1,x
′
1; x2,x

′
2),

W
(2)ν1ν2
ph (x1,x

′
1; x2,x

′
2) = W

(2)ν1ν2+−+−(x1,x
′
1; x2,x

′
2)

(44)

(and similarly for �). When the global U(1) symmetry is
broken, there are other nonzero propagators such as W

(2)
−−−−

and W
(2)
+−−−. Finally, introducing the total and relative mo-

mentum frequency of the pair [Eq. (35)], we define the prop-
agators W

(2)ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2) and �

ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2) (see

Appendix C for a more detailed discussion).

2. Vertices

A similar decomposition holds for the vertices

�
(1)
cc′ (X,X′) =

∑
ν

(
τ

ν†
cc′

)
σ ′σ�

(1)ν
cc′ (x,x ′),

�
(1)ν
cc′ (x,x ′) = 1

2

∑
σ,σ ′

(
τ ν
cc′

)
σσ ′�

(1)
cc′ (X,X′)

(45)

and analog expressions for the two-particle vertices �
(2)
c1c

′
1c2c

′
2
,

Xc1c
′
1c2c

′
2
, and Yc1c

′
1c2c

′
2

(see Appendix C). We define

�(1)ν
pp (x,x ′) = �

(1)ν
++ (x,x ′), �

(1)ν
ph (x,x ′) = �

(1)ν
+− (x,x ′)

(46)

in the pp and ph channels, respectively. When the global U(1)
symmetry is not broken, it is convenient to introduce

�(2)ν1ν2
pp (x1,x

′
1; x2,x

′
2) = �

(2)ν1ν2++−−(x1,x
′
1; x2,x

′
2),

�
(2)ν1ν2
ph (x1,x

′
1; x2,x

′
2) = �

(2)ν1ν2+−+−(x1,x
′
1; x2,x

′
2)

(47)

(and similarly forX andY). When the global U(1) symmetry is
broken, there are additional (nonzero) vertices such as �

(2)ν1ν2−−−−
and �

(2)ν1ν2−−−+.

3. Bethe-Salpeter equations

We are now in a position to write the Bethe-Salpeter
equations (27) and (29) in a more explicit form (Appendix C):

Yν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2)

= X ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2)

− 1

4βN

∑
c3 ...c′4
ν3 ,ν4

∑
q3,l3,q4,l4

X ν1ν3

c1c
′
1c3c

′
3
(q1,l1; q3,l3)

×�
ν3ν4

c3c
′
3c4c

′
4
(q3,l3; q4,l4)Yν4ν2

c4c
′
4c2c

′
2
(q4,l4; q2,l2) (48)

and

W
(2)ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2)

= �
ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2)

− 1

4βN

∑
c3 ...c′4
ν3 ,ν4

∑
q3,l3,q4,l4

�
ν1ν3

c1c
′
1c3c

′
3
(q1,l1; q3,l3)

×X ν3ν4

c3c
′
3c4c

′
4
(q3,l3; q4,l4)W (2)ν4ν2

c4c
′
4c2c

′
2
(q4,l4; q2,l2). (49)

When the global U(1) symmetry is not broken, we can
consider separately the pp and ph channels.

D. Equilibrium state

Why do we consider the functional �k[G] [Eq. (13)] rather
than the true Legendre transform of Wk[J ]? The reason is that
Sk = S + �Sk can be significantly different from the action S

of the model we are interested in. This is most notably true
when k = � since the system is noninteracting (U + R� = 0).
When considering �k[G], we partially compensate the effect
of Rk by subtracting 1

8

∑
γ1,γ2

Rk,γ1γ2Gγ1Gγ2 . The compensation
is exact at the Hartree-Fock level where the Luttinger-Ward
functional is truncated to order O(U + Rk). Thus, the main
difference between �k=0[G] and �k[G] is that the latter takes
into account low-energy (wrt the momentum scale k) bosonic
fluctuations only at the Hartree-Fock level. We can therefore
interpret �k[G] as a coarse-grained free energy with a coarse-
graining length scale of order k−1 [63].

Consequently, we define the propagator Ḡk in the equilib-
rium state from the minimum of �k[G]:

δ�k[G]

δGγ

∣∣∣∣
Ḡk

= 0. (50)

Note that this amounts to evaluating the equation of motion
(21) with an external source Jk,γ [Ḡ] = − 1

2

∑
γ ′ Rk,γ γ ′ Ḡγ ′ . The
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corresponding self-energy coincides with the one-particle 2PI
vertex

�̄k,γ = −�̄
(1)
k,γ , (51)

where we use the notation �̄
(n)
k,γ ≡ �

(n)
k,γ [Ḡk]. If some global

symmetries are spontaneously broken, then the equilibrium
state is degenerate. As in the case of the one-particle 2PI
vertex [Eqs. (46)], we can define ph and pp components of the
self-energy

�̄ν
k,ph(x,x ′) = �̄ν

k,+−(x,x ′), �̄ν
k,pp(x,x ′) = �̄ν

k,++(x,x ′),

(52)

where �̄0
k,ph = �̄k,ch, �̄ν

k,ph = �̄ν
k,sp, �̄0

k,pp = �̄k,s, and �̄ν
k,pp =

�̄ν
k,t (ν = x,y,z).
A similar reasoning holds for the two-particle correlation

function. Collective modes and other two-particle properties in
the equilibrium state should be obtained from the propagator
�̄

(2)−1
k rather than W̄

(2)
k = (�̄(2)

k + Rk)−1. For k = 0, both
correlation functions coincide: W̄

(2)
k=0 = �̄

(2)−1
k=0 .

E. Initial condition: Hartree-Fock RPA theory

From (17), we deduce that for k = � the one- and two-
particle 2PI vertices are given by

�
(1)
�,γ = 1

2

∑
γ ′

Uγγ ′Gγ ′ , �
(2)
�,γ γ ′ = Uγγ ′ , (53)

with all higher-order 2PI vertices vanishing. Equation (51)
then yields the self-energy equation

�̄�,γ = −1

2

∑
γ ′

Uγγ ′ Ḡ�,γ ′ , (54)

which corresponds to a generalized (i.e., with possible broken
symmetries) Hartree-Fock approximation. If we use the sharp
fermionic cutoff (7) with ε� � maxp|ξp|, all fermionic degrees
of freedom are suppressed when k = � and both �̄�,γ and
Ḡ�,γ vanish. In the following, we discuss the opposite case
where no fermionic regulator is included in the action (G(0)

k =
G(0)). Equation (54) then coincides with the standard Hartree-
Fock approximation. In the case of a broken-symmetry state,
it yields the self-consistent (mean-field) equation for the
order parameter (see below the discussion of the Hubbard
model).

Since U + R� = 0, W̄
(2)
k ≡ W

(2)
k [Ḡk] is equal to �̄k ≡

�[Ḡk]. On the other hand, the correlation function �̄
(2)−1
k (see

the discussion at the end of Sec. II D) is obtained from a
Bethe-Salpeter equation with Hartree-Fock propagators Ḡ�

and bare interaction vertex �̄
(2)
� = U , which corresponds to

the RPA. This approximation is conserving in the sense of
Baym and Kadanoff [44,45]. In particular, in the case of a
spontaneously broken continuous symmetry, it satisfies the
Goldstone theorem (see Sec. II F for a further discussion of
the Goldstone theorem).

1. Two-dimensional half-filled Hubbard model

In this section, we explicit the initial condition of the RG
flow in the half-filled Hubbard model defined on a square

lattice in the absence of a fermionic regulator (see Appendix D
for more details). The initial value (17) of the Luttinger-Ward
functional reads as (U denotes the onsite interaction)

��[G] = U

∫ β

0
dτ

∑
r

[
|�(x)|2 + 1

4
ρ(x)2 − 1

4
S(x)2

]
,

(55)

where

�(x) = 〈ψ↓(x)ψ↑(x)〉 = 1

2
Fs(x,x),

�(x)∗ = 〈ψ∗
↑(x)ψ∗

↓(x)〉 = 1

2
F †

s (x,x),

(56)
ρ(x) =

∑
σ

〈ψ∗
σ (x)ψσ (x)〉 = Gch(x,x+),

Sν(x) =
∑
σ,σ ′

〈
ψ∗

σ (x)σ ν
σσ ′ψσ ′(x)

〉 = Gν
sp(x,x+)

are the (singlet) superconducting order parameter, and the
charge and spin densities, respectively. We use the nota-
tion x = (r,τ ) and x+ = (r,τ + 0+). Equation (55) is most
simply obtained by using ��[G] ≡ 〈Sint〉HF where Sint =
U

∫ β

0 dτ
∑

r ψ∗
↑ψ∗

↓ψ↓ψ↑ and 〈Sint〉HF is computed using
Wick’s theorem (Hartree-Fock approximation).

The 2PI vertex is given by the bare interaction [Eq. (53)]

U�,ch = U 00
+−+− = U/2,

U�,sp = Uνν
+−+− = −U/2 (ν 	= 0)

(57)

in the ph channel, and

U�,s = U 00
++−− = U,

U�,t = Uνν
++−− = 0 (ν 	= 0)

(58)

in the pp channel. To alleviate the notations, we now drop the
� index (i.e., U�,ch ≡ Uch, etc.).

As for the self-energy �̄ ≡ �̄� [Eq. (54)], we obtain

�̄s(x,x ′) = −δ(x − x ′)
Us

2
F̄s(x,x) (59)

and

�̄ch(x,x ′) = δ(x − x ′+)UchḠch(x,x+),

�̄ν
sp(x,x ′) = δ(x − x ′+)UspḠ

ν
sp(x,x+).

(60)

At half-filling, Ḡch(x,x+) = 1 and the Hartree-Fock self-
energy in the charge channel is given by �̄ch(x,x ′) = δ(x −
x ′+)Uch. Since μ = U/2 due to the ph symmetry of the
half-filled model, �̄ch cancels the chemical potential. In the
following, we include the charge self-energy by setting μ = 0.
In the attractive Hubbard model (U < 0), �̄ν

sp vanishes and we
recover the BCS theory with �(x) the order parameter and
Eq. (59) as the (mean-field) gap equation. In the repulsive
model, the anomalous self-energy �̄s vanishes, and Eq. (60) is
the gap equation for the magnetic order parameter Sν(x).

We now focus on the repulsive case. Assuming an antifer-
romagnetic state polarized along the z axis,

�̄ν
sp(x,x ′) = −δν,zδ(x − x ′+)m(−1)r, (61)
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which leads to the standard mean-field expressions of the
propagators Ḡch and Ḡsp (Appendix D). The antiferromagnetic
order parameter m satisfies the gap equation

m

U
= T

∑
ωn

∫
d2p

(2π )2

m

ω2
n + E2

p
, (62)

where Ep = (ξ 2
p + m2)1/2 and ξp = εp − μ = εp (ωn denotes

a fermionic Matsubara frequency). The momentum integration
is restricted to the first Brillouin zone of the reciprocal lattice.
m is nonzero below the (mean-field) transition temperature
T HF

c . In the limit U 
 t , Eq. (62) yields T HF
c � U/4.

The dispersion of the collective modes is obtained from the
poles of �̄(2)−1 after analytic continuation to real frequencies.
At zero temperature, this yields a (Goldstone) spin-wave mode
with (square) velocity

c2 =
〈

ε2

E3

〉〈 ε2
1

E3

〉
〈

1
E3

〉〈
1
E

〉 , (63)

which is the known RPA result (Appendix D) [64–67]. Here,
we use the notation ε = εp, ε1 = ∂px

ε, E = Ep, and 〈· · · 〉
denotes a momentum integration. In the large-U limit, we find
c = √

2J (J = 4t2/U ), which agrees with the result obtained
from the Heisenberg model in the spin-wave approximation
[68].

A nice feature of the Hartree-Fock RPA theory about
the antiferromagnetic state is that it captures some aspects
of the strong correlations in the large-U limit (as shown
above, it provides us with a good estimate of the spin-wave
mode velocity c ∼ J ). This is a direct consequence of the
fermionic self-energy (i.e., the gap m at the Hartree-Fock
level) included in the propagator in the broken-symmetry
phase. Nevertheless, the Hartree-Fock RPA theory fails in
two dimensions since it predicts long-range antiferromagnetic
order at finite temperature in contradiction with the Mermin-
Wagner theorem. It is also difficult to incorporate within
this approach the feedback of collective fluctuations on the
fermionic excitations. We shall see in the following that these
shortcomings are expected to be overcome by the 2PI-NPRG
approach.

The initial condition of the RG flow is different if we include
a fermionic regulator R

(F )
k . As previously pointed out, �̄�,γ

vanishes with the regulator (7). In this case, the RG flow starts
in the normal phase. At half-filling, the spin part �̄ν

k,sp of
the self-energy becomes nonzero in the course of the flow
thus signaling that the ground state is antiferromagnetic. The
conclusion that the NPRG captures some aspects of the strong
correlations in the large-U limit is however unchanged; the
NPRG will give a spin-wave mode velocity ck=0 of order J

(ck=0 will differ from
√

2J since fluctuations beyond spin-
wave theory are taken into account by the RG equation).

F. Goldstone’s theorem

The possibility to describe phases with spontaneously
broken continuous symmetries implies that we have to deal
with gapless Goldstone bosons. To see how this works,
let us again consider the antiferromagnetic phase of the

two-dimensional Hubbard model at half-filling. We introduce
the spin-spin correlation function

W
(2)ν1ν2
k,sp (x1,x2) = W

(2)ν1ν2
k,sp (x+

1 ,x1; x+
2 ,x2)

≡ W
(2)ν1ν2
k,+−+−(x+

1 ,x1; x+
2 ,x2), (64)

where ν1,ν2 = x,y,z, and assume the magnetic order to be
polarized along the z axis. In the transverse spin channel, there
are two independent nonzero correlation functions

W̄
(2)xx
k,sp (q,q) = W̄

(2)yy

k,sp (q,q), W̄
(2)xy

k,sp (q,q + Q), (65)

where Q = (Q,0) with Q = (π,π ). Since long-range order
takes place in the s-wave ph channel, we can take the cutoff
function

R
ν1ν2
k,sp (x1,x

′
1; x2,x

′
2) = δν1,ν2δ(x1 − x ′

1
+)δ(x2 − x ′

2
+)

×Rk,sp(x1 − x2). (66)

Spin-rotation invariance implies the Ward identity (see Ap-
pendix E)

W̄
(2)xx
k,sp (Q,Q) = W̄

(2)yy

k,sp (Q,Q) = 1

Rk,sp(Q)
. (67)

Only for k = 0 do we recover the standard form of the
Goldstone theorem

lim
q→Q

W̄
(2)xx
k=0,sp(q,q) = ∞ (68)

since Rk=0 vanishes. The presence of a gap in the Goldstone
modes at finite k is a consequence of defining the equilibrium
state from the minimum of �k[G] and not the true Legendre
transform (which amounts to solving the Dyson equation with
a nonzero external source; see Sec. II D). Again, we see that
Rk acts as an infrared regulator for the collective (bosonic)
fluctuations.

III. EXACT RG EQUATION

In this section, we derive the exact RG equations for the
2PI effective action �k[G] and the Luttinger-Ward functional
�k[G]. We also consider the one-particle and two-particle 2PI
vertices, which play a crucial role in the approximation scheme
proposed in Sec. IV, and the thermodynamic potential.

A. Luttinger-Ward functional

The derivation of the RG equation for the 2PI effective
action follows the standard approach in the 1PI formalism
[16–18]. From Eq. (8) we obtain a RG equation for the free
energy

∂kWk[J ] = 1

2Zk[J ]

∑
γ

Ġ(0)−1
k,γ

δZk[J ]

δJγ

− 1

4!Zk[J ]

∑
γ1,γ2

Ṙk,γ1γ2

δ2Zk[J ]

δJγ1δJγ2

, (69)

where the derivative is taken at fixed external source J and
the dot denotes a k derivative (e.g., Ṙk = ∂kRk). Equation (69)
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can be rewritten as

∂kWk[J ] = 1

2

∑
γ

Ġ(0)−1
k,γ W

(1)
k,γ [J ] − 1

4!

∑
γ1,γ2

Ṙk,γ1γ2

× (
W

(2)
k,γ1γ2

[J ] + W
(1)
k,γ1

[J ]W (1)
k,γ2

[J ]
)
. (70)

Considering now the 2PI effective action (13), we obtain

∂k�k[G] = −∂kWk[J ]|J − 1

8

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2 (71)

[we have used (9)], where the derivative is taken at fixed
propagator G. Using (69), we finally obtain

∂k�k[G] = −1

2
tr
(
Ġ(0)−1

k G
) + 1

3!
Tr

{
Ṙk

(
�

(2)
k + Rk

)−1}

− 1

12

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2 , (72)

where tr and Tr denote fermionic and bosonic traces, respec-
tively [59,69]. The first term in the right-hand side of (72) is
the one obtained in the 1PI formalism (with ∂kG(0)−1

k = ∂kR
(F )
k )

[70]. The second one has a similar structure but at the level of
collective fluctuations since it involves the bosonic propagator
W

(2)
k = (�(2)

k + Rk)−1.
Using (24) and the relation (16) between the 2PI effective

action and the Luttinger-Ward functional, we deduce

∂k�k[G] = − 1
2 tr

(
Ġ(0)−1

k G
) + ∂k�k[G] (73)

and

∂k�k[G] = 1

3!
Tr

{
Ṙk

(
�−1 + �

(2)
k + Rk

)−1}

− 1

12

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2 . (74)

Equation (74) is shown diagrammatically in Fig. 3 (the
diagrammatic representation of the propagators and vertices,
as well as the Bethe-Salpeter equations, are shown in Figs. 1

Π = +

Yk = Jk =

Φ
(4)
k =Φ

(3)
k =

G = W
(2)
k =

∂kRk =

I = Xk =

FIG. 1. Diagrammatic representation of propagators and vertices.

= +

= +

= + +

FIG. 2. Diagrammatic representation of the Bethe-Salpeter equa-
tions satisfied by W

(2)
k , Yk , and Jk [Eqs. (27), (29), and (80)]. (Signs

and symmetry factors are not shown.)

and 2). It is conveniently rewritten as

∂k�k[G] = 1

3!
∂̃kTr ln

(
�−1 + �

(2)
k + Rk

)

− 1

12

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2 , (75)

where we have introduced the operator ∂̃k = (∂kRk)∂Rk
acting

on the k dependence of Rk (but not on that of �
(2)
k ). This exact

RG equation leads to an infinite hierarchy of equations for the
2PI vertices �

(n)
k . In the following, we discuss the one- and

two-particle vertices.

B. One-particle 2PI vertex

Taking the functional derivative of Eq. (75), we obtain a
RG equation for the one-particle vertex (or self-energy) [71],

∂k�
(1)
k,γ1

= 1

3
∂̃k

∑
γ2

Gγ2�Yk;α1α2,α
′
2α

′
1
+ 1

3!
∂̃kTr

[
W

(2)
k �

(3)
k,γ1

]

(76)

(see Appendix F), where �Yk = Yk − Xk . Equation (76) is
shown diagrammatically in Fig. 3. In the RG equation of the
self-energy �̄k = −�̄

(1)
k , there is an additional term due to the

k dependence of the equilibrium propagator Ḡk ,

∂k�̄
(1)
k,γ = ∂k�

(1)
k,γ

∣∣
Ḡk

+1

2

∑
γ ′

�̄
(2)
k,γ γ ′∂kḠk,γ ′ . (77)

Both terms in the right-hand side of (76) describe a fermion
interacting with a collective (bosonic) fluctuation. The first one
is often considered within RPA-like theories; note, however,
that here it includes “vertex” corrections as the 2PI vertex �

(2)
k

implicit in �Yk is k dependent. The second one is a purely
bosonic term as it involves the correlation function W

(2)
k .

Equation (77) can be projected onto the various channels.
As an example, consider a U(1) and spin-rotation invariant
system; the only nonzero component is �̄

(1)
k,ch ≡ �̄

(1)0
k,+−. Ne-

glecting the three-particle 2PI vertex �̄
(3)
k , we find

∂k�̄
(1)
k,ch(x1,x

′
1)

= −1

6
∂̃k

∫
dx2dx ′

2{Ḡk,ch(x2,x
′
2)[�Ȳk,ch(x1,x2; x ′

2,x
′
1)

+ 3�Ȳk,sp(x1,x2; x ′
2,x

′
1)] − Ḡk,ch(x ′

2,x2)

× [�Ȳk,s(x1,x2; x ′
2,x

′
1) + 3�Ȳk,t(x1,x2; x ′

2,x
′
1)]}

−
∫

dx2dx ′
2�̄

(2)
k,ch(x1,x

′
1; x2,x

′
2)∂kḠk,ch(x ′

2,x2), (78)
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∂kΦ
(1)
k [G] = ∂̃k

∂kΦ
(2)
k [G] = ∂̃k

∂kΦk[G] =

+ + +

+ +

+ +

+

+

FIG. 3. Diagrammatic representation of the RG equations
∂k�k[G], ∂k�

(1)
k [G], and ∂k�

(2)
k [G]. The double wavy line stands for

�Yk . (Signs and symmetry factors are not shown.)

where �Ȳk,ch = �Ȳ00
k,ph, �Ȳk,sp = �Ȳνν

k,ph, �Ȳk,s = �Ȳ00
k,pp,

and �Ȳk,t = �Ȳνν
k,pp (ν = x,y,z). Equation (78) describes the

interaction of a fermion with collective ph and pp fluctuations.

C. Two-particle 2PI vertex

The second-order functional derivative of Eq. (75) gives

∂k�
(2)
k,γ1γ2

= 1

3
∂̃k

[
�Yk;α1α2,α

′
2α

′
1
− (α2 ↔ α′

2)
]

− 1

3
∂̃k

∑
γ3,γ4

Gγ3Gγ4

[
Yk;α1α3,α2α4Yk;α′

4α
′
2,α

′
3α

′
1
− (α2 ↔ α′

2)
]

+ 1

3
∂̃k

∑
γ3

[
Gγ3

(
J T

k �
(3)
k,γ1

Jk

)
α2α3,α

′
3α

′
2
+ (γ1 ↔ γ2)

]

+ 1

3!
∂̃kTr

[
W

(2)
k �

(4)
k,γ1γ2

− �
(3)
k,γ1

W
(2)
k �

(3)
k,γ2

W
(2)
k

]
(79)

(see Appendix F and Fig. 3), where

Jk = (I + �Xk)−1 = I − �XkJk,

J T
k = (I + Xk�)−1 = I − Xk�J T

k .
(80)

As in the case of ∂k�
(1)
k , there are purely “bosonic” terms (in-

volving W
(2)
k ), while other terms clearly exhibit the fermionic

nature of the fundamental degrees of freedom. The first term in
the right-hand side of (79) has a simple physical interpretation:
it expresses the fact that the 1PI vertex in a given channel
“feeds” the 2PI vertex in other channels. For example, the 1PI
vertex �Yνν ′

k,sp in the spin ph channel couples to the 2PI vertex

�
(2)νν ′
k,pp in the pp channel. This coupling is responsible, in the

Hubbard model near half-filling, of superconductivity induced
by spin fluctuations [72]. The terms GGYkYk are the one-loop

terms (without the two-particle-reducible contribution) well
known from the 1PI RG approach to fermion systems [15].
They also contribute to the coupling between channels. The
last term in the right-hand side of (79) describes interactions
between collective (bosonic) fluctuations. The two-particle 2PI
vertex in the equilibrium state satisfies the equation

∂k�̄
(2)
k,γ1γ2

= ∂k�
(2)
k,γ1γ2

∣∣
Ḡk

+1

2

∑
γ3

�̄
(3)
k,γ1γ2γ3

∂kḠk,γ3 . (81)

The flow equations (76), (77) and (79), (81) involve the 1PI
vertex Ȳk and the pair propagator W̄

(2)
k . One does not, however,

consider RG equations for these quantities. Instead, one deals
with the 2PI vertex �̄

(2)
k , a quantity which is expected to be

much less singular (we further discuss this point in Sec. IV B).
The price to pay is that, in addition to the RG equations,
we have to solve the Bethe-Salpeter equations (48) and (49)
relating Ȳk and W̄

(2)
k to �̄

(2)
k .

D. Thermodynamic potential

The thermodynamic potential

�k = 1

β
�k[Ḡk] (82)

satisfies the RG equation

∂k�k = 1

β
∂k�k

∣∣∣∣
Ḡk

+ 1

2β

∑
γ

�̄
(1)
k,γ ∂kḠk,γ

= − 1

2β
tr
(
Ġ(0)−1

k Ḡk

) + 1

β
∂k�k

∣∣∣∣
Ḡk

. (83)

The last result is derived using �̄
(1)
k,γ = 0 [Eq. (50)] and Eq. (73).

Thus, we obtain

∂k�k = − 1

2β
tr
(
Ġ(0)−1

k Ḡk

) + 1

3!
Tr

[
ṘkW̄

(2)
k

]

− 1

12

∑
γ1,γ2

Ṙk,γ1γ2 Ḡk,γ1 Ḡk,γ2 . (84)

IV. TRUNCATION OF THE LUTTINGER-WARD
FUNCTIONAL

Standard approximations in the 2PI effective action
formalism are based on truncations of the Luttinger-Ward
functional where only a subset of diagrams is considered. In
this section, we show that starting from a truncated functional
�k[G], the RG equation systematically generates higher-order
diagrams. We then propose an approximation scheme for
solving the flow equations.

A. Truncation and generation of higher-order diagrams

Let us start with the lowest-order O(G2) contribution to the
Luttinger-Ward functional (Fig. 4)

�k[G] = 1

8

∑
γ1,γ2

(U + Rk)γ1γ2Gγ1Gγ2 − 1

8

∑
γ1,γ2

Rk,γ1γ2Gγ1Gγ2

= 1

8

∑
γ1,γ2

Uγ1γ2Gγ1Gγ2 , (85)

035113-9



N. DUPUIS PHYSICAL REVIEW B 89, 035113 (2014)

∂kΦk[G] = 1
6

−1
6 +1

6

− 1
12 γ1,γ2 ∂kRk,γ1γ2Gγ1Gγ2

+ · · ·

Φk[G] = 1
8 −1

8 γ1,γ2 Rk,γ1γ2Gγ1Gγ2

FIG. 4. Lowest-order Luttinger-Ward functional �k[G] [Eq. (85)]
and the corresponding RG equation ∂k�k[G] [Eq. (86)]. Pairs of solid
lines stand for � and the black dot for U + Rk .

which is manifestly k independent: ∂k�k[G] = 0. ∂k�k[G] can
also be computed from the exact RG equation (75). Since
�

(2)
k = U , we find

∂k�k[G] = 1

3!
Tr[Ṙk(�−1 + U + Rk)−1]

− 1

12

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2 . (86)

To O(G2), this gives
1

3!
Tr(Ṙk�) − 1

12

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2

= 1

24

∑
γ1,γ2

Ṙk,γ1γ2�γ2γ1 − 1

12

∑
γ1,γ2

Ṙk,γ1γ2Gγ1Gγ2 , (87)

which vanishes in agreement with the result ∂k�k[G] = 0.
However, Eq. (86) generates higher-order terms which are not
included in the original choice of �k[G] (Fig. 4). The O(G4)
term gives

− 1

3!
Tr[Ṙk�(U + Rk)�]. (88)

Integrating over k with R� = −U and Rk=0 = 0, we obtain

− 1

12
Tr(U�U�) = − 1

48

∑
γ1...γ4

Uα3α4,α1α2Uα′
1α

′
2,α

′
3α

′
4

×Gγ1Gγ2Gγ3Gγ4 , (89)

which is precisely the O(G4) contribution to the Luttinger-
Ward functional �k=0[G].

Let us now consider the Luttinger-Ward functional with the
O(G4) contribution included (Fig. 5):

�k[G] = 1

8

∑
γ1,γ2

Uγ1γ2Gγ1Gγ2 − 1

48

∑
γ1···γ4

(U + Rk)α3α4,α1α2

× (U + Rk)α′
1α

′
2,α

′
3α

′
4
Gγ1Gγ2Gγ3Gγ4 , (90)

Φk[G] = 1
8

−1
8 γ1,γ2 Rk,γ1γ2Gγ1Gγ2

− 1
48

FIG. 5. Luttinger-Ward functional �k[G] to O(G4).

and use again the RG equation to generate higher-order
diagrams. Equation (90) implies

�
(2)
k,γ1γ2

= Uγ1γ2 − 1

2

∑
γ3,γ4

[
(U + Rk)α3α4,α1α2

×(U + Rk)α′
1α

′
2,α

′
3α

′
4
− (α1 ↔ α′

1)
]
Gγ3Gγ4 . (91)

It is straightforward to show that the exact RG equation (75)
implies ∂k�k[G] = 0 to O(G2). To O(G4), we obtain

− 1

3!
Tr[Ṙk�(U + Rk)�]

= − 1

24

∑
γ1...γ4

Ṙk,α3α4,α1α2 (U + Rk)α′
1α

′
2,α

′
3α

′
4
Gγ1Gγ2Gγ3Gγ4 ,

(92)

in agreement with the original choice of �k[G] [Eq. (90)]. To
next order O(G6), we find

1

3!
Tr[Ṙk�(U +Rk)�(U +Rk)�]− 1

3!
Tr

[
Ṙk�

(
�

(2)
k − U

)
�

]
.

(93)

Integrating between k = � and k = 0 we obtain

− 1

18 × 23

∑
γ1...γ6

Uα′
5α

′
6,α1α2Uα′

1α
′
2,α3α4Uα′

3α
′
4,α5α6

×Gγ1Gγ2Gγ3Gγ4Gγ5Gγ6 (94)

for the first term in (93), and

− 1

18 × 22

∑
γ1...γ6

Uα′
5α

′
6,α1α2Uα′

1α
′
2,α3α4Uα′

3α
′
4,α5α6

×Gγ1Gγ2Gγ3Gγ4Gγ5Gγ6 (95)

for the second one. Summing (94) and (95), we recover the
O(G6) contribution to the Luttinger-Ward functional �k=0[G].

Thus, we see that if �k[G] is truncated to a given order,
then the exact RG equation ∂k�k[G] is correct to that order
but generates terms to all (even) orders in G. The previous
calculations suggest that if we start from �k[G] to O(G2n),
then �k=0[G] obtained from ∂k�k[G] is exact to O(G2n+2).

B. An approximation scheme to solve the RG equations

We propose to approximately solve the RG equations by
truncating the Luttinger-Ward functional. However, rather than
expanding �k[G] about G = 0 as in the preceding section,
we expand about the minimum Ḡk of the 2PI effective action
�k[G]. Such a truncation corresponds to a vertex expansion.

The minimum of the effective action �k[G] determines the
equilibrium state of the system (Sec. II D). If one of the global
symmetries of the microscopic action is spontaneously broken,
then the minimum is degenerate. Assuming that Ḡk,sp and F̄k,t

are linearly polarized, a particular minimum is defined by the
propagators

Ḡk,ch(x,y), Ḡk,sp(x,y)n,

F̄k,s(x,y)e2iθ = [F̄ †
k,s(y,x)e−2iθ ]∗, (96)

F̄k,t(x,y)e2iθ n′ = [F̄ †
k,t(y,x)e−2iθ n′∗]∗,
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where θ is an arbitrary phase. n and n′ are arbitrary real
and complex unit vectors, respectively (n2 = |n′|2 = 1). In
a normal (nonsuperconducting) phase, F̄k,s and F̄k,t vanish; if
the system is paramagnetic, Ḡk,sp also vanishes.

The expansion of �k[G] about the (possibly degenerate)
minimum of �k[G] must respect the global symmetries of
the microscopic action (1), i.e., the translation, SU(2) spin-
rotation, and U(1) invariances. We must therefore expand
�k[G] in terms of the corresponding invariants [73]. To lowest

(quadratic) order, there are four such invariants [62]

Gch(x1,x
′
1)Gch(x2,x

′
2), Gsp(x1,x

′
1) · Gsp(x2,x

′
2),

F †
s (x1,x

′
1)Fs(x2,x

′
2), F†

t (x1,x
′
1) · Ft(x2,x

′
2) (97)

(see also the discussion in Appendix G) and the most general
expression of the Luttinger-Ward functional is

�k[G] = �̄k + 1

2

∫
dx1dx ′

1dx2dx ′
2{uk,ch(x1,x

′
1; x2,x

′
2)[Gch(x ′

1,x1)Gch(x ′
2,x2) − Ḡk,ch(x ′

1,x1)Ḡk,ch(x ′
2,x2)]

+uk,sp(x1,x
′
1; x2,x

′
2)[Gsp(x ′

1,x1) · Gsp(x ′
2,x2) − Ḡk,sp(x ′

1,x1)Ḡk,sp(x ′
2,x2)]

+uk,s(x1,x
′
1; x2,x

′
2)[F †

s (x1,x
′
1)Fs(x2,x

′
2) − F̄

†
k,s(x1,x

′
1)F̄k,s(x2,x

′
2)]

+uk,t(x1,x
′
1; x2,x

′
2)[F†

t (x1,x
′
1) · Ft(x2,x

′
2) − F̄

†
k,t(x1,x

′
1)F̄k,t(x2,x

′
2)]}, (98)

where �̄k denotes the value of �k[G] at the minimum of �k[G].
Note that even when global symmetries are spontaneously
broken, the symmetry properties of the Luttinger-Ward func-
tional imply that the 2PI vertex uk is parametrized only
by four independent functions (uk,ch, etc.). In the quadratic
approximation, �k[G] is thus entirely determined by Ḡk,ch,
Ḡk,sp, F̄k,s, F̄k,t, and uk,ch, uk,sp, uk,s, uk,t.

The 2PI vertex uk = �̄
(2)
k is obtained from the RG equations

(79) and (81) with �
(3)
k = �

(4)
k = 0, as well as the Bethe-

Salpeter equation relating Ȳk to uk . In many cases, it is possible
to ignore part of the momentum-frequency dependence of uk

because that of the 1PI vertex Ȳk mainly comes from the
pair propagator �̄k [74]. Introducing the total and relative
momentum frequency of the pairs [Eq. (35)], we consider the
2PI vertex uk(q1,l1; q2,l2) in Fourier space and assume that
we can neglect its dependence on the frequency component
of l1 and l2. Translation invariance implies uk(q1,l1; q2,l2) =
δq1,q2uk(q1; l1,l2). We next expand the 2PI vertex

u
ν1ν2
k,a (q; l1,l2) =

∑
n1,n2

u
ν1n1,ν2n2
k,a (q)fn1 (l1)fn2 (l2) (99)

(for a similar expansion of the 1PI vertices, see Ref. [12]),
where a = pp,ph and the fn’s are form factors satisfying

1

N

∑
l

fn(l)fm(l) = δn,m. (100)

For a square lattice, fn(l) = 1 for s wave, fn(l) = cos lx −
cos ly for dx2−y2 wave, etc. In practice, only a few channels
(corresponding to strong fluctuations) are expected to be
important. The Bethe-Salpeter equations (48) and (49) become

Yν1n1,ν2n2

k,c1c
′
1c2c

′
2
(q1,q2)

= X ν1n1,ν2n2

k,c1c
′
1c2c

′
2
(q1,q2) − 1

4

∑
c3 ...c′4
ν3 ,ν4

∑
q3 ,q4
n3 ,n4

X ν1n1,ν3n3

k,c1c
′
1c3c

′
3
(q1,q3)

×�
ν3n3,ν4n4

c3c
′
3c4c

′
4

(q3,q4)Yν4n4,ν2n2

k,c4c
′
4c2c

′
2
(q4,q2) (101)

and

W
(2)ν1n1,ν2n2

k,c1c
′
1c2c

′
2

(q1,q2)

= �
ν1n1,ν2n2

c1c
′
1c2c

′
2

(q1,q2) − 1

4

∑
c3 ...c′4
ν3 ,ν4

∑
q3 ,q4
n3 ,n4

�
ν1n1,ν3n3

c1c
′
1c3c

′
3

(q1,q3)

×X ν3n3,ν4n4

k,c3c
′
3c4c

′
4
(q3,q4)W (2)ν4n4,ν2n2

k,c4c
′
4c2c

′
2

(q4,q2). (102)

We have introduced

�
ν1n1,ν2n2

c1c
′
1c2c

′
2

(q1,q2) = 1

βN

∑
l1,l2

fn1 (l1)fn2 (l2)

×�
ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2), (103)

and X ν1n1,ν2n2

k,c1c
′
1c2c

′
2

and Yν1n1,ν2n2

k,c1c
′
1c2c

′
2

are defined as u
ν1n1,ν2n2

k,c1c
′
1c2c

′
2
. If the

global U(1) symmetry is not broken, Eqs. (101) and (102)
can be solved independently in the pp and ph channels. A
further approximation consists in ignoring the momentum-
frequency dependence of u

ν1n1,ν2n2
k,a (q). The 2PI vertex is then

parametrized by a coupling constant u
ν1n1,ν2n2
k,a for each pair

of fluctuation channels (a,ν1,n1) and (a,ν2,n2). The Bethe-
Salpeter equations (101) and (102) can then easily be solved,
in particular when only a small number of channels is taken
into account. In this approximation, contrary to the 1PI RG
approach, there is no need to discretize the momentum space
into patches to keep track of the momentum dependence of the
two-particle 1PI vertex Ȳk when solving numerically the flow
equations.

The self-energy �̄k,γ = −�̄
(1)
k,γ can be directly deduced

from (98):

�̄ν
k,ph(x1,x

′
1) =

∫
dx2dx ′

2u
νν
k,ph(x1,x

′
1; x2,x

′
2)

×Ḡν
k(x ′

2,x2),

�̄ν
k,pp(x1,x

′
1) = −1

2

∫
dx2dx ′

2u
νν
k,pp(x1,x

′
1; x2,x

′
2)

× F̄ ν
k (x2,x

′
2), (104)
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where u00
k,ph = uk,ch, uνν

k,ph = uk,sp, u00
k,pp = uk,s, and uνν

k,pp =
uk,t (ν 	= 0). Equations (104) are similar to the Hartree-
Fock approximation but with a (k-dependent) momentum-
frequency-dependent interaction uk . When the minimum Ḡk

of �k[G] is degenerate, the solution of (104) is not unique.
In that case, it is sufficient to choose a particular minimum,
compute the corresponding self-energy �̄k , and deduce Ḡk,ch,
Ḡk,sp, F̄k,s, F̄k,t using (96).

The discussion of Sec. IV A suggests that it may be
advantageous to determine the k-dependent self-energy �̄k =
−�̄

(1)
k from its RG equation (77)

∂k�̄k,γ = −∂k�
(1)
k,γ

∣∣
Ḡk

−1

2

∑
γ ′

uk,γ γ ′∂kḠk,γ ′ , (105)

rather than directly from the Luttinger-Ward functional (98).
Given the RG equation of the vertex �

(1)
k [Eq. (76)], the

interaction of fermions with collective fluctuations is made
explicit in (105). In Eq. (104), this interaction is hidden in
the momentum-frequency dependence of the 2PI vertex uk .
Since such a dependence is difficult to take into account in
the numerical solution of the flow equations [75], Eq. (104)
is of little use in practice. By contrast, Eq. (105) always
provides a nontrivial momentum-frequency dependence of the
self-energy �̄k even when the 2PI vertex uk is approximated
by a set of coupling constants {uν1n1,ν2n2

k,a } as discussed above.
We can ask whether the quadratic ansatz (98) with

momentum-frequency-independent 2PI vertices u
ν1n1,ν2n2
k,a is

justified in the strong-coupling limit. Since such an ansatz
encompasses the Hartree-Fock RPA theory, it captures at least
some of the strong-coupling effects in the large-U Hubbard
model (see Sec. II E) but there is no guarantee that it is
always sufficient. There is no conceptual difficulty in consid-
ering momentum-frequency-dependent vertices u

ν1n1,ν2n2
k,a (q),

but this of course will make the numerical treatment of the
flow equations slightly more difficult. Including higher-order
2PI vertices is also possible. For instance, in a system with
strong antiferromagnetic fluctuations, it might be necessary to
include a quartic term of the form

vk,sp

8

∫
dx[Gsp(x,x+)2 − Ḡk,sp(x,x+)2]2 (106)

in the Luttinger-Ward functional. Whether such improvements
are necessary or not is an open question.

A last comment regards the fulfillment of the Mermin-
Wagner theorem. If the equilibrium state spontaneously breaks
a continuous symmetry, collective Goldstone modes show up
in the two-particle vertex Ȳk and the pair propagator W̄

(2)
k . In

the 2PI-NPRG approach, these modes are regularized in the
infrared by the cutoff function Rk , and they appear as poles of
the form Ak(c2

kq2 + ω2
ν) + Rk(q) (Sec. II F). As a result, the

self-energy equation ∂k�̄k(p,iωn) receives contributions of the
form

∂̃kT
∑
ων

∫
ddq

(2π )d
Ḡk(p + q,iωn + iων)

Ak

(
c2
kq2 + ω2

ν

) + Rk(q)
, (107)

where ωn and ων are fermionic and bosonic Matsubara
frequencies, respectively. Here, we assume that Rk(q) depends
only on q (which is likely to be the case in practice). At finite

temperature and in two dimensions, the momentum integral for
ων = 0 in (107) is convergent only if Rk(q) is nonzero. In this
case, when k → 0 and Rk(q) → 0, the broken symmetry must
necessarily be restored, in agreement with the Mermin-Wagner
theorem [76].

C. Cutoff function Rk

In this section, we propose a simple expression for the
cutoff function assuming the lattice to be hypercubic. Rk

can be decomposed onto the various fluctuation channels
as the 2PI vertex Xk (Sec. IV B). It is therefore defined by
its components R

ν1n1,ν2n2

k,c1c
′
1c2c

′
2
(q1; q2), where q denotes the total

momentum frequency of the pair and the indices n1,n2 refer
to the form factors fn. Since the regulator term (5) must be
translation and spin-rotation invariant, we must have ν1 = ν2

and q1 = q2. We choose a cutoff function which is diagonal in
the index n:

R
ν1n1,ν2n2

k,c1c
′
1c2c

′
2
(q1,q2) = δq1,q2δν1,ν2δn1,n2R

ν1n1

k,c1c
′
1c2c

′
2
(q1). (108)

Furthermore, since �Sk must satisfy the global U(1) invari-
ance, we can restrict ourselves to

Rνn
k,pp(q) = Rνn

k,++−−(q), Rνn
k,ph(q) = Rνn

k,+−+−(q). (109)

Let us consider a particular channel (a,ν,n) and denote
by uνn

k,a(q) ≡ u
νn,νn
k,a (q,q) the corresponding two-particle 2PI

vertex obtained from the quadratic ansatz (98). We choose a
cutoff function of the form

Rνn
k,a(q) = uνn

k,a(q)fk(γq−Q), (110)

where

γq = 2d − 2
d∑

i=1

cos qi. (111)

A possible choice for the function fk is

fk(γ ) = −1 + (�γ − k2 + γ )

[
1 + γ − k2

�γ
(k2 − γ )

]
.

(112)

Here, Q denotes the momentum where fluctuations in the
considered channel are most important [e.g., Q = (π,π ) for
the (s-wave) spin ph channel in the two-dimensional Hubbard
model at half-filling], and �γ is an adjustable parameter.
The maximum (i.e., initial) value of k is � = (γmax + �γ )1/2

with γmax = 4d. f�(γ ) = −1 and fk=0(γ ) = 0, which implies
R� = −U and Rk=0 = 0 as it should.

Since Rk always enters the propagators in the combination
Xk = Rk + �

(2)
k , what matters is

Rνn
k,a(q) + uνn

k,a(q) = uνn
k,a(q)[1 + fk(γq−Q)]. (113)

Figure 6 clearly shows that Rk cancels the fermion-fermion
interaction for γq−Q < k2 − �γ . In other words, Rk tends to
suppress low-energy bosonic fluctuations (with a total pair
momentum such that γq−Q < k2) while leaving high-energy
fluctuations unchanged.
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FIG. 6. 1 + fk(γ ) vs γ for a typical value of k (�γ < k2 < γmax)
[Eq. (112)].

V. SUMMARY AND CONCLUSION

We have discussed a NPRG approach in the 2PI effective
action formalism which differs in many respects from the
more standard 1PI formalism [15]. The scale-dependent 2PI
effective action �k[G] and Luttinger-Ward functional �k[G]
are constructed by introducing in the action both a (quadratic)
fermionic and a (quartic) bosonic regulator. The exact RG
equation satisfied by �k[G] is determined by the bosonic
cutoff function Rk (the fermionic cutoff function R

(F )
k playing

only a secondary role) and appears as a bosonic analog of
the RG equation satisfied by the 1PI effective action in the
1PI formalism [16–18,70]. In this respect, the 2PI-NPRG
is reminiscent of the partial bosonization approach where
bosonic fields are introduced at a very early stage via a
Hubbard-Stratonovich transformation of the interaction term
in the action [26–29,31–33]. Both approaches emphasize
the importance of collective (bosonic) fluctuations and the
necessity to control them.

The control of the bosonic fluctuations and the absence of
divergence of two-particle vertices and correlation functions
for k > 0 allows us to describe phases with spontaneously
broken symmetries. In particular, we find that the bosonic
regulator introduces a mass in the Goldstone mode propagator,
which vanishes only for k → 0. The initial condition of the
flow is the Hartree-Fock RPA theory (possibly including
spontaneously broken symmetries) where the one-particle
propagator includes the fermionic regulator. In the absence of
the latter, we recover the standard Hartree-Fock RPA theory.
We have discussed in detail the initial condition of the flow for
the two-dimensional half-filled Hubbard model in the large-U
limit and shown (in the absence of the fermionic regulator)
that it reproduces the spin-wave mode spectrum obtained
from the Heisenberg model (in the spin-wave approximation)
with exchange coupling constant J = 4t2/U [64–67]. This
indicates that the 2PI-NPRG captures, already at the level
of the initial condition of the flow, some aspects of the
strong-coupling limit of the Hubbard model.

In the 2PI-NPRG approach, the RG equations involve not
only the 2PI vertices, but also the two-particle 1PI vertex Ȳk

and the pair propagator W̄
(2)
k in the equilibrium state. Thus, it is

necessary, in addition to the RG equations, to solve the Bethe-
Salpeter equations relating Ȳk and W̄

(2)
k to �̄

(2)
k . On the other

hand, the 2PI vertices are much less singular than their 1PI
counterparts [53]. We therefore expect simple approximations,

where the 2PI vertices �̄
(n)
k (n � 2) are parametrized by a

few coupling constants, to be reliable. (As far as possible,
one would like to preserve the full momentum-frequency
dependence of the self-energy �̄k = −�̄

(1)
k .) This reduces the

functional flow equations for the �̄
(n)
k ’s (n � 2) to a finite

number of equations for coupling constants, and also simplifies
the solution of the Bethe-Salpeter equations.

In Sec. IV B, we have proposed an approximation scheme
to solve the RG equations where the Luttinger-Ward functional
�k[G] is expanded to quadratic order about the minimum Ḡk

of the 2PI effective action �k[G] while satisfying the global
symmetries of the action. If we further approximate the two-
particle 2PI vertex by a small number of coupling constants,
we end up with RG equations which can be solved at modest
numerical cost. Work in that direction will be reported in a
future publication.

Among various possible applications of the 2PI-NPRG, we
would like to mention systems with strong collective fluc-
tuations, a situation where the weak-coupling 1PI fermionic
RG becomes uncontrolled. In particular, the RG equation
satisfied by the self-energy (which makes the coupling between
fermions and collective fluctuations apparent) should allow
us to better understand the behavior of a fermion system in
the vicinity of a quantum phase transition (e.g., the transition
between an antiferromagnet and a metal).

In a recent paper, Kemler and Braun have discussed a
RG approach in the 2PI formalism in the context of density
functional theory (DFT) [54]. In their approach, the external
source Jσ (r,τ ) couples to the density field ψ∗

σ (r,τ )ψσ (r,τ )
and the 2PI effective action �k[ρ] is a functional of the
classical variable ρσ (r,τ ) = 〈ψ∗

σ (r,τ )ψσ (r,τ )〉. While less
general than the effective action �k[G] that we have discussed,
the functional �k[ρ] allows us to make a direct connection with
DFT and might provide us with a powerful tool to compute
the Hohenberg-Kohn functional from a microscopic model.

The 2PI-NPRG approach can also be used to derive a
functional �k[n] of the Wigner distribution function n ≡
{npσ (r,τ )} [77]. In Ref. [78], it was shown that this functional
allows us to make the connection with Fermi-liquid theory and
derive the quantum Boltzmann equation satisfied by n.
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APPENDIX A: BOSONIC MATRIX FORMALISM

Because of the anticommutation relations satisfied by the
Grassmann variables ψα , the one-particle propagator Gγ and
the external source Jγ are antisymmetric under the exchange
α ↔ α′ (with γ = {α,α′}). We thus define the “bosonic” unit
matrix as

Iγ1γ2 = δJγ1

δJγ2

= δα1,α2δα′
1,α

′
2
− δα1,α

′
2
δα′

1,α2 . (A1)

For any bosonic matrix Aγ1γ2 which is antisymmetric under
the exchange α1 ↔ α′

1 or α2 ↔ α′
2, we define the trace and the
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inverse matrix by

TrA = 1

2

∑
γ

Aγγ , AA−1 = A−1A = I. (A2)

The product of two matrices A and B is defined by

(AB)γ1γ2 = 1

2

∑
γ3

Aγ1γ3Bγ3γ2 . (A3)

The antisymmetry under the exchange α ↔ α′ also implies
that the chain rule for derivation is defined with an additional
factor 1

2 , e.g.,

δW [J ]

δGγ

= 1

2

∑
γ ′

δW [J ]

δJγ ′

δJγ ′

δGγ

. (A4)

The equation of motion (19) follows from Eq. (A4).

APPENDIX B: FOURIER TRANSFORMS

In this Appendix, we summarize the definitions of the
Fourier transforms. To alleviate the notations, we drop the
k index in Appendices B and C.

1. Fields

The Fourier transformed field is defined by

ψcσ (x) = 1√
βN

∑
p

e−icpxψcσ (p),

ψcσ (p) = 1√
βN

∫
dx eicpxψcσ (x),

(B1)

where p = (p,iωn) and px = p · r − ωnτ .

2. Propagators

The Fourier transformed propagators are defined by

Gν
cc′ (x,x ′) = 1

βN

∑
p,p′

e−i(cpx+c′p′x ′)Gν
cc′ (p,p′), Gν

cc′ (p,p′) = 1

βN

∫
dx dx ′ ei(cpx+c′p′x ′)Gν

cc′ (x,x ′), (B2)

�
ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2) = 1

(βN )2

∑
p1...p

′
2

e−i(c1p1x1+c′
1p

′
1x

′
1+c2p2x2+c′

2p
′
2x

′
2)�

ν1ν2

c1c
′
1c2c

′
2
(p1,p

′
1; p2,p

′
2),

�
ν1ν2

c1c
′
1c2c

′
2
(p1,p

′
1; p2,p

′
2) = 1

(βN )2

∫
dx1dx ′

1dx2dx ′
2 ei(c1p1x1+c′

1p
′
1x

′
1+c2p2x2+c′

2p
′
2x

′
2)�

ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2)

(B3)

(and similarly for W (2)).

3. Vertices

The Fourier transformed vertices are defined by

Y
ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2) = 1

(βN )3

∑
p1...p

′
2

ei(c1p1x1+c′
1p

′
1x

′
1+c2p2x2+c′

2p
′
2x

′
2)Y

ν1ν2

c1c
′
1c2c

′
2
(p1,p

′
1; p2,p

′
2),

Y
ν1ν2

c1c
′
1c2c

′
2
(p1,p

′
1; p2,p

′
2) = 1

βN

∫
dx1dx ′

1dx2dx ′
2 e−i(c1p1x1+c′

1p
′
1x

′
1+c2p2x2+c′

2p
′
2x

′
2)Y

ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2)

(B4)

(and similarly for X and �(2)).

APPENDIX C: PROPAGATORS, VERTICES, AND
BETHE-SALPETER EQUATIONS

In this Appendix, we review basic properties of the prop-
agators and vertices and derive the Bethe-Salpeter equations
(48) and (49).

1. Propagators

The pair propagator W
(2)
k satisfies

W
(2)
c1c

′
1c2c

′
2
(X1,X

′
1; X2,X

′
2)

= 1

4

∑
ν1,ν2

(
τ

ν1

c1c
′
1

)
σ1σ

′
1

(
τ

ν2

c2c
′
2

)
σ2σ

′
2
W

(2)ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2),

W
(2)ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2)

=
∑

σ1...σ
′
2

(
τ

ν1†
c1c

′
1

)
σ ′

1σ1

(
τ

ν2†
c2c

′
2

)
σ ′

2σ2
W

(2)
c1c

′
1c2c

′
2
(X1,X

′
1; X2,X

′
2).

(C1)

In Fourier space, it is convenient to introduce the total and
relative momentum frequency of the pair

W
(2)ν1ν2

c1c
′
1c2c

′
2
(p1,p

′
1; p2,p

′
2) = W

(2)ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2), (C2)

where

q1 = p′
1 + c1c

′
1p1, l1 = 1

2 (p′
1 − c1c

′
1p1), and

q2 = p2 + c2c
′
2p

′
2, l2 = 1

2 (p2 − c2c
′
2p

′
2) (C3)

(similar expressions hold for �).
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2. Vertices

The two-particle 2PI vertex satisfies

�
(2)
c1c

′
1c2c

′
2
(X1,X

′
1; X2,X

′
2)

=
∑
ν1,ν2

(
τ

ν1†
c1c

′
1

)
σ ′

1σ1

(
τ

ν2†
c2c

′
2

)
σ ′

2σ2
�

(2)ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2),

�
(2)ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2)

= 1

4

∑
σ1...σ

′
2

(
τ

ν1

c1c
′
1

)
σ1σ

′
1

(
τ

ν2

c2c
′
2

)
σ2σ

′
2
�

(2)
c1c

′
1c2c

′
2
(X1,X

′
1; X2,X

′
2),

(C4)

and

�
(2)ν1ν2

c1c
′
1c2c

′
2
(p1,p

′
1; p2,p

′
2) = �

(2)ν1ν2

c1c
′
1c2c

′
2
(q1,l1; q2,l2), (C5)

where

q1 = p1 + c1c
′
1p

′
1, l1 = 1

2 (p1 − c1c
′
1p

′
1), and

q2 = p′
2 + c2c

′
2p2, l2 = 1

2 (p′
2 − c2c

′
2p2) (C6)

(similar expressions hold for X and Y). Note that (C6) slightly
differs from (C3).

3. Bethe-Salpeter equations

The Bethe-Salpeter equation Y = X − X�Y reads as

Yc1c
′
1c2c

′
2
(X1,X

′
1; X2,X

′
2)

= Xc1c
′
1c2c

′
2
(X1,X

′
1; X2,X

′
2)

− 1

4

∑
c3...c

′
4

∫
dX3dX′

3dX4dX′
4 Xc1c

′
1c3c

′
3
(X1,X

′
1; X3,X

′
3)

×�c3c
′
3c4c

′
4
(X3,X

′
3; X4,X

′
4)Yc4c

′
4c2c

′
2
(X4,X

′
4; X2,X

′
2).

(C7)

Using (C4), we obtain

Yν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2)

= X ν1ν2

c1c
′
1c2c

′
2
(x1,x

′
1; x2,x

′
2)

− 1

4

∑
c3 ...c′4
ν3 ,ν4

∫
dx3dx ′

3dx4dx ′
4 X

ν1ν3

c1c
′
1c3c

′
3
(x1,x

′
1; x3,x

′
3)

×�
ν3ν4

c3c
′
3c4c

′
4
(x3,x

′
3; x4,x

′
4)Yν4ν2

c4c
′
4c2c

′
2
(x4,x

′
4; x2,x

′
2). (C8)

In Fourier space, introducing the total and relative momentum
frequency of the pair [Eqs. (C3) and (C6)], we then obtain
(48). Equation (49) is derived in a similar way.

APPENDIX D: INITIAL CONDITION OF THE RG FLOW
IN THE HUBBARD MODEL

In this Appendix, we discuss in more detail the initial
condition of the RG flow for the two-dimensional Hubbard

model at half-filling. From Eq. (61), we deduce

�̄z
sp(p,p′) = −δp′,p+Qm (D1)

and

Ḡch(p,p′) = −δp,p′
2(iωn + εp)

ω2
n + E2

p
≡ δp,p′Ḡch(p),

Ḡsp(p,p′) = δp+Q,p′
2m

ω2
n + E2

p
≡ δp+Q,p′Ḡsp(p),

(D2)

where

εp = −2t(cos px + cos py) (D3)

(t denotes the nearest-neighbor hopping amplitude), Ep =
(ε2

p + m2)1/2, Q = (Q,0), and Q = (π,π ). The gap equation
(60) then leads to (62).

Since the 2PI vertex is momentum and frequency inde-
pendent for k = �, the Bethe-Salpeter equation for the pair
propagator W̄ (2) ≡ �̄(2)−1 is exactly solvable. Focusing on the
transverse spin channel, we obtain

W̄ (2)xx
sp (q) = 1

D̄(q)

{
�̄xx

sp (q)
[
1 + Usp�̄

xx
sp (q + Q)

]

+Usp�̄
xy
sp (q,q + Q)2}, (D4)

W̄ (2)xy
sp (q,q + Q) = 1

D̄(q)
�̄xy

sp (q,q + Q),

where

D̄(q) = [
1 + Usp�̄

xx
sp (q)

][
1 + Usp�̄

xx
sp (q + Q)

]
+U 2

sp�̄
xy
sp (q,q + Q)2 (D5)

and

�̄xx
sp (q) = −1

2

∫
l

[Ḡch(l−)Ḡch(l+) − Ḡsp(l−)Ḡsp(l+)],

�̄xy
sp (q,q + Q) = i

2

∫
l

[Ḡch(l−)Ḡsp(l+) − Ḡsp(l−)Ḡch(l+)].

(D6)

We use the notation
∫
l
= T

∑
ωn

∫
l and l± = l ± q/2. The

dispersion of the collective spin modes is obtained from the
poles of W̄ (2), i.e., from the zeros of D̄(q), after the analytical
continuation q = (q,iων) → (q,ω + i0+). Using

1 + Usp�̄
xx
sp (Q) = 0 (D7)

[which is a consequence of the gap equation (62)], we find

D̄(q) = 4
[
A(q − Q)2 + Bω2

ν

]
(D8)

to order (q − Q)2 and ω2
ν , with

A =
∫

p
ε2N2

∫
p

[
N2

(
2ε2

1 + εε2
) − 4ε2ε2

1N3
]
,

B = −
∫

p
ε2N2

∫
p
(2N2 − 4E2N3) (D9)

+ 16m2

(∫
p
(N2 − E2N3)

)2

,
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where ε = εp, ε1 = ∂px
ε, ε2 = ∂2

px
ε, E = Ep, and

Ni = 1

β

∑
ωn

1(
ω2

n + E
)i

. (D10)

For T = 0, we use N2 = 1/4E3 and N3 = 3/16E5 to obtain

A =
〈

ε2

4E3

〉 〈
2ε2

1 + εε2

4E3
− 3ε2ε2

1

4E5

〉
,

B = 1

16

〈
1

E3

〉 (〈
ε2

E3

〉
+ m2

〈
1

E3

〉)
,

(D11)

where we use the notation 〈· · · 〉 = ∫
p · · · . With an integration

by part, we find

3

〈
ε2ε2

1

E5

〉
=

〈
ε2

1 + εε2

E3

〉
(D12)

and

A = 1

16

〈
ε2

E3

〉 〈
ε2

1

E3

〉
. (D13)

The velocity c = √
A/B agrees with the known RPA result

[Eq. (63)]. In the large-U limit, using m � U/2, 〈ε2〉 = 4t2,
and 〈ε2

1〉 = 2t2, we finally obtain c = √
2J .

APPENDIX E: WARD IDENTITY AND GOLDSTONE’S
THEOREM

Let us consider an infinitesimal transformation

ψα → ψα + ε
∑
α′

Tαα′ψα′ + O(ε2), (E1)

which leaves the action S(0) + Sint + �Sk invariant. The
invariance of the partition function Zk[J ] in the change of
variable (E1) then implies∫

D[ψ] e−S(0)−Sint−�Sk δSJ = 0 (E2)

to order ε, where

δSJ = −ε
∑

α,α′,α′′
Tα′α′′Jαα′ψαψα′′ (E3)

gives the variation of the source term SJ =
− 1

2

∑
α,α′ ψαJαα′ψα′ . Here, we assume that the transformation

(E1) is free of anomaly, i.e., that its Jacobian is a constant. We
thus obtain ∑

α,α′,α′′
Tα′α′′Jαα′W

(1)
k,αα′′ = 0. (E4)

The functional derivative wrt Jγ2 yields
∑
γ1,α

′′
1

Tα′
1α

′′
1
Jγ1W

(2)
k;α1α

′′
1 ,γ2

+
∑
α′′

1

(
Tα′

2α
′′
1
W

(1)
k,α2α

′′
1
− Tα2α

′′
1
W

(1)
k,α′

2α
′′
1

) = 0. (E5)

In the equilibrium state, the source takes the value Jγ =
− 1

2

∑
γ ′ Rk,γ γ ′ Ḡk,γ ′ (Sec. II D), which gives the following

Ward identity:

1

2

∑
γ1,γ3,α

′′
1

Tα′
1α

′′
1
Rk,γ1γ3W̄

(2)
k;α1α

′′
1 ,γ2

Ḡk,γ3

+
∑
α′′

1

(
Tα′

2α
′′
1
Ḡk,α2α

′′
1
− Tα2α

′′
1
Ḡk,α′

2α
′′
1

) = 0. (E6)

Let us now consider a system with antiferromagnetic long-
range order polarized along the z axis. We assume that the
order takes place in the s-wave ph channel and choose a cutoff
function of the form

R
ν1ν2
k,sp (x1,x

′
1; x2,x

′
2) = δν1,ν2δ(x1 − x ′

1
+)δ(x2 − x ′

2
+)

×Rk,sp(x1 − x2). (E7)

An infinitesimal spin rotation about the x axis corresponds to

Tcc′ (X,X′) = i

2
δc,c′δ(x − x ′)cσ x

σσ ′ . (E8)

With x ′
2 = x−

2 , c2 = c̄′
2 = +, and σ2 = σ̄ ′

2 =↑ (we use the
notation c̄ = −c and σ̄ = −σ , i.e. σ̄ =↓ if σ =↑ and vice
versa), Eq. (E6) gives

0 = 1

2

∑
c1,c

′
1,c3,c

′
3

∑
σ1,σ ′

1 ,σ3 ,σ ′
3

σ ′′
1

∫
dx1dx ′

1dx3dx ′
3 c′

1σ
x
σ ′

1σ
′′
1

×Rk,c1c
′
1c3c

′
3
(X1,X

′
1; X3,X

′
3)Ḡk,c3c

′
3
(X3,X

′
3)

×W̄
(2)
k;c1σ1,c

′
1σ

′′
1 ,+↑,−↓(x1,x

′
1; x+

2 ,x2)

−
∑
σ ′′

1

[
σx

↓σ ′′
1
Ḡk;+↑,−σ ′′

1
(x+

2 ,x2) + σx
↑σ ′′

1
Ḡk;−↓,+σ ′′

1
(x2,x

+
2 )

]
.

(E9)

Performing the sum over σ ′′
1 in the last term, we obtain

−Ḡk;+↑,−↑(x+
2 ,x2) − Ḡk;−↓,+↓(x2,x

+
2 )

= Ḡk;−↑,+↑(x2,x
+
2 ) − Ḡk;−↓,+↓(x2,x

+
2 )

= Ḡz
k,−+(x2,x

+
2 ). (E10)

As for the first term in (E9), we note that we must have c1 =
c̄′

1 and c3 = c̄′
3, σ ′′

1 = σ̄ ′
1 and σ1 = σ̄ ′′

1 , which in turn implies
σ3 = σ ′

3. Using (E7), we can then rewrite this term as
∑

c1,σ1,σ3

∫
dx1dx3 c̄1Rk;c1σ1,c̄1σ1,+σ3,−σ3 (x1 − x3)

× Ḡk;+σ3,−σ3 (x+
3 ,x3)W̄ (2)

k;c1σ1,c̄1σ̄1,+↑,−↓(x1,x2), (E11)

where the spin correlation function W̄
(2)
k;c1σ1,c

′
1σ

′
1,c2σ2,c

′
2σ

′
2
(x1,x2)

is defined by (64). Since∑
c1

c̄1Rk;c1σ1,c̄1σ1;+σ3,−σ3W̄
(2)
k;c1σ1,c̄1σ̄1,+↑,−↓

= −2σ1σ3Rk,spW̄
(2)
k;+σ1,−σ̄1,+↑,−↓ (E12)

and ∑
σ1

σ1W̄
(2)
k;+σ1,−σ̄1,+↑,−↓(x1,x2)

= −1

2

[
W̄

(2)yy

k,sp (x1,x2) − iW̄
(2)yx

k,sp (x1,x2)
]
, (E13)
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we finally obtain

−
∫

dx1dx3Rk,sp(x1 − x3)Ḡz
k,−+(x3,x

+
3 )

× [
W̄

(2)yy

k,sp (x1,x2) − iW̄
(2)yx

k,sp (x1,x2)
]

(E14)

for the first term of (E9). From (E10) and (E14), we deduce

Ḡz
k,−+(x2,x

+
2 ) −

∫
dx1dx3Rk,sp(x1 − x3)Ḡz

k,−+(x3,x
+
3 )

× [
W̄

(2)yy

k,sp (x1,x2) − iW̄
(2)yx

k,sp (x1,x2)
] = 0. (E15)

Since Ḡz
k,−+(x,x+) = M(−1)r in the linearly polarized anti-

ferromagnetic state, we find

1 − Rk,sp(Q)W̄ (2)yy

k,sp (Q,Q) = 0, (E16)

where we have used W̄
(2)yy

k,sp (q,q ′) ∝ δq,q ′ , W̄
(2)yx

k,sp (q,q ′) ∝
δq+Q,q ′ , and W̄

(2)yx

k,sp (Q,0) = 0.

If we assume that the 2PI vertex �̄
(2)xx
k,sp = uk,sp in the trans-

verse spin channel is momentum and frequency independent
(apart from conservation of momentum and frequency), then
the Bethe-Salpeter equation satisfied by W̄

(2)
k can be easily

solved:

W̄
(2)xx
k,sp (q,q)

= 1

D̄k(q)

{
�̄xx

k,sp(q)
[
1 + X̄ xx

k,sp(q + Q)�̄xx
k,sp(q + Q)

]

+ X̄ xx
k,sp(q + Q)�̄xy

k,sp(q,q + Q)2},
W̄

(2)xy

k,sp (q,q + Q) = 1

D̄k(q)
�̄

xy

k,sp(q,q + Q), (E17)

where

D̄k(q) = [
1 + X̄ xx

k,sp(q)�̄xx
k,sp(q)

]
× [

1 + X̄ xx
k,sp(q + Q)�̄xx

k,sp(q + Q)
]

+ X̄ xx
k,sp(q)X̄ xx

k,sp(q + Q)�̄xy

k,sp(q,q + Q)2, (E18)

and X̄ xx
k,sp(q) = Rk,sp(q) + uk,sp. �̄xx

k,sp(q,q) and �̄
xy

k,sp(q,q +
Q) are defined as in Eqs. (D6). Since �̄

xy

k (0,Q) = 0 and

W̄
(2)xx
k,sp (Q,Q) = �̄xx

k,sp(Q)

1 + X̄ xx
k,sp(Q)�̄xx

k,sp(Q)
, (E19)

the Ward identity (E16) implies

1 + uk,sp�̄
xx
k,sp(Q) = 0, (E20)

which agrees with (D7) for k = �.

APPENDIX F: RG EQUATIONS FOR THE 2PI VERTICES

In this Appendix, we derive the RG equations (76) and (79).

1. One-particle vertex: ∂k�
(1)
k [G]

Using Eq. (74) and

�
(3)
k,γ1γ2γ3

= �
(3)
k,γ1γ2γ3

+ δ�−1
γ2γ3

δGγ1

, (F1)

we obtain

∂k�
(1)
k,γ1

= 1

3!
∂̃kTr

{
W

(2)
k

[
�

(3)
k,γ1

+ δ�−1

δGγ1

]}

− 1

3

∑
γ2

Ṙk,γ1γ2Gγ2 . (F2)

We then use

Tr

[
W

(2)
k

δ�−1

δGγ1

]
= −Tr

[
�(I + Xk�)−1�−1 δ�

δGγ1

�−1

]

= −Tr

[
(�−1 − Yk)

δ�

δGγ1

]
. (F3)

With

δ�γ2γ3

δGγ1

= −Iγ1,α2α3Gα′
2α

′
3
− Iγ1,α

′
2α

′
3
Gα2α3

+ Iγ1,α2α
′
3
Gα′

2α3 + Iγ1,α
′
2α3Gα2α

′
3
, (F4)

this gives

Tr

[
W

(2)
k

δ�−1

δGγ1

]
= −Tr

[
�−1 δ�

δGγ1

]
+ 2

∑
γ2

Gγ2Yk;α1α2,α
′
2α

′
1
.

(F5)

Since the first term in the right-hand side of (F5) does not
depend on k, Eq. (F2) yields Eq. (76) (we use ∂̃kXk = Ṙk).

2. Two-particle vertex: ∂k�
(2)
k [G]

From Eq. (F1) and

�
(4)
k,γ1γ2γ3γ4

= �
(4)
k,γ1γ2γ3γ4

+ δ2�−1
γ3γ4

δGγ1δGγ2

, (F6)

we obtain

∂k�
(2)
k,γ1γ2

= 1

3!
∂̃kTr

[
δW

(2)
k

δGγ2

�
(3)
k,γ1

+ W
(2)
k �

(4)
k,γ1γ2

]

+ 1

3
∂̃k[�Yk;α1α2,α

′
2α

′
1
− (α2 ↔ α′

2)]

+ 1

3
∂̃k

∑
γ3

Gγ3

δ

δGγ2

�Yk;α1α3,α
′
3α

′
1
. (F7)

Using W
(2)
k = (�−1 + Xk)−1 and

δW
(2)
k

δGγ

= −W
(2)
k

(
�

(3)
k,γ − �−1 δ�

δGγ

�−1

)
W

(2)
k

= −W
(2)
k �

(3)
k,γ W

(2)
k + Jk

δ�

δGγ

J T
k (F8)

[J and J T are defined in (80)] and (F4), we obtain

δW
(2)
k,γ3γ4

δGγ2

= −(
W

(2)
k �

(3)
k,γ2

W
(2)
k

)
γ3γ4

+
∑
γ5

Gγ5

[
Jk;γ3,α2α5J T

k;α′
5α

′
2,γ4

− (α2 ↔ α′
2)

]
.

(F9)
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Furthermore, Eq. (F9) with �Yk = −XkW
(2)
k Xk and XkJk =

J T
k Xk = Yk implies

δ

δGγ2

�Yk;α1α3,α
′
3α

′
1

= −(
�

(3)
k,γ2

W
(2)
k Xk + XkW

(2)
k �

(3)
k,γ2

)
α1α3,α

′
3α

′
1

+ 1

4

∑
γ4,γ5

Xk;α1α3,γ4

(
W

(2)
k �

(3)
k W

(2)
k

)
γ4γ5

Xk;γ5,α
′
3α

′
1

−
∑
γ6

Gγ6

[
Yk;α1α3,α2α6Yk;α′

6α
′
2,α

′
3α

′
1
− (α2 ↔ α′

2)
]
.

(F10)

Using finally W
(2)
k Xk − I = −Jk and XkW

(2)
k − I = −J T

k ,
we conclude that

δ

δGγ2

�Yk;α1α3,α
′
3α

′
1

= −(
�

(3)
k,γ2

− J T
k �

(3)
k,γ2

Jk

)
α1α3,α

′
3α

′
1

−
∑
γ4

Gγ4

[
Yk;α1α3,α2α4Yk;α′

4α
′
2,α

′
3α

′
1
− (α2 ↔ α′

2)
]
. (F11)

From Eqs. (F7), (F9), and (F11) we deduce (79) (using
∂̃k�

(3)
k = 0).

APPENDIX G: LUTTINGER-WARD FUNCTIONAL AND
SYMMETRIES

In this Appendix, we show how the symmetries of
the action constrain the perturbative expansion of the

Luttinger-Ward functional �[G] = �k=0[G] in the Hubbard
model. To order U , �[G] is given by (85), i.e.,

1

32

∑
c1 ...c′2
ν1 ,ν2 ,μ

∫
dx U

μμ

c1c
′
1c2c

′
2
Gν1

c1c
′
1
(x,x)Gν2

c2c
′
2
(x,x)

× tr
(
τ

ν1

c1c
′
1
τ

μ†
c1c

′
1

)
tr
(
τ

ν2

c2c
′
2
τ

μ†
c2c

′
2

)
, (G1)

where U
μμ

c1c
′
1,c2c

′
2

is defined by (57) and (58) and the symmetry
properties (4). Performing the traces in (G1), we find

U

4

∫
dx[F †

s (x,x)Fs(x,x) + Gch(x,x+)2 − Gsp(x,x+)2].

(G2)

As expected, it is possible to express the result in terms of the
invariants (97). One of the invariants does not appear since the
triplet component Ut of the interaction vanishes in the Hubbard
model.

Similarly, the O(U 2) contribution to the Luttinger-Ward
functional can be written as

− 1

48 × 24

∑
c1...c

′
4

∑
ν1 ...ν4
μ,μ′

∫
dx dy Uμμ

c1c2c3c4
U

μ′μ′

c′
1c

′
2c

′
3c

′
4

×Gν1

c1c
′
1
(x,y)Gν2

c2c
′
2
(x,y)Gν3

c3c
′
3
(x,y)Gν4

c4c
′
4
(x,y)

× tr
(
τμ∗
c1c2

τ
ν2

c2c
′
2
τ

μ′†
c′

1c
′
2
τ

ν1T

c1c
′
1

)
tr
(
τμ∗
c3c4

τ
ν4

c4c
′
4
τ

μ′†
c′

3c
′
4
τ

ν3T

c3c
′
3

)
, (G3)

which eventually gives

−U 2

32

∫
dx dy{[Gsp(x,y)2 − Gch(x,y)2][Gsp(y,x)2 − Gch(y,x)2] + [F†

t (x,y)2 − F †
s (x,y)2][Ft(x,y)2 − Fs(x,y)2]}

+ U 2

16

∫
dx dy{−[F†

t (x,y) · Ft(x,y)][Gsp(x,y) · Gsp(y,x)] + 2[F†
t (x,y) · Gsp(x,y)][Ft(x,y) · Gsp(y,x)]

+ [Gsp(x,y) · Gsp(y,x)]F †
s (x,y)Fs(x,y) − 2[F†

t (x,y) · Gsp(y,x)]Fs(x,y)Gch(x,y)

− 2[Ft(x,y) · Gsp(y,x)]F †
s (x,y)Gch(x,y) − [F†

t (x,y) · Ft(x,y) + F †
s (x,y)Fs(x,y)]Gch(x,y)Gch(y,x)

+ 2iFt(x,y) · [F†
t (x,y) × Gsp(y,x)]Gch(x,y) + i[Fs(x,y)F†

t (x,y) − F †
s (x,y)Ft(x,y)] · [Gsp(x,y) × Gsp(y,x)]}. (G4)

All terms are obviously SU(2) spin-rotation and U(1) invariant.
Some of them can be expressed as a function of the quadratic
invariants (97), but there are also quartic [i.e., O(G4)] invari-
ants.

It should be noticed that the Luttinger-Ward functional
�[G] ≡ �k=0[G] has a higher degree of symmetry than the
scale-dependent Luttinger-Ward functional �k[G]. This comes
from the fact that in the Hubbard model, the interaction action
Sint is invariant in a local SU(2) spin rotation

(
ψc↑(x)
ψc↓(x)

)
→ e

i
2 cε(x)σ ·n

(
ψc↑(x)
ψc↓(x)

)
(G5)

[with n an arbitrary unit vector and ε(x) an arbitrary function
of x], and a local U(1) transformation

ψcσ (x) → e−icε(x)ψcσ (x). (G6)

This implies that �[G] is invariant in the local transformations

Gcσ,c′σ ′(x,x ′) →
∑
σ1,σ

′
1

(
e

i
2 cε(x)σ ·n)

σσ1
Gcσ1,c′σ ′

1
(x,x ′)

× (
e

i
2 c′ε(x ′)σ ·n)

σ ′σ ′
1

(G7)

and

Gcσ,c′σ ′(x,x ′) → e−icε(x)Gcσ,c′σ ′(x,x ′)e−ic′ε(x ′). (G8)
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In general, however, the regulator term �Sk is not invariant
in the transformations (G5) and (G6) if ε(x) is time or space
dependent, so that �k[G] (k > 0) is invariant in the transfor-
mations (G7) and (G8) only for ε(x) = const. Moreover, once
we expand �k[G] about a nontrivial set of minima (Ḡk 	= 0),
we lose the invariance under the local transformations (G7)
and (G8). Even when the regulator term �Sk is invariant in
the transformations (G5) and (G6), the expanded functional
�k[G] remains invariant in the local transformations (G7) and
(G8) only if we simultaneously transform the 2PI vertices. For
instance, with the quadratic ansatz (98) discussed in Sec. IV B,

one should transform the two-particle 2PI vertex as

uνν
k,ph(x1,x

′
1; x2,x

′
2) → uνν

k,ph(x1,x
′
1; x2,x

′
2)

×ei[ε(x1)−ε(x ′
1)+ε(x2)−ε(x ′

2)],
(G9)

uνν
k,pp(x1,x

′
1; x2,x

′
2) → uνν

k,pp(x1,x
′
1; x2,x

′
2)

× ei[ε(x1)+ε(x ′
1)−ε(x2)−ε(x ′

2)]

in the gauge transformation (G6).
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[29] F. Schütz, L. Bartosch, and P. Kopietz, Phys. Rev. B 72, 035107

(2005).
[30] H. Gies and C. Wetterich, Phys. Rev. D 65, 065001 (2002).
[31] H. C. Krahl and C. Wetterich, Phys. Lett. A 367, 263 (2007).
[32] H. C. Krahl, J. A. Müller, and C. Wetterich, Phys. Rev. B 79,

094526 (2009).
[33] S. Friederich, H. C. Krahl, and C. Wetterich, Phys. Rev. B 83,

155125 (2011).
[34] M. C. Birse, B. Krippa, J. A. McGovern, and N. R. Walet, Phys.

Lett. B 605, 287 (2005).
[35] S. Diehl, H. Gies, J. M. Pawlowski, and C. Wetterich, Phys. Rev.

A 76, 021602 (2007).
[36] S. Diehl, H. Gies, J. M. Pawlowski, and C. Wetterich, Phys. Rev.

A 76, 053627 (2007).
[37] S. Floerchinger, M. Scherer, S. Diehl, and C. Wetterich, Phys.

Rev. B 78, 174528 (2008).
[38] M. M. Scherer, S. Floerchinger, and H. Gies, arXiv:1010.2890.
[39] P. Strack, R. Gersch, and W. Metzner, Phys. Rev. B 78, 014522

(2008).
[40] L. Bartosch, P. Kopietz, and A. Ferraz, Phys. Rev. B 80, 104514

(2009).
[41] A. Eberlein and W. Metzner, Phys. Rev. B 87, 174523 (2013).
[42] C. Wetterich, Phys. Rev. B 75, 085102 (2007).
[43] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
[44] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[45] G. Baym, Phys. Rev. 127, 1391 (1962).
[46] C. D. Dominicis and P. C. Martin, J. Math. Phys. 5, 14

(1964).
[47] C. D. Dominicis and P. C. Martin, J. Math. Phys. 5, 31 (1964).
[48] The 2PI formalism has been extended to relativistic field theories

by J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D
10, 2428 (1974).

[49] S. Nagy and K. Sailer, Ann. Phys. (NY) 326, 1839 (2011).
[50] J. Polonyi and K. Sailer, Phys. Rev. D 71, 025010 (2005).
[51] J. M. Pawlowski, Ann. Phys. (NY) 322, 2831 (2007).
[52] J.-P. Blaizot, J. M. Pawlowski, and U. Reinosa, Phys. Lett. B

696, 523 (2011).
[53] N. Dupuis, Eur. Phys. J. B 48, 319 (2005).
[54] S. Kemler and J. Braun, arXiv:1304.1161.

035113-19

http://dx.doi.org/10.1080/00018737900101375
http://dx.doi.org/10.1080/00018737900101375
http://dx.doi.org/10.1080/00018737900101375
http://dx.doi.org/10.1080/00018737900101375
http://dx.doi.org/10.1142/S0217979291000547
http://dx.doi.org/10.1142/S0217979291000547
http://dx.doi.org/10.1142/S0217979291000547
http://dx.doi.org/10.1142/S0217979291000547
http://dx.doi.org/10.1209/0295-5075/5/3/005
http://dx.doi.org/10.1209/0295-5075/5/3/005
http://dx.doi.org/10.1209/0295-5075/5/3/005
http://dx.doi.org/10.1209/0295-5075/5/3/005
http://dx.doi.org/10.1007/s100510170198
http://dx.doi.org/10.1007/s100510170198
http://dx.doi.org/10.1007/s100510170198
http://dx.doi.org/10.1007/s100510170198
http://dx.doi.org/10.1103/PhysRevLett.95.247001
http://dx.doi.org/10.1103/PhysRevLett.95.247001
http://dx.doi.org/10.1103/PhysRevLett.95.247001
http://dx.doi.org/10.1103/PhysRevLett.95.247001
http://dx.doi.org/10.1103/PhysRevB.73.165126
http://dx.doi.org/10.1103/PhysRevB.73.165126
http://dx.doi.org/10.1103/PhysRevB.73.165126
http://dx.doi.org/10.1103/PhysRevB.73.165126
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.85.165129
http://dx.doi.org/10.1103/PhysRevB.85.165129
http://dx.doi.org/10.1103/PhysRevB.85.165129
http://dx.doi.org/10.1103/PhysRevB.85.165129
http://dx.doi.org/10.1103/PhysRevB.61.13609
http://dx.doi.org/10.1103/PhysRevB.61.13609
http://dx.doi.org/10.1103/PhysRevB.61.13609
http://dx.doi.org/10.1103/PhysRevB.61.13609
http://dx.doi.org/10.1103/PhysRevB.61.7364
http://dx.doi.org/10.1103/PhysRevB.61.7364
http://dx.doi.org/10.1103/PhysRevB.61.7364
http://dx.doi.org/10.1103/PhysRevB.61.7364
http://dx.doi.org/10.1103/PhysRevB.63.035109
http://dx.doi.org/10.1103/PhysRevB.63.035109
http://dx.doi.org/10.1103/PhysRevB.63.035109
http://dx.doi.org/10.1103/PhysRevB.63.035109
http://dx.doi.org/10.1103/PhysRevB.79.195125
http://dx.doi.org/10.1103/PhysRevB.79.195125
http://dx.doi.org/10.1103/PhysRevB.79.195125
http://dx.doi.org/10.1103/PhysRevB.79.195125
http://dx.doi.org/10.1103/PhysRevB.85.075121
http://dx.doi.org/10.1103/PhysRevB.85.075121
http://dx.doi.org/10.1103/PhysRevB.85.075121
http://dx.doi.org/10.1103/PhysRevB.85.075121
http://dx.doi.org/10.1103/PhysRevB.86.245122
http://dx.doi.org/10.1103/PhysRevB.86.245122
http://dx.doi.org/10.1103/PhysRevB.86.245122
http://dx.doi.org/10.1103/PhysRevB.86.245122
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1016/S0370-1573(01)00098-9
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1140/epjb/e2005-00416-8
http://dx.doi.org/10.1140/epjb/e2005-00416-8
http://dx.doi.org/10.1140/epjb/e2005-00416-8
http://dx.doi.org/10.1140/epjb/e2005-00416-8
http://dx.doi.org/10.1143/PTP.112.943
http://dx.doi.org/10.1143/PTP.112.943
http://dx.doi.org/10.1143/PTP.112.943
http://dx.doi.org/10.1143/PTP.112.943
http://dx.doi.org/10.1103/PhysRevB.86.134404
http://dx.doi.org/10.1103/PhysRevB.86.134404
http://dx.doi.org/10.1103/PhysRevB.86.134404
http://dx.doi.org/10.1103/PhysRevB.86.134404
http://dx.doi.org/10.1103/PhysRevB.62.15471
http://dx.doi.org/10.1103/PhysRevB.62.15471
http://dx.doi.org/10.1103/PhysRevB.62.15471
http://dx.doi.org/10.1103/PhysRevB.62.15471
http://dx.doi.org/10.1103/PhysRevB.70.125111
http://dx.doi.org/10.1103/PhysRevB.70.125111
http://dx.doi.org/10.1103/PhysRevB.70.125111
http://dx.doi.org/10.1103/PhysRevB.70.125111
http://dx.doi.org/10.1016/j.physletb.2004.11.022
http://dx.doi.org/10.1016/j.physletb.2004.11.022
http://dx.doi.org/10.1016/j.physletb.2004.11.022
http://dx.doi.org/10.1016/j.physletb.2004.11.022
http://dx.doi.org/10.1103/PhysRevB.72.035107
http://dx.doi.org/10.1103/PhysRevB.72.035107
http://dx.doi.org/10.1103/PhysRevB.72.035107
http://dx.doi.org/10.1103/PhysRevB.72.035107
http://dx.doi.org/10.1103/PhysRevD.65.065001
http://dx.doi.org/10.1103/PhysRevD.65.065001
http://dx.doi.org/10.1103/PhysRevD.65.065001
http://dx.doi.org/10.1103/PhysRevD.65.065001
http://dx.doi.org/10.1016/j.physleta.2007.03.028
http://dx.doi.org/10.1016/j.physleta.2007.03.028
http://dx.doi.org/10.1016/j.physleta.2007.03.028
http://dx.doi.org/10.1016/j.physleta.2007.03.028
http://dx.doi.org/10.1103/PhysRevB.79.094526
http://dx.doi.org/10.1103/PhysRevB.79.094526
http://dx.doi.org/10.1103/PhysRevB.79.094526
http://dx.doi.org/10.1103/PhysRevB.79.094526
http://dx.doi.org/10.1103/PhysRevB.83.155125
http://dx.doi.org/10.1103/PhysRevB.83.155125
http://dx.doi.org/10.1103/PhysRevB.83.155125
http://dx.doi.org/10.1103/PhysRevB.83.155125
http://dx.doi.org/10.1016/j.physletb.2004.11.044
http://dx.doi.org/10.1016/j.physletb.2004.11.044
http://dx.doi.org/10.1016/j.physletb.2004.11.044
http://dx.doi.org/10.1016/j.physletb.2004.11.044
http://dx.doi.org/10.1103/PhysRevA.76.021602
http://dx.doi.org/10.1103/PhysRevA.76.021602
http://dx.doi.org/10.1103/PhysRevA.76.021602
http://dx.doi.org/10.1103/PhysRevA.76.021602
http://dx.doi.org/10.1103/PhysRevA.76.053627
http://dx.doi.org/10.1103/PhysRevA.76.053627
http://dx.doi.org/10.1103/PhysRevA.76.053627
http://dx.doi.org/10.1103/PhysRevA.76.053627
http://dx.doi.org/10.1103/PhysRevB.78.174528
http://dx.doi.org/10.1103/PhysRevB.78.174528
http://dx.doi.org/10.1103/PhysRevB.78.174528
http://dx.doi.org/10.1103/PhysRevB.78.174528
http://arxiv.org/abs/arXiv:1010.2890
http://dx.doi.org/10.1103/PhysRevB.78.014522
http://dx.doi.org/10.1103/PhysRevB.78.014522
http://dx.doi.org/10.1103/PhysRevB.78.014522
http://dx.doi.org/10.1103/PhysRevB.78.014522
http://dx.doi.org/10.1103/PhysRevB.80.104514
http://dx.doi.org/10.1103/PhysRevB.80.104514
http://dx.doi.org/10.1103/PhysRevB.80.104514
http://dx.doi.org/10.1103/PhysRevB.80.104514
http://dx.doi.org/10.1103/PhysRevB.87.174523
http://dx.doi.org/10.1103/PhysRevB.87.174523
http://dx.doi.org/10.1103/PhysRevB.87.174523
http://dx.doi.org/10.1103/PhysRevB.87.174523
http://dx.doi.org/10.1103/PhysRevB.75.085102
http://dx.doi.org/10.1103/PhysRevB.75.085102
http://dx.doi.org/10.1103/PhysRevB.75.085102
http://dx.doi.org/10.1103/PhysRevB.75.085102
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1103/PhysRev.118.1417
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.1063/1.1704062
http://dx.doi.org/10.1063/1.1704062
http://dx.doi.org/10.1063/1.1704062
http://dx.doi.org/10.1063/1.1704062
http://dx.doi.org/10.1063/1.1704064
http://dx.doi.org/10.1063/1.1704064
http://dx.doi.org/10.1063/1.1704064
http://dx.doi.org/10.1063/1.1704064
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1016/j.aop.2011.04.011
http://dx.doi.org/10.1016/j.aop.2011.04.011
http://dx.doi.org/10.1016/j.aop.2011.04.011
http://dx.doi.org/10.1016/j.aop.2011.04.011
http://dx.doi.org/10.1103/PhysRevD.71.025010
http://dx.doi.org/10.1103/PhysRevD.71.025010
http://dx.doi.org/10.1103/PhysRevD.71.025010
http://dx.doi.org/10.1103/PhysRevD.71.025010
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1016/j.aop.2007.01.007
http://dx.doi.org/10.1016/j.physletb.2010.12.058
http://dx.doi.org/10.1016/j.physletb.2010.12.058
http://dx.doi.org/10.1016/j.physletb.2010.12.058
http://dx.doi.org/10.1016/j.physletb.2010.12.058
http://dx.doi.org/10.1140/epjb/e2005-00409-7
http://dx.doi.org/10.1140/epjb/e2005-00409-7
http://dx.doi.org/10.1140/epjb/e2005-00409-7
http://dx.doi.org/10.1140/epjb/e2005-00409-7
http://arxiv.org/abs/arXiv:1304.1161


N. DUPUIS PHYSICAL REVIEW B 89, 035113 (2014)

[55] Since there is in general no ambiguity, we use the symbol U both
for the function Uα1α2α3α4 [Eq. (1)] and for the onsite interaction
in the Hubbard model.

[56] If the band energy satisfies |ξp| � εk=�, then the model with
action S + �S� and hard cutoff (7) is exactly (trivially) solvable
regardless of the cutoff function Rk .

[57] C. Honerkamp, D. Rohe, S. Andergassen, and T. Enss, Phys.
Rev. B 70, 235115 (2004).

[58] S. Streib, A. Isidori, and P. Kopietz, Phys. Rev. B 87, 201107
(2013).

[59] The fermionic trace is defined by tr A = ∑
α Aαα for any

“fermionic” matrix A, e.g., trG(0) = ∑
α G(0)

αα .
[60] This property follows from the fact that G(0)−1

k can be absorbed
in the source term in Eq. (8).

[61] See,e.g., R. Haussmann, Self-consistent Quantum Field Theory
and Bosonization for Strongly Correlated Electron Systems
(Springer, New York, 1999).

[62] Note that the triplet vector field Ot(x,x ′) =
[Ox

−−(x,x ′),Oy
−−(x,x ′),Oz

−−(x,x ′)]T transforms as a vector in a
spin rotation.

[63] The same remark holds for the NPRG approach in the 1PI
formalism. In this case, the action is defined by Sk = S + �Sk

with a regulator �Sk[ϕ] = 1
2

∑
α,α′ ϕαRk,αα′ϕα′ quadratic in the

field. The 1PI effective action is defined as �LT
k [φ] − �Sk[φ]

with φα = 〈ϕα〉 and �LT
k [φ] the Legendre transform of the free

energy. The subtraction of �Sk[φ] allows us to compensate
(exactly at the mean-field level) the regulator term in the action
and implies that �k (rather than �LT

k ) has the meaning of a
coarse-grained free energy. Correspondingly, the physical state
of the system is determined by the minimum of �k (and not �LT

k ).
[64] J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. B 39,

11663 (1989).

[65] A. Singh and Z. Tešanović, Phys. Rev. B 41, 614
(1990).

[66] A. V. Chubukov and D. M. Frenkel, Phys. Rev. B 46, 11884
(1992).

[67] K. Borejsza and N. Dupuis, Phys. Rev. B 69, 085119
(2004).

[68] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, New York, 1994).

[69] The bosonic trace is defined in Appendix A [Eq. (A2)].
[70] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[71] One can easily show that Eq. (76) reproduces perturbation theory

to order O(U 2).
[72] D. J. Scalapino, Phys. Rep. 250, 329 (1995); ,Rev. Mod. Phys.

84, 1383 (2012).
[73] It is obvious that the “noninteracting” part of �k[G], namely

1
2 tr ln(−G) − 1

2 tr(G(0)−1
k G − 1), satisfies all symmetries of the

action.
[74] This conclusion is drawn, for instance, from the 1PI fermionic

RG.
[75] For a similar reason, it is difficult to compute the self-energy

in the 1PI formalism (as it requires to retain the momentum
and frequency dependence of the 1PI vertex Ȳk); see, however,
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