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In a Bose superfluid, the coupling between transverse �phase� and longitudinal fluctuations leads to a
divergence of the longitudinal correlation function, which is responsible for the occurrence of infrared diver-
gences in the perturbation theory and the breakdown of the Bogoliubov approximation. We report a nonper-
turbative renormalization-group calculation of the one-particle Green’s function of an interacting boson system
at zero temperature. We find two regimes separated by a characteristic momentum scale kG �“Ginzburg” scale�.
While the Bogoliubov approximation is valid at large momenta and energies, �p� , ��� /c�kG �with c as the
velocity of the Bogoliubov sound mode�, in the infrared �hydrodynamic� regime, �p� , ��� /c�kG, the normal
and anomalous self-energies exhibit singularities reflecting the divergence of the longitudinal correlation func-
tion. In particular, we find that the anomalous self-energy agrees with the Bogoliubov result �an�p ,��
�const at high energies and behaves as �an�p ,����c2p2−�2��d−3�/2 in the infrared regime �with d as the space
dimension�, in agreement with the Nepomnyashchii identity �an�0,0�=0 and the predictions of Popov’s hy-
drodynamic theory. We argue that the hydrodynamic limit of the one-particle Green’s function is fully deter-
mined by the knowledge of the exponent 3−d characterizing the divergence of the longitudinal susceptibility
and the Ward identities associated to gauge and Galilean invariances. The infrared singularity of �an�p ,��
leads to a continuum of excitations �coexisting with the sound mode� which shows up in the one-particle
spectral function.
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I. INTRODUCTION

Following the success of the Bogoliubov theory �1� in
providing a microscopic explanation of superfluidity, much
theoretical work has been devoted to the understanding of
the infrared behavior and the calculation of the one-particle
Green’s function of a Bose superfluid �2�. Early attempts to
improve the Bogoliubov approximation encountered difficul-
ties due to a singular perturbation theory plagued by infrared
divergences �3–6�. Although these divergences cancel out in
local gauge invariant physical quantities �condensate density,
Goldstone mode velocity, etc.�, they do have a definite physi-
cal origin: they reflect the divergence of the longitudinal sus-
ceptibility which is induced by the coupling between trans-
verse �phase� and longitudinal fluctuations. This is a general
phenomenon �7� in systems with a continuous broken sym-
metry as discussed at the end of this section.

Using field-theoretical diagrammatic methods to handle
the infrared divergences of the perturbation theory, Nepom-
nyashchii and Nepomnyashchii �NN� showed that one of the
fundamental quantities of a Bose superfluid, the anomalous
self-energy �an�p�, vanishes in the limit p= �p ,��→0 in di-
mension d�3 even though the low-energy mode remains
phononlike with a linear spectrum �8–10�. This exact result
shows that the Bogoliubov approximation, where the linear
spectrum and the superfluidity rely on a finite value of the
anomalous self-energy, breaks down at low energy.

An alternative approach to superfluidity, based on a
phase-amplitude representation of the boson field, has been
proposed by Popov �11�. This approach is free of infrared
singularity but restricted to the �low-momentum� hydrody-
namic regime and therefore does not allow us to study the
high-momentum or high-frequency regime where the Bogo-
liubov approximation is expected to be valid. Nevertheless,

the theory of Popov and Seredniakov �12� agrees with the
asymptotic low-energy behavior of �an�p� obtained by NN
�8–10�. Furthermore, the expression of the anomalous self-
energy obtained by NN and Popov in the low-energy limit
yields a continuum of �one-particle� excitations coexisting
with the Bogoliubov sound mode �13�, in marked contrast
with the Bogoliubov theory where the sound mode is the sole
excitation at low energy.

The instability of the Bogoliubov fixed point in dimension
d�3 toward a different fixed point characterized by the di-
vergence of the longitudinal susceptibility has been con-
firmed by Castellani and co-workers �14,15�. Using the Ward
identities associated to the local gauge symmetry and a
renormalization-group approach, these authors obtained the
exact infrared behavior of a Bose superfluid at zero tempera-
ture. Related results, both at zero �16–19� and finite �20–24�
temperatures, have been obtained by several authors within
the framework of the nonperturbative renormalization group.

In this paper, we study a weakly interacting Bose
superfluid at zero temperature using the so-called
Blaizot–Méndez-Galain–Wschebor �BMW� nonperturbative
renormalization-group �NPRG� scheme introduced by
Blaizot and co-workers �25,26�. Compared to more tradi-
tional RG approaches, the NPRG approach presents a num-
ber of advantages: �i� symmetries are naturally implemented
�by a proper ansatz for the effective action or the two-point
vertex �Sec. II�� and Ward identities are naturally satisfied;
�ii� the NPRG approach is not restricted to the low-energy
asymptotic behavior but can deal with all energy scales. In
particular, it relates physical quantities at a macroscopic
scale to the parameters of the microscopic model; and �iii�
the BMW scheme enables us to obtain the full momentum
and frequency dependence of the correlation functions �19�.
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In the NPRG approach, the main quantities of interest are
the average effective action �k �the generating functional of
one-particle irreducible vertices� and its second-order func-
tional derivative, the two-point vertex �k

�2��p�, whose inverse
gives the one-particle propagator �Sec. II�. Fluctuations be-
yond the Bogoliubov approximation are gradually taken into
account as the �running� momentum scale k is lowered from
the microscopic scale � down to zero. In Sec. III, we show
that the infrared behavior of the one-particle propagator is
entirely determined by the Ward identities associated to the
Galilean and local gauge invariances of the microscopic ac-
tion and the exponent 3−d characterizing the divergence of
the longitudinal susceptibility �see the discussion at the end
of Sec. I�. In Sec. IV we derive the BMW flow equations
satisfied by the two-point vertex ��2��p� and obtain the ana-
lytical solution in the infrared regime. Numerical results are
discussed in Sec. V. We find that the Bogoliubov approxima-
tion breaks down at a characteristic momentum length kG
�“Ginzburg” scale� which, for weak boson-boson interac-
tions, is much smaller than the inverse healing length kh �kh
is defined in Appendix A�. Although local gauge invariant
quantities are not sensitive to kG, the effective action �k is
attracted to a fixed point characterized by the divergence of
the longitudinal susceptibility when k�kG. We discuss in
detail the frequency and momentum dependence of the two-
point vertex �k

�2��p�. While for �p��kG or ��� /c�kG �with c
as the velocity of the Bogoliubov sound mode� �k

�2��p� is
well described by the Bogoliubov approximation, we repro-
duce the low-energy asymptotic behavior obtained by NN
when �p� , ��� /c�kG. In this regime, the longitudinal corre-
lation function becomes singular and its spectral function
exhibits a continuum of one-particle excitations in agreement
with the predictions of Popov’s hydrodynamic theory. Thus
our approach provides a unified picture of superfluidity in
interacting boson systems and connects Bogoliubov’s theory
to Popov’s hydrodynamic theory. In Sec. VI, we comment
about a possible extension of our results to strongly interact-
ing or one-dimensional superfluids.

Infrared behavior of interacting bosons

Since the divergence of the longitudinal susceptibility
plays a key role in the infrared behavior of interacting boson
systems, we first discuss this phenomenon both in classical
and quantum systems �for a pedagogical discussion, see also
Ref. �27��. Let us first consider a �4 theory defined by the
action

S =
1

2
� ddr	����2 + v�2 +

�

4
��2�2
 , �1�

where ��r� is a real N-component field and d is the space
dimension. When v	0, the mean-field �saddle-point� analy-
sis predicts a nonzero order parameter �0= ���. Including
Gaussian fluctuations about the saddle-point �0, we find a
gapped mode and N−1 Goldstone modes corresponding to
longitudinal �
� �0� and transverse �
���0� fluctuations,
respectively. The correlation functions read

G�p� =
1

p2 + ��0
2 ,

G��p� =
1

p2 . �2�

This result, which neglects interactions between longitudinal
and transverse fluctuations, is incorrect. In the ordered phase,
the amplitude fluctuations of � are gapped and the low-
energy effective description is a nonlinear � model �28�,

S�n� =
�

2
� ddr��n�2, �3�

where n is a unit vector �n2=1�. To a first approximation, Eq.
�3� can be obtained by setting �= ��0�n in Eq. �1� �which
gives �=�0

2�. The nonlinear � model is solved by writing
n= �� ,�� in terms of its longitudinal and transverse compo-
nents �n ·�0=���0� and ���0�. In the low-energy limit, the
action �Eq. �3�� describes N−1 noninteracting Goldstone
modes with propagator G��p��1 /p2. The longitudinal
propagator can be obtained from the constraint n2=�2+�2

=1, i.e., ��1−�2 /2,

G�r� = ���r���0��c �
N − 1

2
G�

2 �r� �
1

�r�2d−4 , �4�

where �¯ �c stands for the connected part of the propagator
and G��r��1 / �r�d−2 denotes the transverse propagator in
real space. Equation �4� is obtained by using Wick’s theorem.
In Fourier space, we thus obtain

G�p� �
1

�p�4−d �p → 0� �5�

for d	4 and a logarithmic divergence for d=4. Contrary to
the predictions of Gaussian theory �Eqs. �2��, the longitudi-
nal susceptibility is not finite but diverges for p→0 when
d�4 �7,29,30�. This divergence is weaker than that of the
transverse propagator for all dimensions larger than the
lower critical dimension dL=2. The appearance of a singu-
larity in the longitudinal channel, driven by transverse fluc-
tuations, is a general phenomenon in systems with a continu-
ous broken symmetry �7�. The momentum scale kG below
which the Gaussian approximation �Eqs. �2�� breaks down is
exponentially small for d=4 �and �→0� and of order �1/�4−d�

for d	4 �see Appendix A 3 for the estimation of kG in a
Bose superfluid�.

The same conclusion can be drawn from the NPRG analy-
sis of the ordered phase of the linear model �Eq. �1��. The
NPRG predicts the coupling constant to scale as ��k4−d,
where k is a running momentum scale �31�. This scaling
follows from the flowing of the dimensionless coupling con-

stant �̃=�kd−4 to a finite value �̃� for k→0 ��̃�1 / ln k for
d=4�. The longitudinal propagator then diverges as G�p
=0��1 /��0

2�1 /k4−d and, identifying k with �p� to extract
the p dependence of the propagator, we reproduce Eq. �5�.
Thus, the divergence �Eq. �5�� of the longitudinal suscepti-
bility is a consequence of the fixed-point structure of the RG
flow in the ordered phase of the linear model �Eq. �1��.
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These considerations easily generalize to a quantum
model with the Euclidean action,

S =
1

2
�

0



d�� ddr	����2 + c−2�����2 + v�2 +
�

4
��2�2
 , �6�

where � is an imaginary time varying between 0 and the
inverse temperature =1 /T and c is the velocity of the Gold-
stone mode. At zero temperature, we expect the �Euclidean�
propagator to behave as

G��p,i�� �
1

�2 + c2p2 �p → 0,�→ 0� ,

G�p,i�� �
1

��2 + c2p2��3−d�/2 �p → 0,�→ 0� , �7�

where � is a Matsubara frequency. �The divergence of G is
logarithmic in three dimensions.� The expression of G fol-
lows from Eq. �5� with �p� replaced by ��2+c2p2�1/2 and d by
the effective dimensionality d+1 to account for the imagi-
nary time dependence of the field. As in the classical model
�Eq. �1��, it can be justified either from an effective low-
energy description based on the �quantum� nonlinear �
model or directly from the linear model �Eq. �6��. After ana-
lytical continuation i�→�, the transverse propagator G� ex-
hibits a pole at �=�c�p�. On the contrary, G has no pole-
like structure but a branch cut which yields a critical
continuum of excitations lying above the Goldstone mode
energy �=c�p�. This continuum results from the decay of a
normally massive amplitude mode with momentum p into a
pair of transverse excitations with momenta q and p−q �32�.

Interacting bosons are described by a complex field � or,
equivalently, a two-component real field ��1 ,�2�. In the or-
dered phase, the global U�1� symmetry �33� is broken, giving
rise to a gapless �Goldstone� phase mode �the Bogoliubov
sound mode�. Although the action of nonrelativistic bosons
differs from the relativistic-type action �Eq. �6�� �see Eq. �13�
below�, the preceding conclusions regarding the longitudinal
propagator still hold in the superfluid phase. The reason is
that the argument leading to Eqs. �7� relies on the existence
of a Goldstone mode with linear dispersion �=c�p� rather
than the precise form of the microscopic action. The one-
particle propagator in the superfluid phase is usually ex-
pressed in terms of a “normal” self-energy, �n�p , i��, and an
“anomalous” one, �an�p , i�� �34,35�. In Appendix A, we
show on general grounds that

G�p,i�� � −
1

2�an�p,i��
�p → 0,�→ 0� . �8�

Comparing with Eqs. �7�, we conclude that the anomalous
self-energy

�an�p,i�� � ��2 + c2p2��3−d�/2 �p → 0,�→ 0� �9�

is singular at low-energy for d�3 �the singularity is loga-
rithmic when d=3�. This singularity, which also shows up in
the normal self-energy, is related to the infrared divergences
that were encountered early on in the perturbation theory of
interacting boson systems �3–6�. The exact result �an�0,0�

=0 and asymptotic expression �9� were first obtained by NN
from a field-theoretical �diagrammatic� approach �8–10�.
NN’s analysis shows that the infrared behavior markedly dif-
fers from the predictions of the Bogoliubov theory
��an�p , i��=const�. One can estimate the momentum Gin-
zburg scale kG below which the Bogoliubov approximation
breaks down from perturbation theory �15,36� �see Appendix
A�,

kG � ��gmkh�1/�3−d� �d	 3�

kh exp�−
4�2�2

gmkh
� �d = 3� . � �10�

In three dimensions, kG vanishes exponentially when the di-
mensionless interaction constant gmkh→0. In two dimen-
sions, the vanishing of kG with gm is only linear.

It was realized by Popov that a phase-density representa-
tion of the boson field �=�nei� leads to a theory free of
infrared divergences �11,10�. Popov’s theory is based on an
hydrodynamic action S�n ,�� and is valid below a character-
istic momentum k0. Since the long-distance physics is gov-
erned by the Goldstone �phase� mode, a minimal hydrody-
namic description would start from the phase-only action,

S =
ns

2m
�

0



d�� ddr�����2 + c−2�����2� , �11�

where ns is the superfluid density. This action can be ob-
tained from the hydrodynamic action S�n ,�� by integrating
out the density field. It is equivalent to that of the nonlinear
� model in the O�N� model �Eq. �3��. Writing ���nei� and
expanding with respect to phase fluctuations �with the boson
density n=const�, one finds

G��r�� = nG���r�� ,

G�r�� =
n

2
G���r��2 �12�

for the propagator of the transverse �
�= i�n�� and longitu-
dinal �
�=−�n�2 /2� fluctuations, respectively. G�� is the
phase propagator whose Fourier transform �m /ns��p2

+�2 /c2�−1 is read off from Eq. �11�. In Fourier space, Eqs.
�12� coincide with Eqs. �7�. Thus Popov’s approach repro-
duces the infrared behavior �Eq. �9�� obtained by NN �12�.
The determination of the characteristic momentum k0 below
which the hydrodynamic approach is valid is nontrivial in the
Popov approach as it requires to integrate out all modes with
momenta �p��k0 to obtain the low-energy hydrodynamic de-
scription �11,12�. Interestingly, k0 coincides with the Gin-
zburg scale kG �15�.

II. AVERAGE EFFECTIVE ACTION

We consider interacting bosons at zero temperature, with
the action

S =� dx����x���� − � −
�2

2m
���x� +

g

2
���x��4� �13�

��=kB=1 throughout the paper�, where ��x� is a bosonic
�complex� field, x= �r ,��, and �dx=�0

d��ddr. �� �0,� is an
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imaginary time, →� is the inverse temperature, and � de-
notes the chemical potential. The interaction is assumed to be
local in space and the model is regularized by a momentum
cutoff �. We assume the coupling constant g to be weak
�dimensionless coupling constant gmn̄1−2/d�1, with n̄ as the
mean density� and consider a space dimension d larger than
1. It will often be convenient to write the boson field

��x� =
1
�2

��1�x� + i�2�x�� �14�

in terms of two real fields �1 and �2.
To define the average effective action �31�, we add to the

action �Eq. �13�� a source term −�dx�J��+c.c.� and an infra-
red regulator

�Sk =� dxdx����x�Rk�x − x����x�� , �15�

which suppresses fluctuations with momenta and energies
below a characteristic scale k but leaves the high-momenta/
frequency modes unaffected. The average effective action

�k���,�� = − ln Zk�J�,J� +� dx�J��x���x� + c.c.�

− �Sk���,�� �16�

is defined as the Legendre transform of −ln Zk�J� ,J�,
�Zk�J� ,J� is the partition function� minus the regulator term
�Sk��� ,��. Here �����x�= ������x��J�,J is the superfluid order
parameter.

The effective action �Eq. �16�� is the generating functional
of the one-particle irreducible vertices. The infrared regulator
Rk is chosen such that for k=� all fluctuations are frozen.
The mean-field theory, where the effective action ����� ,��
reduces to the microscopic action S��� ,��, becomes exact
thus reproducing the result of the Bogoliubov approximation
�see Eqs. �26� below�. On the other hand for k=0, provided
that Rk=0 vanishes, �k gives the effective action of the origi-
nal model �Eq. �13�� and allows us to obtain all physical
quantities of interest. In practice we take the regulator

Rk�p� =
ZA,k

2m
�p2 +

�2

c0
2 �r�p2

k2 +
�2

k2c0
2� , �17�

where r�Y�= �eY −1�−1 and p= �p , i��. The k-dependent vari-
able ZA,k is defined below. A natural choice for the velocity
c0 would be the actual �k-dependent� velocity of the Gold-
stone mode. In the weak-coupling limit, however, the Gold-
stone mode velocity renormalizes only weakly and is well
approximated by the k-independent value c0=�gn̄ /m �n̄ is
the mean boson density�. The regulator �Eq. �17�� differs
from previous works where Rk�p� was taken frequency inde-
pendent �16–19�. The motivation for the choice �Eq. �17��
will appear clearly when we will discuss the BMW NPRG
scheme.

We are primarily interested in the effective potential

U��� = � 1

V
�����

� const
�18�

�V is the volume of the system� and the two-point vertex

�ij
�2��x,x�;�� = � 
�2�����


�i�x�
� j�x��
�
� const

�19�

computed in a constant, i.e., uniform and time-independent,
field. To alleviate the notations, we now drop the k index. We
consider �= ��1 ,�2� as a two-component real field �see Eq.
�14��. U and �ij

�2� are strongly constrained by the global U�1�
invariance of the microscopic action �Eq. �13�� �33�. The
effective potential U�n� must be invariant in this transforma-
tion and is therefore a function of the condensate density n
= 1

2 ��1
2+�2

2�. The actual �k-dependent� condensate density n0
is obtained by minimizing the effective potential

U��n0� = 0. �20�

Equation �20� defines the equilibrium state of the system. On
the other hand, �ij

�2� must transform as a tensor when the
two-dimensional vector ��1 ,�2� is rotated by an arbitrary
angle �. Since one can form three tensors, 
i,j, �i,j, and �i� j,
from the two-dimensional vector ��1 ,�2�, the most general
form of the two-point vertex is �37�

�ij
�2��p;�� = 
i,j�A�p;n� + �i� j�B�p;n� + �ij�C�p;n� �21�

in Fourier space. �ij denotes the antisymmetric tensor. In ad-
dition, parity and time reversal invariance implies

�ij
�2��p,i�;�� = �ij

�2��− p,i�;�� ,

�ij
�2��p,i�;�� = �2
i,j − 1��ij

�2��p,− i�;��� , �22�

where �= ��1 ,�2� and ��= ��1 ,−�2�. From Eqs. �21� and
�22� we deduce

�A�p;n� = �A�− p;n� = �A�p,− i�;n� ,

�B�p;n� = �B�− p;n� = �B�p,− i�;n� ,

�C�p;n� = − �C�− p;n� = − �C�p,− i�;n� . �23�

For p=0, we can relate the two-point vertex to the deriva-
tives of the effective potential,

�ij
�2��p = 0;�� =

�2U�n�
��i � � j

= 
i,jU��n� + �i� jU��n� , �24�

so that
�A�p = 0;n� = U��n� ,

�B�p = 0;n� = U��n� ,

�C�p = 0;n� = 0. �25�

For k=�, one has �k���=S��� and therefore

Uk=��n� = − �n +
g

2
n2 = −

1

2
gn0

2 +
g

2
�n − n0�2,

�A,k=��p;n� = �p + g�n − n0� ,

�B,k=��p;n� = g ,

�C,k=��p;n� = � , �26�

where n0�n0,k=�=� /g.
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We can also relate the two-point vertex to the normal and
anomalous self-energies that are usually introduced in the
theory of superfluidity �34,35�,

�n�p� = i� + � − �p + �̄A�p� + n0�̄B�p� − i�̄C�p� ,

�an�p� = n0�̄B�p� �27�

�see Appendix A�, where �̄��p�=���p ;n0� ��=A ,B ,C� de-
notes the two-point vertex in the equilibrium state �n=n0�.

In the equilibrium state �n=n0�, the transverse part �37�
�̄A�p=0�=U��n0� of the two-point vertex vanishes. This re-
sult is a consequence of the invariance of the effective action
���� in a global U�1� transformation and reflects the exis-
tence of a �gapless� Goldstone mode. When expressed in
terms of the normal and anomalous self-energies �Eqs. �27��
�with the condition �̄C�p=0�=0�, it reproduces the
Hugenholtz-Pines theorem �5� �Eq. �A3��.

III. DERIVATIVE EXPANSION AND INFRARED
BEHAVIOR

On the basis of the arguments given in Sec. I, we expect
the anomalous self-energy

�̄k=0,B�p� � ��2 + c2p2��3−d�/2 �p → 0,�→ 0� �28�

to be singular in the low-energy limit �see Eqs. �9� and �27��.
From Eq. �28�, we infer

�̄B�p = 0� = U��n0� � k3−d �k → 0� . �29�

Equation �29� will be obtained in Sec. IV from the NPRG
equations. In this section, we show that it is sufficient, when
combined with Ward identities associated to Galilean and
gauge invariances �6,15,38�, to obtain the infrared behavior
of the propagators.

The infrared regulator �Eq. �17�� ensures that the vertices
are regular functions of p for �p��k and ��� /c�k even when
they become singular functions of �p , i�� at k=0 �c�c0 is
the velocity of the Goldstone mode defined below� �39�. In
the low-energy limit �p� , ��� /c�k, we can then use the de-
rivative expansion

�̄A�p� � ZA�p + VA�
2,

�̄B�p� � U��n0� = � ,

�̄C�p� � ZC� , �30�

consistent with �̄A�p=0�=0 and the symmetry properties

�Eqs. �23��. To obtain Eqs. �30� we have expanded �̄B�p�
only to leading order, dropping the next-order term ZB�p
+VB�

2. Because of the singularity �Eq. �28��, the coefficients
ZB and VB would diverge for k→0 contrary to ZA, ZC, and VA
that reach finite values. The justification for neglecting the p

dependence of the vertex �̄B comes from the fact that for d
�1, �=O�k3−d� is a very large energy scale with respect to

�̄A , �̄C
2 for typical momentum and frequency �p� , ��� /c

�k. The p dependence of �̄B�p� does not change the leading

behavior of �̄B�p��O�k3−d� which essentially acts as a large
mass term in the propagators.

A. Goldstone mode velocity and superfluid density

The excitation spectrum can be obtained from the zeros of

the determinant of the 2�2 matrix �̄ij
�2��p� �after analytical

continuation i�→�+ i0+�,

det �̄�2��p� = �̄A�p���̄A�p� + 2n0�̄B�p�� + �̄C
2 �p�

� 2n0�̄B�0��̄A�p� + �̄C
2 �p�

� 2n0��ZA�p + VA�
2� + �ZC��2, �31�

where the approximate equality is obtained using �̄B�p�
�k3−d, �̄A�p� , �̄C

2 �p��p2 , �2, and �p� , ��� /c�k. Equa-
tion �31� agrees with the existence of a Goldstone mode �the
Bogoliubov sound mode� with velocity

c = � ZA/�2m�
VA + ZC

2 /�2�n0��
1/2

. �32�

The low-energy expansion �Eqs. �30�� can also be used to
define the superfluid density ns. Suppose the phase ��r� of
the order parameter ��r�=�2n0(cos ��r� , sin ��r�) varies
slowly in space. To lowest order in ��, the average effective
action will increase by


� =
1

2�
p

�̄A
�2��p��2�− p��2�p�

= n0�
p
�̄A

�2��p,� = 0���− p���p�

=
ZAn0

2m
� ddr����2. �33�

Identifying the phase stiffness with the superfluid density
�40�, we obtain

ns = ZAn0. �34�

B. Symmetries and thermodynamic relations

The two-point vertex satisfies the following relations:

� �

�p2 �̄A�p��
p=0

=
n̄

2mn0
,

� �

��2 �̄A�p��
p=0

= − � 1

2n0

�2U

��2�
n0

,

� �

��
�̄C�p��

p=0
= − � �2U

�n � �
�

n0

, �35�

which follow from Ward identities associated with Galilean
�for the first one� and local gauge �for the last two� invari-
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ances �see Appendix B�. Here we consider the effective po-
tential U�n ,�� as a function of the two independent variables
n and �. The condensate density n0=n0��� is then defined by

� �U

�n
�

n0

= 0, �36�

while the mean boson density is obtained from

n̄ = −
d

d�
U�n0,�� = − � �U

��
�

n0

− � �U

�n
�

n0

dn0

d�
= − � �U

��
�

n0

,

�37�

where d /d� is a total derivative. Equation �36� being valid
for any �, one deduces

� d

d�

�U

�n
�

n0

= � �2U

�n � �
�

n0

+ � �2U

�n2 �
n0

dn0

d�
= 0. �38�

From Eqs. �35� and �38�, one deduces

ns = ZAn0 = n̄ ,

VA = − � 1

2n0

�2U

��2�
n0

,

ZC = − � �2U

�n � �
�

n0

= �
dn0

d�
. �39�

The first of these equations states that in a Galilean invariant
superfluid at zero temperature, the superfluid density is given
by the full density of the fluid �6�. The velocity �Eq. �32��
can be rewritten as

c2 =
n̄

m

1

− � �2U

��2�
n0

+ � �2U

�n2 �
n0

�dn0

d�
�2 . �40�

Comparing with

dn̄

d�
= − � �2U

��2�
n0

+ � �2U

�n2 �
n0

�dn0

d�
�2

, �41�

we deduce that the Goldstone mode velocity

c = � n̄

m�dn̄/d��
�1/2

�42�

is equal to the macroscopic sound velocity �6�.
Since thermodynamic quantities, including the condensate

“compressibility” dn0 /d�, should be finite, we deduce from
Eqs. �39� that ZC�k3−d vanishes in the infrared limit and

lim
k→0

c = lim
k→0

� ZA

2mVA
�1/2

. �43�

Both ZA= n̄ /n0 and the macroscopic sound velocity c being
finite, VA �which vanishes in the Bogoliubov approximation�
takes a nonzero value. In the infrared limit, the �2 term of

�̄A�p� is therefore crucial to maintain a linear spectrum and
superfluidity. As discussed in more detail in Sec. IV C, ex-

pression �43� is a manifestation of the relativistic invariance
of the effective action which emerges in the low-energy
limit.

C. One-particle propagator

We are now in a position to deduce the infrared limit of
the one-particle propagator Gij. For symmetry reasons �see
Sec. II�,

Gij�p;�� =
�i� j

2n
Gll�p;n� + �
ij −

�i� j

2n
�Gtt�p;n� + �ijGlt�p;n�

�44�

for a constant field �, where

Gll�p;n� = −
�A�p;n�
D�p;n�

,

Gtt�p;n� = −
�A�p;n� + 2n�B�p;n�

D�p;n�
,

Glt�p;n� =
�C�p;n�
D�p;n�

, �45�

and D=�A
2 +2n�B�A+�C

2 . Equations �45� follow from the
matrix relation G−1=−��2�. Using � , ZC�k3−d�k2, we then
find

D�p� � 2n0�VA��2 + c2p2� �46�

and

Ḡll�p� = −
1

2n0�
,

Ḡtt�p� = −
1

VA

1

�2 + �cp�2 = −
2n0mc2

n̄

1

�2 + �cp�2 ,

Ḡlt�p� =
ZC

2n0�VA

�

�2 + �cp�2 =
mc2

n̄

dn0

d�

�

�2 + �cp�2 . �47�

The propagators Ḡtt and Ḡlt have well defined limits when

k→0, while the longitudinal propagator Ḡll�1 /k�3−d� di-
verges in agreement with the general discussion of Sec. I.
Stricto sensu, Eqs. �47� hold in the limit �p� , ��� /c�k. We
can nevertheless obtain the propagators at k=0 and finite
�p , i�� by stopping the flow at k��p2+�2 /c2 �see the dis-
cussion in Sec. IV C�. Since the local gauge invariant �ther-
modynamic� quantities are not expected to flow in the infra-
red limit �Sec. V�, this procedure amounts to replacing n0, n̄,
c, and dn0 /d� by their k=0 values. As for the longitudinal
correlation function, we reproduce the expected infrared sin-
gularity

Ḡll�p� = −
1

2n0C��2 + �cp�2��3−d�/2 . �48�

The constant C can be estimated by comparing Eq. �48� with
the result of Popov’s hydrodynamic theory �13�,
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C � � 2n̄

mcn0
�2

. �49�

From these results, we deduce the infrared behavior of the
normal and anomalous propagators,

Gn�p� = − ���p����p�� = −
n0mc2

n̄

1

�2 + �cp�2

−
mc2

n̄

dn0

d�

i�

�2 + �cp�2 +
1

2
Ḡll�p� ,

Gan�p� = − ���p���− p�� =
n0mc2

n̄

1

�2 + �cp�2 +
1

2
Ḡll�p� .

�50�

The leading order terms in Eqs. �50� agree with the results of
Gavoret and Nozières �6�. The contribution of the diverging
longitudinal correlation function was first identified by NN
and later in Refs. �13–15,27�.

IV. RG EQUATIONS

To compute approximately the effective potential U and
the one-particle propagator, we follow the BMW NPRG
scheme proposed in Refs. �25,26,41� with a truncation in
fields to lowest nontrivial order �42�.

A. BMW equations

The dependence of the effective action on k is given by
Wetterich’s equation �43�,

�t���� = 1
2Tr�Ṙ���2���� + R�−1� , �51�

where t=ln�k /�� and Ṙ=�tR. In Fourier space, the trace in-
volves a sum over frequencies and momenta, as well as a
trace over the two components of the field �= ��1 ,�2�.

The flow equation for the effective potential U�n�
= �V�−1���� with �= ��2n ,0� is directly derived from Eq.
�51�,

�tU�n� = −
1

2
�

p

Ṙ�p��Gll�p;n� + Gtt�p;n�� , �52�

where

�
p

= �
p
�
�

=� ddp

�2��d�
−�

� d�

2�
. �53�

The flow equation of the condensate density is then deduced
from

�tU��n0� = �tU��n0
+ U��n0��tn0 = 0, �54�

while that of �=U��n0� is obtained from

�t� = �tU��n0
+ U��n0��tn0. �55�

Note that the propagator G in Eq. �52� and below is defined
as the inverse of −���2�+R�.

Equation �51� leads to a flow equation for the two-point
vertex ��2� which involves the three-point and four-point ver-
tices,

�t�ij
�2��p;�� = −

1

2 �
q,i1,i2

�̃ tGi1i2
�q;���iji2i1

�4� �p,− p,q,− q;��

−
1

2 �
q,i1. . .i4

��ii2i3
�3� �p,q,− p − q;��

�� ji4i1
�3� �− p,p + q,− q;����̃ tGi1i2

�q;���

�Gi3i4
�p + q;�� + �p ↔ − p,i ↔ j�� , �56�

where the operator �̃t= ��R /�t��R acts only on the t depen-
dence of the regulator R. The field � is assumed to be uni-
form and time independent.

The BMW approximation is based on the following two
observations �25�. �i� Since the function �̃tGij�q ;�� is pro-
portional to �tR�q�, the integral over the loop variable q
= �q , i�� in Eq. �56� is dominated by values of �q� and ��� /c
smaller than k. �Note that this argument requires a regulator
R�q� that acts both on momentum and frequency.� �ii� As
they are regulated in the infrared, the vertices ��n� are smooth
functions of momenta and frequencies �39�. These two prop-
erties allow one to make an expansion in power of q2 /k2 and
�2 / �ck�2 independently of the value of the external variable
p= �p , i���. To leading order, one simply sets q=0 in the
three- and four-point vertices. We can then obtain a close
equation for �ij

�2��p ;�� by noting that �25�

�ijl
�3��p,− p,0;�� =

1
�V

�

��l
�ij

�2��p;�� ,

�ijlm
�4� �p,− p,0,0;�� =

1

V

�2

��l � �m
�ij

�2��p;�� . �57�

The flow equation for ���p ;n� is given in Appendix C �Eqs.
�C3�–�C5��.

B. Truncated flow equations

We simplify the BMW equations by considering two ad-
ditional approximations. First we define the self-energy
���p ;n� ��=A ,B ,C� by

�A�p;n� = �p + U��n� + �A�p;n� ,

�B�p;n� = U��n� + �B�p;n� ,

�C�p;n� = � + �C�p;n� . �58�

It satisfies ���p=0;n�=0. We then expand ���p ;n� about n0,

���p;n� = ���p;n0� + �n − n0���
�1��p;n0� + ¯ , �59�

and truncate the expansion to lowest order, i.e., we approxi-

mate ���p ;n� by its value �̄��p�=���p ;n0� in the equilib-
rium state. Similarly we truncate the effective potential U to
second order, i.e.,

INFRARED BEHAVIOR AND SPECTRAL FUNCTION OF A… PHYSICAL REVIEW A 80, 043627 �2009�

043627-7



U�n� = U�n0� +
�

2
�n − n0�2, �60�

where �=U��n0�. For k=�, the effective action is given by
the microscopic action S��� �Sec. II�, so that n0 �k=�=� /g,
� �k=�=g, and �� �k=�=0 �Bogoliubov approximation�.

The second approximation is based on a derivative expan-
sion of the vertices and propagators. We have already
pointed out that the integral over the internal loop variable q
is dominated by small values �q� , ��� /c�k. Furthermore,
since the external variable p= �p , i��� acts as an effective
low-energy cutoff, the flow of �ij

�2��p ;�� stops when k be-
comes of the order of �p� or ��� /c. Thus all propagators and
vertices in Eq. �56� should be evaluated in the momentum
and frequency range �q� , �p+q��k and ��� /c , ��+��� /c
�k. In addition to the BMW approximation, we can there-
fore use the derivative expansion �Eqs. �30�� of the vertices
in the right-hand side of Eq. �56�. This approximation has
been shown be very reliable in classical models �41,44,45�.
While we also expect a high degree of accuracy in the low-
energy limit p→0, the approximation is more questionable
in the high-frequency limit. The high-frequency behavior of
the two-point vertex �ij

�2��p� �and in turn of the propagator
Gij�p�� follows from the high-frequency behavior of the
propagator G�p+q� appearing in Eq. �56�. Clearly the deriva-
tive expansion does not reproduce the expected high-
frequency limit of the propagator. We shall see nevertheless
that the solution of the flow equations does not contradict the
��→� limit of the propagator �Appendix E� although the
leading corrections O�1 /��� and O�1 /��

2� are likely to be
incorrect.

These two approximations lead to the flow equations �see
Appendix C�

�tn0 = 3
2 Īll + 1

2 Ītt,

�t� = − �2�9J̄ll,ll�0� − 6J̄lt,lt�0� + J̄tt,tt�0�� , �61�

and

�t�̄A�p� = ��tn0 −
�

2
�Īll + 3Ītt�

− 2n0�
2�J̄ll,tt�p� + J̄tt,ll�p� + 2J̄lt,lt�p�� ,

�t�̄B�p� = − �t� +
�

2n0
�Ītt − Īll� + �2�− 9J̄ll,ll�p� + J̄ll,tt�p�

+ J̄tt,ll�p� − J̄tt,tt�p� + 8J̄lt,lt�p�� ,

�t�̄C�p� = 2n0�
2�J̄tt,lt�p� − J̄lt,tt�p� − 3J̄ll,lt�p� + 3J̄lt,ll�p�� , �62�

where the coefficients J̄��p�=J��p ;n0� and Ī�= I��n0� are
defined by

I��n� = �
q

�̃ tG��q;n� ,

J��p;n� = �
q

��̃ tG��q;n��G�p + q;n� , �63�

with � ,=ll, tt , lt. The flow equations for ZA, VA, and ZC are
simply derived from

�tZA = � �

��p
�t�A�p;n��

n=n0,p=0
,

�tVA = � �

��2�t�A�p;n��
n=n0,p=0

,

�tZC = � �

��
�t�C�p;n��

n=n0,p=0
. �64�

This gives

�tZA = − 2n0�
2 �

��p
�J̄ll,tt�p� + J̄tt,ll�p� + 2J̄lt,lt�p��p=0,

�tVA = − 2n0�
2 �

��2 �J̄ll,tt�p� + J̄tt,ll�p� + 2J̄lt,lt�p��p=0,

�tZC = 2n0�
2 �

��
�J̄tt,lt�p� − J̄lt,tt�p� − 3J̄ll,lt�p� + 3J̄lt,ll�p��p=0.

�65�

Equations �61� and �65� agree with those obtained from a
simple truncation of the effective action ���� �17�.

C. Analytical solution in the infrared limit

It is convenient to write the flow equations in terms of
dimensionless variables

ñ0 = k−dZCn0,

�̃ = kd�k
−1�ZAZC�−1� ,

ṼA = �kZAZC
−2VA �66�

�see Appendix C�. In the infrared limit k→0, the RG equa-
tions simplify

�tñ0 = − �d + �C�ñ0,

�t�̃ = �d − 2 + �C��̃ + 8
vd+1

d + 1

�̃2

ṼA
1/2

,

�C = − 8
vd+1

d + 1

�̃

ṼA
1/2

,

�tṼA = �2 + 2�C�ṼA, �67�

where �C=−�t ln ZC �see Appendix D�. We deduce

�t�̃ = �d − 2��̃ �68�

and

�t�C = �d − 3��C − �C
2 . �69�

For d=3, one finds
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�C =
�C

0

1 + �C
0 t

, �70�

with �C
0 as a constant, whereas

�C → d − 3 �71�

for d	3. The asymptotic behavior deduced from Eqs. �70�
and �71� is summarized in Table I. In particular one finds that
the coupling constant � vanishes when k→0, ���ln k�−1 for
d=3 and ��k3−d for d	3, in agreement with the expected
divergence of the longitudinal correlation function �Sec. III�.

In the infrared limit, ZC is suppressed �Table I� and does
not play any role in the leading behavior for k→0 �Eqs.
�67��. Discarding ZC, the two-point vertex ��2� exhibits a
space-time SO�d+1� �relativistic� symmetry. It is possible to
eliminate the anisotropy between time and space by rescaling

the frequency, �̃→ �̃ṼA
−1/2 �the dimensionless frequency �̃ is

defined in Appendix C 4 c�. To maintain the dimensionless
form of the effective action, one should also rescale the �di-

mensionless� field, �̃→ ṼA
−1/4�̃. This leads to an isotropic

relativistic model with dimensionless condensate density and
coupling constant defined by

ñ0� = �ṼAñ0, �̃� =
�̃

�ṼA

. �72�

The asymptotic behavior of ñ0� and �̃� is in agreement with
the known results of the classical �d+1�-dimensional O�2�
model �Table I�. In particular, the dimensionless coupling

constant �̃� vanishes logarithmically when d+1=4 and

reaches a nonzero fixed-point value �̃�� when d+1	4. Us-
ing

� = k−d�ZA�k�3/2VA
1/2�̃� � k3−d�̃�, �73�

we deduce that � vanishes as k3−d when d	3 and logarith-
mically when d=3. Thus, the divergence of the longitudinal
susceptibility �which follows from the vanishing of �� can be
understood as a consequence of the low-energy behavior of
the classical �d+1�-dimensional O�2� model.

As explained in Appendix D, the infrared limit of the
self-energies can be obtained from the derivative expansion
if we stop the flow at k��p2+�2 /c2�1/2. This yields

�̄A,k=0�p� � VA�
2 + ZA�p,

�̄B,k=0�p� � ��2 + c2p2��3−d�/2,

�̄C,k=0�p� � ���2 + c2p2��3−d�/2. �74�

Since ZA and VA do not flow when k→0, they can be evalu-
ated for k=0 and related to thermodynamic quantities �Sec.

III�. We expect the following relation between �̄B and �̄C:

lim
p→0

�̄C,k=0�p�

��̄B,k=0�p�
= lim

k→0

ZC

�
= �dn0

d�
�

k=0
. �75�

This relation will be confirmed numerically in Sec. V. From
Eqs. �74� and �75�, we reproduce the infrared limit �Eqs. �47�
and �48�� of the propagators obtained in Sec. IV C from gen-
eral considerations.

V. NUMERICAL RESULTS

In this section we discuss the numerical solution of the
flow equations. We consider a two-dimensional system in the
weak-coupling limit 2mg=0.1. The actual boson density n̄
� n̄k=0 is fixed and the chemical potential �=gn0,k=� is fine
tuned in order to obtain ns,k=ZA,kn0,k= n̄ for k=0.

The flow of �, ZC, and VA is shown in Fig. 1. �The
asymptotic behavior of various quantities as a function of the
space dimension is summarized in Table I.� In agreement
with the discussion of Secs. III and IV, we find that � , ZC
�k are suppressed as k→0, while VA flows toward a finite

value. The anomalous self-energy �an�p=0�=n0�̄B�0�=n0�
therefore vanishes for k→0 in agreement with the exact re-
sult �8�. From Fig. 1, one can clearly identify the momentum
scale kG below which the Bogoliubov approximation breaks
down. The inset in the figure shows kG obtained from the
criterion VA,kG

=VA,k=0 /2. It is proportional to ��gm�3n̄
�gmkh�kh, in agreement with the perturbative estimate
�Eq. �10��. In practice, we use the definition kG

=��gm�3n̄ /4�. Note that the healing scale kh=�2mgn̄ �de-
fined in Appendix A� keeps its mean-field �Bogoliubov� ex-
pression since the renormalization of the two-point vertex is
very small for k�kh�kG.

Figure 2 shows the behavior of the thermodynamic quan-
tities n0, ns, and c. Since ZA,k=0�1.004, the mean boson
density n̄=ZAn0 is nearly equal to the condensate density n0.
The condensate compressibility dn0 /d�=ZC /� �Eqs. �39��
is shown in Fig. 3. Apart from an initial variation at the
beginning of the flow �k�kh�, these quantities do not vary
with k. In particular, they are not sensitive to the Ginzburg
scale kG. This result is particularly remarkable for the
Goldstone mode velocity c, whose expression �32� involves
the parameters �, ZC, and VA, which all strongly vary when

TABLE I. Asymptotic behavior for k→0 ��=3−d�. The stared
quantities indicate nonzero fixed-point values.

d=3 1	d	3

n0 n0
� n0

�

� �ln k�−1 k�

ZC �ln k�−1 k�

VA VA
� VA

�

ñ0 �k3 ln k�−1 k2�−3

�̃ k k1−�

ṼA �k ln k�2 k2−2�

ñ0� k−2 k�−2

�̃� �ln k�−1 �̃��
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k�kG. These findings are a nice illustration of the fact that
the divergence of the longitudinal susceptibility does not af-
fect local gauge invariant quantities �15�.

In Fig. 4 we show the flow of �A=−�t ln ZA and �C=
−�t ln ZC for k�kG. Both �A and �C exhibit a maximum
corresponding to a slight increase of ZA and ZC �ZA then
saturates to ZA,k=0 while ZC strongly decreases when k�kG�.
The location of these maxima is given by the healing scale
kh �see the inset of Fig. 4� �46�. The maxima of �A and
�C become more pronounced as 2mg increases but remains
very small in the weak-coupling limit, 2mg�1. The small
window around kh where the anomalous dimension �A is
finite is likely to be a remnant of the critical regime that
exists near the Goldstone regime at higher temperatures and

which is progressively suppressed as the temperature de-
creases.

A. Self-energies

The self-energies are obtained from the numerical solu-
tion of the flow equations �Eqs. �62� or �C10��. By comput-

ing �̄��p , i�� for N frequency points i�l �l=1, . . . ,N with
typically N�100�, one can construct a N-point Padé approx-

imant P��p ,z� which is equal to �̄��p , i�� when the complex
frequency z coincides with one of the Matsubara frequencies
i�l. The retarded part of the self-energy is then approximated

by �̄�
R�p ,��= P��p ,�+ i0+� �47�. �All self-energies discussed

in this section corresponds to k=0.�
Let us first discuss the momentum and frequency depen-

dence of �̄B�p� at k=0. Note that �̄B�p�= �̄B�p�=�an�p� /n0

since �k=0=0. In the following, we shall rather discuss �̄B�p�
which is the right quantity to consider when comparing to

the Bogoliubov approximation. Figure 5 shows that �̄B�p� is
a function of �2+ �cp�2, not only in the infrared regime
�p2+�2 /c2�kG but also for �p2+�2 /c2�kG. Furthermore,

�̄B�p� is related to the running coupling constant �k by

�̄B�p� � ��k=�p2+�2/c2. �76�

This confirms that �̄B�p� can be �approximately� obtained

from �̄B,k�p=0� by stopping the flow at k��p2+�2 /c2. For
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�p2+�2 /c2�kG, one therefore recovers the Bogoliubov re-

sult �̄B�p��g, while for �p2+�2 /c2�kG one obtains

�̄B�p� � C��2 + c2p2, �77�

with C as p-independent constant.
The Ginzburg scale kG manifests itself also in the fre-

quency dependence of the retarded vertex �̄B
R�p=0 ,�� �Fig.

6�. For ����ckG, the imaginary part Im��̄B
R�0,��� is very

small and the real part tends to g in agreement with the
Bogoliubov approximation and the exact high-frequency
limit �Appendix E�. But for ����ckG, the real part is strongly
suppressed and becomes of the same order as the imaginary
part. The crossover between the Bogoliubov and the infrared
regimes can also be observed by varying �p� �Fig. 7�. While

the Bogoliubov result �̄B
R�p ,��=g is a good approximation

when �p��kG, �̄B
R�p ,�� develops a strong frequency depen-

dence for �p��kG. For �p��kG, we can use Eq. �77� to obtain
the low-frequency behavior �����ckG�,

�̄B
R�p,�� � C�− �� + i0+�2 + �cp�2

� C��c�p� − ������cp�2 − �2

− iC sgn�������� − c�p����2 − �cp�2 �78�

���x� is the step function�. The Bogoliubov result �̄B
R�p ,��

=g is nevertheless reproduced for ����ckG �Fig. 6�. As
shown in Fig. 8, the square-root singularity �Eq. �78�� is also
obtained from the numerical result based on the Padé ap-
proximant. The asymptotic result �Eq. �78��� was first ob-
tained by NN within a diagrammatic approach and later re-
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produced by Popov and Seredniakov in the hydrodynamic
approach �12�. Figure 8 also shows the numerical results for

�̄A
R�p ,�� and �̄C

R�p ,��. In the infrared regime �p� , ��� /c
�kG, these self-energies are very well approximated by their
derivative expansion,

�̄A
R�p,�� � − VA�

2 + �ZA − 1��p,

�̄C
R�p,�� � i� , �79�

where VA�VA,k=0 and ZA�ZA,k=0. The leading correction to

�̄C
R�p ,��� i� is given by relation �75� between �̄B�p� and

�̄C�p�, which is rather well satisfied when �p� , ��� /c�kG
�Fig. 9�

The imaginary part of �̄A
R and the real part of �̄C

R give a
finite lifetime to the sound mode. They arise from the decay
of a phonon with momentum p into two phonons with mo-
menta q and p−q �Beliaev damping �4��. This damping pro-
cess follows from the second contribution �proportional to

�̄�3��̄�3�� to �t�̄
�2� �Eq. �56��. Figure 10 shows that

Im��̄A
R�p ,��� and Re��̄C

R�p ,��� vanish for ����c�p�. The ab-
sence of damping below the threshold frequency �c�p� is
due to the energy conservation �=c�q�+c�p−q� in the decay
process. While it appears difficult to decide from the numeri-

cal results whether Im��̄A
R�p ,c�p��� and Re��̄C

R�p ,c�p���
�which determine the lifetime of a phonon with momentum p
and energy c�p�� are zero or not, it is well known that for
quasiparticles with a linear spectrum, Beliaev damping can-
not take place as there is no phase space available �48�. Be-
liaev damping requires a positive curvature of the quasipar-
ticle dispersion, i.e., Ep=c�p�+a�p�3 �a�0�. In this case, the
threshold frequency, obtained from the condition �=Eq
+Ep−q �with p fixed�, lies below Ep. The decay of a quasi-
particle into a pair of quasiparticles then gives a scattering
rate of order �p�3 in a two-dimensional system �49,50�. Since
we use the derivative expansion of the vertices to compute

the self-energies �̄�
R �see Sec. IV�, the quasiparticle disper-

sion becomes linear to a very high degree of accuracy in the
“relativistic” regime �p��kG. In this regime, we expect the
curvature of the dispersion to originate in the �p ,�� depen-

dence of the self-energy �̄A
R�p ,�� that is not included in the

derivative expansion. Thus a reliable computation of the Be-
liaev damping would require a self-consistent numerical so-
lution of the flow equations.

While the Padé approximant technique is very efficient to

obtain �̄B
R�p ,��, as well as �̄A

R�p ,�� and �̄C
R�p ,�� in the

infrared regime, the computation of �̄A
R�p ,�� and �̄C

R�p ,��
for �p��kG appears more difficult for reasons that we do not
fully understand. �Note also that the use of the derivative
expansion might also be a source of difficulties for reasons
discussed in Sec. IV B.� In the limit �p��kG, the Bogoliubov
approximation is however essentially correct and the correc-

tions �̄A
R�p ,�� and �̄C

R�p ,�� provide a small broadening of
the Bogoliubov quasiparticles �Beliaev damping� as can be
directly verified from the one-loop self-energy diagrams.

B. Spectral functions

The knowledge of the retarded one-particle Green’s func-
tion enables us to compute the spectral functions �51�

All�p,�� = −
1

�
Im�Ḡll

R�p,��� ,

Att�p,�� = −
1

�
Im�Ḡtt

R�p,��� ,

Alt�p,�� =
i

�
Re�Ḡlt

R�p,��� . �80�

From Eqs. �47� and �48�, we obtain
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Att�p,�� =
mcn0

n̄�p�
�
�� − c�p�� − 
�� + c�p��� ,

All�p,�� =
sgn���
2�n0C

����� − c�p��
��2 − �cp�2

,

Alt�p,�� = i
mc2

2n̄

dn0

d�
�
�� − c�p�� + 
�� + c�p��� �81�

in the infrared regime. Att�p ,�� and Alt�p ,�� exhibit Dirac
peaks at the sound mode energy �c�p�. On the other hand,
the longitudinal spectral function All�p ,�� shows a critical
continuum with a singularity at the Bogoliubov mode energy,
in agreement with the predictions of the hydrodynamic ap-
proach �13�. The spectral function All�p ,�� obtained from
the Padé approximant is shown in Fig. 11. The square-root
singularity is very well reproduced and extends up to �
�ckG.

From these results, we can deduce the spectral function of
the normal �U�1� invariant� Green’s function �see Appendix
E�,

An�p,�� = −
1

�
Im�Gn

R�p,���

=
1

2
�All�p,�� + Att�p,��� − iAlt�p,��

�
1

2
�All�p,�� + Att�p,��� . �82�

The singularity of the longitudinal correlation function
shows up as a continuum of excitations above the Bogoliu-
bov sound mode. The respective spectral weights at positive
frequencies of the transverse and longitudinal fluctuations
are given by

Stt =
mcn0

2n̄�p�
,

Sll �
1

4�n0C
�

c�p�

ckG d�
��2 − �cp�2

�
1

4�n0C
ln�2kG

�p� � �83�

for �p��kG. Using the estimate Eq. �49� of the constant C,
we obtain the ratio

Sll

Stt
�

mc�p�
8�n̄

ln�2kG

�p� � �
1

8�
�mg

n̄
�1/2

�p�ln�2kG

�p� � , �84�

where the last result is obtained with c��gn̄ /m. This ratio is
extremely small in the weak-coupling limit where mg�1
and �p��kG��n̄. It can however become sizable in the in-
termediate coupling regime when mg�1 and kG is not much
smaller than �n̄.

VI. CONCLUSION

The BMW NPRG method provides a powerful tool to
study interacting boson systems. In particular, it enables us

to obtain the momentum and frequency dependence of the
correlation functions on all energy scales. Our results reveal
the crucial role of the Ginzburg scale kG in zero-temperature
Bose superfluids. At large momenta or energies, �p��kG or
��� /c�kG, the Bogoliubov theory provides a good approxi-
mation to the correlation functions. For �p� , ��� /c�kG, the
correlation functions are governed by a different fixed point,
which corresponds to Popov’s hydrodynamic theory.
Throughout the paper, we have emphasized that interacting
boson systems can be understood within the framework of
the �quantum� O�2� model. The infrared behavior of this
model is characterized by singular longitudinal fluctuations
induced by the coupling to transverse �phase� fluctuations, a
phenomenon which is common to all models with a continu-
ous broken symmetry �7�.

From a technical point, we have not solved the BMW
equations in their full glory. By neglecting the field depen-
dence of the self-energies ���p ;n� �which were approxi-
mated by ���p ;n0�� and using the derivative expansion, we
have obtained flow equations which can be solved with rea-
sonable numerical effort. Yet these equations yield a remark-
able description of the singularity of the self-energy induced
by the divergence of the longitudinal susceptibility. Quasi-
particle lifetime �Beliaev damping� can also be obtained in
principle if the flow equations are solved self-consistently
�i.e., without relying on the derivative expansion�.

We have restricted our analysis to the weak-coupling limit
where the two characteristic momentum scales kh and kG are
well separated �kG�kh� n̄1/d�. The characteristic momentum
scale n̄1/d does not play any role in this limit. When the
dimensionless coupling constant is of order unity �interme-
diate coupling regime�, the three characteristic scales become
of the same order: kG�kh� n̄1/d. The momentum range
�kG ,kh� where the linear spectrum can be described by the
Bogoliubov theory is then suppressed. We expect the strong
coupling regime to be governed by a single characteristic
momentum scale, namely, n̄1/d. A good description of physi-
cal phenomena at the scale of the interparticle spacing is
likely to require the consideration of the complete BMW
equations �with no additional approximation� with both the
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FIG. 11. �Color online� Spectral function All�p ,�� for �p�
�0.036kG and k=0. The red solid line is the result obtained from
the Padé approximant, while the green dashed line corresponds to
the analytic expression in Eqs. �81�. The inset shows the ratio be-
tween All�p ,�� and the approximate result �Eqs. �81�� on a larger
energy scale.
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field and �p ,�� dependence of the vertices taken into ac-
count.

In one dimension, superfluidity exists without Bose-
Einstein condensation �n0=0�, and our results regarding the
infrared behavior of the correlation functions do not apply. If
however, we insist on using the Bogoliubov theory as a start-
ing point, we find from the perturbative estimate of Appen-
dix A 3 a characteristic length kG��gm�3/4n0

1/4. This expres-
sion makes sense if we interpret n0 as the condensate density
n0,kG

at the scale kG. A similar characteristic scale, ks

��gm�3/4n̄1/4, has been found in Ref. �52�. In weakly inter-
acting one-dimensional Bose gases, ks separates a high-
momentum regime ��p��ks� where the Gross-Pitaevskii de-
scription is valid from a low-momentum regime ��p�	ks�
where a more elaborate description �e.g., based on the exact
solution of the Lieb-Liniger model �53,54�� is required. The
description of one-dimensional superfluidity from the NPRG
is challenging even if the derivative expansion yields reason-
able results at weak coupling �17� and should be an interest-
ing test of the BMW scheme.
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APPENDIX A: BOGOLIUBOV’S THEORY

In this appendix, we briefly review the main results of
Bogoliubov’s theory.

1. Beliaev’s self-energies

The action of interacting bosons is often written in terms
of the two-component field,

"�p� = � ��p�
���− p�

�, "†�p� = „���p�,��− p�… , �A1�

where p= �p , i��. The one-particle �connected� propagator
then becomes a 2�2 matrix whose inverse in Fourier space
is given by

�i� + � − �p − �n�p� − �an�p�
− �an

� �p� − i� + � − �p − �n�− p�
� , �A2�

where �n and �an are the normal and anomalous self-
energies, respectively, and �p=p2 /2m. Making use of Eq.

�14� and the relation G=−�̄�2�−1 between the propagator and
the two-point vertex, one obtains Eqs. �27� if one chooses a
real order parameter ���x��=�n0. The normal and anomalous
self-energies satisfy the Hugenholtz-Pines theorem �5�

�n�0� − �an�0� = � , �A3�

which is a consequence of the spontaneously broken global
U�1� symmetry in the superfluid phase.

Using Eq. �A2�, we can relate the longitudinal propagator

Gll�p� = − ��1�p��1�− p��c

= −
1

2
����p� + ���− p�����− p� + ���p���c �A4�

��¯ �c denotes for the connected part of the propagator�
to the self-energies �n and �an. Anticipating that �
−�n�p� , �an�p��p2 , �2 when p→0 ,�→0 and neglecting
terms O�p2 ,�2�, we deduce

lim
p→0

Gll�p� = lim
p→0

� −
1

2
��n�p� + �n�− p�� + �an�p�

�� − �n�p���� − �n�− p�� − �an�p�2

= lim
p→0

− 1

2�an�p�
= lim

p→0

− 1

2n0�̄B�p�
, �A5�

where we have used the Hugenholtz-Pines theorem �Eq.
�A3��.

2. Bogoliubov’s approximation

The Bogoliubov approximation is based on the micro-
scopic action �Eq. �13�� and a first-order computation of the
self-energies,

�n
B�p� = 2gn0,

�an
B �p� = gn0, �A6�

where the condensate density n0=� /g. This yields the propa-
gators

Gn
B�p� = − ���p����p��c =

− i� − �p − gn0

�2 + Ep
2 ,

Gan
B �p� = − ���p���− p��c =

gn0

�2 + Ep
2 , �A7�

where Ep= ��p��p+2gn0��1/2 is the Bogoliubov quasi-particle
excitation energy. When �p� is larger than the healing mo-
mentum kh= �2gmn0�1/2, the spectrum Ep��p+gn0 is par-
ticlelike, whereas it becomes soundlike for �p��kh with a
velocity cB=�gn0 /m. In the small-momentum limit �p��kh,

Gll
B�p� = −

�p

�2 + cB
2p2 ,

Gtt
B�p� = −

2gn0

�2 + cB
2p2 ,

Glt
B�p� =

�

�2 + cB
2p2 . �A8�

Note that in the Bogoliubov approximation, the occurrence
of a linear spectrum is related to �an�0� being nonzero. In the
weak-coupling limit, n0 is approximately given by the full
density n̄, and the healing momentum can also be defined by
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kh= �2gmn̄�1/2 �which is the definition taken in Sec. V�.

3. Perturbative estimate of the Ginzburg scale kG

Let us consider the one-loop correction �an
�1��p� to the Bo-

goliubov result �an
B �p�=gn0. The leading contribution comes

from the one-loop diagram

where the internal lines correspond to transverse fluctuations,
i.e.,

�an
�1��p� � −

g2n0

2
�

q

Gtt�q�Gtt�p + q�

� −
g2n0

2

Sd

�2��d�
k

kh

d�q��q�d−1�
−�

� d�

2�
� 2gn0

�2 + cB
2q2�2

� −
g

2
�gmn0�3/2 Sd

�2��d�
k

kh d�q�
�q�4−d , �A9�

where kh is the healing momentum defined in Appendix A 2
and Sd is the surface of the unit sphere in d dimensions. The
infrared limit k in the integral is of order �p2+��

2 /cB
2�1/2 �with

p= �p , i����. The one-loop correction is divergent when d
�3. This divergence reflects the difficulties of diagrammatic
calculations beyond the Bogoliubov approximation and is a
manifestation of the diverging longitudinal susceptibility
�27�. We estimate the Ginzburg momentum scale kG from the
condition ��an

�1��p�����an
B �p�� �see Eq. �10��.

APPENDIX B: SYMMETRIES AND WARD IDENTITIES

1. Gauge invariance

Let us consider the microscopic action

S =� dx����x���� − ��x� −
1

2m
��− iA�x��2���x�

+
g

2
���x��4� �B1�

in the presence of external sources ��x� and A�x�. S is in-
variant in the gauge transformation

��x� → ��x�ei��x�,

���x� → ���x�e−i��x�,

��x� → ��x� + i����x� ,

A�x� → A�x� + ���x� , �B2�

where ��x� is an arbitrary real function. This implies that the
effective action satisfies

��R����,� + i���,A� + ���� = ���,�,A�� , �B3�

where �= ��1 ,�2�T and

R��� = �cos��� − sin���
sin��� cos���

� �B4�

is a two-dimensional rotation matrix. Differentiating Eq.
�B3� with respect to ��x�, we obtain

�
i,j


�


�i�x�
�ij� j�x� + i��


�


��x�
+ �

�

��

�


A��x�
= 0.

�B5�

Differentiating now with respect to �l�x2� and ��x2� and set-
ting �= ��2n0 ,0�, ��x�=�, and A�x�=0 give

− �2n0�̄l2
�2��x2,x1� + i��1�̄l;0

�2��x2,x1� + �
�1

��1
�̄l;�1

�2� �x2,x1� = 0,

− �2n0�̄2;0
�2� �x1,x2� + i��1�̄;00

�2��x1,x2� + �
�1

��1
�̄;�10

�2� �x1,x2� = 0,

�B6�

where we have introduced

�l;0
�2��x2,x1� =


�2��


�l�x2�
��x1�
,

�;00
�2��x2,x1� =


�2��


��x2�
��x1�
, �B7�

and similar definitions for �l;�
�2��x2 ,x1� and �;�0

�2� �x2 ,x1�. Note

that with the choice �= ��2n0 ,0�, we can identify �̄12
�2� to �̄C

and �̄22
�2� to �̄A. In Fourier space, Eqs. �B6� leads to the Ward

identities

�2n0�̄12
�2��p� + ��̄1;0

�2� �p� + �
�

ip��̄1;�
�2� �p� = 0, �B8�

�2n0�̄22
�2��p� + ��̄2;0

�2� �p� + �
�

ip��̄2;�
�2� �p� = 0, �B9�

�2n0�̄2;0
�2� �p� − ��̄;00

�2��p� − �
�

ip��̄;�0
�2� �p� = 0. �B10�

From Eq. �B8�, we deduce

� �

��
�̄12

�2��p��
p=0

= −
1

�2n0

�̄1;0
�2� �p = 0�

= − � 1
�2n0

�2U

��1 � �
�

n0

= − � �2U

�n � �
�

n0

,

�B11�

where the effective potential U�n ,�� is considered as a func-
tion of both n and �. From Eqs. �B9� and �B10�, we obtain

� �

��2 �̄22
�2��p��

p=0

= − � 1
�2n0

�

��
�̄2;0

�2� �p��
p=0

,
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� �

��
�̄2;0

�2� �p��
p=0

=
1

�2n0

�̄;00
�2��0� = � 1

�2n0

�2U

��2�
n0

,

�B12�

and therefore

� �

��2 �̄22
�2��p��

p=0
= − � 1

2n0

�2U

��2�
n0

. �B13�

2. Galilean invariance

Another Ward identity can be obtained from the Galilean
invariance of the microscopic action. The latter is invariant
in the transformation ��x�→��x�eiq·r, ���x�→��x�e−iq·r if
we shift the chemical potential � by q2 /2m, which implies

�„R����,� + q2/2m… = ���,�� , �B14�

where ��x�=q ·r and the chemical potential � is taken uni-
form and time independent. To order q2, Eq. �B14� gives

0 =
q2

2m

��̄

��
+ n0� dxdx��̄22

�2��x − x����x���x��

=
q2

2m

��̄

��
+ �Vn0q2 �

�p2 �̄22
�2��p��

p=0
, �B15�

where we have set �= ��2n0 ,0�. Since

��̄

��
= �V

�U

��
�

n0

= − Vn̄ �B16�

�see Eq. �37��, we finally obtain

� �

�p2 �̄22
�2��p��

p=0
=

n̄

2mn0
, �B17�

where n̄ is the mean boson density.

APPENDIX C: FLOW EQUATIONS

1. BMW equations

In the BMW approximation, the flow equation of the two-
point vertex is given by

�t�ij
�2��p;�� = −

1

2 �
q,i1,i2

�̃ t Gi1i2
�q;���iji2i1

�4� �p,− p,0,0;��

−
1

2 �
q,i1. . .i4

��ii2i3
�3� �p,0,− p;��� ji4i1

�3� �− p,p,0;��

���̃ tGi1i2
�q;���Gi3i4

�p + q;��

+ �p ↔ − p,i ↔ j�� , �C1�

where the three- and four-point vertices in Eq. �C1� are ob-
tained from the field derivatives of the two-point vertex �Eqs.
�57��. From Eqs. �21� and �44�, we obtain

Gij�p;�� = 
i,j�
i,1Gll�p;n� + 
i,2Gtt�p;n�� + �ijGlt�p;n� ,

�ij
�2��p;�� = 
i,j��A�p;n� + 
i,12n�B�p;n�� + �ij�C�p;n� ,

�ijl
�3��p,− p,0;�� =

�2n
�V

�
i,j
l,1��A��p;n� + 
i,12n�B��p;n��

+ �
i,l
 j,1 + 
 j,l
i,1��B�p;n�

+ �ij
l,1�C� �p;n�� ,

�ijlm
�4� �p,− p,0,0;�� =

1

V
�
i,j
l,m��A��p;n� + 
l,12n�A��p;n��

+ �
i,l
 j,m + 
 j,l
i,m��B�p;n�

+ �
i,1�
 j,m
l,1 + 
l,m
 j,1� + 
m,1�
i,l
 j,1

+ 
 j,l
i,1� + 
i,m
 j,1
l,1�2n�B��p;n�

+ 
i,1
 j,1
l,1
m,14n2�B��p;n�

+ 
l,m�ij��C� �p;n� + 
l,12n�C� �p;n���
�C2�

�����p ;n�=�n���p ;n�, etc.� for the particular field configura-
tion �= ��2n ,0�. The flow equation �Eq. �C1�� then gives

�t�A�p;n� = − 1
2 Ill�n���A��p;n� + 2n�A��p;n�� − 1

2 Itt�n�

���A��p;n� + 2�B�p;n�� − 2n�Jll,tt�p;n��A��p;n�2

+ Jtt,ll�p;n��B�p;n�2

+ 2Jlt,lt�p;n��A��p;n��B�p;n�

− Jll,ll�p;n��C� �p;n�2

− 2Jll,lt�p;n��A��p;n��C� �p;n�

+ 2Jlt,ll�p;n��B�p;n��C� �p;n�� , �C3�

�t�B�p;n� =
1

2n
�Itt�n� − Ill�n���B�p;n� − Ill�n��5

2
�B��p;n�

+ n�B��p;n�� −
1

2
Itt�n��B��p;n� − Jll,ll�p;n��X�n�2

+ �C� �p;n�2� + Jll,tt�p;n���A��p;n�2 + �C� �p;n�2�

+ Jtt,ll�p;n��B�p;n�2 − Jtt,tt�p;n��B�p;n�2

+ 2Jlt,lt�p;n��B�p;n��X�n� + �A��p;n��

+ 2Jll,lt�p;n��X�n� − �A��p;n���C� �p;n�

+ 2Jlt,ll�p;n��B�p;n��C� �p;n�

+ 2Jlt,tt�p;n��B�p;n��C� �p;n� , �C4�

�t�C�p;n� = − 1
2 Ill�n���C� �p;n� + 2n�C� �p;n�� − 1

2 Itt�n��C� �p;n�

− 2n�Jll,ll�p;n�X�n��C� �p;n�

+ Jll,tt�p;n��A��p;n��C� �p;n� − Jtt,lt�p;n��B�p;n�2

+ Jlt,ll�p;n��B�p;n��A��p;n� + Jll,lt�p;n�

��X�n��A��p;n� − �C� �p;n�2�

− Jlt,ll�p;n�X�n��B�p;n�� , �C5�

N. DUPUIS PHYSICAL REVIEW A 80, 043627 �2009�

043627-16



where X=�A� +2�B+2n�B� . The coefficients I��n� and
J��n ; p� are defined in Eqs. �63�. If we set �C=0 and p
= �p ,0�, we reproduce the flow equations of the classical
O�2� model derived in Ref. �41�.

2. Truncated flow equations

The flow equations simplify considerably when the field
dependence of the self-energy ���p ;n� is neglected and the
effective potential U�n� expanded about n0 as in Eq. �60�. In
this case the only nonvanishing field derivative is �A��p ;n�
=� while �B��p ;n�=�C� �p ;n�=0 �see Eqs. �58��, so that we
obtain

�t�A�p;n� = − 1
2 Ill�n�� − 1

2 Itt�n��� + 2�B�p;n��

− 2n�Jll,tt�p;n��2 + Jtt,ll�p;n��B
2�p;n�

+ 2Jlt,lt�p;n���B�p;n�� ,

�t�B�p;n� =
1

2n
�Itt�n� − Ill�n���B�p;n� + Jll,tt�p;n��2

− Jll,ll�p;n��� + 2�B�p;n��2 + �Jtt,ll�p;n�

− Jtt,tt�p;n���B
2�p;n� + 4Jlt,lt�p;n��B�p;n���

+ �B�p;n�� ,

�t�C�p;n� = 2n�Jtt,lt�p;n��B
2�p;n� − Jlt,tt�p;n���B�p;n�

− Jll,lt�p;n���� + 2�B�p;n�� + Jlt,ll�p;n��B�p;n�

��� + 2�B�p;n��� . �C6�

We can finally deduce the flow equations for the self-energy

�̄��p�=���p ;n0� from its definition �Eqs. �58��,

�t�̄A�p� = �t�A�p;n��n0
+ �A��p;n0��tn0,

�t�̄B�p� = �t�B�p;n��n0
+ �B��p;n0��tn0 − �t� ,

�t�̄C�p� = �t�C�p;n��n0
+ �C� �p;n0��tn0, �C7�

where

�A��p;n0� = U��n0� = � ,

�B��p;n0� = U��n0� = 0,

�C� �p;n0� = 0. �C8�

This leads to Eqs. �62� and �65�.

3. Dimensionless flow equations

For numerically solving the flow equations, it is useful to
introduce the dimensionless variables �Eqs. �66�� as well as
the dimensionless self-energy,

�̃A�p� = �ZA�k�−1�̄A�p� ,

�̃B�p� = �k−d�kZAZC�−1�̄B�p� ,

�̃C�p� = �ZA�k�−1�̄C�p� , �C9�

where �k=k2 /2m. In dimensionless form, Eqs. �61�, �62�, and
�65� read

�tñ0 = − �d + �C�ñ0 + 3
2 Ĩll + 1

2 Ĩtt,

�t�̃ = �d − 2 + �A + �C��̃ − �̃2�9J̃ll,ll�0� − 6J̃lt,lt�0� + J̃tt,tt�0�� ,

�A = 2ñ0�̃
2 �

�y
�J̃ll,tt�p� + J̃tt,ll�p� + 2J̃lt,lt�p��p=0,

�C = − 2ñ0�̃
2 �

��̃
�J̃tt,lt�p� − J̃lt,tt�p� − 3J̃ll,lt�p� + 3J̃lt,ll�p��p=0,

�tṼA = �2 − �A + 2�C�ṼA − 2ñ0�̃
2 �

��̃2 �J̃ll,tt�p� + J̃tt,ll�p�

+ 2J̃lt,lt�p��p=0, �C10�

and

�t�̃A�p� = ��A − 2��̃A�p� + �̃�Ĩll − Ĩtt� − 2ñ0�̃
2�J̃ll,tt�p�

+ J̃tt,ll�p� + 2J̃lt,lt�p�� ,

�t�̃B�p� = �d − 2 + �A + �C��̃B�p� +
�̃

2ñ0

�Ĩtt − Ĩll�

+ �̃2�− 9J̃ll,ll�p� + J̃ll,tt�p� + J̃tt,ll�p� − J̃tt,tt�p�

+ 8J̃lt,lt�p�� + �̃2�9J̃ll,ll�0� − 6J̃lt,lt�0� + J̃tt,tt�0�� ,

�t�̃C�p� = ��A − 2��̃C�p� + 2n0�
2�J̃tt,lt�p� − J̃lt,tt�p� − 3J̃ll,lt�p�

+ 3J̃lt,ll�p�� , �C11�

where

y =
p2

k2 , �̃ =
ZC

ZA�k
� , �C12�

and �A=−�t ln ZA, �C=−�t ln ZC. The coefficients Ĩ� and

J̃��p� are defined in Appendix C 4 c.

4. Coefficients I� and J��(p)

a. Ī� and J̄��(p)

To compute the coefficients Ī�= I��n0� and J̄��p�
=J��p ;n0� and their derivatives with respect to p or �, it is
convenient to introduce

A�p� = �̄A�p� + R�p� ,

B�p� = A�p� + 2n0�̄B�p� ,
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C�p� = �̄C�p� ,

D�p� = C�p�2 + A�p�B�p� . �C13�

With these notations, we have

Ḡll = −
A

D
, Ḡtt = −

B

D
, Ḡlt =

C

D
, �C14�

and

�̃ tḠll = − Ṙ
C2 − A2

D2 ,

�̃ tḠtt = − Ṙ
C2 − B2

D2 ,

�̃ tḠlt = − Ṙ
C�A + B�

D2 , �C15�

where

Ṙ = − ZA�kY��Ar + 2Yr�� ,

Y =
p2

k2 +
�2

c0
2k2 , �C16�

with r�r�Y� and r�=�r /�Y. Equations �C14� and �C15� can

be used to compute Ī� and J̄��p�, as well as ��J̄��p� ��=0

and ��2J̄��p� ��=0.

b. ��p
J̄��(p) �p=0

Using

Ḡ��p + q� = Ḡ��q� + �p2 + 2p · q�Ḡ���q� + 2�p · q�2Ḡ���q�

+ O��p�3� �C17�

for p= �p ,0�, we find

J̄��p� = �
q

��̃ tḠ���Ḡ + p2Ḡ� +
2

d
p2q2Ḡ�� + O��p�4�

�C18�

and

�

�p2 J̄��p��p=0 = 4vd�
�
�

0

�

d�q��q�d−1��̃ tḠ���Ḡ� +
2

d
q2Ḡ�� ,

�C19�

where we use the notation

Ḡ�� =
�

�q2Ḡ� �C20�

�note that Ḡ��p� is a function of p2�. We have introduced
vd= �2d+1�d/2��d /2��−1. Using the variable x=q2 and inte-
grating the last term of Eq. �C19� by part, we find

�

�p2 J̄��p��p=0 = − 8
vd

d
�
�
�

0

�

d�q��q�d+1��̃ tḠ���Ḡ� . �C21�

The operator �̃t is defined by

�̃ t = Ṙ
�

�R
+ Ṙ�

�

�R�
, �C22�

where

R� =
ZA

2m
�r + Yr�� ,

Ṙ� = −
ZA

2m
��Ar + ��A + 4�Yr� + 2Y2r�� . �C23�

This gives

�

��p
J̄��p��p=0 = 4

vd

d
kd+2ZA�

�
�

0

�

dyyd/2	k2Y��Ar

+ 2Yr��
�

�R
Ḡ�� + ��Ar + ��A + 4�Yr�

+ 2Y2r��
�

�R�
Ḡ��
Ḡ� . �C24�

The function Ḡ���q� can be expressed as

Ḡll� = −
1

D2 �C2A� − A2B�� ,

Ḡtt� = −
1

D2 �C2B� − A�B2� ,

Ḡlt� = −
C

D2 �A�B + AB�� , �C25�

where A�=�q2A and B�=�q2B. Using

�

�R
=

�

�A
+

�

�B
,

�

�R�
=

�

�A�
+

�

�B�
, �C26�

we obtain

�

�R
Ḡll� =

2

D3 �C2�AB� + A�B + AA�� − A3B�� ,

�

�R
Ḡtt� =

2

D3 �C2�AB� + A�B + BB�� − A�B3� ,

�

�R
Ḡlt� = −

C

D3 ��C2 − AB��A� + B�� − 2A2B� − 2A�B2� , �C27�

and
�

�R�
Ḡll� = −

1

D2 �C2 − A2� ,
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�

�R�
Ḡtt� = −

1

D2 �C2 − B2� ,

�

�R�
Ḡlt� = −

C

D2 �A + B� . �C28�

Equations �C25�, �C27�, and �C28� are used to compute

��pJ̄��p� �p=0. In the derivative expansion, we use the simpli-
fied expressions

A�p� = VA�
2 + ZA�p + R�p� ,

B�p� = A�p� + 2n0� ,

C�p� = ZC� , �C29�

and

A� = B� =
ZA

2m
�1 + r + Yr�� . �C30�

c. Ĩ� and J̃��(p)

We introduce dimensionless propagators,

G̃ll =
Gll

ZA�k
= −

Ã

D̃
,

G̃tt =
Gtt

ZA�k
= −

B̃

D̃
,

G̃lt =
Glt

ZA�k
=

C̃

D̃
, �C31�

where

Ã = �ZA�k�−1A ,

B̃ = �ZA�k�−1B ,

C̃ = �ZA�k�−1C . �C32�

The dimensionless coefficients Ĩ� and J̃��p� are then defined
by

Ĩ� = k−dZCĪ� = − 2vd�
y,�̃

yd/2−1��Ar + 2Yr��
�G̃�
�r

�C33�

and

J̃��p� =
ZAZC�k

kd J̄��p� = −
1

8�2�
0

�4−d��

d� sind−2 �

� �
y,�̃

yd/2−1��Ar + 2Yr��
�G̃��q�

�r
G̃�p + q� ,

J̃��0� = − 2vd�
y,�̃

yd/2−1��Ar + 2Yr��
�G̃�
�r

G̃ �C34�

�d=3 or d=2�. y and �̃ are defined in Eq. �C12�. To compute
Eqs. �C34�, we use

�G̃ll

�r
=

Y

D̃2
�Ã2 − C̃2� ,

�G̃tt

�r
=

Y

D̃2
�B̃2 − C̃2� ,

�G̃lt

�r
= −

YC̃

D̃2
�Ã + B̃� . �C35�

In dimensionless form, Eq. �C24� becomes

�

�y
J̃��p��p=0 =

ZAZC�k
2

kd

�

��p
J��p��p=0

= 4
vd

d
�

y,�̃
yd/2	���Ar + 2Yr��

�G̃��

�r
�

r+Yr�

+ ��Ar + ��A + 4�Yr� + 2Y2r��

� Y−1�G̃��

�r�

G̃� , �C36�

where �G̃�� =�yG̃��,

G̃ll� = −
1

D̃2
�C̃2Ã� − Ã2B̃�� ,

G̃tt� = −
1

D̃2
�C̃2B̃� − B̃2Ã�� ,

G̃lt� = −
C̃

D̃2
�Ã�B̃ + ÃB̃�� , �C37�

� �G̃ll�

�r
�

r+Yr�
=

2Y

D̃3
�C̃2�ÃB̃� + Ã�B̃ + ÃÃ�� − Ã3B̃�� ,

� �G̃tt�

�r
�

r+Yr�
=

2Y

D̃3
�C̃2�ÃB̃� + Ã�B̃ + B̃B̃�� − Ã�B̃3� ,

� �G̃lt�

�r
�

r+Yr�
= −

YC̃

D̃3
��C̃2 − ÃB̃��Ã� + B̃�� − 2Ã2B̃� − 2Ã�B̃2� ,

�C38�

and

�G̃ll�

�r�
= −

Y

D̃2
�C̃2 − Ã2� ,
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�G̃tt�

�r�
= −

Y

D̃2
�C̃2 − B̃2� ,

�G̃lt�

�r�
= −

YC̃

D̃2
�Ã + B̃� . �C39�

We have introduced Ã�=�yÃ and B̃�=�yB̃. In Eqs. �C36� and
�C38�, the derivative � /�r is taken with r+Yr�, i.e., R�
=�q2R, fixed. If A, B, and C are evaluated within the deriva-
tion expansion �Eqs. �C29� and �C30��,

Ã = ṼA�̃
2 + y + Yr ,

B̃ = Ã + 2ñ0�̃ ,

C̃ = �̃ , �C40�

and

Ã� = B̃� = 1 + r + Yr�. �C41�

APPENDIX D: SOLUTION OF THE FLOW EQUATIONS
IN THE INFRARED LIMIT

In this appendix, we consider the regulator �Eq. �17�� with
�55�

r�Y� =
1 − Y

Y
��1 − Y� . �D1�

We also take

c0
2 =

ZA

2mVA
�D2�

and note that c0 is k independent in the infrared limit k
�kG and equal to the Goldstone mode velocity c �Secs. III
and V�. For Y�1, one then has

Ã = Y + Yr�Y� = 1,

B̃ = 1 + 2ñ0�̃ ,

D̃ = 1 + 2ñ0�̃ + �̃2. �D3�

We also observe that the condition Y�1 implies

��̃��
ZC

ZA�k
c0k � k2−d, �D4�

where we have anticipated that ZC�k3−d for d	3. On the
other hand,

ñ0�̃ = �ZA�k�−1n0�� k1−d. �D5�

We can therefore neglect �̃2 with respect to B̃ and

D̃ � B̃ � 2ñ0�̃ �D6�

becomes frequency independent. For d=3, ��̃��1 / �k ln k�
and ñ0�̃�1 / �k2 ln k�, so that Eq. �D6� holds.

We are now in a position to compute the infrared limit of

the coefficients Ĩ� and J̃�. Since �A→0, we have

Ĩll = − 4vd�
y,�̃

yd/2−1Y2r�
Ã2 − �̃2

D̃2
,

Ĩtt = − 4vd�
y,�̃

yd/2−1Y2r�
B̃2 − �̃2

D̃2
. �D7�

Since ��̃� , Ã� B̃, we can neglect Ĩll with respect to Ĩtt and
approximate

Ĩtt � − 4vd�
y,�̃

yd/2−1Y2r�
B̃2

D̃2
= 4vd�

y,�̃
yd/2−1��1 − Y� . �D8�

For any function f�Y�,

vd�
0

�

dyyd/2−1�
−�

� d�̃

2�
f�Y� = ṼA

−1/2vd+1�
0

�

dYY�d−1�/2f�Y� ,

�D9�

so that we finally obtain

Ĩtt � 8
vd+1

d + 1
ṼA

−1/2 �D10�

and

�tñ0 � − �d + �C�ñ0 +
1

2
Ĩtt � − �d + �C�ñ0 + 4

vd+1

d + 1
ṼA

−1/2

� − �d + �C�ñ0, �D11�

where we have used the fact that the condensate density n0
flows to a finite value when k→0 �so that the flow of ñ0 is
determined by the purely dimensional contribution�.

With a similar reasoning, we find

�t�̃� �d − 2 + �C��̃ − �̃2J̃tt,tt�0�

� �d − 2 + �C��̃ + 8
vd+1

d + 1

�̃2

ṼA
1/2

,

�C � − 2ñ0�̃
2 �

��̃
J̃tt,lt�p��p=0 � − 8

vd+1

d + 1

�̃

ṼA
1/2

,

�tṼA � �2 + 2�C�ṼA. �D12�

All the integrals involved in the derivation of Eqs. �D11� and
�D12� are �d+1�-dimensional integrals of the type �Eq.
�D9��. This is a direct manifestation of the relativistic invari-
ance which emerges in the low-energy limit �Sec. IV C�. To
compute the infrared limit of the flow equations satisfied by

the self-energies, we need to compute the coefficients J̃��p�
for finite p. The external variable p acts as a low-energy

cutoff, so that J̃��p� can be obtained from J̃��p=0� with
k��p2+�2 /c2�1/2 �this choice satisfies the relativistic invari-
ance�.
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APPENDIX E: HIGH-FREQUENCY LIMIT OF THE TWO-
POINT VERTEX

The normal and anomalous propagators Gn and Gan de-
fined in Appendix A can be written as

Gn�p� = �
−�

�

d��
An�p,���
i� − ��

,

Gan�p� = �
−�

�

d��
Aan�p,���
i� − ��

�E1�

when i��0. The spectral functions An and Aan are defined
by

An�p,t� =
1

2�
���̂�p,t�,�̂†�p,0��� ,

Aan�p,t� =
1

2�
���̂�p,t�,�̂�− p,0��� , �E2�

where �̂�p , t� and �̂†�p , t� are the boson operators in the
Heisenberg picture. From the spectral representation �Eqs.
�E1��, we obtain the high-frequency expansion

Gn�p� =
1

i�
+

Xp

�i��2 + O��−3� ,

Gan�p� =
Yp

�i��2 + O��−3� , �E3�

where

Xp = �
−�

�

d��An�p,�� = 2��i�tAn�p,t��t=0

= �†��̂�p�,Ĥ�,�̂†�p�‡� ,

Yp = �
−�

�

d��Aan�p,�� = 2��i�tAan�p,t��t=0

= �†��̂�p�,Ĥ�,�̂�− p�‡� , �E4�

and Ĥ is the quantum Hamiltonian corresponding to the ac-
tion �Eq. �13��. To obtain Eqs. �E4�, we have used the equa-

tions of motion of the operators �̂�p , t� and �̂†�p , t�. A
straightforward calculation gives

Xp = �p − � + 2gn̄ ,

Yp = − g��̂�r�2� , �E5�

where n̄= ��̂†�r��̂�r�� is the mean boson density. Inverting
Eq. �A2� and considering the high-frequency limit, we ob-
tain

Xp = − lim
�→�

�� − �p − �n�p�� ,

Yp = − lim
�→�

�an�p� , �E6�

i.e.,

lim
�→�

�n�p� = 2gn̄ ,

lim
�→�

�an�p� = g��̂�r�2� . �E7�

From Eqs. �27� and �58�, we finally deduce

�̄A
� = lim

�→�
�̄A�p� = − � − g��̂�r�2� + 2gn̄ ,

�̄B
� = lim

�→�
�̄B�p� = g

��̂�r�2�
n0

,

�̄C
� = lim

�→�
�̄C�p� = 0. �E8�

From these limiting values, we can obtain the “pairing” am-

plitude ��̂�r�2� and the mean boson density n̄. In the weak-

coupling limit, n̄�n0���̂�r�2� and n0�� /g do not differ

much from the Bogoliubov result, so that we expect �̄A
�

�gn̄, �̄B
��g, and �̄C

�=0.

Since lim�→� J̄��p�=0, the flow equations �Eqs. �61� and
�62�� yield

�t�̄A
� = ��Īll − Ītt� ,

�t�̄B
� =

�

2n0
�Ītt − Īll� ,

�t�̄C
� = 0. �E9�

These equations are not exact as they involve �
���4��0,0 ,0 ,0� rather than the high-frequency limit
lim��→� �

�4��p ,−p ,q ,−q� �with p= �p , i���� of the four-point
vertex. Nevertheless, the numerical results of Sec. V are in
good agreement with the asymptotic values �Eqs. �E8��. Note
that contrary to Eqs. �E9�, the BMW equations would be
correct in the high-frequency limit.
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