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ARTICLE INFO ABSTRACT

We review the superfluid (SF) to Mott-insulator (MI) transition of cold atoms in optical lattices. The

PACS: experimental signatures of the transition are discussed and the random-phase-approximation (RPA)
05.30.Jp theory of the Bose-Hubbard model briefly described. We point out that the critical behavior at the
03.75.Lm transition, as well as the prediction by the RPA theory of a gapped mode (besides the Bogoliubov sound
73.43.Nq mode) in the SF phase, is difficult to understand from the Bogoliubov theory. On the other hand, these

findings appear to be intimately connected to the non-trivial infrared behavior of the SF phase as
Keywords: recently studied within the non-perturbative renormalization group.
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1. Introduction

The realization of ultracold atomic gases has opened a new
area of research in atomic physics. While early experiments have
focused on quantum phenomena associated to coherent matter
waves and superfluidity [1] (Bose-Einstein condensation, inter-
ference between condensates, atom lasers, quantized vortices and
vortex lattices, etc.), the emphasis has recently shifted towards
strongly correlated systems [2] following three major experi-
mental developments: the realization of quasi-1D/2D atomic
gases using strongly anisotropic confinement traps, the possibility
to tune the interaction strength by Feshbach resonances in the
atom-atom scattering amplitude [3], and the generation of strong
periodic potentials (analog to the crystalline lattice in solids) by
optical standing waves. Thus quantum phenomena typical of
condensed-matter physics have been observed in cold atomic
gases [4].

The Mott transition is one of the most remarkable quantum
phenomena due to strong correlations. Whereas in solids it
corresponds to a metal-insulator transition driven by the
Coulomb repulsion, in bosonic cold atoms in optical lattices it is
a transition between a superfluid (SF) and a Mott insulator (MI).
This quantum phase transition has been observed in 3D, 1D and
2D ultracold atomic gases [5-8].
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2. The SF to MI transition in cold atoms

Ultracold neutral bosonic atoms can be stored in magnetic
traps and cooled down to very low temperatures (~10nK) where
they condense into a SF below a critical temperature T.~100 pK.
The importance of the atom-atom interactions can be estimated
from the ratio between interaction and kinetic energies, y~n'/3q,
which can be expressed in terms of the particle density n and the
s-wave scattering length a. For Rb atoms in a magnetic trap
(n~10"cm=3, a~5nm), y is typically of order 0.02, which
corresponds to the weakly interacting dilute limit. The physical
properties of the gas (collective modes, vortices, etc.) are well
described by a macroscopic wave function satisfying the well-
known Gross-Pitaevskii equation [9].

The importance of interactions can be drastically enhanced by
subjecting the atomic gas to a periodic lattice potential, which can
be created by counter-propagating laser beams. The interference
between the two laser beams forms an optical standing wave
whose electric field induces a dipole moment in the atom and
leads to an interaction energy Vo.(r) = —%oc(cuL)|E(r)|2 with E(r)
the electric field at position r (o(w;) denotes the polarizability of
an atom). By using different arrangement of standing waves, one
can create various optical lattices. Three orthogonal standing
waves correspond to a 3D cubic lattice and an optical potential

Vou(r) = Vo[sin2 (kx) + sin? (ky) + sin? (k2)1, (1)

where k = 27/ is the wavevector of the laser light. V represents
the lattice potential depth and is directly related to the laser light
intensity. Provided the atoms remain in the lowest Bloch band of
the lattice (which requires Vj to be large enough wrt the single
atom recoil energy E, = hzkz/Zm), the interacting boson gas can
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be described by the Bose-Hubbard model [10,11] defined by the
Hamiltonian

——rZo/u/whc)—Z(u e + 2Zn(n.— . (2)

(i)

where l// is a creation/annihilation operator defined at the lattice
site i, f; = zp 1//,, and u denotes the chemical potential fixing the
average density of bosons. The on-site energy ¢; originates from
the magnetic trap that confines the atomic cloud as well as the
Gaussian shape of the laser beams. The hopping amplitude t and
the local repulsion U are given by [12]

SN

\/> kaE, <V°>3/4 (4)

so that the ratio t/U that controls the physics of the Bose-
Hubbard model can be tuned by varying V, i.e. the intensity of
the laser beams.

In the absence of the confining trap (& = const.), the phase
diagram of the Bose-Hubbard model can be obtained from simple
arguments. When the Kkinetic energy dominates (t/U>1),
the ground state is a SF. In the opposite limit of a strong lattice
potential (t/U<1), the interaction energy dominates and the
ground state is a MI when the average number of atoms per site is
integer. For non-integer fillings, the ground state is always a SF
irrespective of the strength of the interaction [10] (Fig. 1).
The situation is a little more subtle when the confining trap is
taken into account [11]. In a local density approximation, the trap
potential can be accounted for by a spatially varying chemical
potential y; = p — ¢; (taking ¢; = 0 at the center of the trap). When
moving from the trap center to the edge, the local chemical
potential decreases from u to zero. We then expect to observe all
phases which exist for a chemical potential below u (and the same
value of t/U) in the absence of the trap. If, for instance, the
chemical potential y falls into the n = 2 lob in Fig. 1, the ground
state of the gas will correspond to an n =2 Mott region at the
center of the trap surrounded by a SF region with spatially varying
density 1<n<2, an n =1 Mott region and, near the boundary of
the trap, a SF region with density n<1. The fact that the density
remains constant in the MI regions, while the local chemical
potential varies, is a consequence of the incompressibility of the
Mott phase (0n/ou = 0).

2R, (3)
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Fig. 1. Mean-field phase diagram of the Bose-Hubbard model showing the SF
phase and the MI phases at commensurate filling n. The dashed lines correspond to
a fixed density n = 0.2, 1 and 2. z denotes the number of nearest neighbors.

The SF-MI transition in cold atoms was first observed by
Greiner et al. in a 3D 87Rb gas [5,6]. It has since then also been
observed in 1D and 2D gases [7,8]. The transition is detected by
switching off simultaneously the magnetic (confining) and optical
potentials and allowing for typically t =10-20ms of free
expansion. The density distribution n(r, t) of the expanding cloud
is then obtained by absorption imaging. It can be expressed as
[13,6]

3
nr,t) = (%) \W(k)|2”k‘k:mr/ht' )

=Y em=m gy, (6)
ij
where w(K) is the Fourier transform of the Wannier function w(r)
corresponding to the lowest Bloch band of the optical lattice.
n(r,t) therefore prov1des a direct measure of the momentum
distribution ny = (w (k)zp(k)) In the SF state with a finite
condensate fraction f, the momentum distribution ny exhibits
sharp peaks—analogous to the Bragg peaks in the static structure
factor of a solid—at the reciprocal lattice wavevectors G.
(In a homogeneous SF, f=mng/n with ng = limy_ Wi =
|<1/}(l( = 0))|>/V the condensate density.) In the MI where (1/3;-"1/}())
decays exponentially over a few lattice spacings, the “Bragg
peaks” are significantly suppressed and broadened [12]. Thus, the
SF phase is signaled by a high-contrast interference pattern, as
expected for a periodic array of coherent matter-wave sources [5].
Recent measurements of the momentum distribution function ny
in the Mott phase of a 2D atomic gas [8] (see also Ref. [6]) are in
excellent agreement (with no adjustable parameter) with the
random-phase-approximation (RPA) theory [14] discussed in the
next section. From the momentum distribution profile, it is also
possible to extract a so-called “coherent fraction” representing the
weight of the sharp peaks and closely related to the condensate
fraction f, and thus locate the position of the SF-MI transition [8].

Using an experimental technique based on spatially selective
microwave transitions and spin-changing collisions, Folling et al.
have directly observed the formation of the spatial shell structure
in the SF-MI transition [15,16]. This technique enables to record
the spatial distribution of lattice sites with different filling factors.
As the system evolves from a SF to a M], it reveals the formation of
a distinct shell structure, in agreement with the qualitative
discussion given above, and therefore definitively shows the
existence of incompressible (Mott) phases.

Another trademark of the MI is the existence of a gap in the
excitation spectrum whereas the SF phase is characterized by a
gapless (Bogoliubov) sound mode. Deep in the MI the gap is given
by U, and should vanish at the MI-SF transition. In the early
experiment of Greiner et al. [5], it was shown that the response of
the MI to a potential gradient is compatible with the expected
gapped spectrum. In principle, the excitation spectrum can be
measured by two-photon Bragg spectroscopy. This technique has
allowed to observe the gapless mode of a SF atomic gas [17], but
for a gas in an optical lattice no convincing result has been
obtained so far [7].

3. RPA theory... and beyond

Several theoretical approaches have been used to study the
Bose-Hubbard model: mean-field theory [10,18,19], RPA
[14,20-22], strong-coupling expansion [23], numerical calcula-
tions (quantum Monte Carlo) [24] or variational approach [25]. In
this section, we discuss the RPA theory of the SF-MI transition as
well as some open questions related to our understanding of
superfluidity.
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3.1. RPA theory

The RPA is based on the mean-field decoupling of the hopping
term in (2),

IAHI% - lﬂpj% + ¢7% - <f’:f¢j (7)

(from now on we ignore the confining trap), where ¢; = (1/3,-).
Taking ¢; = ¢, as a uniform order parameter, the Hamiltonian (2)
becomes a sum of decoupled one-site Hamiltonians which can be
solved exactly [26]. A finite value of the order parameter (¢, #0)
signals superfluidity. The resulting phase diagram in the (U/t, u/t)
plane in shown in Fig. 1.

It is possible to go beyond this mean-field approximation in
the following way. In the presence of a (fictitious) external source
ji that couples to the boson operator ;, the (imaginary-time)
action reads

B
Srpa = Sioc — /0 dT{Z[lﬁfiﬂ/’j + Qi tijth; — bitijd;l
ij

+Z[ﬁ‘//i +Wi*fi]}v (8)

with Sj,c the local part (t=0) and = 1/T. To eliminate the
dependence of the partition function Z[j*, ] on the external source,
it is convenient to perform a Legendre transform to obtain
the Gibbs free energy

i
I9". 91 = Mol 61— [ ar S ity 9)
ij

where I'i,[¢", ¢] is the local part (t = 0). The value of the order
parameter ¢, = (J;)j_j—o follows from the equation of state
o' /0¢i(D)]y, = 61 /99;(D)ly, = 0 and determines the condensate
density ng = o> [27]. The Green function is obtained from
the second-order functional derivative of Eq. (9) [28]. In the RPA, it
takes the simple form

G 1(Q.imn: o) = Gioe(in: o) + L), (10)

where t(q) is the Fourier transform of the hopping amplitude t;;.
Eq. (10) is typical of a strong-coupling expansion in t/U and
becomes exact in the limit t — 0 [14,23]. The local Green function
Gioc(itn; ¢pg) should be calculated in the presence of an external
source j*,j such that () = ¢,. Note that in the SF phase G and Gy
are 2 x 2 matrices with both normal (e.g. (/")) and anomalous
(e.g. (Y)) components.

Eq. (10) is the central result of the RPA theory of the
Bose-Hubbard model. Superfluidity sets in when the boson
propagator becomes gapless, i.e. Gi.(iw, = 0) + t(q = 0) = 0. The
resulting mean-field phase diagram is qualitatively correct in 3D
and 2D (Fig. 1). Eq. (10) can also be used to obtain the momentum
distribution ny [14]. In the MI, the agreement with the experi-
mental results is remarkable [6,8]. The excitation spectrum is
obtained from the poles of the Green function G(q, ® + i0%; ¢,). In
the MI, one finds two gapped modes as shown in Fig. 2 for a 2D
system. In the SF phase near the MI-SF transition, there are four
excitation modes, two of which being gapless (sound modes) for
q — 0[14,20-22,29]. In the limit U — 0 and for a large number of
bosons per site, the two gapped modes disappear and the
RPA theory reproduces the result of the Bogoliubov theory [22].
These findings suggest that the Bogoliubov theory might not be
appropriate, even on a qualitative level, to describe the SF phase
near the SF-MI transition.

r M X r

Fig. 2. Excitation spectrum in 2D. Top: n =1 MI (U/t = 30); bottom: SF phase
(U/t = 20) [14]. The dotted lines show the result obtained from the Bogoliubov
theory (which predicts the phase to be SF). [I" = (0,0), M = (7, ) and X = (7, 0).]

3.2. Critical behavior at the SF-MI transition

The limitations of the Bogoliubov theory are also apparent
when one considers the critical behavior at the SF-MI transition.
The critical theory can be studied from the action [14,26]

B
s:/ d‘c/ddr[Z|V1//|2 oo
0
+ VIO ? + roly? + uly[*]. (11)

The coefficient Z; is related to the inverse of the slope of the
transition line in Fig. 1 and vanishes at the tip of the Mott lob. The
MI-SF transition is then in the universality class of the XY model
in d+1 dimensions with a dynamic critical exponent z = 1. It
occurs at a fixed density and is accompanied by a vanishing of the
excitation gap of the MI. Away from the tip of the Mott lob, Z; is
non-zero and the transition has a dynamic critical exponent z = 2
[10]. The density is not conserved and only one of the two modes
of the MI becomes gapless (i.e. the gap of the MI does not vanish
at the transition). Not only does the Bogoliubov theory always
predict the system to be SF (irrespective of the strength of the
interactions), but it also corresponds to Z; =1 and V =0 and
therefore appears to be a rather poor starting point to understand
the SF-MI behavior.

3.3. Infrared behavior in the SF phase

The Bogoliubov theory provides a microscopic explanation of
superfluidity and many of its predictions have been confirmed in
ultracold atomic gases. Nevertheless a clear understanding of the
infrared behavior of interacting bosons at zero temperature has
remained a challenging theoretical issue until very recently. Early
attempts to go beyond the Bogoliubov theory have revealed a
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singular perturbation expansion plagued by infrared divergences
due to the presence of the Bose-Einstein condensate and the
Goldstone mode [30]. These divergences cancel in most physical
quantities but lead to a vanishing of the anomalous self-energy
212(q) in the limit q = (q, w) — 0 although the linear spectrum
and therefore the superfluidity are preserved [31]. This observa-
tion seriously calls into question the validity of the Bogoliubov
theory where the linear spectrum relies on a finite value of X',
(Z12(q9) = 4mang/m). The physical origin of the vanishing of the
anomalous self-energy is the divergence of the longitudinal
correlation function which is driven by the gapless (transverse)
Goldstone mode—a general phenomenon in systems with a
continuous broken symmetry [32]. The coupling between long-
itudinal and transverse fluctuations is not taken into account in
Gaussian fluctuation theories such as the Bogoliubov theory.

The infrared behavior of zero-temperature Bose systems is now
well understood in the framework of the non-perturbative
renormalization group (NPRG) [33,34] (see also Ref. [35]). The
NPRG approach is based on an exact flow equation satisfied by
the Gibbs free energy I'[¢", ¢] (see Section 3.1) as fluctuations are
gradually integrated out beyond the Bogoliubov theory. It reveals
that the Bogoliubov form of the action is essentially modified in
the RG process when the spatial dimension d<3. In the RG
language, this means that the Bogoliubov fixed point is unstable
when d<3. The new fixed point is characterized by a “relativistic”
action, i.e. an action of the type (11) with Z; =0 and V#0
whereas the Bogoliubov fixed point corresponds to Z; >0 and
V =0. (In practice the Bogoliubov theory remains valid in 3D
systems as the RG flow is only logarithmic so that the new fixed
point is not accessible in any finite size system.)

It is quite remarkable that a proper treatment of a Bose gas in a
continuum model (i.e.with no underlying periodic lattice) yields
a low-energy action similar to that obtained from the Bose-
Hubbard model near the MI-SF transition. In other words, the
critical behavior at the MI-SF transition appears to be intimately
connected to the non-trivial infrared behavior of the SF phase.
A generalization of the NPRG technique to the lattice case should
shed light on this issue.

4. Conclusion

Ultracold atomic gases allow us to study strongly correlated
systems in an unprecedentedly controlled manner. Not only do we
have a detailed microscopic understanding of the Hamiltonian of
the system realized in the laboratory, but the microscopic
parameters that control the physics can be tuned by varying
external fields. Hamiltonians typical of strongly correlated
systems (e.g. (Bose-)Hubbard models) can be simulated in cold
atomic gases, and new systems—with no equivalent in con-
densed-matter physics—can also be created [2].

A great success in the study of cold atoms has been the
observation of the SF-MI transition. In this paper, we have
reviewed the main experimental signatures of the SF and MI
phases. The RPA theory of the Bose-Hubbard model provides a
qualitative and sometimes quantitative description of the system.
What has not been observed so far is the excitation spectrum and
the critical behavior at the transition. Whether the experimental
difficulties and the finite size (as well as the non-uniform density)
of the atomic clouds will allow these observations is an open
question.

From a more theoretical side, we have pointed out the
difficulty to understand the SF phase near the SF-MI transition,
as well as the critical behavior at the transition, from the
Bogoliubov theory. On the other hand, the critical behavior

appears to be intimately connected to the non-trivial infrared
behavior of the SF phase as recently studied within the NPRG
[33,34].
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