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We review the infrared behavior of interacting bosons at zero temperature. After a brief
discussion of the Bogoliubov approximation and the breakdown of perturbation theory
due to infrared divergences, we show how the non-perturbative renormalization group
enables to obtain the exact infrared behavior of the correlation functions.
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1. Introduction

Many of the predictions of the Bogoliubov theory of superfluidity1 have been

confirmed experimentally, in particular in ultracold atomic gases.2,3 Nevertheless,

a clear understanding of the infrared behavior of interacting bosons at zero

temperature has remained a challenging theoretical issue for a long time. Early

attempts to go beyond the Bogoliubov theory have revealed a singular perturbation

theory plagued by infrared divergences due to the presence of the Bose–Einstein

condensate and the Goldstone mode.4–6 In the 1970s, Nepomnyashchii and

Nepomnyashchii proved that the anomalous self-energy vanishes at zero frequency

and momentum in dimension d ≤ 3.7 This exact result shows that the Bogoliubov

approximation, where the linear spectrum and the superfluidity rely on a finite

value of the anomalous self-energy, breaks down at low energy. As realized later

on,8,9 the singular perturbation theory is a direct consequence of the coupling

between transverse and longitudinal fluctuations and reflects the divergence of the

longitudinal susceptibility — a general phenomenon in systems with a continuous

broken symmetry.10

In this paper, we review the infrared behavior of interacting bosons. A more

detailed discussion together with a comparison to the classical O(N) model can

be found in Ref. 11. In Sec. 2, we briefly review the Bogoliubov theory and

the appearance of infrared divergences in perturbation theory. We introduce

the Ginzburg momentum scale pG signaling the breakdown of the Bogoliubov

approximation. In Sec. 3, we discuss the non-perturbative renormalization group

(NPRG) and show how it enables to obtain the exact infrared behavior of the
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normal and anomalous single-particle propagators without encountering infrared

divergences.12–20

2. Perturbation Theory and Breakdown of the Bogoliubov

Approximation

We consider interacting bosons at zero temperature with the (Euclidean) action

S =

∫

dx

[

ψ∗

(

∂τ − µ− ∇
2

2m

)

ψ +
g

2
(ψ∗ψ)2

]

, (1)

where ψ(x) is a bosonic (complex) field, x = (r, τ), and
∫

dx =
∫ β

0
dτ
∫

ddr. τ ∈
[0, β] is an imaginary time, β → ∞ the inverse temperature, and µ denotes the

chemical potential. The interaction is assumed to be local in space and the model

is regularized by a momentum cut-off Λ. We consider a space dimension d > 1.

Introducing the two-component field

Ψ(p) =

(

ψ(p)

ψ∗(−p)

)

, Ψ†(p) =
(

ψ∗(p), ψ(−p)
)

, (2)

(with p = (p, iω) and ω a Matsubara frequency), the one-particle (connected)

propagator becomes a 2× 2 matrix whose inverse in Fourier space is given by
(

iω + µ− εp − Σn(p) −Σan(p)

−Σ∗
an(p) −iω + µ− εp − Σn(−p)

)

, (3)

where Σn and Σan are the normal and anomalous self-energies, respectively, and

εp = p2/2m. If we choose the order parameter 〈ψ(x)〉 =
√
n0 to be real (with n0

the condensate density), then the anomalous self-energy Σan(p) is real.

2.1. Bogoliubov approximation

The Bogoliubov approximation is a Gaussian fluctuation theory about the saddle

point solution ψ(x) =
√
n0 =

√

µ/g. It is equivalent to a zero-loop calculation of

the self-energies,21,22

Σ(0)
n (p) = 2gn0, Σ(0)

an (p) = gn0 . (4)

This yields the (connected) propagators

G
(0)
n (p) = −〈ψ(p)ψ∗(p)〉c =

−iω − εp − gn0

ω2 + E2
p

,

G
(0)
an (p) = −〈ψ(p)ψ(−p)〉c =

gn0

ω2 + E2
p

,

(5)

where Ep = [εp(εp + 2gn0)]
1/2 is the Bogoliubov quasi-particle excitation energy.

When |p| is larger than the healing momentum pc = (2gmn0)
1/2, the spectrum

Ep ' εp + gn0 is particle-like, whereas it becomes sound-like for |p| � pc with a
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velocity c =
√

gn0/m. In the weak-coupling limit, n0 ' n̄ (n̄ is the mean boson

density) and pc can equivalently be defined as pc = (2gmn̄)1/2. In the Bogoliubov

approximation, the occurrence of a linear spectrum at low energy (which implies

superfluidity according to Landau’s criterion) is due to Σan(p = 0) being non-zero.

2.2. Infrared divergences and the Ginzburg scale

The lowest-order (one-loop) correction Σ(1) to the Bogoliubov result Σ(0) is

divergent for d ≤ 3. Retaining only the divergent part, we obtain

Σ(1)
n (p) ' Σ(1)

an (p) ' −2
g4n3

0

c3
Ad+1

(

p2 +
ω2

c2

)(d−3)/2

, (6)

if d < 3 and

Σ(1)
n (p) ' Σ(1)

an (p) ' −g
4n3

0

c3
A4 ln

(

p2c
p2 + ω2/c2

)

, (7)

if d = 3, where

Ad =















−21−dπ1−d/2

sin(πd/2)

Γ(d/2)

Γ(d− 1)
if d < 4 ,

1

8π2
if d = 4 .

(8)

We can estimate the characteristic (Ginzburg) momentum scale pG below which

the Bogoliubov approximation breaks down from the condition |Σ(1)
n (p)| ∼ Σ

(0)
n (p)

or |Σ(1)
an (p)| ∼ Σ

(0)
an (p) for |p| = pG and |ω| = cpG,

pG ∼















(Ad+1gmpc)
1/(3−d) if d < 3 ,

pc exp

(

− 1

A4gmpc

)

if d = 3 .

(9)

This result can be rewritten as

pG ∼















pc(Ad+1g̃
d/2)1/(3−d) if d < 3 ,

pc exp

(

− 1

A4

√
2g̃3/2

)

if d = 3 ,

(10)

where

g̃ = gmn̄1−2/d ∼
(

pc
n̄1/d

)2

, (11)

is the dimensionless coupling constant obtained by comparing the mean interaction

energy per particle gn̄ to the typical kinetic energy 1/mr̄2 where r̄ ∼ n̄−1/d is the

mean distance between particles.23 A superfluid is weakly correlated if g̃ � 1, i.e.

pG � pc � n̄1/d (the characteristic momentum scale n̄1/d does not however play

any role in the weak-coupling limit). In this case, the Bogoliubov theory applies
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to a large part of the spectrum where the dispersion is linear (i.e. |p| . pc) and

breaks down only at very small momenta |p| . pG � pc. When the dimensionless

coupling g̃ becomes of order unity, the three characteristic momentum scales pG ∼
pc ∼ n̄1/d become of the same order. The momentum range [pG, pc] where the

linear spectrum can be described by the Bogoliubov theory is then suppressed. We

expect the strong-coupling regime g̃ � 1 to be governed by a single characteristic

momentum scale, namely n̄1/d.a

2.3. Vanishing of the anomalous self-energy

The exact values of Σn(p = 0) and Σan(p = 0) can be obtained using the U(1)

symmetry of the action, i.e. the invariance under the field transformation ψ(x) →
eiθψ(x) and ψ∗(x) → e−iθψ∗(x). On the one hand, the self-energies satisfy the

Hugenholtz–Pines theorem,4

Σn(p = 0)− Σan(p = 0) = µ . (12)

On the other hand, the anomalous self-energy vanishes,

Σan(p = 0) = 0 . (13)

The last result was first proven by Nepomnyashchii and Nepomnyashchii.7,11,20 It

shows that the Bogoliubov theory, where the linear spectrum and the superfluidity

rely on a finite value of the anomalous self-energy, breaks down at low energy in

agreement with the conclusions drawn from perturbation theory (Sec. 2.2).

3. The non-perturbative RG

The NPRG enables us to circumvent the difficulties of perturbation theory and

derive the correlation functions in the low-energy limit.12–20 The strategy of the

NPRG is to build a family of theories indexed by a momentum scale k such that

fluctuations are smoothly taken into account as k is lowered from the microscopic

scale Λ down to 0.25,26 This is achieved by adding to the action (1) an infrared

regulator term

∆Sk[ψ
∗, ψ] =

∑

p

ψ∗(p)Rk(p)ψ(p) . (14)

The main quantity of interest is the so-called average effective action

Γk[φ
∗, φ] = −lnZk[J

∗, J ] +
∑

p

[J∗(p)φ(p) + c.c.]−∆Sk[φ
∗, φ] , (15)

aNote however that in the strong-coupling limit (i.e. n̄a3 � 1 in three dimensions, with a
the s-wave scattering length), the bound states of the interaction potential cannot be ignored.
As a result, stability is not guaranteed and the system is at best in a quasistable state. The
strong-coupling limit of interacting bosons can nevertheless be reached in the Bose–Hubbard
model.29 See Ref. 24.
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defined as a modified Legendre transform of −lnZk[J
∗, J ] which includes the

subtraction of ∆Sk[φ
∗, φ]. J denotes a complex external source that couples linearly

to the boson field ψ and φ(x) = 〈ψ(x)〉 is the superfluid order parameter. The

cut-off function Rk is chosen such that at the microscopic scale Λ it suppresses all

fluctuations, so that the mean-field approximation ΓΛ[φ
∗, φ] = S[φ∗, φ] becomes

exact. The effective action of the original model (1) is given by Γk=0 provided

that Rk=0 vanishes. For a generic value of k, the cut-off function Rk(p) suppresses

fluctuations with momentum |p| . k and frequency |ω| . ck but leaves those

with |p|, |ω|/c & k unaffected (c ≡ ck is the velocity of the Goldstone mode). The

dependence of the average effective action on k is given by Wetterich’s equation27

∂tΓk[φ
∗, φ] =

1

2
Tr
{

Ṙk

(

Γ
(2)
k [φ∗, φ] +Rk

)−1}
, (16)

where t = ln(k/Λ) and Ṙk = ∂tRk. Γ
(2)
k [φ∗, φ] denotes the second-order functional

derivative of Γk[φ]. In Fourier space, the trace involves a sum over momenta and

frequencies as well as the internal index of the φ field.

3.1. Derivative expansion and infrared behavior

Because of the regulator term ∆Sk, the vertices Γ
(n)
k (p1, . . . , pn) are smooth

functions of momenta and frequencies and can be expanded in powers of p2
i /k

2

and ω2
i /c

2k2. Thus if we are interested only in the low-energy properties, we can

use a derivative expansion of the average effective action.25,26 In the following, we

consider the ansatzb

Γk[φ
∗, φ] =

∫

dx

[

φ∗
(

ZC,k∂τ − VA,k∂
2
τ − ZA,k

2m
∇

2

)

φ+
λk
2
(n− n0,k)

2

]

, (17)

where n = |φ|2. n0,k denotes the condensate density in the equilibrium state. We

have introduced a second-order time derivative term. Although not present in the

initial average effective action ΓΛ, we shall see that this term plays a crucial role

when d ≤ 3.14,16

In a broken U(1) symmetry state with real order parameter φ =
√
n0, the normal

and anomalous self-energies are given by

Σk,n(p) = µ+ VA,kω
2 + (1− ZC,k)iω − (1− ZA,k)εp + λkn0,k ,

Σk,an(p) = λkn0,k .
(18)

These expressions imply the existence of a sound mode with velocity

ck =

(

ZA,k/2m

VA,k + Z2
C,k/2λkn0,k

)1/2

. (19)

bOne could consider a more general ansatz where ZA,k(n), ZC,k(n) and VA,k(n) are functions of
the condensate density n and the full effective potential Uk(n) is retained rather than expanded to
quadratic order about n0,k. In the superfluid phase, Uk(n) is convex but otherwise the conclusions
regarding the infrared behavior are unchanged.
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At the initial stage of the flow, ZA,Λ = ZC,Λ = 1, VA,Λ = 0, λΛ = g and n0,Λ = µ/g,

which reproduces the results of the Bogoliubov approximation. A crucial property

of the RG flow is that

λk ∼ k3−d (20)

vanishes with k when d ≤ 3. Equation (20) follows from the numerical solution of

the RG equations, but can also be anticipated from the expected singular behavior

of the longitudinal propagator.11

The parameters ZA,k, ZC,k and VA,k can be related to thermodynamic quantities

using Ward identities,5,13,18

ns,k = ZA,kn0,k = n̄k ,

VA,k = − 1

2n0,k

∂2Uk

∂µ2

∣

∣

∣

∣

n0,k

, (21)

ZC,k = − ∂2Uk

∂n∂µ

∣

∣

∣

∣

n0,k

= λk
dn0,k

dµ
,

where n̄k is the mean boson density and ns,k the superfluid density. Here we consider

the effective potential Uk as a function of the two independent variables n and µ.

The first equation in (21) states that in a Galilean invariant superfluid at zero

temperature, the superfluid density is given by the full density of the fluid.5 The

equations in (21) also imply that the Goldstone mode velocity ck coincides with

the macroscopic sound velocity,5,13,18 i.e.

dn̄k

dµ
=

n̄k

mc2k
. (22)

Since thermodynamic quantities, including the condensate “compressibility”

dn0,k/dµ should remain finite in the limit k → 0, we deduce from (21) that

ZC,k ∼ λk ∼ k3−d vanishes in the infrared limit, and

lim
k→0

ck = lim
k→0

(

ZA,k

2mVA,k

)1/2

. (23)

Both ZA,k = n̄k/n0,k and the macroscopic sound velocity ck being finite at k = 0,

VA,k (which vanishes in the Bogoliubov approximation) takes a non-zero value when

k → 0.

The suppression of ZC,k, together with a finite value of VA,k=0 shows that the

average effective action (17) exhibits a “relativistic” invariance in the infrared limit

and therefore becomes equivalent to that of the classical O(2) model in dimensions

d + 1. In the ordered phase, the coupling constant of this model vanishes as λk ∼
k4−(d+1),11 which agrees with (20). For k → 0, the existence of a linear spectrum is

due to the relativistic form of the average effective action (rather than a non-zero

value of λkn0,k as in the Bogoliubov approximation).
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To obtain the k = 0 limit of the propagators (at fixed p), one should in principle

stop the flow when k ∼
√

p2 + ω2/c2.18 Since thermodynamic quantities are not

expected to flow in the infrared limit, they can be approximated by their k =

0 values. Making use of the Ward identities (21), we deduce the exact infrared

behavior of the normal and anomalous propagators (at k = 0),18

Gn(p) = −n0mc
2

n̄

1

ω2 + c2p2
− mc2

n̄

dn0

dµ

iω

ω2 + c2p2
− 1

2
G‖(p) ,

Gan(p) =
n0mc

2

n̄

1

ω2 + c2p2
− 1

2
G‖(p) ,

(24)

where

G‖(p) =
1

2n0C(ω2 + c2p2)(3−d)/2
, (25)

is the propagator of the longitudinal fluctuations. The constant C follows from

the replacement λk → C(ω2 + c2p2)(3−d)/2. The leading terms in (24) agree with

the results of Gavoret and Nozières.5 The contribution of the diverging longitudinal

correlation function was first identified by Nepomnyashchii and Nepomnyashchii.8,9

3.2. RG flows

The conclusions of the preceding section can be obtained more rigorously from the

RG equation (16) satisfied by the average effective action. The flow of λk, ZC,k and

VA,k is shown in Fig. 1 for a two-dimensional system in the weak-coupling limit.

We clearly see that the Bogoliubov approximation breaks down at a characteristic

momentum scale pG ∼
√

(gm)3n̄. In the Goldstone regime k � pG, we find that

both λk and ZC,k vanish linearly with k in agreement with the conclusions of
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Fig. 1. (Color online) (Left panel) λk, ZC,k and VA,k versus ln(pG/k) where pG =
√

(gm)3n̄/4π
for n̄ = 0.01, 2mg = 0.1 and d = 2 [ln(pG/pc) ' −5.87]. The inset shows pG versus 2mg obtained
from the criterion VA,pG = VA,k=0/2 [the Green solid line is a fit to pG ∼ (2mg)3/2]. (Right

panel) Condensate density n0,k, superfluid density ns,k and Goldstone mode velocity ck versus
ln(pG/k).
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Sec. 3.1. Furthermore, VA,k takes a finite value in the limit k → 0 in agreement

with the limiting value (23) of the Goldstone mode velocity. Figure 1 also shows the

behavior of the condensate density n0,k, the superfluid density ns,k = ZA,kn0,k and

the velocity ck. Since ZA,k=0 ' 1.004, the mean boson density n̄k = ns,k is nearly

equal to the condensate density n0,k. Apart from a slight variation at the beginning

of the flow, n0,k, ns,k = ZA,kn0,k and ck do not change with k. In particular, they

are not sensitive to the Ginzburg scale pG. This result is quite remarkable for the

Goldstone mode velocity ck, whose expression (19) involves the parameters λk, ZC,k

and VA,k, which all strongly vary when k ∼ pG. These findings are a nice illustration

of the fact that the divergence of the longitudinal susceptibility does not affect local

gauge invariant quantities.13,18

4. Conclusion

Interacting bosons at zero temperature are characterized by two momentum scales:

the healing (or hydrodynamic) scale pc and the Ginzburg scale pG. pG sets the

scale at which the Bogoliubov approximation breaks down. For momenta |p| � pc,

it is possible to use a hydrodynamic description in terms of density and phase

variables. This description allows one to compute the correlation functions without

encountering infrared divergences.11,28 In this paper, we have reviewed another

approach, based on the NPRG, which enables one to describe the system at

all energy scales and yields the exact infrared behavior of the single-particle

propagator. A nice feature of the NPRG is that it can be used to study models

of strongly-correlated bosons such as the Bose–Hubbard model.29
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