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Abstract – We use a non-perturbative renormalization group technique to study interacting
bosons at zero temperature. Our approach reveals the instability of the Bogoliubov fixed point
when d� 3 and yields the exact infrared behavior in all dimensions d> 1 within a rather simple
theoretical framework. It also enables to compute the low-energy properties in terms of the
parameters of a microscopic model. In one dimension and for not too strong interactions, it yields
a good picture of the Luttinger-liquid behavior of the superfluid phase.
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Introduction. – In spite of the success of the Bogoli-
ubov theory in providing a microscopic explanation of
superfluidity [1], a clear understanding of the infrared
behavior of interacting boson systems at zero tempera-
ture has remained a challenging theoretical issue until very
recently. Besides approximations that do not satisfy the
Goldstone-Hugenholtz-Pines theorem [2,3], first attempts
to improve the Bogoliubov theory revealed a singular
perturbation theory plagued by infrared divergences due
to the presence of the Bose-Einstein condensate and
the Goldstone mode [4,5]. These divergences cancel in
most physical quantities but lead to a vanishing of the
anomalous self-energy Σan(q) in the limit q≡ (q, ω)→ 0
although the linear spectrum and therefore the superflu-
idity are preserved [6–9]. This observation seriously called
into question the validity of the Bogoliubov theory, where
the linear spectrum relies on a finite value of Σan(q→ 0)
(see footnote 1). The physical origin of the vanishing
of the anomalous self-energy is the divergence of the

1The normal (Σn) and anomalous (Σan) self-energies are
commonly denoted by Σ11 and Σ12, where the index i= 1, 2 refers
to the two components of the field Ψ= (ψ,ψ∗)T . Since the index i
bears a different meaning in our approach, we refrain from using the
common notation.

longitudinal correlation function which is driven by the
gapless (transverse) Goldstone mode – a general phenom-
enon in systems with a continuous broken symmetry [10].
The infrared behavior of zero-temperature Bose systems

is now well understood in the modern language of renor-
malization group (RG) [11–14]. Using a field-theoretical
renormalization-group approach supplemented by the
Ward identities associated with the gauge symmetry,
Castellani et al. were able to establish the exact infrared
behavior of a zero-temperature Bose system [13,14]. Only
for d > 3 does the Bogoliubov theory predict the correct
infrared behavior, whereas the Bogoliubov fixed point is
found to be unstable for d� 3 even though the low-energy
mode remains phonon-like with a linear spectrum. In
the approach of refs. [13,14], the low-energy behavior of
the correlation functions is expressed exactly in terms
of thermodynamics quantities such as the density, the
condensate density or the macroscopic sound velocity.
Despite its very elegant formulation, this approach
however does not appear to enable an explicit calculation
of the correlation functions in terms of the parameters
of a particular microscopic model. Given the present
possibilities to realize low-dimensional and/or strongly
correlated Bose systems in ultracold atomic gases [15], it
would be of great interest to have a theoretical framework
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allowing for quantitative predictions that could be tested
against the experimental results.
In this letter, we use a non-perturbative renormalization

group (NPRG) technique [16–19] to study interacting
bosons at zero temperature. Not only does our approach
give the exact asymptotic behavior of the correlation
functions in dimensions d > 1 within a rather simple
theoretical framework free of infrared divergences, but it
also enables to explicitly follow the behavior of the system
from microscopic to macroscopic scales. In one dimension
and for not too strong interactions, it yields a good picture
of the Luttinger-liquid behavior of the super-fluid phase.
NPRG studies of interacting bosons have previously been
reported both at finite [20] and zero [21] temperature. To
a large extent, our results are complementary to those of
ref. [21].

Non-perturbative RG approach. – We consider the
following action:

S =

∫

dx

[

ψ∗(x)

(

∂τ −µ−
∇
2

2m

)

ψ(x)+
g

2
|ψ(x)|4

]

, (1)

where ψ(x) is a bosonic (complex) field, x= (r, τ),
∫

dx=
∫ β

0
dτ
∫

ddr. τ ∈ [0, β] is an imaginary time, β→∞ the
inverse temperature, and µ denotes the chemical potential.
The interaction is assumed to be local in space and
the model is regularized by a momentum cutoff |q|<Λ
(with Λ→∞ whenever convenient). We take �= kB = 1
throughout the letter.
The basic quantity of interest in the NPRG is the

effective action Γ[φ], which is the generating functional
of the one-particle irreducible (1PI) vertices. It is
obtained by a Legendre transform of the free energy
lnZ[J ] computed in the presence of an external source
term SJ =

∫

dx[J∗(x)ψ(x)+ c.c.] (φ= 〈ψ〉J) [18,20]. To
implement the RG procedure, we add to the action an
infrared regulator ∆SR =

∫

dxψ∗(x)R(x−x′)ψ(x′) which
suppresses the fluctuations with q2 <k2. The functional
Γ[φ]≡ Γk[φ] then becomes k dependent and satisfies the
exact flow equation

∂tΓ[φ] =
1

2
Tr
{

∂tR
(

Γ(2)[φ] +R
)−1
}

, (2)

where we have introduced the flow parameter t= ln(k/Λ).
In Fourier space, the trace in (2) involves a sum over
frequencies and momenta, as well as a trace over the two
indices of the complex field φ. Γ(2)[φ] is the second-order
functional derivative of Γ[φ] with respect to φ. Choosing R
to diverge for k→∞, all fluctuations are then suppressed
and the mean-field theory, where the effective action Γ[φ]
reduces to the microscopic action S[φ], becomes exact.
Quantum fluctuations are gradually taken into account
by decreasing k and making use of (2). For k= 0, Γ[φ]
corresponds to the effective action of the original model (1)
from which we can deduce all 1PI vertices —and in
particular the single-particle propagator G=−Γ(2)−1— as
well as the thermodynamic potential.

The functional differential equation (2) is too compli-
cated to be solved exactly. For approximate solutions it is
sufficient to truncate the most general form of Γ[φ] [18,20].
For a superfluid Bose system, the simplest choice reads

Γ[φ] = Γmin+

∫

dx

{

ZZ1φ
∗(x)∂τφ(x)−V φ∗(x)∂2τφ(x)

−Zφ∗(x)∇
2

2m
φ(x)+

λ

2
[n(x)−n0]2

}

, (3)

where n(x) = |φ(x)|2 is the density. Equation (3) is
obtained from an expansion to fourth order about the
minimum |φ(x)|=√n0, where n0 denotes the condensate
density. We use a derivative expansion to order O(∂2) [18]
(see footnote 2). For k→∞, the initial conditions
are Z =Z1 = 1, V = 0, λ= g and n0 = µ/g, and the
effective action Γ[φ] reproduces the Bogoliubov theory.
Although V is not present in the original action (1), it
is always generated by the flow equation (2) [21] and
plays a crucial role when d� 3. The degeneracy of the
minimum |φ(x)|=√n0 reflects the gauge invariance
(i.e. the U(1) symmetry ψ(∗)(x)→ψ(∗)(x)e±iα) of the
action (1). A broken-symmetry state can be obtained
by picking up a particular minimum. It is convenient to
write φ= (φ1+ iφ2)/

√
2 in terms of two real fields φ1

and φ2 and to consider the state φ̄= (
√
2n0, 0) as an

example of broken-symmetry state. In Fourier space, the
corresponding single-particle vertex Γ̄(2) =−Ḡ−1 (with
Ḡij =−〈ψiψj〉) then reads

Γ̄(2)(q) =

(

V ω2+Zǫq+2λn0 ZZ1ω

−ZZ1ω V ω2+Zǫq

)

(4)

(ǫq = q
2/(2m)). The vanishing of Γ̄22(q= 0), which is a

mere consequence of the U(1) symmetry, naturally imple-
ments the Hugenholtz-Pines theorem [3] (see footnote 3) in
our formalism. The combination λn0 corresponds to the
anomalous self-energy Σan(q= 0). There are two impor-
tant quantities that can be read off from (4), namely the
superfluid density ns and the Goldstone mode velocity c,

ns =Zn0, c=

(

Z/2m

V +(ZZ1)2/(2λn0)

)1/2

. (5)

For k→∞, one has ns = n0 = µ/g and c=
√

n0g/m.
The superfluid density is defined in the usual way from
the stiffness of the system with respect to a twist of the
phase of the superfluid order parameter φ̄= (

√
2n0, 0).

The expression of the velocity c follows from the equation
det Γ̄(2)(q) = 0 in the limit q→ 0.
2The most general derivative expansion to order O(∂2) would

include the terms Y∇n∇n and V ′∂τn∂τn. These are not expected
to play an important role and are neglected.
3Γ̄
(2)
22 (q= 0) =−µ+Σn(0)−Σan(0) = 0 is an exact statement of

the Hugenholtz-Pines theorem. Σn and Σan denote the normal and
anomalous self-energies (see footnote 1).
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Inserting (3) into (2), we obtain the flow equations

∂tñ0 = −(d+ η+ η1)ñ0

+16s

∫

ω

A2+MA+M2−ω2
D2

,

∂tλ̃ = (d− 2+2η+ η1)λ̃− 16sλ̃2

×
∫

ω

−5A3− 3MA2+A[11ω2− 6M2] + 7Mω2− 4M3
D3

,

η = 16
vd
d
λ̃M

∫

ω

1

D2
,

η1 = −η− 16sλ̃2ñ0
∫

ω

{

1

D2

− (A+B)(3A−B− 4Z2ω
2)

D3

}

,

∂tZ2 = (2+ η+2η1)Z2− 16sλ̃2ñ0
∫

ω

{−Z2
D2

+
2(A+B)(Z2B+1)+4Z2ω

2[Z2(3A+5B)+ 2]

D3

−6ω
2(A+B)[Z2(A+B)+ 1](2Z2B+1)

D4

}

,

∂tΩ̃ = −(d+2+ η1)Ω̃+ 8s
∫

ω

A+M

D
, (6)

where A= 1+Z2ω
2, B =A+2M , D=AB+ω2, M =

λ̃ñ0, v
−1
d = 2

d+1πd/2Γ(d/2), s= (vd/d)[1− η/(d+2)], and
∫

ω
=
∫

dω/(2π). We have introduced the dimensionless
quantities

ñ0 =ZZ1k
−dn0, λ̃=Z−2Z−11 k

dǫ−1k λ,

ZZ21Z2 = ǫkV, Ω̃ =Z1k
−dǫ−1k Ω, (7)

as well as η=−∂tlnZ and η1 =−∂tlnZ1, and chosen the
regulator R(q2) =Z(ǫk − ǫq)θ(ǫk − ǫq) [22]. Ω denotes the
thermodynamic potential per unit volume in the broken-
symmetry state φ̄= (

√
2n0, 0). For Z2 = 0 (i.e. V = 0), the

integrals over ω can be carried out and we reproduce
the flow equations derived in ref. [21]. However, the
approximation V = 0 —or a mere perturbative treatment
of V— cannot be used for d� 3 as it predicts the wrong
exponent (2ǫ instead of ǫ= 3− d) for the divergence of the
longitudinal correlation function, the wrong lower critical
dimension (2 instead of 1), and —for V = 0— an infinite
velocity for the Goldstone mode.

Superfluidity with BEC (d> 1). – When d > 1,
superfluidity is always accompanied by Bose-Einstein
condensation (BEC): limk→0 n0 = n

∗
0 > 0. For d > 3,

the Bogoliubov fixed point is stable; all parameters
in the effective action Γt=0 remain finite as k→ 0.
V ∗ = limk→0V , although nonzero, gives only a finite
correction to the infrared limit of the vertices. This
picture changes dramatically when d� 3. In this case,
both Z1 and λ are suppressed as k→ 0, which explains
why the anomalous self-energy Σan(q= 0) = λn0 vanishes
in the infrared limit. This suppression is logarithmic for
d= 3 and power-law–like in lower dimensions. When d > 1,

Table 1: Asymptotic behavior for k→ 0 (ǫ= 3− d). The stared
quantities indicate nonzero fixed-point values. For d > 1, these
results are obtained analytically from the flow equations (6).
For d= 1 one obtains approximate fixed points rather than true
fixed points (see text).

d= 3 1<d< 3 d= 1

n0 n∗0 n∗0 kη
∗

ns n∗s n∗s n∗s

λ (ln k)−1 kǫ k2−2η
∗

V V ∗ V ∗ k−η
∗

ñ0 k−3/ln k k2ǫ−3 k−η
∗

1
−1

λ̃ k k1−ǫ kη
∗

1
+1

η k2 kd−1 η∗

η1 Z1 ∼ (ln k)−1 −ǫ η∗1

η2 Z2 ∼ (k ln k)2 2ǫ− 2 η∗2 =−2η∗1 − 2
ñ′0 k−2 kǫ−2 ñ′0

∗

λ̃′ (ln k)−1 λ̃′∗ λ̃′∗

0 2 4 6 8
0.16

0.17

0.18

0.19

0.2

−t

n0

ns

Fig. 1: (Color online) Condensate density n0 and superfluid
density ns vs. −t for d= 2, n0(t= 0) = 0.2 and λ(t= 0) = 10.
Here and in the following figures, we use units where Λ= 1 and
2m= 1.

we can use the fact that limk→0M = limk→0Z2M =∞
to analytically obtain the asymptotic behavior for k→ 0
(table 1). A typical RG flow in two dimensions is shown
in figs. 1 and 2.
The suppression of Z1, together with a finite V

∗,
shows that the effective action exhibits a space-time
SO(d+1) symmetry in the infrared limit [21]. This limit
is well understood and corresponds to the classical O(2)
model in d+1 dimensions. The symmetry can be made
explicit by the rescaling r̃= kr, τ̃ = (Z1ǫ

−1
k

√
Z2)

−1τ

and φ̃(x̃) = (ZZ1
√
Z2k

−d)1/2φ(x), whereby the effective
action becomes

Γ[φ̃] = Γmin+

∫

dx̃
{

ZZ
−1/2
2 ǫkφ̃

∗(x̃)∂τ̃ φ̃(x̃)

−φ̃∗(x̃)(∂2τ̃ +∇2r̃)φ̃(x̃)+
λ̃′

2
[ñ(x̃)− ñ′0]2

}

, (8)
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0.2
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0.6

0.8

1

−t

λ/λ(0)
Z1

V

Fig. 2: (Color online) λ, Z1 and V vs. −t for d= 2, n0(t= 0) =
0.2 and λ(t= 0) = 10.

where ñ′0 =
√
Z2ñ0 and λ̃

′ = λ̃/
√
Z2. For a typical

frequency ω̃∼ k, the term linear in ∂τ̃ becomes sublead-
ing with respect to the quadratic one. Equivalently, one
can observe that for d� 3 the Goldstone mode velocity
reaches the fixed point value c∗ = (Z∗/2mV ∗)1/2 which
is independent of Z1. Our numerical results for the
scaling of ñ′0 and λ̃

′ agree with the known results for
the Goldstone regime of the classical O(2) model in
d+1 dimensions (table 1). The dimensionless coupling λ̃′

vanishes for d= 3 and flows to a finite value for d< 3. The
relation 2η∗1 + η

∗
2 =−2 (with η2 =−∂tlnZ2) ensures that

the Goldstone mode velocity reaches a finite value for
k→ 0, i.e. that the dynamical exponent takes the value
z = 1.
There are three important relations between 1PI

vertices and thermodynamic quantities that our results
should fulfill,

ns = n=−
∂Ω

∂µ
, c= cs =

(

n

m(dn/dµ)

)1/2

,

Z1n

λn0
=
dn0
dµ
. (9)

The equality of the superfluid density ns and the
density n is a consequence of Galilean invariance at
zero temperature. Since the chemical potential appears
only in the initial conditions for the effective action
Γ[φ], derivatives with respect to µ can be numerically
calculated by solving the flow equations for nearby values
of µ. The equality between the Goldstone mode velocity
c and the macroscopic sound velocity cs was proved in
ref. [5]. The last relation in (9) is a consequence of gauge
invariance [14]. Figures 3, 4 and 5 show that the symmetry
constraints (9), despite a good overall agreement, are not
strictly enforced in our approach. This can be ascribed to
the choice of our infrared regulator R(q2) as well as the
Ansatz (3) which are both incompatible with Galilean
invariance.

0 10 20 30 40 50
0.1

0.15

0.2

λ(t = 0)

n∗

0

n∗

s

n∗

Fig. 3: (Color online) n∗0, n
∗

s and n
∗ vs. λ(t= 0) for d= 2 and

n0(t= 0) = 0.2.

0 10 20 30 40 50
0

1

2

3

4

5

λ(t = 0)

c∗

c∗

s

Fig. 4: (Color online) Goldstone mode velocity c∗ and
macroscopic sound velocity c∗s vs. λ(t= 0) for d= 2 and
n0(t= 0) = 0.2.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

λ(t = 0)

(dn0/dµ)∗

(Z1n/λn0)
∗

Fig. 5: (Color online) Z∗1n
∗/(λ∗n∗0) and the condensate

“compressibility” (dn0/dµ)
∗ vs. λ(t= 0) for d= 2 and

n0(t= 0) = 0.2.

Making use of (9), we can rewrite the propagator
Ḡ(q) =−Γ̄(2)−1(q) as

Ḡ22(q) = −
2mc2n0
n

1

ω2+ c2q2
,

Ḡ12(q) =
mc2

n

dn0
dµ

ω

ω2+ c2q2
,

Ḡ11(q) = −
1

2λn0
(10)
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in the infrared limit. In (10), all quantities except λ
can be evaluated at k= 0. Because of the vanishing of
λ(k→ 0), the longitudinal correlation function Ḡ11
diverges logarithmically in three dimensions and as k−ǫ

below [6–8] (see table 1). The dependence on q can be

restored by evaluating λ at k∼
√

ω2+ c2q2. In ref. [14],
eqs. (10) were obtained by imposing the Ward identities
due to gauge invariance and solving a one-loop RG equa-
tion for the sole independent coupling in the limit k→ 0
(see footnote 4). By a detailed analysis of the structure
of the perturbation theory to higher order, it was then
argued that eqs. (10) give the exact asymptotic behavior.
We believe that our RG approach, being intrinsically
non-perturbative [18], gives further support to this claim.

Superfluidity without BEC (d= 1). – In one dimen-
sion, as a result of the emerging SO(2) symmetry, we find
that the long-distance physics is described by the classical
O(2) model in d+1= 2 dimensions [21]. We thus expect
the system to be in the “low-temperature” phase of the
Kosterlitz-Thouless phase transition. There is no BEC as
the condensate density n0 ∼ kη

∗

vanishes in the thermo-
dynamic limit k→ 0. However, the superfluid density ns =
Zn0 remains finite. This phase is generally described as
a Luttinger liquid (LL) characterized by the Goldstone
mode velocity c∗ and the LL parameter K [23,24].
It has been shown that the NPRG gives a good descrip-

tion of the classical O(2) model [25,26]. In particular the
low-temperature phase is characterized by an approximate
line of fixed points where the beta function becomes very
small and the running of the renormalized order parameter
ñ′0 (or, equivalently, the phase stiffness) very slow, which
implies a very large, although not strictly infinite, correla-
tion length ξ. The anomalous exponent η depends on the
(slowly running) order parameter ñ′0 and takes its largest
value ∼ 1/4 when the system crosses over to the disordered
regime (k∼ ξ−1).
By solving numerically the flow equations (6) in one

dimension, we have obtained very similar results. Figures 6
and 7 show the flow trajectories in the space (ns, c, λ̃

′)
for various initial conditions n0(t= 0) and λ(t= 0). The
points correspond to equal steps in t so that very dense
points indicate a very slow running. For a sufficiently small
ratio λ(t= 0)/n0(t= 0), we find that trajectories rapidly
hit an approximate plane of fixed points defined by λ̃′ ∼ 15,
where the running of the superfluid density ns and the
Goldstone mode velocity c becomes very slow. As for the
classical O(2) model, we infer from this observation that
the correlation length ξ is extremely large for these trajec-
tories. For very long RG time −t (k∼ ξ−1), the system
eventually crosses over to the disordered regime. On the
approximate plane of fixed points, the scale-dependent
anomalous exponent η varies slowly about a value that
depends both on ns and c (fig. 8). It then reaches its

4If one neglects finite renormalization corrections and use (9) as
well as 2η∗1 + η

∗

2 =−2, one is left with only one independent runn-
ing coupling (e.g., λ or 2λn0).

c

 0
 0.4

 0.8
 1.2

 1.6

 0

 10

 20

 30

 1

 2

 3

ns

λ̃

Fig. 6: (Color online) RG trajectories (ns, λ̃
′, c) in one dimen-

sion for various initial conditions n0(t= 0) and λ(t= 0). The
points correspond to equal steps in t.

 0 0.4 0.8 1.2 1.6

 0

 10

 20

 30

ns

λ̃

Fig. 7: (Color online) Same as in fig. 6 but in the plane (ns, λ̃
′).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20  25

−t

η

Fig. 8: (Color online) Anomalous exponent η vs. −t for various
initial conditions n0(t= 0) and λ(t= 0).

maximum value ηc ≃ 0.29 —to be compared with the exact
exponent ηc = 1/4 at the Kosterlitz-Thouless transition of
the classical O(2) model— before rapidly dropping to zero
once k∼ ξ−1. For M ≫ 1, which corresponds to a large
superfluid density ns, we obtain the analytic expression
η=mc/(2πns) from (6). This in turn determines the LL
parameter K = 1/(2η) = πns/(mc), which is the expected
value in a Galilean invariant system where ns = n [23].
Thus for a sufficiently small ratio λ(t= 0)/ns (or c/ns),

we obtain a good picture of the Luttinger-liquid behavior
of the superfluid phase. When this ratio is too large, the
flow trajectory does not reach the approximate plane of
fixed points, and the system is in the “high-temperature”
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(disordered) phase of the classical O(2) model. This result
is in contradiction with known results in one dimension
where the action (1) corresponds to the exactly soluble
Lieb-Liniger model [27,28]. This model is parameterized
by the dimensionless parameter γ =mλ(t= 0)/n and its
low-energy description is a Luttinger liquid with a parame-
ter K ≡K(γ) varying in the interval [1,∞[ as γ decreases
from infinity to zero [24]. The limit γ→∞ (K = 1) corre-
sponds to hard-core bosons. Thus the anomalous exponent
η should take its highest value 1/(2Kmin) = 1/2 for γ→∞,
rather than 1/4 as predicted by our results. A possible
explanation for the failure of our approach to correctly
describe the strong-coupling limit of the action (1) in
one dimension is the derivative expansion used in the
Ansatz (3) for Γ[φ]. Quite generally, the derivative expan-
sion is known to work best when η is small [18,19].

Conclusion. – The NPRG technique discussed in
this letter provides an efficient method to control the
infrared divergences appearing in the perturbation theory
of zero-temperature Bose systems. It extends the approach
of ref. [21] and reproduces the results obtained earlier
by a field-theoretical RG approach combined with the
implementation of Ward identities due to gauge invari-
ance [13,14]. The non-trivial infrared behavior in dimen-
sions 1<d� 3, characterized by the divergence of the
longitudinal correlation function and the vanishing of the
anomalous self-energy Σan(q→ 0), turns out to be related
to the emergence of a space-time SO(d+1) symmetry at
low energy. This implies a close link between the super-
fluid phase and the Goldstone regime of the classical O(2)
model in d+1 dimension [21].
Our approach also describes one-dimensional systems

where superfluidity exists without BEC in the thermody-
namic limit. The superfluid phase exhibits a Luttinger-
liquid behavior that is well captured by the NPRG
approach for weak interactions. Although our results,
based on a derivative expansion of the effective action Γ[φ],
break down at strong coupling, they might be improved by
a more refined treatment of the momentum dependence of
the vertices [29].
An important feature of the NPRG is that it not only

yields the infrared behavior of correlation functions but
can also compute propagators in terms of the parameters
of a microscopic model. It thus provides an efficient tool
for the explicit calculation of physical quantities beyond
the Bogoliubov theory while satisfying basic requirements
such as the Hugenholtz-Pines theorem as well as yielding
the correct infrared behavior, a task that has been known
to be difficult in interacting boson systems [2,30].
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