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In systems with a spontaneously broken continuous symmetry, the perturbative loop expansion is plagued
by infrared divergences due to the coupling between transverse and longitudinal fluctuations. As a result, the
longitudinal susceptibility diverges and the self-energy becomes singular at low energy. We study the crossover
from the high-energy Gaussian regime, where perturbation theory remains valid, to the low-energy Goldstone
regime characterized by a diverging longitudinal susceptibility. We consider both the classical linear O (N ) model
and interacting bosons at zero temperature, using a variety of techniques: perturbation theory, hydrodynamic
approach (i.e., for bosons, Popov’s theory), large-N limit, and nonperturbative renormalization group. We
emphasize the essential role of the Ginzburg momentum scale pG, below which the perturbative approach breaks
down. Even though the action of (nonrelativistic) bosons includes a first-order time derivative term, we find
remarkable similarities in the weak-coupling limit between the classical O(N ) model and interacting bosons at
zero temperature.

DOI: 10.1103/PhysRevE.83.031120 PACS number(s): 05.30.Jp, 05.70.Fh

I. INTRODUCTION

In the context of critical phenomena, it is well known
that the Gaussian approximation breaks down in the vicinity
of a second-order phase transition (below the upper critical
dimension). When the Ginzburg criterion |T − Tc|/Tc � tG
is violated (Tc denotes the critical temperature and |T −
Tc|/Tc ∼ tG defines the Ginzburg temperature TG), the long-
distance behavior of the correlation functions cannot be
described by a Gaussian fluctuation theory, and more involved
techniques, such as the renormalization group, are required
(see e.g., Ref. [1]). At the critical point (T = Tc), one can
nevertheless distinguish two regimes in momentum space: a
high-energy Gaussian regime, where the Gaussian approxi-
mation remains essentially correct, and a low-energy critical
regime, where the correlation function of the order parameter
field shows a critical behavior characterized by a nonzero
anomalous dimension η. These two regimes are separated
by a characteristic momentum scale pG, which defines the
Ginzburg length ξG = p−1

G (see, e.g., Ref. [2]).
In systems with a broken continuous symmetry, the physics

remains nontrivial in the whole low-temperature phase due
to the presence of Goldstone modes, which implies that
correlations decay algebraically. The coupling between trans-
verse and longitudinal order parameter fluctuations leads to a
divergence of the longitudinal susceptibility [3–5]. Away from
the critical regime (i.e., at sufficiently low temperatures), one
can distinguish a high-energy Gaussian regime (|p| � pG),
where the Gaussian approximation remains correct, and a
low-energy Goldstone regime (|p| � pG) dominated by the
Goldstone modes and characterized by a divergence of the
longitudinal susceptibility. Note that the Ginzburg momentum
scale pG defined here is the same as the one signaling the
onset of the critical regime (in momentum space) when the
system is near the phase transition. For instance, for the (ϕ2)2

theory with O(N ) symmetry [classical O(N ) model], one finds
a transverse susceptibility χ⊥(p) ∼ 1/p2 for p → 0, while the

longitudinal susceptibility χ‖(p) ∼ 1/|p|4−d is also singular
in dimensions 2 < d � 4 (the divergence is logarithmic for
d = 4). At and below the lower critical dimension d−

c = 2,
transverse fluctuations lead to a suppression of long-range
order (Mermin-Wagner theorem). There is an analog phe-
nomenon in zero-temperature quantum systems with broken
continuous symmetry. When the Goldstone mode frequency
ω = c|p| vanishes linearly with momentum, the longitudinal
susceptibility χ‖(p,ω) ∼ 1/(ω2 − c2p2)(3−d)/2 has no pole-
like structure but a branch cut for d � 3, and the dynamical
structure factor exhibits a critical continuum above the usual
δ peak δ(ω − c|p|) due to the Goldstone mode [6–8].

Historically, the divergence of the longitudinal suscepti-
bility was encountered (although not recognized as such)
early on in interacting boson systems. The first attempts to
improve the Bogoliubov theory of superfluidity [9] were made
difficult by a singular perturbation theory plagued by infrared
divergences [10–13]. As realized later [14–16], the singular
perturbation theory is a direct consequence of the coupling
between transverse and longitudinal fluctuations.

In this paper, we study the crossover from the high-energy
Gaussian regime to the low-energy Goldstone regime in the
ordered phase, both for the classical O(N ) model and for
interacting bosons at zero temperature. Even though the action
of (nonrelativistic) bosons includes a first-order time derivative
term, which prevents a straightforward description in terms of
a classical O(2) model, we find remarkable similarities in the
weak-coupling limit between these two models. In contrast,
the strong-coupling limit of the O(N ) model, that is, the
critical regime near the phase transition, has no direct analog
in zero-temperature interacting boson systems.

The classical O(N ) model is studied in Sec. II, while
superfluid systems are discussed in Sec. III. First, we show
that the loop expansion about the mean-field solution is
plagued by infrared divergences and deduce a perturbative
estimate of the Ginzburg momentum scale pG (Secs. II A
and III A). Then we use symmetry arguments to derive the
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exact value of the self-energies at vanishing momentum (and
frequency) (Secs. II A 3 and III A 3). In the case of bosons, we
obtain Nepomnyashchii and Nepomnyashchii’s result about
the vanishing of the anomalous self-energy [14]. In Secs. II B
and III B, we show that the difficulties of perturbation theory
can be circumvented within a hydrodynamic approach (i.e.,
for bosons, Popov’s theory [17–19]) based on an amplitude-
direction representation of the order parameter field. This
yields the correlation functions in the hydrodynamic regime
defined by a characteristic momentum scale pc � pG. The
O(N ) model is solved in the large-N limit in Sec. II C. This
allows us to obtain the longitudinal correlation function in the
whole low-temperature phase, including the critical regime
in the vicinity of the phase transition. Finally, we show how
the nonperturbative renormalization group (NPRG) provides
a natural framework to understand the ordered phase of the
O(N ) model and the superfluid phase of interacting bosons
(Secs. II D and III C).

II. THE (ϕ2)2 THEORY AT LOW TEMPERATURES

We consider the (ϕ2)2 theory defined by the action

S[ϕ] =
∫

ddr

{
1

2
(∇ϕ)2 + r0

2
ϕ2 + u0

4!
(ϕ2)2

}
, (1)

where ϕ is an N -component real field and d is the space
dimension. We assume N � 2 and d > 2. The model is reg-
ularized by a ultraviolet momentum cutoff �. The connected
propagator

Gij (p) = 〈ϕi(p)ϕj (−p)〉 − 〈ϕi(p)〉〈ϕj (−p)〉 (2)

is related to the self-energy 	 by Dyson’s equation G−1 =
G−1

0 + 	, where

G0,ij (p) = δi,j

p2 + r0
(3)

is the bare propagator. In the low-temperature phase, if we
denote by ϕ0 = 〈ϕ(r)〉 the order parameter, the self-energy

	ij (p) = ϕ̂0,i ϕ̂0,j	l(p) + (δi,j − ϕ̂0,i ϕ̂0,j )	t (p)

= δi,j [	n(p) − 	an(p)] + 2ϕ̂0,i ϕ̂0,j	an(p) (4)

(ϕ̂0 = ϕ0/|ϕ0|) can be written in terms of its longitudinal (	l)
and transverse (	t ) parts. In the second line of Eq. (4), we have
introduced the “normal” (	n) and “anomalous” (	an) self-
energies. In the following, we assume that the order parameter
ϕ0 is along the direction (1,0, . . . ,0) so that

	ii(p) =
{

	n(p) + 	an(p) if i = 1,

	n(p) − 	an(p) if i 
= 1.
(5)

The anomalous self-energy 	an is related to the sponta-
neously broken O(N ) symmetry and vanishes in the high-
temperature phase. 	n and 	an are analogous to the normal
and anomalous self-energies that are usually introduced in the
theory of superfluidity [20,21]. For N = 2, we can introduce
the complex field

ψ(r) = 1√
2

[ϕ1(r) + iϕ2(r)]. (6)

Making use of the two-component field

�(r) =
(

ψ(r)
ψ∗(r)

)
, �†(r) = [ψ∗(r),ψ(r)], (7)

the two-point propagator becomes a 2 × 2 matrix in Fourier
space, whose inverse is given by(

p2 + r0 + 	n(p) 	an(p)

	an(p) p2 + r0 + 	n(p)

)
, (8)

and it bears some similarities to the single-particle propagator
in a superfluid (Sec. III).

A. Gaussian approximation and breakdown of
perturbation theory

Let us begin with a dimensional analysis of the action (1). If
we assign the scaling dimension 1 to momenta (i.e., [p] = 1),
the field has engineering dimension [ϕ] = d−2

2 , [r0] = 2, and
[u0] = 4 − d. We can then define two characteristic length
scales:

ξ ∼ |r0|−1/2,
(9)

ξG ∼ u
1/(d−4)
0 .

In the critical regime of the low-temperature phase (ξ � ξG),
ξG is the characteristic length scale associated with the onset
of critical fluctuations, while ξ ≡ ξJ is the Josephson length
separating the critical regime from a regime dominated by
Goldstone modes [22]. When critical fluctuations are taken
into account, one finds that ξJ diverges with a critical
exponent ν that differs from the mean-field value 1/2. At low
temperatures away from the critical regime (ξ � ξG), ξ ≡ ξc

corresponds to a correlation length for the gapped amplitude
fluctuations, while direction fluctuations are gapless due to
Goldstone’s theorem. The physical meaning of the Ginzburg
length ξG in this temperature range will become clear below.

1. Gaussian approximation

Within the mean-field (or saddle-point) approximation, one
finds ϕ0 = |ϕ0| = (−6r0/u0)1/2 in the low-temperature phase
(r0 < 0). In the Gaussian approximation, one expands the
action to quadratic order in the fluctuations ϕ − ϕ0 [1]. This
yields the (zero-loop) self-energy

	
(0)
ii (p) =

{−3r0 if i = 1,

−r0 if i 
= 1,
(10)

from which we obtain the longitudinal and transverse propa-
gators:

G
(0)
l (p) = G

(0)
11 (p) = 1

p2 + 2|r0| ,
(11)

G
(0)
t (p) = G

(0)
22 (p) = 1

p2
.

In agreement with Goldstone’s theorem, the transverse prop-
agator is gapless, whereas the longitudinal susceptibility
Gl(p = 0) = 1/|2r0| is finite. We shall see below that this
last property is an artifact of the Gaussian approximation.
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FIG. 1. (Color online) One-loop correction 	(1) to the self-energy.
Filled circles represent the bare interaction; zigzag lines, the order
parameter ϕ0; and solid lines, the connected propagator G(0).

2. One-loop correction and the Ginzburg momentum scale

The one-loop correction 	(1) to the self-energy is shown
diagrammatically in Fig. 1. While the first diagram is finite,
the second one gives a diverging contribution to 	11 in the
infrared limit p → 0 when d � 4. The divergence arises when
both internal lines correspond to transverse fluctuations, which
is possible only for 	11. Thus 	22 is finite at the one-loop level
and the normal and anomalous self-energies exhibit the same
divergence,

	(1)
n (p) � 	(1)

an (p) � −N − 1

36
u2

0ϕ
2
0

∫
q

1

q2(p + q)2
, (12)

where we use the notation
∫

q = ∫
ddq

(2π)d . The momentum
integration in (12) gives [23]

∫
q

1

q2(p + q)2
=

{
Ad |p|d−4 if d < 4,

A4 ln(�/|p|) if d = 4,
(13)

for |p| � �, where

Ad =
{− 21−dπ1−d/2

sin(πd/2)
�(d/2)
�(d−1) if d < 4,

1
8π2 if d = 4.

(14)

The one-loop correction (12) diverges for p → 0 and the per-
turbation expansion about the Gaussian approximation breaks
down. By comparing the one-loop correction to the zero-
loop result, that is, |	(1)

n (p)| ∼ 	(0)
n (p) or |	(1)

an (p)| ∼ 	(0)
an (p),

one can, nevertheless, extract a characteristic (Ginzburg)
momentum scale,

pG ∼
{

[Ad (N − 1)u0]1/(4−d) if d < 4,

� exp
( −1

A4(N−1)u0

)
if d = 4,

(15)

which was obtained previously from dimensional analysis
[Eq. (9)]. While the Gaussian or perturbative approach remains
valid for |p| � pG, the limit |p| � pG cannot be studied
perturbatively. We shall see in Sec. II B that the breakdown of
perturbation theory is due to the coupling between transverse
and longitudinal fluctuations.

3. Exact results for �n(p = 0) and �an(p = 0)

Although the one-loop correction 	(1)(p) diverges when
p → 0 for d � 4, it is nevertheless possible to obtain the exact
value of 	(p = 0) using the O(N ) symmetry of the model.

Let us consider the effective action

�[φ] = − ln Z[h] +
∫

ddr h · φ, (16)

defined as the Legendre transform of the free energy − ln Z[h],
where h is an external field that couples linearly to the ϕ field
and

φi(r) = δ ln Z[h]

δhi(r)
= 〈ϕi(r)〉h. (17)

The notation 〈· · ·〉h means that the average value is computed in
the presence of the external field h. �[φ] satisfies the equation
of state,

δ�[φ]

δφi(r)
= hi(r). (18)

At equilibrium and in the absence of external field, the
order parameter ϕ0 = 〈ϕ(r)〉 is obtained from the stationary
condition of the effective action,

δ�[φ]

δφi(r)

∣∣∣∣
φ(r)=ϕ0

= 0. (19)

�[φ] is the generating functional of the one-particle irreducible
vertices,

�
(n)
i1···in(r1, . . . ,rn) = δ(n)�[φ]

δφi1 (r1) · · · δφin(rn)

∣∣∣∣
φ(r)=ϕ0

. (20)

The latter fully determine the correlation functions. In partic-
ular, the two-point vertex �(2) is related to the propagator by
�(2) = G−1 = G−1

0 + 	.
The O(N ) invariance of action (1) implies that the effective

action �[φ] is invariant under a rotation of the field φ. Let us
consider the case N = 3 for simplicity (the following results
are easily extended to arbitrary N ). For an infinitesimal rotation
φ → φ + θn × φ about the axis n (n2 = 1 and θ → 0), the
invariance of the effective action yields∫

ddr
∑
ijk

δ�[φ]

δφi(r)
εijknjφk(r) = 0, (21)

where εijk is the totally antisymmetric tensor. Taking the first-
order functional derivative δ/δφl(r′) and setting φi(r) = δi,1ϕ0,
we obtain ∫

ddr
∑
i,j

�
(2)
il (r,r′)εij1nj = 0. (22)

With n = (0,0,1), this gives

�
(2)
22 (p = 0) = r0 + 	22(p = 0) = 0, (23)

where �(2)(p) denotes �(2)(p,−p). Equation (23) is a direct
consequence of Goldstone’s theorem. If we now take the
second-order functional derivative δ(2)/δφl(r′)δφm(r′′) of (21)
and set φi(r) = δi,1ϕ0, we obtain the Ward identity∑

i,j

[
�

(2)
im (r′,r′′)εij l + �

(2)
il (r′′,r′)εijm

]
nj

+
∫

ddr
∑
i,j

�
(3)
ilm(r,r′,r′′)εij1njϕ0 = 0. (24)

Choosing l = 2, m = 1, and j = 3, this gives

�
(2)
11 (r′,r′′) − �

(2)
22 (r′′,r′) − ϕ0

∫
ddr�

(3)
221(r,r′,r′′) = 0. (25)
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Γ(3)

Γ(4)

Γ(3)

Γ(3)

FIG. 2. Exact diagrammatic representation of the self-energy in
terms of the three- and four-leg vertices �(3) and �(4). Filled circles
represent the bare interaction; zigzag lines, the order parameter; and
solid lines, the (exact) connected propagator.

Integrating over r′ and r′′ and using (23), we deduce (in Fourier
space)

�
(3)
122(0,0,0) = �

(2)
11 (0,0)√

V ϕ0

, (26)

where V is the volume of the system.
Let us now consider the exact diagrammatic representation

of the self-energy shown in Fig. 2. We know from perturbation
theory that the third diagram in Fig. 2 is potentially dangerous
when the two internal lines correspond to transverse fluctua-
tions. We therefore write the self-energy 	11(p) as

	11(p) = 	̃11(p) − N − 1

6
√

V
u0ϕ0

∑
q

G22(q)G22(p + q)

×�
(3)
122(−p,−q,p + q), (27)

where 	̃11(p) denotes the part of the self-energy that is regular
in perturbation theory (i.e., the part that does not contain
pairs of lines corresponding to G22G22). If we assume that
the transverse propagator G22(q) is proportional to 1/q2 for
q → 0 (this result is shown in the following sections), the
integral

∫
q G22(q)2 is infrared divergent for d � 4. To obtain

a finite self-energy 	11(p = 0), one must require that

lim
q→0

�
(3)
122(0,−q,q) = �

(3)
122(0,0,0) = 0. (28)

The Ward identity (26), then implies �
(2)
11 (p = 0) = 0, so that

we finally obtain

	n(p = 0) = −r0 + 1
2 [�11(p = 0) + �22(p = 0)] = −r0,

	an(p = 0) = 1
2 [�11(p = 0) − �22(p = 0)] = 0. (29)

It may appear surprising that the anomalous self-energy,
which is related to the spontaneously broken O(N ) symmetry,
vanishes for p = 0. The equivalent property in interacting
boson systems is a fundamental result of the theory of
superfluidity (Sec. III).

B. Amplitude-direction representation

The difficulties of the perturbation theory in Sec. II A can
be avoided if one uses the “good” hydrodynamic variables
in the low-temperature phase, namely, the amplitude and the
direction of the ϕ field. We thus write

ϕ(r) = ρ(r)n(r), (30)

where n(r)2 = 1, and obtain the action

S[ρ,n] =
∫

ddr

{
1

2
(∇ρ)2 + ρ2

2
(∇n)2 + r0

2
ρ2 + u0

4!
ρ4

}
.

(31)

At the mean-field level, the amplitude takes the value ρ0 =
(−6r0/u0)1/2 in the low-temperature phase (r0 < 0). For low-
amplitude fluctuations ρ ′ = ρ − ρ0 (which is expected to be
the case at sufficiently low temperatures), we obtain the action

S[ρ ′,n] =
∫

ddr

{
1

2
(∇ρ ′)2 + |r0|ρ ′2 + ρ2

0

2
(∇n)2

}
(32)

and deduce that the amplitude fluctuations are gapped:

〈ρ ′(p)ρ ′(−p)〉 = 1

p2 + p2
c

. (33)

If we are interested only in momenta |p| � pc = √
2|r0|, to

first approximation we can ignore the higher-order terms in
ρ ′ that were neglected in (32), since they would only lead
to a finite renormalization of the coefficients of the action
S[ρ ′,n] [23].

Equation (32) shows that in the “hydrodynamic” regime
|p| � pc direction fluctuations are described by a nonlinear
σ model. It is convenient to use the standard parametrization
n = (σ,π ), where σ is the component of n along the direction
of order and π is an (N − 1)–component field (n2 = σ 2 +
π2 = 1). Integrating over σ , one obtains

S[ρ ′,π ] =
∫

ddr

{
1

2
(∇ρ ′)2 + |r0|ρ ′2 + ρ2

0

2
(∇π )2

}
(34)

for small transverse fluctuations π [24]. In this limit, we
can treat πi(r) as a variable varying between −∞ and ∞.
From (34), we deduce the propagator of the π field,

〈πi(p)πj (−p)〉 = δi,j

ρ2
0 p2

. (35)

Again, we note that the terms neglected in (34) would only
lead to a finite renormalization of the (bare) stiffness ρ2

0 of
the nonlinear σ model at sufficiently low temperatures. In
fact, Eq. (34) gives an exact description of the low-energy
behavior |p| � pc if one replaces ρ2

0 by the exact stiffness and
p−1

c = (2|r0|)−1/2 by the exact correlation length of the ρ ′ field.
We are now in a position to compute the longitudinal and

transverse propagators using

ϕl = ρσ = ρ
√

1 − π2 � ρ0 + ρ ′ − 1
2ρ0π

2,
(36)

ϕt = ρπ � ρ0π .

Since the long-distance physics is governed by transverse
fluctuations, we have retained in (36) the leading contributions
in π . Making use of (35), one readily obtains

Gt (p) � ρ2
0 〈πi(p)πi(−p)〉 = 1

p2
. (37)

The longitudinal propagator is given by

Gl(r) = 〈ρ ′(r)ρ ′(0)〉 + 1

4
ρ2

0〈π (r)2π(0)2〉c

= 〈ρ ′(r)ρ ′(0)〉 + N − 1

2ρ2
0

Gt (r)2, (38)
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where 〈· · ·〉c stands for the connected part of 〈· · ·〉. The second
line is obtained using Wick’s theorem. In Fourier space, this
gives

Gl(p) = 1

p2 + p2
c

+ N − 1

2ρ2
0

∫
q

1

q2(p + q)2
, (39)

where the momentum integral is given by (13) for |p| � �

and d � 4. By comparing the two terms in the rhs of (39), we
recover the Ginzburg momentum scale (15). For |p| � pG,
the longitudinal propagator Gl(p) � 1/(p2 + p2

c ) is dominated
by amplitude fluctuations and we reproduce the result of the
Gaussian approximation. In contrast, for |p| � pG, Gl(p) ∼
1/|p|4−d is dominated by direction fluctuations and diverges
for p → 0.

The divergence of the longitudinal propagator is a direct
consequence of the coupling between longitudinal and trans-
verse fluctuations [3]. In the long-distance limit, amplitude
fluctuations become frozen so that |ϕ| = ρ � ρ0. This implies
that the longitudinal and transverse components ϕl and
ϕt cannot be considered independently as in the Gaussian
approximation (Sec. II A) but satisfy the constraint ϕ2

l + ϕ2
t �

ρ2
0 . To leading order, ϕl � ρ0(1 − π2

2 )1/2 and Gl(r) ∼ Gt (r)2

[Eq. (38)], that is, Gl(p) ∼ 1/|p|4−d for d � 4 (the divergence
is logarithmic for d = 4).

Equations (37) and (39) imply that the self-energies must
satisfy

	11(p) = −r0 − p2 + C1|p|4−d ,
(40)

	22(p) = −r0 + C2p2

for p → 0 and d < 4, that is,

	n(p) = −r0 + C1

2
|p|4−d + O(p2),

(41)

	an(p) = C1

2
|p|4−d + O(p2).

For d = 4, one finds

	n(p) = −r0 + C1

ln(�/|p|) + O(p2),

(42)

	an(p) = C1

ln(�/|p|) + O(p2).

For p = 0, we reproduce the exact results of Sec. II A 3.
Equations (41) and (42) show that 	n(p) and 	an(p) contain
nonanalytic terms that are dominant for p → 0.

C. Large-N limit

In this section, we show that the previous results for the
longitudinal propagator are fully consistent with the large-
N limit of the (ϕ2)2 theory. Furthermore, the large-N limit
enables computation of the longitudinal propagator not only
at low temperatures but also in the critical regime near the
transition to the high-temperature (disordered) phase.

To obtain a meaningful large-N limit, we write the
coefficient of the (ϕ2)2 term in Eq. (1) as u0/N and take the
limit N → ∞ with u0 fixed. Following Ref. [23], we express
the partition function as

Z =
∫

D[ϕ,ρ,λ]e− ∫
dd r[ 1

2 (∇ϕ)2+ r0
2 ρ+ u0

4!N ρ2+i λ
2 (ϕ2−ρ)]. (43)

It can be easily verified that by integrating out λ and then
ρ, one recovers the original action S[ϕ]. If, instead, one first
integrates out ρ, one obtains

Z =
∫

D[ϕ,λ]e− ∫
dd r[ 1

2 (∇ϕ)2+i λ
2 ϕ2]+ 3N

2u0

∫
dd r(iλ−r0)2

. (44)

As in Sec. II B, it is convenient to split the ϕ field into a σ field
and an (N − 1)–component field π . The integration over the
π field gives∫

D[π]e− ∫
dd r[ 1

2 (∇π )2+i λ
2 π2] = (detg)(N−1)/2, (45)

where

g−1(r,r′) = −∇2δ(r − r′) + iλ(r)δ(r − r′) (46)

is the inverse propagator of the πi field in the fluctuating
λ field. We thus obtain the action

S[σ,λ] = 1

2

∫
ddr[(∇σ )2 + iλσ 2]

− 3N

2u0

∫
ddr(iλ − r0)2 + N − 1

2
Tr ln g−1. (47)

In the limit N → ∞, the action becomes proportional to N

(this is easily seen by rescaling the σ field, σ → √
Nσ ) and

the saddle-point approximation becomes exact. For uniform
fields σ (r) = σ and λ(r) = λ, the action is given by

1

V
S[σ,λ] = i

2
λσ 2 − 3N

2u0
(iλ − r0)2 + N

2V
Tr ln g−1 (48)

(we use N − 1 � N for large N ), with g−1(p) = p2 + iλ

in Fourier space. From (48), we deduce the saddle-point
equations

σm2 = 0,
(49)

σ 2 = 6N

u0
(m2 − r0) − N

∫
p

1

p2 + m2
,

where we use the notation m2 = iλ (iλ is real at the saddle
point). These equations show that the component σ of the ϕ

field that was singled out plays the role of an order parameter.
In the low-temperature phase, σ is nonzero and m = 0.

The propagator g(p) = 1/p2 is gapless, thus identifying the
πi fields as the N − 1 Goldstone modes associated with the
spontaneously broken O(N ) symmetry. From Eq. (49), we
deduce

σ 2 = −6N

u0
(r0 − r0c), (50)

where

r0c = −u0

6

∫
p

1

p2
= −u0

6

Kd

d − 2
�d−2 (51)

[with Kd = 21−dπ−d/2/�(d/2)] is the critical value of r0.
Since the saddle-point approximation is exact in the large-N
limit, the effective action �[σ,λ] is simply given by the action
S[σ,λ] [Eq. (47)] [25]. We deduce

�(2)(r − r′) =
(

�(2)
σσ (r − r′) �

(2)
σλ(r − r′)

�
(2)
λσ (r − r′) �

(2)
λλ (r − r′)

)
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=
(

−∇2δ(r − r′) iσ δ(r − r′)
iσ δ(r − r′) N

2 �(r − r′) + 3N
u0

δ(r − r′)

)
,

(52)

where

�(r − r′) = g(r − r′)g(r′ − r), (53)

and we use the notation �(2)
σσ (r − r′) = δ(2)�/δσ (r)δσ (r′), etc.

The two-point vertex �(2) is computed for the saddle-point
values of the fields σ and λ. In Fourier space, we obtain

�(2)(p) =
(

p2 iσ

iσ N
2 �(p) + 3N

u0

)
(54)

and the propagator G = �(2)−1 takes the form

G(p) = 1

det�(2)(p)

(
N
2 �(p) + 3N

u0
−iσ

−iσ p2

)
, (55)

with

det�(2)(p) = p2

[
N

2
�(p) + 3N

u0

]
+ σ 2 (56)

and �(p) = ∫
q g(q)g(p + q). Equation (56), together with the

small-p behavior of �(p) [Eq. (13)], leads us to introduce three
characteristic momentum scales:

pG =
(

u0Ad

6

)1/(4−d)

,

pJ =
(

2σ 2

NAd

)1/(d−2)

=
[

12

u0Ad

(r0c − r0)

]1/(d−2)

, (57)

pc =
(

u0σ
2

3N

)1/2

= [2(r0c − r0)]1/2.

For simplicity, we discuss only the case d < 4; equivalent
results for d = 4 are easily deduced. The Josephson length
ξJ = p−1

J —which separates the critical regime from the Gol-
stone regime (see below) [22]—diverges at the transition with
the critical exponent ν = 1/(d − 2), which also characterizes
the divergence of the correlation length in the high-temperature
phase [23]. The momentum scales (57) are not independent
since

p2
c = p2

G

(
pJ

pG

)d−2

. (58)

If we vary r0 with u0 fixed, we find that the three characteristic
scales (57) are equal when T = TG, where TG is defined by

r̄0(Tc − TG) = 1

2

(
u0Ad

6

)2/(4−d)

(59)

(see Fig. 3). We have assumed that r0 = r̄0(T − T0) (with T0

the mean-field transition temperature) and used r0c = r̄0(Tc −
T0). We recognize in Eq. (59) the Ginzburg criterion [2] so that
we can identify TG with the Ginzburg temperature separating
the critical regime near the transition from the noncritical
regime at sufficiently low temperatures.

FIG. 3. Characteristic momentum scales pG, pJ , and pc vs Tc −
T for fixed u0 [Eqs. (57) with r0 = r̄0(T − T0)].

In the critical regime (Tc − T � Tc − TG or pJ � pG),
using pJ � pc � pG, one finds the longitudinal correlation
function

Gσσ (p) =
⎧⎨
⎩

p2−d
J

|p|4−d if |p| � pJ ,

1
p2 if |p| � pJ ,

(60)

while in the noncritical regime (Tc − TG � Tc − T or pG �
pc),

Gσσ (p) =
⎧⎨
⎩

1
p2

c

(
pG

|p|
)4−d

if |p| � pG,

1
p2+p2

c
if |p| � pG.

(61)

In the noncritical regime, we recover the results in Sec. II B.
We find two characteristic momentum scales (pG and pc)
and two regimes for the behavior of Gσσ (p): (i) a Goldstone
regime (|p| � pG), characterized by a diverging longitudinal
propagator Gσσ (p) ∼ 1/|p|4−d , and (ii) a Gaussian (pertur-
bative) regime (|p| � pG) where Gσσ (p) � 1/(p2 + p2

c ). The
critical regime is characterized by two momentum scales (pJ

and pG) and three regimes for the behavior of Gσσ (p): (i) a
Goldstone regime (|p| � pJ ) with a diverging longitudinal
propagator; (ii) a critical regime (pJ � |p| � pG) where
Gσσ (p) ∼ 1/|p|2−η, with a vanishing anomalous dimension η

(η is O(1/N) in the large-N limit [23,26]); and (iii) a Gaussian
regime (pG � |p|) where Gσσ (p) � 1/p2. These results are
summarized in Fig. 4.

D. The nonperturbative renormalization group

1. The average effective action

The strategy of the NPRG is to build a family of theories
indexed by a momentum scale k such that fluctuations

FIG. 4. Momentum dependence of the longitudinal correlation
function Gσσ (p) in the critical and noncritical regimes of the low-
temperature phase as obtained from the large-N limit (2 < d < 4).
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are smoothly taken into account as k is lowered from the
microscopic scale � down to 0 [27,28]. This is achieved by
adding to action (1) the infrared regulator

�Sk[ϕ] = 1

2

∑
p,i

ϕi(−p)Rk(p)ϕi(p). (62)

The average effective action

�k[φ] = − ln Zk[J ] +
∫

ddr
∑

i

Jiφi − �Sk[φ] (63)

is defined as a modified Legendre transform of − ln Zk[J ]
that includes the subtraction of �Sk[φ]. Here Ji is an external
source that couples linearly to the ϕi field and φ(r) = 〈ϕ(r)〉J .
The cutoff function Rk is chosen such that, at the microscopic
scale �, it suppresses all fluctuations, so that the mean-field
approximation ��[φ] = S[φ] becomes exact. The effective
action of the original model (1) is given by �k=0 provided that
Rk=0 vanishes. For a generic value of k, the cutoff function
Rk(p) suppresses fluctuations with momentum |p| � k but
leaves unaffected those with |p| � k. The variation of the
average effective action with k is governed by Wetterich’s
equation [29]

∂t�k[φ] = 1
2 Tr

{
Ṙk

(
�

(2)
k [φ] + Rk

)−1}
, (64)

where t = ln(k/�) and Ṙk = ∂tRk . �
(2)
k [φ] denotes the

second-order functional derivative of �k[φ]. In Fourier space,
the trace involves a sum over momenta as well as the internal
index of the φ field.

Because of the regulator term �Sk , the vertices
�

(n)
k,i1···in(p1, . . . ,pn) are smooth functions of momenta and can

be expanded in powers of p2
i /k2. Thus if we are interested only

in the long-distance physics, we can use a derivative expansion
of the average effective action [27,28]. In the following, we
consider the ansatz

�k[φ] =
∫

ddr

{
Zk

2
(∇φ)2 + Uk(ρ)

}
. (65)

Because of the O(N ) symmetry, the effective potential Uk(ρ)
must be a function of the O(N ) invariant ρ = φ2/2. To further
simplify the analysis, we expand Uk(ρ) about its minimum
ρ0,k ,

Uk(ρ) = Uk(ρ0,k) + λk

2
(ρ − ρ0,k)2. (66)

We consider only the ordered phase where ρ0,k > 0.
In a broken symmetry state with order parameter φ =
(
√

2ρ0,k,0, . . . ,0), the two-point vertex is given by

�
(2)
k,ii(p) =

{
Zkp2 + 2λkρ0,k if i = 1,

Zkp2 if i 
= 1.
(67)

By inverting �
(2)
k , we obtain the longitudinal and transverse

parts of the propagator,

Gk,l(p) = 1

Zkp2 + 2λkρ0,k

,

(68)

Gk,t (p) = 1

Zkp2
.

Since these expressions are obtained from a derivative expan-
sion of the average effective action, they are valid only in
the limit |p| � k. In practice, however, one can retrieve the
momentum dependence of Gk=0(p) at finite p by stopping
the renormalization group (RG) flow at k ∼ |p|; that is,
Gk=0(p) � Gk∼|p|(p), where Gk∼|p|(p) can be approximated
by the result of the derivative expansion. It is possible to obtain
the full momentum dependence of the correlation functions
in a more rigorous and precise way, within the so-called
Blaizot–Mendez-Galain–Weschbor scheme [30–32], but this
requires a much more involved numerical analysis of the
RG equations.

The transverse propagator Gk,t (p) is gapless [Eq. (68)],
in agreement with Goldstone’s theorem, which is a mere
consequence of the O(N ) symmetry of the average effective
action (65). In contrast, the divergence of the longitudinal
susceptibility obtained in the previous sections suggests that
λk → 0 for k → 0 (limk→0 ρ0,k > 0 in the ordered phase).
We will see that this is indeed the result obtained from the
RG equations.

2. RG flows

It is convenient to work with the dimensionless variables

ρ̃0,k = Zkk
2−dρ0,k,

(69)
λ̃k = Z−2

k kd−4λk.

The flow equations for ρ̃0,k , λ̃k and Zk are obtained by inserting
the ansatz, (65) and (66), into the RG equation, (64). The
calculation is standard [27,28] and we only quote the final
result:

∂t ρ̃0,k = (2 − d − ηk)ρ̃0,k − 3

2
Ĩk,l − N − 1

2
Ĩk,t ,

∂t λ̃k = (d − 4 + 2ηk)λ̃k − λ̃2
k[9J̃k,ll(0) + (N − 1)J̃k,tt (0)],

ηk = 2λ̃2
kρ̃0,k[J̃ ′

k,lt (0) + J̃ ′
k,tl(0)], (70)

where ηk = −∂t ln Zk denotes the running anomalous dimen-
sion. With the cutoff function Rk(p) = Zk(p2 − k2)�(p2 −
k2) [33] (�(x) is the step function), the threshold func-
tions appearing in (70) can be calculated analytically (see
Appendix).

In Fig. 5 we show λ̃k , ηk , and ρ̃0,k vs −t = ln(�/k) for
d = 3 and N = 3. We fix λk=0 = u0/3 and vary r0 (i.e.,
ρ0,k=0 = −3r0/u0). When the system is in the ordered phase
away from the critical regime [solid (red) lines in Fig. 5],
that is, pc � pG, we see a crossover for k ∼ pG [tG =
ln(pG/�) � −4] from the Gaussian regime to the Goldstone
regime characterized by λ̃k � λ̃∗, ηk = 0 and ρ̃0,k ∼ k−1

(i.e., ρ0,k � ρ∗
0 = limk→0 ρ0,k). Since λ̃k � λ̃∗ and ηk = 0

imply λk ∼ k, we find that the longitudinal susceptibility
Gk,l(p) = 1/2λkρ0,k ∼ 1/k diverges when k → 0. Identifying
k with |p| to extract the momentum dependence (as explained
above), we recover the singular behavior Gk=0,l(p) ∼ 1/|p| in
three dimensions. More generally, for an arbitrary dimension,
one finds λk ∼ kελ̃∗ and Gk,l(p) ∼ 1/kε ≡ 1/|p|ε with ε =
4 − d. Thus in the RG approach, the divergence of the
longitudinal susceptibility is a consequence of the existence of
a fixed point for the dimensionless coupling constant λ̃k .
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FIG. 5. (Color online) λ̃k , ηk , and ρ̃0,k vs −t = ln(�/k) for d =
3, N = 3, � = 1, and λk=0 = 0.5. The solid (red) line corresponds
to ρ0,k=0 = 0.3 (pc � pG) and the filled (red) circles are obtained
from the analytic solution (73). The dashed (green) line corresponds
to ρ0,k=0 = 0.072147 (pc ∼ pG ∼ pJ ), and the dotted (blue) line to
ρ0,k=0 = 0.072146123 (pG � pJ ).

When the system is in the critical regime of the ordered
phase [dotted (blue) lines in Fig. 5], that is, pG � pJ , there is
a first crossover from the Gaussian regime to the critical regime
for k ∼ pG, followed by a second crossover to the Goldstone
regime for k ∼ pJ . In the critical regime, pG � k � pJ , λ̃k �
λ̃∗

cr, ηk � η∗, and ρ̃0,k � ρ̃∗
0 are nearly equal to their values

at the critical point between the ordered and the disordered
phases [34,35]. This gives Gk,t (p) � Gk,l(p) ∼ 1/k−η∗

p2, that
is, Gk=0,t (p) � Gk=0,l(p) ∼ 1/|p|2−η∗

if we identify k with |p|.

3. Analytical solution in the low-temperature phase

In the low-temperature phase (away from the critical
regime, i.e. when pc � pG), it is possible to obtain an
analytical solution of the flow equations for k � pc. In this
limit, the RG flow is dominated by the Goldstone modes and
the contribution of the longitudinal mode can be omitted. This

amounts to ignoring J̃k,ll(0), J̃ ′
k,lt (0) and J̃ ′

k,tl(0) in Eqs. (70),
which is justified by noting that λ̃kρ̃0,k becomes very large for
k � pc (λ̃kρ̃0,k ∼ k2−d for k → 0), where the hydrodynamic
scale pc is defined by 2λ̃pc

ρ̃0,pc
∼ 1. This gives ηk = 0 and

∂t λ̃k = −ελ̃k + 8
vd

d
(N − 1)λ̃2

k, (71)

where vd = [2d+1πd/2�(d/2)]−1. We have used the expression
of the threshold functions given in Appendix. Equation (71)
should be solved with the boundary condition λ̃k = λ̃c for
k = �0 � pc. For d < 4, we then find

λ̃k = ελ̃cp
ε
c

εkε + 8 vd

d
(N − 1)λ̃c(pε

c − kε)

� ελ̃cp
ε
c

εkε + 8 vd

d
(N − 1)λ̃cpε

c

(72)

for k � pc. The last expression can be rewritten in the more
insightful form

λ̃k = λ̃∗

1 + (k/pG)ε
, (73)

where

λ̃∗ = lim
k→0

λ̃k = εd

8vd (N − 1)
(74)

and

pG =
[

(N − 1)
8vdp

ε
c λ̃c

dε

]1/ε

=
[

(N − 1)
8vdλc

dεZ2
pc

]1/ε

. (75)

Equation (73) is in remarkable agreement with the numerical
solution of the flow equations (70) (Fig. 5). In the weak-
coupling limit pG � pc, we can ignore the renormalization
of Zk as well as that of λk between k = � and k = pc, and
approximate Zpc

� 1 and λc � λk=� = u0/3. We then recover
the expression

pG �
[

(N − 1)
8vdu0

3dε

]1/ε

(76)

of the Ginzburg momentum scale obtained in previous sec-
tions. A similar analysis can be made for the case d = 4.

III. INTERACTING BOSONS

We consider interacting bosons at zero temperature with
the (Euclidean) action

S =
∫

dx

[
ψ∗

(
∂τ − μ − ∇2

2m

)
ψ + g

2
(ψ∗ψ)2

]
, (77)

where ψ(x) is a bosonic (complex) field, x = (r,τ ), and∫
dx = ∫ β

0 dτ
∫

ddr . τ ∈ [0,β] is an imaginary time, β → ∞
the inverse temperature, and μ denotes the chemical potential.
The interaction is assumed to be local in space and the model
is regularized by a momentum cutoff �. We consider a space
dimension d > 1.
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Introducing the two-component field

�(p) =
(

ψ(p)

ψ∗(−p)

)
, �†(p) = (ψ∗(p),ψ(−p)), (78)

with p = (p,iω) and ω a Matsubara frequency, the one-particle
(connected) propagator becomes a 2 × 2 matrix whose inverse
in Fourier space is given by(

iω + μ − εp − 	n(p) −	an(p)

−	∗
an(p) −iω + μ − εp − 	n(−p)

)
, (79)

where 	n and 	an are the normal and anomalous self-
energies, respectively, and εp = p2/2m. If we choose the order
parameter 〈ψ(x)〉 = √

n0 to be real (with n0 the condensate
density), then the anomalous self-energy 	an(p) is real.

To make contact with the classical (ϕ2)2 theory with O(N )
symmetry studied in Sec. II, it is convenient to write the boson
field

ψ(x) = 1√
2

[ψ1(x) + iψ2(x)] (80)

in terms of two real fields ψ1 and ψ2 and consider the
(connected) propagator Gij (x,x ′) = 〈ψi(x)ψj (x ′)〉c. The
inverse propagator G−1

ij (p) reads(
εp − μ + 	11(p) ω + 	12(p)

−ω + 	21(p) εp − μ + 	22(p)

)
, (81)

where

	11(p) = 1

2
[	n(p) + 	n(−p)] + 	an(p),

	22(p) = 1

2
[	n(p) + 	n(−p)] − 	an(p),

	12(p) = i

2
[	n(p) − 	n(−p)], (82)

	21(p) = − i

2
[	n(p) − 	n(−p)],

when 	an(p) is real.

A. Perturbation theory and infrared divergences

1. Bogoliubov’s theory

The Bogoliubov approximation is a Gaussian fluctuation
theory about the saddle-point solution ψ(x) = √

n0 = √
μ/g

[i.e., ψ1(x) = √
2n0 and ψ2(x) = 0]. It is equivalent to a zero-

loop calculation of the self-energies,

	(0)
n (p) = 2gn0, 	(0)

an (p) = gn0, (83)

or, equivalently,

	
(0)
11 (p) = 3gn0, 	

(0)
22 (p) = gn0, 	

(0)
12 (p) = 0. (84)

This yields the (connected) propagators

G(0)
n (p) = −〈ψ(p)ψ∗(p)〉c = −iω − εp − gn0

ω2 + E2
p

,

(85)
G(0)

an (p) = −〈ψ(p)ψ(−p)〉c = gn0

ω2 + E2
p
,

where Ep = [εp(εp + 2gn0)]1/2 is the Bogoliubov quasipar-
ticle excitation energy. When |p| is larger than the healing
momentum pc = (2gmn0)1/2, the spectrum Ep � εp + gn0

is particle-like, whereas it becomes sound-like for |p| �
pc = √

2mc, with a velocity c = √
gn0/m. In the weak-

coupling limit, n0 � n̄ (n̄ is the mean boson density) and
pc can equivalently be defined as pc = (2gmn̄)1/2. In the
hydrodynamic regime |p| � pc,

G
(0)
11 (p) = εp

ω2 + c2p2
,

G
(0)
22 (p) = 2gn0

ω2 + c2p2
, (86)

G
(0)
12 (p) = − ω

ω2 + c2p2
.

Note that in the Bogoliubov approximation, the occurrence of
a linear spectrum at low energy (which implies superfluidity
according to Landau’s criterion) is due to 	an(0) being
nonzero.

2. Infrared divergences and the Ginzburg scale

Let us now consider the one-loop correction 	(1) to the
Bogoliubov result 	(0). For d � 3, the second diagram in
Fig. 1 gives a divergent contribution when the two internal
lines correspond to transverse fluctuations, which is possible
only for 	11. Thus 	22 is finite at the one-loop level and
the normal and anomalous self-energies exhibit the same
divergence,

	(1)
n (p) � 	(1)

an (p) � −1

2
g2n0

∫
q

G
(0)
22 (q)G(0)

22 (p + q), (87)

where we use the notation q = (q,iω′) and
∫
q

= ∫ ∞
−∞

dω′
2π

∫
q.

For small p, the main contribution to the integral in (87) comes
from momenta |q| � pc and frequencies |ω′| � cpc, so that we
can use (86) and obtain

	(1)
n (p) � 	(1)

an (p) � −2
g4n3

0

c3

∫
Q

1

Q2(Q + P)2
, (88)

where Q = (q,ω′/c) and P = (p,ω/c) are (d + 1)–
dimensional vectors. The momentum integral in (88) is
restricted by |Q| � pc and is given by (13), with � replaced by
pc, d by d + 1, and |p| by (p2 + ω2/c2)1/2. We can estimate the
characteristic (Ginzburg) momentum scale pG below which
the Bogoliubov approximation breaks down from the condition
|	(1)

n (p)| ∼ 	(0)
n (p) or |	(1)

an (p)| ∼ 	(0)
an (p) for |p| = pG and

|ω| = cpG,

pG ∼
{

(Ad+1gmpc)1/(3−d) if d < 3,

pc exp
( − 1

A4gmpc

)
if d = 3.

(89)

This result can be rewritten as

pG ∼
{

pc(Ad+1g̃
d/2)1/(3−d) if d < 3,

pc exp
(− 1

A4
√

2g̃3/2

)
if d = 3,

(90)
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where

g̃ = gmn̄1−2/d ∼
( pc

n̄1/d

)2
(91)

is the dimensionless coupling constant obtained by comparing
the mean interaction energy per particle gn̄ to the typical
kinetic energy 1/mr̄2, where r̄ ∼ n̄−1/d is the mean distance
between particles [36]. A superfluid is weakly correlated if
g̃ � 1, that is, pG � pc � n̄1/d (the characteristic momentum
scale n̄1/d does, however, not play any role in the weak-
coupling limit) [37]. In this case, the Bogoliubov theory
applies to a large part of the spectrum where the dispersion
is linear (i.e., |p| � pc) and breaks down only at very low
momenta |p| � pG � pc. In the next sections, we see that
the weakly correlated superfluid bears many similarities to
the ordered phase of the classical O(N ) model away from the
critical regime. When the dimensionless coupling g̃ becomes
of order unity, the three characteristic momentum scales
pG ∼ pc ∼ n̄1/d become of the same order. The momentum
range [pG,pc] where the linear spectrum can be described
by the Bogoliubov theory is then suppressed. We expect the
strong-coupling regime g̃ � 1 to be governed by a single
characteristic momentum scale, namely, n̄1/d .

3. Vanishing of the anomalous self-energy

The exact values of 	n(p = 0) and 	an(p = 0) can be
obtained using the U(1) symmetry of the action, that is, the
invariance under the field transformation ψ(x) → eiθψ(x) and
ψ∗(x) → e−iθψ∗(x) [14,38]. The derivation is similar to that
in Sec. II A 3. Let us consider the effective action

�[φ] = − ln Z[J1,J2] +
∫

dx[J1φ1 + J2φ2], (92)

where Ji is an external source that couples linearly to the boson
field ψi , and φi(x) = 〈ψi(x)〉J the superfluid order parameter.
The U(1) symmetry of the action implies that �[φ] is invariant
under a uniform rotation of the vector field (φ1(x),φ2(x))T .
For an infinitesimal rotation angle θ , this yields∫

dx
∑
i,j

δ�[φ]

δφi(x)
εijφj (x) = 0, (93)

where εij is the totally antisymmetric tensor. Taking the
functional derivative δ/δφl(y) and setting φi(x) = δi,1

√
2n0

leads to

�
(2)
2l (p = 0) = 0. (94)

For l = 2, Eq. (94) yields the Hugenholtz-Pines theorem [12]

�
(2)
22 (p = 0) = 	n(p = 0) − 	an(p = 0) − μ = 0. (95)

If we now take the second-order functional derivative
δ(2)/δφl(y)δφm(z) of (93) and set φi(x) = δi,1

√
2n0, we obtain

the Ward identity∑
i

�
(2)
im (y,z)εil +

∑
i

�
(2)
il (z,y)εim

−
√

2n0

∫
dx�

(3)
2lm(x,y,z) = 0. (96)

Integrating over y and z and setting l = 2 and m = 1, we
deduce (in Fourier space)

�
(3)
122(0,0,0) = 1√

βV

�
(2)
11 (0,0)√

2n0
, (97)

where we have used (95).
The self-energy 	11 can be written as

	11(p) = 	̃11(p) − g

√
n0

2βV

∑
q

G22(q)G22(p + q)

×�
(3)
122(−p,−q,p + q), (98)

where 	̃11(p) denotes the regular part of the self-energy (i.e.,
the part that does not contain pairs of lines corresponding
to G22G22). If we assume that the transverse propagator
G22(q) ∼ 1/(ω2 + c2q2) at low energies (this result is shown
in the following sections), the integral

∫
q
G22(q)2 is infrared

divergent for d � 3. To obtain a finite self-energy 	11(p = 0),
one must require that �

(3)
122(0,0,0) = 0. The Ward identity (97)

then implies �
(2)
11 (p = 0) = 0, and in turn,

	n(p = 0) = μ + 1
2

[
�

(2)
11 (p = 0) + �

(2)
22 (p = 0)

] = μ,
(99)

	an(p = 0) = 1
2

[
�

(2)
11 (p = 0) − �

(2)
22 (p = 0)

] = 0.

The vanishing of the anomalous self-energy 	an(p = 0) was
first proven by Nepomnyashchii and Nepomnyashchii [14].
To reconcile this result with the existence of a sound mode
with linear dispersion, the self-energies 	n(p) and 	an(p)
must necessarily contain nonanalytic terms in the limit p → 0
(Sec. III B 4).

B. Hydrodynamic approach

It was realized by Popov that the phase-density represen-
tation of the boson field ψ = √

neiθ leads to a theory free
of infrared divergences [16–18]. Popov’s theory bears some
similarities to the analysis of the (ϕ2)2 theory based on the
amplitude-direction representation (Sec. II B). In this section,
we show how the phase-density representation can be used
to obtain the infrared behavior of the propagators Gn(p) and
Gan(p) without encountering infrared divergences [19]. Our
approach is similar to that of Popov (with some technical
differences in Sec. III B 2).

1. Perturbative approach

In terms of the density and phase fields, the action reads

S[n,θ ] =
∫

dx

[
inθ̇ + n

2m
(∇θ )2 + (∇n)2

8mn
− μn + g

2
n2

]
.

(100)

At the saddle-point level, n(x) = n̄ = μ/g. Expanding the
action to second order in δn = n − n̄, θ̇ and ∇θ , we obtain

S[δn,θ ] =
∫

dx

[
iδnθ̇ + n̄

2m
(∇θ )2 + (∇n)2

8mn̄
+ g

2
(δn)2

]
.

(101)

The higher-order terms can be taken into account within
perturbation theory and only lead to finite corrections of the
coefficients of the hydrodynamic action (101) [18].
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We deduce the correlation functions of the hydrodynamic
variables,

Gnn(p) = 〈δn(p)δn(−p)〉 = n̄

m

p2

ω2 + E2
p
,

Gnθ (p) = 〈δn(p)θ (−p)〉 = − ω

ω2 + E2
p
, (102)

Gθθ (p) = 〈θ (p)θ (−p)〉 =
p2

4mn̄
+ g

ω2 + E2
p
,

where Ep is the Bogoliubov excitation energy defined in
Sec. III A 1. In the hydrodynamic regime |p| � pc = √

2gmn̄,

Gnn(p) = n̄

m

p2

ω2 + c2p2
,

Gnθ (p) = − ω

ω2 + c2p2
, (103)

Gθθ (p) = mc2

n̄

1

ω2 + c2p2
,

where c = √
gn̄/m is the Bogoliubov sound mode velocity

(pc = √
2mc).

2. Exact hydrodynamic description

In this section, we show that Eqs. (103) are exact in the low-
energy limit |p|,|ω|/c � pc provided that c is the exact sound
mode velocity and n̄ the actual mean density (which may differ
from μ/g). Let us consider the effective action �[n,θ ] defined
as the Legendre transform of the free energy − ln Z[Jn,Jθ ] (Jn

and Jθ are external sources linearly coupled to n and θ ) [39].
At zero temperature, �[n,θ ] inherits Galilean invariance from
the action (100). In a Galilean transformation (in imaginary
time), r′ = r + ivτ and τ ′ = τ , the fields transform as

n′(x ′) = n(x),
(104)

θ ′(x ′) = θ (x) − i

2
mv2τ − mv · r,

where x ′ = (r′,τ ′). n(x), ∇n(x), and i∂τ θ + 1
2m

(∇θ )2 are
Galilean invariant [but ∂τn(x) is not]. ∇2θ is also invariant but
is odd under time-reversal symmetry. Thus, to second order in
derivatives, the most general effective action compatible with
Galilean invariance and time-reversal symmetry reads

�[n,θ ] =
∫

dx

{
Y (n)

8m
(∇n)2 + U (n)

+
2∑

p=1

cp(n)

[
i∂τ θ + 1

2m
(∇θ )2

]p }
, (105)

up to an additive (field-independent) term. Y (n), U (n), and
cp(n) are arbitrary functions of n.

To determine cp(n), we now consider the system in the
presence of a fictitious vector potential (A0, A):

S[n,θ ; Aμ] =
∫

dx

[
in(∂τ θ − A0) + n

2m
(∇θ − A)2

+ (∇n)2

8mn
− μn + g

2
n2

]
. (106)

The action is invariant under the local U(1) transformation
θ → θ + α and Aμ → Aμ + ∂μα, where α(x) is an arbitrary
phase. By requiring that �[n,θ ; Aμ] = �[n,θ + α; Aμ + ∂μα]
shares the same invariance, we deduce

�[n,θ ; Aμ] =
∫

dx

{
Y (n)

8m
(∇n)2 + U (n)

+
2∑

p=1

cp(n)

[
i∂τ θ − iA0 + 1

2m
(∇θ − A)2

]p}
.

(107)

Noting that

n(x) = δ ln Z[Jn,Jθ ; Aμ]

iδA0(x)
= −δ�[n,θ ; Aμ]

iδA0(x)
, (108)

we must have c1(n) = n and cp(n) = 0 for p � 2. We conclude
that

�[n,θ ] =
∫

dx

{
Y (n)

8m
(∇n)2 + U (n) + n

[
i∂τ θ + (∇θ )2

2m

]}
(109)

to second order in derivatives.
From (109), we obtain the two-point vertex in constant

fields n(x) = n̄ and θ (x) = const (with n̄ the actual boson
density),

�(2)(p) =
(

�(2)
nn (p) �

(2)
nθ (p)

�
(2)
θn (p) �

(2)
θθ (p)

)

=
(

Y (n̄)
4m

p2 + U ′′(n̄) ω

−ω n̄
m

p2

)
. (110)

By inverting �(2)(p), we recover the propagators (103) in
the low-momentum limit |p| � pc = [4mU ′′(n̄)/Y (n̄)]1/2, but
with a sound mode velocity c given by

c =
√

n̄U ′′(n̄)

m
. (111)

Noting that the compressibility κ = n̄−2dn̄/dμ can also be
expressed as [40]

κ = 1

n̄2U ′′(n̄)
, (112)

we conclude that the Bogoliubov sound mode velocity c is
equal to the macroscopic sound velocity (mn̄κ)−1/2. Moreover,
since the superfluid density ns is defined by �

(2)
22 (p,0) = ns

m
p2

for p → 0 [8], we find that at zero temperature ns = n̄ is given
by the fluid density [13].

3. Normal and anomalous propagators

To compute the propagator of the ψ field, we write

ψ(x) =
√

n0 + δn(x)eiθ(x), (113)

where n0 = |〈ψ(x)〉|2 = |〈√n(x)eiθ(x)〉|2 is the condensate
density. For a weakly interacting superfluid, n0 � n̄, and we
expect the fluctuations δn to be small. Let us assume that the
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superfluid order parameter 〈ψ(x)〉 = √
n0 is real. Transverse

and longitudinal fluctuations are then expressed as

δψ2 =
√

2n0θ + · · · ,

δψ1 = δn√
2n0

−
√

n0

2
θ2 + · · · , (114)

where the ellipses stand for subleading contributions to the
low-energy behavior of the correlation functions. For the
transverse propagator, we obtain

G22(p) � 2n0Gθθ (p) = 2n0mc2

n̄

1

ω2 + c2p2
(115)

to leading order in the hydrodynamic regime, while

G12(p) � Gnθ (p) = − ω

ω2 + c2p2
. (116)

The longitudinal propagator is given by

G11(x) = 1

2n0
Gnn(x) + n0

2
〈θ (x)2θ (0)2〉c

= 1

2n0
Gnn(x) + n0Gθθ (x)2, (117)

where the second line is obtained using Wick’s theorem [which
is justified since the Goldstone (phase) mode is effectively
noninteracting in the hydrodynamic limit]. In Fourier space,

G11(p) = n̄

2mn0

p2

ω2 + c2p2
+ n0Gθθ � Gθθ (p), (118)

where

Gθθ � Gθθ (p) =
∫

q

Gθθ (q)Gθθ (p + q), (119)

with the dominant contribution to the integral coming from
momenta |q| � pc and frequencies |ω′|/c � pc. Using (13),
we find

Gθθ � Gθθ (p)

=

⎧⎪⎨
⎪⎩

Ad+1c
(

m
n̄

)2
(

p2 + ω2

c2

)(d−3)/2
if d < 3,

A4
2 c

(
m
n̄

)2
ln

(
p2

c

p2+ ω2

c2

)
if d = 3.

(120)

By comparing the two terms on the right-hand side of (118)
with |p| = pG and |ω| = cpG, we recover the Ginzburg
scale, (89). For |p|,|ω|/c � pG, the last term on the right-
hand side of (118) can be neglected and we reproduce
the result of the Bogoliubov theory (noting that n̄ � n0),
while for |p|,|ω|/c � pG, G11(p) ∼ 1/(ω2 + c2p2)(3−d)/2 is
dominated by phase fluctuations. The longitudinal suscepti-
bility G11(p,iω = 0) ∼ 1/|p|3−d for p → 0, in contrast to the
Bogoliubov approximation, G11(p,iω = 0) = 1/2mc2.

From these results, we deduce the hydrodynamic behavior
of the normal propagator,

Gn(p) = −1

2
[G11(p) − 2iG12(p) + G22(p)]

= −n0mc2

n̄

1

ω2 + c2p2
− iω

ω2 + c2p2
− 1

2
G11(p),

(121)

as well as that of the anomalous propagator,

Gan(p) = −1

2
[G11(p) − G22(p)]

= n0mc2

n̄

1

ω2 + c2p2
− 1

2
G11(p), (122)

where G11(p) is given by (118). The leading-order terms
in (121) and (122) agree with the results of Gavoret and
Nozières [13] and are exact (see the next section). The
contribution of the diverging longitudinal correlation function
was first identified by Nepomnyashchii and Nepomnyashchii
[15] and, later, in Refs. [19] and [41–44].

4. Normal and anomalous self-energies

To compute the self-energies 	n(p) and 	an(p), we use the
relations

	n(p) = G−1
0 (p) − Gn(−p)

Gn(p)Gn(−p) − Gan(p)2
,

(123)

	an(p) = Gan(p)

Gn(p)Gn(−p) − Gan(p)2
,

with

Gn(p)Gn(−p) − Gan(p)2

= G11(p)G22(p) + G12(p)2

= G22(p)

[
n0Gθθ � Gθθ (p) + n̄

2n0mc2

]
. (124)

Setting

Gn(p) � − 1
2G22(p),

(125)
Gan(p) � 1

2G22(p),

in the numerator of Eqs. (123), we obtain

	an(p) = 	n(p) − G−1
0 (p)

=
⎧⎨
⎩

n̄2

2Ad+1c4−dn0m2 (ω2 + c2p2)(3−d)/2 if d < 3,

n̄2

A4cn0m2

[
ln

( c2p2
c

ω2+c2p2

)]−1
if d = 3,

(126)

in the infrared limit |p|,|ω|/c � pG, where G−1
0 (p) = iω −

εp + μ. Equations (126) agree with the exact results (99) and
show that 	n(p) and 	an(p) are dominated by nonanalytic
terms for p → 0. This nonanalyticity reflects the singular
behavior of the longitudinal correlation function

G11(p) � 1

2	an(p)
(127)

in the low-energy limit.
It should be noted that the singularity of the self-energies is

crucial to reconcile the existence of a sound mode with a linear
dispersion and the vanishing of the anomalous self-energy
	an(p = 0) [14]. In the low-energy limit,

	an(p) = �	(p) + 	̃an(p),
(128)

	n(p) − G−1
0 (p) = �	(p) + 	̃n(p),

where �	(p) denotes the singular part (126), while 	̃n(p)
and 	̃an(p) are regular contributions of order p2,ω2. Using
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�	(p) � 	̃n(p) − G−1
0 (p),	̃an(p) for p → 0, by invert-

ing (79) we obtain

Gn(p) � − 1

2[	̃n(p) − 	̃an(p)]
,

(129)

Gan(p) � 1

2[	̃n(p) − 	̃an(p)]
.

Since both 	̃n(p) and 	̃an(p) can be expanded to order p2,ω2,
we conclude that Eqs. (129) predict the existence of a sound
mode with linear dispersion. Of course, Eqs. (129) are nothing
but our previous Eqs. (115) and (125).

In deriving the low-energy expression (126) of the self-
energies, we have assumed that the hydrodynamic descrip-
tion holds up to the momentum scale pc and ignored the
contribution of the nonhydrodynamic modes. In Popov’s
original approach [19], one introduces a momentum cut-
off p0 satisfying pG � p0 � pc. Since p0 � pG, modes
with momenta |p| � p0 can be taken into account within
standard perturbation theory (see Sec. III A). In contrast,
low-momentum modes |p| � p0 � pc are naturally treated
in the hydrodynamic approach discussed in this section. The
final results are independent of p0. The only difference from
our results (126) is that pc in the expression of 	an(p) for
d = 3 is replaced by a smaller momentum scale [45].

C. The nonperturbative renormalization group

The NPRG approach to zero-temperature interacting
bosons has been discussed in detail in Refs. [8,43,44], and
[46–51]. Our aim in this section is to briefly summarize the
main results [52] while emphasizing the common points with
the classical O(N ) model studied in Sec. II D.

To implement the NPRG, we add to the action an infrared
regulator term,

�Sk[ψ∗,ψ] =
∑

p

ψ∗(p)Rk(p)ψ(p), (130)

which suppresses fluctuations with momentum/frequency
below a characteristic scale k but leaves high-
momentum/frequency modes unaffected. The average
effective action is defined as

�k[φ∗,φ] = − ln Zk[J ∗,J ] +
∑

p

[J ∗(p)φ(p) + C.c.]

−�Sk[φ∗,φ], (131)

where φ(x) = 〈ψ(x)〉J is the superfluid order parameter. J

denotes a complex external source that couples linearly to the
boson field. �k satisfies the RG equation, (64). As in Sec. II D,
we choose the cutoff function Rk such that all fluctuations
are suppressed for k = � (so that ��[φ∗,φ] = S[φ∗,φ]) and
Rk=0(p) = 0. In practice, we take [8]

Rk(p) = ZA,k

2m

(
p2 + ω2

c2
0

)
r

(
p2

k2
+ ω2

k2c2
0

)
, (132)

where r(Y ) = (eY − 1)−1. The k-dependent variable ZA,k is
defined below. A natural choice for the velocity c0 would be the

actual (k-dependent) velocity of the Goldstone mode. In the
weak coupling limit, however, the Goldstone mode velocity
renormalizes only weakly and is well approximated by the
k-independent value c0 = √

gn̄/m.

1. Derivative expansion and infrared behavior

The infrared regulator ensures that the vertices are regular
functions of p for |p| � k and |ω|/c � k even when they
become singular functions of (p,iω) at k = 0 (c ≡ ck �
ck=0 is the velocity of the Goldstone mode). In the low-
energy limit |p|,|ω|/c � k, we can therefore use a derivative
expansion of the average effective action. We consider the
ansatz

�k[φ∗,φ] =
∫

dx

[
φ∗

(
ZC,k∂τ − VA,k∂

2
τ − ZA,k

2m
∇2

)
φ

+ λk

2
(n − n0,k)2

]
(133)

(n = |φ|2), which is similar to the one used in the classical
O(N ) model. n0,k denotes the condensate density in the
equilibrium state. Note that we have introduced a second-order
time derivative term. Although not present in the initial
average effective action ��, we shall see that this term
plays a crucial role when d � 3 [46,48]. As pointed out in
Sec. II D, the derivative expansion gives access only to the
low-energy limit |p|,|ω|/c � k of the correlation functions. It
is, however, possible to extract the p dependence of the cor-
relation functions by stopping the flow at k ∼ (p2 + ω2/c2)1/2

[8].
In a broken symmetry state with order parameter φ1 =√

2n0, φ2 = 0, the two-point vertex is given by

�
(2)
k,11(p) = VA,kω

2 + ZA,kεp + 2λkn0,k,

�
(2)
k,22(p) = VA,kω

2 + ZA,kεp, (134)

�
(2)
k,12(p) = ZC,kω.

Using (82), we then find

	k,n(p) = G−1
0 (p) + 1

2

[
�

(2)
k,11(p) + �

(2)
k,22(p)

] − i�
(2)
k,12(p)

= μ + VA,kω
2 + (1 − ZC,k)iω

− (1 − ZA,k)εp + λkn0,k (135)

and

	k,an(p) = 1
2

[
�

(2)
k,11(p) − �

(2)
k,22(p)

] = λkn0,k. (136)

At the initial stage of the flow, ZA,� = ZC,� = 1, VA,� = 0,
λ� = g, and n0,� = μ/g, which reproduces the results of the
Bogoliubov approximation.

Since the anomalous self-energy 	k=0,an(p) ∼ (ω2 +
c2p2)(3−d)/2 is singular for |p|,|ω|/c � pG and d � 3, we ex-
pect 	k,an(p = 0) ∼ k3−d for k � pG [given the equivalence
between k and (p2 + ω2/c2)1/2], that is,

λk ∼ k3−d . (137)

The hypothesis (137) is sufficient, when combined with
Galilean and gauge invariances, to obtain the exact infrared
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behavior of the propagator. Furthermore, we shall see that it is
internally consistent. In the domain of validity of the derivative
expansion, |p|2,|ω|2/c2 � k2 � k3−d for k → 0, one obtains
from (134)

Gk,11(p) = 1

2λkn0,k

,

Gk,22(p) = 1

VA,k

1

ω2 + c2
kp2

, (138)

Gk,12(p) = − ZC,k

2λkn0,kVA,k

ω

ω2 + c2
kp2

,

where

ck =
(

ZA,k/2m

VA,k + Z2
C,k/2λkn0,k

)1/2

(139)

is the velocity of the Goldstone mode. From (137) and (138),
we recover the divergence of the longitudinal susceptibility if
we identify k with (p2 + ω2/c2)1/2.

The parameters ZA,k , ZC,k , and VA,k can be related to
thermodynamic quantities using Ward identities [8,13,44,53],

ns,k = ZA,kn0,k = n̄k,

VA,k = − 1

2n0,k

∂2Uk

∂μ2

∣∣∣∣
n0,k

, (140)

ZC,k = − ∂2Uk

∂n∂μ

∣∣∣∣
n0,k

= λk

dn0,k

dμ
,

where n̄k is the mean boson density and ns,k the superfluid
density. Here we consider the effective potential Uk as a
function of the two independent variables n and μ. The first
of equations (140) states that in a Galilean invariant superfluid
at zero temperature, the superfluid density is given by the full
density of the fluid [13]. Equations (140) also imply that the
Goldstone mode velocity ck coincides with the macroscopic
sound velocity [8,13,44], that is,

dn̄k

dμ
= n̄k

mc2
k

. (141)

Since thermodynamic quantities, including the condensate
“compressibility” dn0,k/dμ should remain finite in the k → 0
limit, we deduce from (140) that ZC,k ∼ λk ∼ k3−d vanishes
in the infrared limit, and

lim
k→0

ck = lim
k→0

(
ZA,k

2mVA,k

)1/2

. (142)

Both ZA,k = n̄k/n0,k and the macroscopic sound velocity ck

being finite at k = 0, VA,k (which vanishes in the Bogoliubov
approximation) takes a nonzero value when k → 0.

The suppression of ZC,k , together with the finite value of
VA,k=0, shows that the effective action (133) exhibits a “rela-
tivistic” invariance in the infrared limit and therefore becomes
equivalent to that of the classical O(2) model in dimensions
d + 1 [54]. In the ordered phase, the coupling constant of
this model vanishes as λk ∼ k4−(d+1) (see Sec. II D), which
is nothing but our starting assumption (137). For k → 0, the
existence of a linear spectrum is due to the relativistic form
of the average effective action (rather than a nonzero value

of λkn0,k as in the Bogoliubov approximation). To neglect the
term ZC,k∂τ in the average effective action (133) (and therefore
obtain a relativistic symmetry), it is necessary that λk � k2 [8],
a condition that is related to the singularity of the self-energies
in the limit p → 0. Thus we recover the fact that singular
self-energies are crucial to obtain a linear spectrum despite the
vanishing of the anomalous self-energy.

To obtain the limit k = 0 of the propagators (at fixed p), one
should, in principle, stop the flow when k ∼ (p2 + ω2/c2)1/2.
Since thermodynamic quantities are not expected to flow in
the infrared limit, they can be approximated by their k = 0
values. As for the longitudinal correlation function, its value
is obtained from the replacement λk → C(ω2 + c2p2)(3−d)/2

(with C a constant). From (138) and (140), we then deduce
the exact infrared behavior of the normal and anomalous
propagators (at k = 0),

Gn(p) = −n0mc2

n̄

1

ω2 + c2p2

−mc2

n̄

dn0

dμ

iω

ω2 + c2p2
− 1

2
G11(p), (143)

Gan(p) = n0mc2

n̄

1

ω2 + c2p2
− 1

2
G11(p),

where

G11(p) = 1

2n0C(ω2 + c2p2)(3−d)/2
. (144)

The hydrodynamic approach in Sec. III B correctly pre-
dicts the leading terms in (143) but approximates dn0/dμ

by n̄/mc2. In contrast, it gives an explicit expres-
sion of the coefficient C in the longitudinal correlation
function (144).

2. Renormalization-group flows

The conclusions of the preceding section can be obtained
more rigorously from the RG equation satisfied by the average
effective action. The dimensionless variables

ñ0,k = k−dZC,kn0,k,

λ̃k = kdε−1
k Z−1

A,kZ
−1
C,kλk, (145)

ṼA,k = εkZA,kZ
−2
C,kVA,k

satisfy the RG equations

∂t ñ0,k = −(d + ηC,k)ñ0,k + 3

2
Ĩk,ll + 1

2
Ĩk,t t ,

∂t λ̃k = (d − 2 + ηA,k + ηC,k)λ̃k

− λ̃2
k[9J̃k;ll,ll(0) − 6J̃k;lt,lt (0) + J̃k;t t,t t (0)],

ηA,k = 2λ̃2
kñ0,k

∂

∂y
[J̃k;ll,t t (p) + J̃k;t t,ll(p) + 2J̃k;lt,lt (p)]p=0,

(146)
ηC,k = −2λ̃2

kñ0,k

∂

∂ω̃
[J̃k;t t,lt (p) − J̃k;lt,t t (p)

− 3J̃k;ll,lt (p) + 3J̃k;lt,ll(p)]p=0,

∂t ṼA,k = (2 − ηA,k + 2ηC,k)ṼA,k − 2λ̃2
kñ0,k

∂

∂ω̃2

× [J̃k;ll,t t (p) + J̃k;t t,ll(p) + 2J̃k;lt,lt (p)]p=0,
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FIG. 6. (Color online) λk , ZC,k , and VA,k vs ln(pG/k),
where pG = √

(gm)3n̄/4π for n̄ = 0.01, 2mg = 0.1, and d =
2 [ln(pG/pc) � −5.87]. Inset: pG vs 2mg obtained from the
criterion VA,pG

= VA,k=0/2. The solid (green) line is a fit
to pG ∼ (2mg)3/2.

where ηA,k = −∂t ln ZA,k , ηC,k = −∂t ln ZC,k , y = p2/k2, and
ω̃ = ωZC,k/ZA,kεk . The definition of the threshold functions
Ĩ and J̃ can be found in Ref. [8].

The flow of λk , ZC,k , and VA,k is shown in Fig. 6 for
a two-dimensional system in the weak-coupling limit. We
clearly see that the Bogoliubov approximation breaks down
at a characteristic momentum scale pG ∼

√
(gm)3n̄. In the

Goldstone regime k � pG, we find that both λk and ZC,k

vanish linearly with k, in agreement with the conclusions
in Sec. III C 1. Furthermore, VA,k takes a finite value in the
limit k → 0, in agreement with the limiting value (142) of
the Goldstone mode velocity. Figure 7 shows the behavior
of the condensate density n0,k , the superfluid density ns,k =
ZA,kn0,k , and the velocity ck . Since ZA,k=0 � 1.004, the mean
boson density n̄k = ns,k is nearly equal to the condensate
density n0,k . Apart from a slight variation at the beginning
of the flow, n0,k , ns,k = ZA,kn0,k , and ck do not change with k.
In particular, they are not sensitive to the Ginzburg scale pG.
This result is quite remarkable for the Goldstone mode velocity
ck , whose expression, (139), involves the parameters λk , ZC,k ,
and VA,k , which all strongly vary when k ∼ pG. These findings
are a nice illustration of the fact that the divergence of the
longitudinal susceptibility does not affect local gauge-invariant
quantities [8,44].

-10 -5 0 5 100.5

0.6

0.7

0.8

0.9

1

ln(pG/k)

n0,k/n0,k=Λ

ns,k/ns,k=Λ

ck/ck=Λ

FIG. 7. (Color online) Condensate density n0,k , superfluid density
ns,k , and Goldstone mode velocity ck vs ln(pG/k). Parameters are the
same as in Fig. 6.

3. Analytical results in the infrared limit

In the Goldstone regime k � pG, the physics is dominated
by the Goldstone (phase) mode and longitudinal fluctuations
can be ignored. If we take the regulator (132) with r(Y ) =
1−Y
Y

�(Y ), the threshold functions Ĩ and J̃ can be computed
exactly, and one obtains [8]

∂t ñ0,k = −(d + ηC,k)ñ0,k,

∂t λ̃k = (d − 2 + ηC,k)λ̃k + 8
vd+1

d + 1

λ̃2
k

Ṽ
1/2
A,k

,

(147)

ηC,k = −8
vd+1

d + 1

λ̃k

Ṽ
1/2
A,k

,

∂t ṼA,k = (2 + 2ηC,k)ṼA,k,

while ηA,k � 0. The first and last of these equations can be
rewritten as n0,k = n0,k=0 and VA,k = VA,k=0, respectively.
From (147), we deduce

∂t λ̃k = (1 − ε)λ̃k, ∂tηC,k = −εηC,k − η2
C,k, (148)

where ε = 3 − d. For d < 3, this yields λ̃k ∼ k(1 − ε) and

lim
k→0

ηC,k = −ε, (149)

that is, λk,ZC,k ∼ kε , in agreement with the numerical results
in Sec. III C 2 and the analysis in Sec. III C 1. The anisotropy
between time and space in the Goldstone regime k � pG

(where the average effective action takes a relativistic form)
can be eliminated by an appropriate rescaling of frequencies
of fields. This leads to an isotropic relativistic model with di-
mensionless condensate density and coupling constant defined
by [8]

ñ′
0,k =

√
ṼA,kñ0,k, λ̃′

k = λ̃k√
ṼA,k

. (150)

(see Fig. 8). λ̃′
k satisfies the RG equation

∂t λ̃
′
k = −ελ̃′

k + 8
vd+1

d + 1
λ̃′

k
2, (151)

which is nothing but the RG equation of the coupling constant
of the classical O(2) model in dimensions d + 1 [Eq. (71)].
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FIG. 8. (Color online) λ̃′
k vs ln(pG/k) [Eq. (150)]. Parameters are

the same as in Fig. 6.
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The corresponding fixed-point value can be deduced from (74)
[55]. In the infrared limit, we find

λk = k−d (ZA,kεk)3/2V
1/2
A,k λ̃′

k ∼ kελ̃′
k (152)

if we approximate ZA,k � ZA,k=0 and VA,k � VA,k=0. The
vanishing of λk ∼ kε and the divergence of the longitudinal
susceptibility is therefore the consequence of the existence of
a fixed point λ̃′

k
∗ for the coupling constant of the effective

(d + 1)–dimensional O(2) model that describes the Gold-
stone regime k � pG. To describe the entire hydrodynamic
regime k � pc, we should in principle relax the assumption
VA,k � VA,k=0, since VA,k strongly varies for k ∼ pG, which
makes the analytical solution of the RG equations much
more difficult. In Ref. [51], it was shown that Eq. (151) is
nevertheless in good agreement with the numerical solution
of the flow equations in the entire hydrodynamic regime.
We can then use (76) to obtain the Ginzburg momentum
scale

pG �
[

8vd+1g

(d + 1)ε

]1/ε

(153)

in the weak-coupling limit, which agrees with the results in
Secs. III A and III B.

IV. CONCLUSION

In conclusion, we have studied the classical linear O(N )
model and zero-temperature interacting bosons using a variety
of techniques: perturbation theory, hydrodynamic approach,
large-N limit, and NPRG. We have shown that in the weak-
coupling limit these two systems can be described along
similar lines. They are characterized by two momentum scales,
the hydrodynamic scale (or healing scale for bosons) pc and
the Ginzburg scale pG. For momenta |p| � pc, we can use
a hydrodynamic description in terms of the amplitude and
direction of the vector field ϕ in the O(N ) model or the density
and phase in interacting boson systems. The hydrodynamic
description allows us to derive the order parameter correlation
function without encountering infrared divergences. In the
Goldstone regime |p| � pG, amplitude (density) fluctuations
no longer play a role and both the transverse and the longitu-
dinal correlation functions are fully determined by direction
(phase) fluctuations. In this momentum range, the coupling
between transverse and longitudinal fluctuations leads to a
divergence of the longitudinal susceptibility and singular
self-energies. A direct computation of the order parameter
correlation function (without relying on the hydrodynamic
description) is possible, but one then has to solve the problem
of infrared divergences that appear in perturbation theory
when |p| � pG and signal the breakdown of the Gaussian
approximation. The NPRG provides a natural framework
for such a calculation. In the case of bosons, it shows
that in the Goldstone regime |p|,|ω|/c � pG, the system is
described by an effective action with relativistic invariance
similar to that of the (d + 1)–dimensional classical O(2)
model.

These strong similarities between the classical linear O(N )
model and zero-temperature interacting bosons disappear in

the strong-coupling limit. For the O(N ) model, this limit
corresponds to the critical regime near the phase transition,
which has no direct analog in zero-temperature interacting
boson systems. The only approach that one can hope to extend
to strongly correlated bosons is the NPRG. Recent progress in
that direction, based on the Bose-Hubbard model, is reported
in Ref. [56].
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APPENDIX : THRESHOLD FUNCTIONS

The threshold functions appearing in the NPRG equations
for the O(N ) model (Sec. II D) are defined by

Iα = −
∫

q
Ṙ(q)G2

α(q),

Jαβ(p) = −
∫

q
Ṙ(q)G2

α(q)Gβ(p + q), (A1)

J ′
αβ (p) = ∂p2Jαβ(p).

where α,β ∈ {l,t}. To alleviate the notations, we drop the k

index. In dimensionless form,

Ĩα = 2vd

∫ ∞

0
dyyd/2(ηr + 2yr ′)G̃2

α,

J̃αβ (0) = 2vd

∫ ∞

0
dyyd/2(ηr + 2yr ′)G̃2

αG̃β, (A2)

J̃ ′
αβ(0) = 4

vd

d

∫ ∞

0
dyyd/2{[ηr + (η + 4)yr ′ + 2y2r ′′]G̃2

α

− 2(1 + r + yr ′)(ηr + 2yr ′)G̃3
α

}
(1 + r + yr ′)G̃2

β,

where

G̃l = 1

y(1 + r) + 2λ̃ρ̃0
,

(A3)

G̃t = 1

y(1 + r)
,

and we have written the cutoff function as Rk(p) = Zkp2r(y),
with y = p2/k2 and r(y) a k independent function. For the
� cutoff function introduced in Sec. II D 2, r = 1−y

y
�(1 − y),

and the threshold functions can be computed analytically,

Ĩα = −8
vd

d

(
1 − η

d + 2

)
Ã2

α,

J̃αβ (0) = −8
vd

d

(
1 − η

d + 2

)
Ã2

αÃβ, (A4)

J̃ ′
αβ(0) = 4

vd

d
Ã2

l ,

where

Ãl = 1

1 + 2λ̃ρ̃0
, Ãt = 1. (A5)
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