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FIG. 2. Left panel: excitation gap in the parallel
configuration (a) (m� h, short dashed line), the perpendicular
configuration (b) (m, long dashed line), and the canted
configuration (c) (m sin�, solid line) [U � 4t]. Right panel:
free energy F�k;?� � FN . All quantities are normalized to their
value at h � 0.
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Comment on ‘‘Universal Spin-Flip Transition in
Itinerant Antiferromagnets’’

In a recent Letter [1], it is argued that an itinerant
antiferromagnet in an external magnetic field undergoes a
spin-flip transition, in marked contrast with the behavior of
a localized antiferromagnet: for a weak magnetic field, the
magnetization is parallel to the field [Fig. 1(a)], and flips to
the perpendicular configuration [Fig. 1(b)] at a critical
value of the field. A similar spin-flip transition is predicted
to occur as a function of temperature.

In this Comment we show—considering only the zero-
temperature case—that the conclusions of Ref. [1] are
incorrect. The antiferromagnetic state in the perpendicular
configuration has a finite transverse susceptibility: a uni-
form magnetic field applied perpendicular to the antiferro-
magnetic magnetization will inevitably induce a uniform
magnetization. As a result, the energy of the canted state
[Fig. 1(c)] will always be lower than that of the antiferro-
magnetic state in the perpendicular configuration. The
actual ground state of the system should be determined
from the free energies of the various phases that are con-
sidered (including the normal phase). It is not sufficient, as
done in Ref. [1], to find a solution with a finite order
parameter and infer the ground state from the amplitude
of the magnetization. The canted state—not considered in
Ref. [1]—turns out to be the antiferromagnetic ground
state of the system up to a critical value of the field where
the normal state is restored.

To illustrate these points, we consider the mean-field
Hamiltonian of the two-dimensional half-filled repulsive
Hubbard model in a uniform field H parallel to the z axis
and coupled to the fermion spins [2]:
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cyr �h�z�m� �nr�cr�N
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where h � �BH and cr � �cr"; cr#�
T . N is the total number

of sites, tr;r0 a hopping integral between nearest-neighbor
sites, and� � ��x; �y; �z� stands for the Pauli matrices. m
and nr (n2

r � 1) determine the amplitude and the direction
of the magnetization, respectively. Although written in real
space, the Hamiltonian (1) is similar to that considered in
Ref. [1]. For h � 0 and nr � ��1�rẑ, it describes the
crossover from a Slater (m� te�2�

������
t=U
p

) to a Mott-
Heisenberg (m�U=2) antiferromagnet asU increases [3].

We consider the three antiferromagnetic states that are
schematically depicted in Fig. 1, as well as the normal state
(a) (b) (c) (d)

FIG. 1. Antiferromagnetic states: (a) parallel configuration,
nr � ��1�rẑ k H; (b) perpendicular configuration, nr �
��1�rx̂ ? Ĥ; (c) canted state, nr � ���1�r sin�; 0; cos��.
(d) The normal state has a ferromagnetic component induced
by the magnetic field (nr � ẑ).
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[Fig. 1(d)]. Diagonalizing the Hamiltonian (1), we obtain
the free energy F�k;?� � m2=U�

P
�

R
k E
�k;?��
k� =2, where

E�k��k� � ��h� ��
2
k �m

2�1=2 and E�?��k� � �	��k �

�h� �m cos��2 � �m sin��2
1=2 are the excitation ener-
gies (obtained from the poles of the single-particle Green
function) and �k � �2t�coskx � cosky� (assuming a
square lattice). The amplitude m of the magnetization is
obtained from @F=@m � 0. � is obtained from @F=@� � 0
in the canted state (c), whereas � � �=2 in the antiferro-
magnetic state (b). In the normal phase, FN � m2=U�R

k j�k � h�mj.
For the parallel (a) and perpendicular (b) configurations,

the mean-field equation @F=@m � 0 agrees with Ref. [1]
and yields the same excitation gap (Fig. 2). Although the
parallel configuration has the largest magnetization (m) in
weak field [1], it is not the ground state. The free energies
are shown in Fig. 2. While the three antiferromagnetic
states (a)–(c) are degenerate when h � 0, the perpendicu-
lar configuration (b) has always a lower free energy than
the parallel one (a) for any finite field, in contradiction with
the conclusions of Ref. [1]. Moreover, the canted state has
the lowest free energy and is therefore the actual ground
state. When H increases, the angle � decreases and van-
ishes at the second-order phase transition to the normal
phase (h ’ 2:06t in Fig. 2), in qualitative agreement with
the behavior of the magnetization in a localized anti-
ferromagnet.
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