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Abstract. The non-perturbative renormalization-group approach is extended to lattice models, considering
as an example a φ4 theory defined on a d-dimensional hypercubic lattice. Within a simple approximation
for the effective action, we solve the flow equations and obtain the renormalized dispersion ε(q) over the
whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter
any more, we reproduce the usual flow equations of the continuum model. We show how the numerical
solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular
harmonics.

PACS. 05.70.Fh Phase transitions: general studies – 05.10.Cc Renormalization group methods – 05.70.Jk
Critical point phenomena

1 Introduction

The non-perturbative renormalization group (NPRG) has
proven to be a powerful tool in the study of systems with a
large number of interacting degrees of freedom [1–3]. It has
been successfully applied in many areas of physics, con-
densed matter, nuclear and particle physics, etc. (For a re-
view and a pedagogical introduction, see references [4,5]).

The NPRG is based on an exact flow equation satisfied
by the effective action Γ [M ] (i.e. the generating functional
of one-particle irreducible vertices). In the most common
approximation, one expands the effective action in powers
of derivatives of the field M . While this approach is often
the easiest way to solve the NPRG equations, it yields
only the small momentum behavior of the vertices [6]. As
shown recently, it is possible to solve the NPRG equations
beyond the derivative expansion and compute the whole
momentum dependence of the vertices [7–14].

A proper description of the momentum dependence of
the vertices opens up the possibility to study lattice mod-
els. While the derivative expansion is always appropriate
to study the long-distance physics and predicts universal
quantities such as the critical exponents, it often fails to
predict non-universal quantities (e.g. the critical temper-
ature of a phase transition) which depend on the short-
distance physics. Moreover, in some cases the lattice is the
very reason for the occurrence of a phase transition [15].
(For approximate treatments of lattice models within the
derivative expansion, see Refs. [16–19].)

a e-mail: dupuis@lptmc.jussieu.fr

In this paper, we show how the usual NPRG approach
should be modified in the case of lattice models. As an ex-
ample, we consider a φ4 theory defined on a d-dimensional
hypercubic lattice. We solve the flow equations within a
simple approximation for the effective action. From the 2-
leg vertex, we deduce the renormalized “dispersion” (i.e.
the kinetic energy in particle language) over the whole
Brillouin zone. In order to simplify the numerical solution
of the flow equations, we introduce two approximations:
(i) the LPA’ (where LPA stands for local potential approx-
imation) – a natural generalization to the lattice case of
the LPA’ used in continuum models [20] – which neglects
the renormalization of the dispersion except at very small
momenta; (ii) the H-LPA’ where the LPA’ is supplemented
by a circular harmonic expansion of the 2-leg vertex, thus
allowing one to take into account the renormalization of
the dispersion in a (numerically) efficient way. By com-
paring with the exact solution of the flow equations, these
two approximations are found to be remarkably accurate.

2 NPRG for lattice models

2.1 General method

We consider a φ4 theory defined on d-dimensional hyper-
cubic lattice,

S[φ] =
∑

r

{
1
2
φr[ε0(−i∇) + v]φr +

u

4!
φ4
r

}
, (1)
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where {r} denotes the sites of the lattice. For simplicity,
we consider a one-component real field φr; the extension
of our approach to a N -component field model with O(N)
symmetry is straightforward. The bare dispersion ε0(q) is
chosen such that ε0(q = 0) = 0 and limq→0 ε0(q) = ε0q2.
(This is always possible by a redefinition of the parameter
v in (1).) For a system with nearest-neighbor interactions
only (the case we shall consider for the numerical solution
of the flow equations),

ε0(q) = −2ε0

d∑

ν=1

[cos(qν) − 1], (2)

where the maximum of ε0(q) is given by 4dε0. The lattice
spacing is taken as the unit length.

To implement the RG procedure, we add to the action
the regulator term

ΔSR[φ] =
1
2

∑

r

φrR(−i∇)φr =
1
2

∑

q

φ−qR(q)φq, (3)

where the function R(q) ≡ Rk(q) depends on the energy
εk. φq = N−1/2

∑
r e−iq·rφr is the Fourier transformed

field with N the number of lattice sites. The sum over q
in (3) is restricted to the first Brillouin zone ]−π, π]d of the
reciprocal lattice. In the thermodynamic limit (N → ∞),

1
N

∑

q

→
∫ π

−π

dq1

2π
· · ·

∫ π

−π

dqd

2π
≡

∫

q

. (4)

The NPRG approach is based on the effective action
Γ [M ] defined as the Legendre transform of the free en-
ergy − ln Z[h] from which ΔSR[M ] is subtracted. Here h
denotes an external field that couples linearly to the φ
field and Mr = 〈φr〉h is the expectation value of φr. Γ [M ]
satisfies the exact flow equation [3]

∂kΓ [M ] =
1
2
Tr

{
∂kR

(
Γ (2)[M ] + R

)−1
}

(5)

as the energy scale εk is varied. Γ (2)[M ] is the second-
derivative of Γ [M ] with respect to M . To keep the nota-
tion simple, we do not explicitly indicate the k dependence
of Γ , Γ (2) and R.

An important difference with continuum models comes
from the regulator function R. The latter is chosen to be
of the form

R(q) = Zε0(q)r(ε̃0(q)), ε̃0(q) =
ε0(q)

εk
, (6)

where the k-dependent variable Z will be specified below.
A typical choice for the function r is r(x) = (ex − 1)−1.
The regulator function R gives a mass of order εk to low-
energy fluctuation modes (ε0(q) � εk) but leaves the high-
energy modes (ε0(q) � εk) essentially unaffected. When
εk → ∞ – or, in practice, εk larger than any typical en-
ergy scale – all fluctuations are frozen and mean-field the-
ory becomes exact: Γ [M ] = S[M ]. As long as εk � ε0 (i.e.
εk � ε0(q)), fluctuations are local (on-site). They become

non-local when εk ∼ ε0. Although R(q) ≡ Rk(q) is a func-
tion of εk, it is convenient to write εk = ε0k

2 in terms of
a momentum scale k and consider all quantities of inter-
est to be function of k rather than εk. The regime where
fluctuations are local in space then corresponds to length
scales k−1 	 1, i.e. much smaller than the lattice spacing,
whereas the condition k−1 � 1 implies that fluctuations
can propagate through the lattice. Since the function r(x)
typically vanishes exponentially for x � 1,

lim
k→0

R(q) = Zε0q2r

(
q2

k2

)
, (7)

and we reproduce the regulator function that is used in
continuum models (ε0(q) = ε0q2) [4,5]. Equation (7) ex-
presses the fact that when εk 	 ε0 (i.e. k 	 1) the lat-
tice does not matter any more and only the small-q limit
ε0q2 of the dispersion plays a role. To distinguish between
these two regimes, characterized by the presence or ab-
sence of strong lattice effects, it is convenient to introduce
the crossover momentum scale kx ∼ 1 (εkx ∼ ε0).

In the following we write k ≡ k(t) = Λet (t < 0) where
Λ is such that when εk = ε0Λ

2, all fluctuations are effec-
tively frozen and the mean-field theory a good approxi-
mation. In practice, one should verify that the solution of
the flow equations remains essentially unchanged when Λ
is increased above the chosen value.

2.2 Flow equations

In this section, we derive the flow equations in the case
where the effective action is approximated by the simple
form

Γ [M ] =
∑

r

{
1
2
Mrε(−i∇)Mr + U(ρr)

}
, (8)

where ε(q) denotes the (k-dependent) dispersion. For sym-
metry reasons, the potential U can only be a function of
ρr = M2

r /2. In the ordered phase – the only one that will
be of interest to us – we approximate it by

U(ρr) =
λ

2
(ρr − ρ0)2, (9)

where ρ0 is the k-dependent minimum of the potential.
The wave-function renormalization factor Z is defined by

Z = lim
q→0

ε(q)
ε0(q)

= lim
q→0

ε(q)
ε0q2

. (10)

The dependence of R on Z (Eq. (6)) is a necessary con-
dition for the effective action Γ [M ] to reach a fixed point
when the system becomes critical (ρ0(k → 0) = 0+). We
are therefore left with three unknown parameters (ρ0, λ
and Z) and a function ε(q) to be determined as a function
of k(t). The initial values at t = 0 are ρ0 = −3v/u (for
v ≤ 0), λ = u/3 and ε(q) = ε0(q), where u and v are
introduced in (1).

Given our choice of the regulator function (Eqs. (6,7)),
we expect the flow equations to reproduce those of the
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continuum model when k 	 1. This suggests to introduce
the dimensionless variables

M̃r = (Zεk)1/2k−d/2Mr, ρ̃r = Zεkk−dρr,

λ̃ = Z−2ε−2
k kdλ, ε̃(q) = (Zεk)−1ε(q).

(11)

The effective action then takes the form

Γ [M̃ ] = kd
∑

r

[
1
2
M̃rε̃(−i∇)M̃r +

λ̃

2
(ρ̃r − ρ̃0)

2

]

�
(k→0)

∫
ddr̃

[
1
2

(
∇r̃M̃(r̃)

)2

+
λ̃

2
(ρ̃(r̃) − ρ̃0)

2

]
,

(12)

where the last result is obtained in the continuum limit
using limk→0 ε̃(q) � q2/k2 and introducing the dimen-
sionless continuous variable r̃ = kr.

The flow equations are deduced from (5) and (8). In
dimensionless form, one finds (Appendix A)

∂tρ̃0 = −(d − 2 + η)ρ̃0 + 3Ld
1(k, 2λ̃ρ̃0, η; ε̃),

∂tλ̃ = (d − 4 + 2η)λ̃ + 9λ̃2Ld
2(k, 2λ̃ρ̃0, η; ε̃),

η =
36λ̃2ρ̃0M

d
2 (k, 2λ̃ρ̃0; ε̃)

1 − 36λ̃2ρ̃0Md
1 (k, 2λ̃ρ̃0; ε̃)

, (13)

where the threshold functions Ld
n and Md

1,2 are defined in
Appendix B, and

∂tε̃(q) = (η − 2)ε̃(q) − 9λ̃2ρ̃0k
−d

×
∫

q′

{[
(ηr + 2ε̃0r

′)ε̃0g2
]
q′ g(q′ + q)

+ g(q′)
[
(ηr + 2ε̃0r

′)ε̃0g2
]
q′+q

− 2
[
(ηr + 2ε̃0r

′)ε̃0g2
]
q′ g(q′)

}
, (14)

where r ≡ r(ε̃0(q)) and r′ ≡ r′(ε̃0(q)). We have introduced
the running anomalous dimension

η = −∂t ln Z (15)

and the dimensionless propagator

g(q) =
1

ε̃(q) + ε̃0(q)r(ε̃0(q)) + 2λ̃ρ̃0

. (16)

A direct consequence of the property (7) is that the flow
equations (13) become identical to those of the continuum
model in the limit k 	 1,

∂tρ̃0 = −(d − 2 + η)ρ̃0 + 6vdl
d
1(2λ̃ρ̃0, η),

∂tλ̃ = (d − 4 + 2η)λ̃ + 18vdλ̃
2ld2(2λ̃ρ̃0, η),

η = 72
vd

d
λ̃2ρ̃0m

d(2λ̃ρ̃0, η), (17)

where ldn and md are the usual threshold functions (Ap-
pendix B), whereas (14) becomes identical to the self-
energy equation derived in reference [13]. The coefficient
vd is defined in Appendix B.

2.3 Approximations

Even if one takes advantage of the symmetry properties
of the dispersion ε(q) (e.g. invariance under qν → −qν or
qν ↔ qν′), the numerical solution of the flow equations
will be quite demanding in particular for d ≥ 3. In this
section, we discuss two approximations which make the
numerical solution much easier. Their reliability will be
discussed in Section 3.

2.3.1 LPA’

The numerical solution of the flow equations (13) and
(14) gives a complete description of the behavior of the
φ4 theory (1) in the approximation where the effective
action Γ [M ] is given by (8). It yields not only the crit-
ical exponents but also the propagator G(q) = 〈φqφ−q〉
over the entire Brillouin zone. We know from previous
works [7,8,13] that the anomalous dimension η can be ob-
tained either from Z (Eq. (15)) or from the momentum
dependence of the propagator G(q) ∼ 1/|q|2−η in the limit
q → 0. In order to simplify the numerical solution, we can
give up the exact solution of the flow equation (14) satis-
fied by ε̃(q), in particular near q = 0, since we still have
the possibility to extract η from the scale dependence of
the wave-function renormalization factor Z (Eq. (15)).

In the simplest approximation, one sets ε̃(q) = ε̃0(q),
i.e. ε(q) = Zε0(q). For εk 	 ε0, this yields ε(q) = Zε0q2,
which is nothing but the LPA’ previously introduced for
continuum models. The LPA’ amounts to writing the ef-
fective action Γ [M ] in terms of a local potential U (with
a possible expansion in field truncated to a finite order)
and a gradient term Z(∇M)2 whose amplitude is given
by Z. As it is based on a gradient expansion, the LPA’ is
valid at small momentum |q| � k and gives only the long-
distance behavior of the propagator. It is made possible by
the fact that only propagators with momenta |q| � k enter
the flow equations. In the lattice case we are considering
here, the approximation ε̃(q) = ε̃0(q) can be seen as the
natural extension of the LPA’ used in continuum models.
In the limit εk 	 ε0 where the lattice plays no role any
more, its accuracy will be identical to that of the LPA’ in
continuum models. When εk � ε0, fluctuations are local
in space so that the dispersion should not be significantly
renormalized: Z � 1 and ε(q) � ε0(q). Whether or not the
LPA’ is also reliable when εk ∼ ε0 is more difficult to as-
sess without comparing to a more complete solution of the
flow equations. This will be done in Section 3. The flow
equations in the LPA’ reduce to (13) where the thresh-
old functions Ld

n and Md
1,2 should be computed with the

replacement ε̃(q) → ε̃0(q).

2.3.2 Circular harmonic expansion

It is possible to go beyond the LPA’ and obtain the
renormalized dispersion over the entire Brillouin zone by
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expanding ε(q) in circular harmonics,

ε(q) =
L∑

n,m,l=0

εnml[cos(nqx) cos(mqy) cos(lqz) − 1], (18)

and retaining only a subset of harmonics – defined in (18)
by the integer L. In this section, we take d = 3. For a
system with nearest-neighbor interactions only (Eq. (2)),
the initial conditions for the coefficients εnml are given by

εnml

∣∣
t=0

= −2ε0(δn,1δm,0δl,0

+δn,0δm,1δl,0 + δn,0δm,0δl,1). (19)

The flow equations for the dimensionless amplitudes
ε̃nml = εnml/(Zεk) read (Appendix A)

∂tε̃nml =(η − 2)ε̃nml − 18cnmlλ̃
2ρ̃0

× H
d(1)
nml(k, 2λ̃ρ̃0, η; ε̃)Hd(2)

nml (2λ̃ρ̃0; ε̃), (20)

where the functions Hd(1) and Hd(2) are given in Ap-
pendix B, and cnml = (2 − δn,0)(2 − δm,0)(2 − δl,0).

When εk � ε0, the fluctuations are local and the
renormalization of the dispersion ε(q) should be negligible.
When εk � ε0, non-local fluctuations renormalize the dis-
persion and induce harmonics which are not present in the
bare dispersion ε0(q). We expect the harmonics cos(nqν)
to be generated when n ∼ k−1. On the other hand, a finite
value of ε̃(q) acts as a mass term in the propagator (16),
so that we expect the flow of ε(q) to stop when ε̃(q) ∼ 1,
i.e. when k ∼ |q| for k, |q| 	 1. Thus the highest har-
monics cos(nqν) is of order n ∼ min(k−1, |q|−1). We de-
duce that the harmonics expansion (18) is valid only if
L � min(k−1, |q|−1).

In the limit k → 0, any finite truncation (L < ∞)
cannot properly describe the renormalized dispersion for
|q| 	 L−1 and therefore the q → 0 limit of the prop-
agator. In particular, it will always give a dispersion
that behaves as q2 for q → 0 and a critical propagator
G(q) ∼ 1/q2 with vanishing anomalous dimension. As in
the LPA’, one should then extract the anomalous dimen-
sion η from Z.

Finally, we note that we can combine the harmonic ex-
pansion with the LPA’ by replacing ε̃(q) by ε̃0(q) in the
threshold functions Ld

n, Md
1,2 and Hd(1,2). This approxi-

mation will be referred to as the H-LPA’.

3 Results and discussion

In this section, we consider a three-dimensional system
with nearest-neighbor interactions (Eq. (2)) and take
ε0 = 1.

Let us first discuss the case of a strong initial value
λ(t = 0) = 100 of the interaction. The flow of ρ̃0, λ̃ and η is
shown in Figures 1–3. The initial value ρ0(t = 0) � 0.1358
is adjusted (to a precision of ∼10−16) so that the system
is (nearly) critical, as shown by the plateaus observed

0 5 10 150

0.01

0.02

0.03

0.04

−t

ρ̃0

Fig. 1. (Color online) ρ̃0 vs. −t in the LPA’ ((red) solid line)
near criticality for λ(t = 0) = 100 (d = 3). The black squares
are obtained from the full solution of the flow equations (13,14).
The (green) dashed line is obtained from the flow equations of
the continuum model with the same boundary conditions at
t = −16.

0 5 10 150

10

20

30

−t

λ̃

Fig. 2. (Color online) Same as Figure 1 but for λ.

0 5 10 150

0.1

0.2

−t

η

Fig. 3. (Color online) Same as Figure 1 but for η.

for |t| � 12 in Figures 1–3 [21]. We find a remarkable
agreement between the LPA’ and the full solution of the
flow equations (13, 14), which shows that the LPA’ is a
very good approximation for any value of εk. Due to the
numerical cost, we have only attempted to solve (13, 14)
for a limited range of t when no approximation is made.
Although this seems to give a slightly better estimate
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0 1 2 30

5

10

15

q

ε(q, q, q)
ε0(q, q, q)

Fig. 4. (Color online) Renormalized dispersion ε(q) obtained
in the H-LPA’ ((red) solid line) and from the full solution of
(13,14) (black squares) along the diagonal (0, 0, 0) → (π, π, π)
of the three-dimensional Brillouin zone. The bare dispersion
ε0(q) is shown by the (green) dashed line.

of the anomalous dimension (the exact value is close to
0.036), the improvement over the derivative expansion is
very weak. The main limitation of our approach wrt a
more accurate calculation of η comes from the neglecting
of the ρ dependence of the renormalized dispersion ε(q) (in
particular of the wave-function renormalization [4] factor
Z defined in (10)) and the simple truncation of the poten-
tial U(ρ) introduced in (9).

Figures 1–3 also show the flow obtained for the con-
tinuum model (ε0(q) = q2) with the same boundary con-
ditions at t = −16. In practice, we take the final values
at t = −16 and solve the flow equations backwards in
“time” (i.e. from t = −16 to 0) with the replacement
ε0(q) → q2 in the threshold functions Ld

n and Md
1,2, i.e.

Ld
n → 2vdl

d
n and Md

1 η + Md
2 → md (see Appendix B). We

can clearly distinguish between a short-distance (or high-
energy) regime where the lattice effects are strong and a
long-distance regime (k � kx ∼ 1 or |t| � 3.2) where the
lattice effects rapidly disappear and become undetectable
in the limit k 	 kx [22].

Given the success of the LPA’ for calculating ρ̃0, λ̃ and
η, it makes sense to consider the H-LPA’ to compute the
renormalized dispersion. Figures 4 and 5 show the disper-
sion ε(q) as well as the first harmonics εnml (n, m, l ≤ 2).
The agreement between the H-LPA’ and the full solution
of the flow equations (13, 14) is again remarkable. The
amplitudes εnml decrease very rapidly with n, m, l, and
only a small number of harmonics is required for an ac-
curate description of ε(q) except – as discussed in Sec-
tion 2.3.2 – near q = 0. Note that ρ0 and λ are sensitive
to local fluctuations, while ε(q) (or εnml) is not: as ex-
pected ∂tεnml � 0 when |t| � 2. When k ∼ kx, the ampli-
tude ε100 = ε010 = ε001 of the first harmonics varies with
k and higher-order harmonics are progressively generated
(Figs. 5 and 6).

In Figure 7, we show the flow of ρ̃0, λ̃ and η for a weaker
value of the bare coupling, λ(t = 0) = 0.1. To understand
the dependence of the results on λ(t = 0), one should

0 1 2 3 4 5 6-0.2

-0.15

-0.1

-0.05

0

−t

ε100 + 2
ε110
ε111
ε200
ε210

Fig. 5. (Color online) Harmonic amplitudes εnml obtained in
the H-LPA’ (lines) and from the full solution of (13,14) (sym-
bols). At t = 0, only the harmonic ε100 = ε010 = ε001 = −2 is
nonzero.

0 1 2-1

-0.75

-0.5

-0.25

0

k

εn00
εnn0
εnnn

Fig. 6. (Color online) Harmonic amplitudes εn00 (lines), εnn0

(squares) and εnnn (circles) vs k for n = 1, 2, 3 and 4 (from
right to left). All amplitudes are normalized to their values at
k → 0. As in Figure 5, ε100 is shifted by 2.

introduce the Ginzburg scale kc, which is proportional
to λ(t = 0) in three dimensions [8,13,14]. In continuum
models, the Ginzburg scale separates the infrared region
ξ−1 	 |q| 	 kc (with ξ the correlation length) character-
ized by the scaling form Γ (2)(q) ∼ |q|2−η∗

of the inverse
propagator, where η∗ = limt→−∞ η is the anomalous di-
mension, from a perturbative regime kc 	 |q| 	 Λ0. The
microscopic cutoff Λ0 should be much larger than kc for
the perturbative regime to be observable. In the regime
kc 	 k 	 Λ0, the running anomalous dimension is nearly
zero and the flow is dominated by the Gaussian fixed
point. Figures 1, 2 and 3 (λ(t = 0) = 100) correspond
to the case where kc � kx. As soon as the lattice scale
kx is reached (|t| ∼ 3.2), the flow rapidly crosses over to
the critical regime characterized by the fixed point values
ρ̃∗0, λ̃∗ and the anomalous dimension η∗. Note that the fi-
nite value of η(t = 0) obtained from the continuum model
(green dashed line in Fig. 3) is explained by the fact that
even at t = 0 the system is not in the perturbative regime
(i.e. k(t = 0) � kc) for λ(t = 0) = 100. On the other hand,
for λ(t = 0) = 0.1 (Fig. 7), one has kc 	 kx. Between the
local fluctuation regime and the critical regime, one can
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0.06

0.08

0.1
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ρ̃0
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λ̃
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0.04

0.06

0.08

0.1

−t

η

Fig. 7. Same as Figures 1–3 but for the initial condition λ(t =
0) = 0.1.

clearly observe an intermediate regime kc 	 k 	 kx where
the running anomalous dimension is nearly zero and the
running coupling constants ρ̃0 and λ̃ significantly differ
from their fixed point values ρ̃∗0 and λ̃∗. Note that since
the renormalization of λ̃ and η is nearly zero in the local
fluctuation regime (k � kx), the flow of these quantities is
well approximated by the continuum model equations for
all values of k (hence the superposition of the (red) solid
and (green) dashed lines in the corresponding figures).

4 Conclusion and perspectives

We have shown how the presence of a lattice can be taken
into account in the NPRG. Our approach allows one to
compute both critical exponents and non-universal quan-
tities such as the critical temperature or the renormalized
dispersion. We have proposed two approximations which
considerably reduce the numerical difficulty of solving

the flow equations. While the LPA’ is sufficient to ob-
tain the small-momentum behavior of the propagator, the
H-LPA’ – which is based on a circular harmonic expan-
sion of the dispersion – yields the renormalized dispersion
over the entire Brillouin zone except at very small mo-
menta (as in the LPA’, the small momentum behavior of
the propagator is deduced form the scale dependence of
the wave-function renormalization factor Z). It is straight-
forward to generalize our approach to more complicated
truncations of the effective action than the one considered
in this paper (Eq. (8)) as well as to quantum-mechanical
many-body systems.

ND would like to thank B. Delamotte and D. Mouhanna for
discussions and advice regarding the numerical solution of the
flow equations.

Appendix A: Flow equations

The flow equations for the potential U(ρ) and the disper-
sion ε(q) can be deduced from the flow equation of the
effective action Γ [M ] and the vertex Γ (2) in a uniform
field Mr = M = const. Since ε(q = 0) = 0, one has

Γ [M ]
∣∣∣
Mr=M

= NU(ρ),

Γ (2)(q,q′)
∣∣∣
Mr=M

= δq+q′,0 [ε(q) + U ′ + 2ρU ′′] ,

(A.1)

where U ′ = ∂ρU and U ′′ = ∂2
ρU . From (5), one then finds

∂tU(ρ) =
1
2

∫

q

G(q)Ṙ(q), (A.2)

where

G(q) =
(
Γ (2)(q,−q) + R(q)

)−1

=
1

ε(q) + R(q) + U ′ + 2ρU ′′ (A.3)

is the propagator in a uniform field. Using Ṙ(q) =
−Zε0(q)[ηr +2ε̃0(q)r′] and η defined by (15), one obtains

∂tU = −1
2

∫

q

ε̃0(q)[ηr + 2ε̃0(q)r′]g(q)

= kdLd
0(k, Ũ ′ + 2ρ̃Ũ ′′, η; ε̃), (A.4)

where we have introduced the dimensionless propagator

g(q) = ZεkG(q) =
1

ε̃(q) + ε̃0(q)r + Ũ ′ + 2ρ̃Ũ ′′ . (A.5)

The lattice threshold function Ld
0 is defined in Ap-

pendix B. The dimensionless potential Ũ(ρ̃) = k−dU(ρ)
satisfies

∂tŨ = −dŨ+(d−2+η)ρ̃Ũ ′+Ld
0(k, Ũ ′+2ρ̃Ũ ′′, η; ε̃). (A.6)
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With the truncation (9), we obtain the flow equation of
ρ̃0 from the condition Ũ ′(ρ̃0) = 0, i.e.

∂tŨ
′(ρ̃0) = ∂tŨ

′
∣∣∣
ρ̃0

+Ũ ′′(ρ̃0)∂tρ̃0 = 0, (A.7)

which gives the first of equations (13). Similarly, the flow
equation of λ̃ is derived from λ̃ = Ũ ′′(ρ̃0), i.e.

∂tλ̃ = ∂tŨ
′′
∣∣∣
ρ̃0

+Ũ (3)(ρ̃0)∂tρ̃0 (A.8)

(with Ũ (3) = 0), which gives the second of equations (13).
(The flow equations of Ũ ′ and Ũ ′′ are deduced from (A.6)
using (B.2).)

The flow equation (5) of the effective action implies
that the vertex Γ (2)(q,q′) = δq+q′,0Γ

(2)(q) satisfies

∂tΓ
(2)(q) =

1
2
∂̃t

∑

q′
G(q′)Γ (4)(q,−q,q′,−q′)

− 1
2
∂̃t

∑

q′
G(q′)G(q′ + q)Γ (3)(q,q′,−q′ − q)

× Γ (3)(−q,q′ + q,−q′). (A.9)

In a uniform field Mr = M . ∂̃t ≡ (∂R/∂t)∂R acts only
on the regulator function R. The vertices in (A.9) are ob-
tained by differentiating (8) and setting Mr = M =

√
2ρ,

Γ (3)(q1,q2,q3) = δq1+q2+q3,0
3λ

√
2ρ√

N
,

Γ (4)(q1,q2,q3,q4) = δq1+q2+q3+q4,0
3λ

N
. (A.10)

Since ε(q) = Γ (2)(q) − Γ (2)(q = 0), one deduces

∂tε(q) = −9λ2ρ0∂̃t

∫

q′

[
G(q′)G(q′ + q) − G(q′)2

]
.

(A.11)
In dimensionless form, we obtain

∂tε̃(q) = (η − 2)ε̃(q) − 9λ̃2ρ̃0k
−d∂̃t

×
∫

q′

[
g(q′)g(q′ + q) − g(q′)2

]
, (A.12)

where the propagator g(q) is evaluated at ρ̃ = ρ̃0. Using

∂̃t = Ṙ
∂

∂R
= −(ηr + 2ε̃0r

′)
∂

∂r
, (A.13)

we obtain (14).
The equation for the anomalous dimension is obtained

by expanding (A.12) to order q2 using ε̃0(q), ε̃(q) → q2/k2

for q → 0,

η = −9
2
λ̃2ρ̃0k

2−d∂̃t

∫

q

[∂qxg(q)]2 . (A.14)

With (A.13), we deduce

η = − 9λ̃2ρ̃0k
2−d

∫

q

[∂qxg(q)]

× ∂qx

[
(ηr + 2ε̃0r

′)ε̃0(q)g(q)2
]
, (A.15)

which gives the last of equations (13) when expressed in
terms of the threshold functions Md

1 and Md
2 defined in

Appendix B.
If one expands the dispersion in circular harmonics as

in (18), one has

∂tεnml = cnml

∫

q

cos(nqx) cos(mqy) cos(lqz)∂tε(q)

= −18cnmlZεkλ̃2ρ̃0k
−dg(rnml)∂̃tg(rnml),

(A.16)

where cnml is defined in Section 2.3.2 and rnml denotes
the position of the lattice site with coordinates (n, m, l).
g(r) is given by the Fourier transform of the dimensionless
propagator (16). Using (A.13) to compute ∂̃tg(rnml), one
eventually obtains (20).

Appendix B: Lattice threshold functions

B.1 Definition

The lattice threshold functions are defined by

Ld
n(k, w, η; ε̃) = −(n + δn,0)

k−d

2

×
∫

q

ε̃0(q)[ηr + 2ε̃0(q)r′]g(q)n+1,

Md
1 (k, w; ε̃) = −k2−d

4

∫

q

[∂qxg(q)]∂qx

[
ε̃0(q)rg(q)2

]

Md
2 (k, w; ε̃) = −k2−d

2

∫

q

[∂qxg(q)]∂qx

[
ε̃20(q)r′g(q)2

]
,

H
d(1)
nml (k, w, η; ε̃) = k−d

∫

q

eiq·rnml [ηr + 2ε̃0(q)r′]

×ε̃0(q)g(q)2,

H
d(2)
nml(w; ε̃) =

∫

q

eiq·rnmlg(q), (B.1)

where g(q) = 1/(ε̃(q) + ε̃0(q)r + w). The functions Ld
n

satisfy

∂wLd
n(k, w, η; ε̃) = −(n + δn,0)Ld

n+1(k, w, η; ε̃). (B.2)

B.2 k → 0 limit

In the limit k → 0, the functions r and r′ ensures that
the integrals determining Ld

n and Md
1,2 are dominated by
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|q| � k 	 1. One can then use ε̃0(q) � y and ε̃(q) � y
(y = q2/k2) and replace the integral over the Brillouin
zone by

∫ ∞

−∞

dq1

2π
· · ·

∫ ∞

−∞

dqq

2π
= 2vdk

d

∫ ∞

0

dy yd/2−1, (B.3)

where v−1
d = 2d+1πd/2Γ (d/2). This gives

lim
k→0

Ld
n(k, w, η; ε̃) = 2vdl

d
n(w, η),

lim
k→0

[
Md

1 (k, w; ε̃)η + Md
2 (k, w; ε̃)

]
=

2vd

d
md(w, η), (B.4)

where

ldn(w, η) = −1
2
(n + δn,0)

∫ ∞

0

dy yd/2(ηr + 2yr′)gn+1,

md(w, η) =
∫ ∞

0

dy yd/2(1 + r + yr′)g4

×{[ηr + (η + 4)yr′ + 2y2r′′]

−2yg(1 + r + yr′)(ηr + 2yr′)} (B.5)

(g = 1/(y(1+r(y))+w)) are the usual threshold functions
of the continuum model. Note that in the k → 0 limit, the
threshold functions Ld

n and Md
1,2 become independent of

k and ε̃(q).
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