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Effective action for superfluid Fermi systems in the strong-coupling limit
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We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-
coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking
into account density and pairing fluctuations on the same footing, we show that the effective action involves
only the fermion density p, and its conjugate variable, the phase 6, of the pairing order parameter A,.. We
recover the standard action of a Bose superfluid of density p,/2, where the bosons have a mass mp=2m and
interact via a repulsive contact potential with amplitude gz=4mag/mg,ag=2a (a the s-wave scattering length
associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective
action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform
magnetic field, and a coherent state path integral representation of the partition function. The effective descrip-
tion of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping
amplitude 73=J/2 and an on-site repulsive interaction Up=2Jz, where J=4¢>/U (¢t and —U are the intersite
hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-

neighbor sites).

DOI: 10.1103/PhysRevA.72.013606

I. INTRODUCTION

Recent progress in the experimental control of ultracold
atomic Fermi [1-5] gases has revived the interest in the
crossover from the weak-coupling BCS limit of superfluid
fermions to the strong-coupling limit of condensed compos-
ite bosons [6,7]. In this paper, we derive the low-energy ef-
fective action for a superfluid Fermi system in the strong-
coupling limit, both in continuum and lattice models. The
latter may be relevant for high-7, superconductors or ultra-
cold Fermi gases in an optical lattice.

A Bose superfluid is described by a complex field ¢,
=\pgee'%8 where pp, is the boson density at position r in
space. The equation of motion derived from the standard
action of a Bose system leads to the Gross-Pitaevskii equa-
tion [8,9], i.e., a nonlinear Schrodinger equation for the i
field. The Gross-Pitaevskii equation yields a simple descrip-
tion of quantum macroscopic phenomena like the Josephson
effect or the flux quantization [10,11], and has proven to be a
tool of choice for the understanding of many phenomena in
ultracold atomic Bose gases [12]. In Fermi systems, there is,
in general, no simple relation between the amplitude of the
superfluid (pairing) order parameter A, and the fermion den-
sity p.. This suggests that a minimal description, aiming at
making contact with the standard description of a Bose su-
perfluid, should at least include the superfluid order param-
eter A, and the density p, from the outset. In the strong-
coupling limit, where superfluidity originates from Bose-
Einstein condensation (BEC) of composite bosons, we
expect the description in terms of p, and A.=|A,|e! to be
redundant and the superfluid to be described by a single
complex field #,=\p,/2¢'% (p,/2 being the density of com-
posite bosons).

Previous studies of the BCS-BEC crossover in superfluid
Fermi systems can be divided into two categories. In the first
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type of approach [6,13-18], the density p, is not considered
explicitly and a pairing field ArHS is introduced by means of a
Hubbard-Stratonovich transformation of the fermion-fermion
interaction. In the BEC limit, the standard action S[¢", ¢/] of
a Bose superfluid is recovered if one identifies i, to A]:S
(after a proper rescaling). For a continuum model, the bosons
have a mass mp=2m and interact via a repulsive contact
potential with amplitude gzp=4mag/my,ag=2a (a is the
s-wave scattering length associated to the fermion-fermion
interaction in vacuum). The main (conceptual) difficulty of
this approach is that the Hubbard-Stratonovich field ArHS is
not the physical pairing field A,=|A|e'% but rather its con-
jugate field [19]. Although both fields coincide at the mean-
field level, they differ when fluctuations are taken into ac-
count. As a result, ¢ A™S does not correspond to \p,/2¢!%
as expected.

In the second type of approach to the BCS-BEC crossover
[19-21], the physical density and pairing fields p, and A, are
introduced from the outset. For continuum models, only the
weak-coupling limit has been considered [19,21]. For lattice
(Hubbard) models in the strong-coupling low-density limit,
one finds that the order parameter amplitude and the density
are tied by the relation |A,|=1p,/2, so that the low-energy
effective action can be written in terms of a single complex
field A,=p,/2¢i%= g [19,20]. In the continuum limit, one
finds that the (composite) bosons have a mass mgz=1/J and
interact via a repulsive contact potential with amplitude gz
=8J (in two dimensions), where J=4>/U (t being the inter-
site hopping amplitude and —U(U=0) the on-site attractive
interaction) [20].

Most of the theoretical works on the BCS-BEC crossover
in ultracold atomic Fermi gases have been formulated within
a fermion-boson model [22], aiming at incorporating the mo-
lecular states involved in the Feshbach resonance which
drives the crossover. While the equivalence of the fermion-
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boson model to an effective single-channel model in the
crossover region may be questionable [23,24], both models
are equivalent in the strong-coupling limit.

The outline of the paper is as follows. In Sec. II, we
extend the approach of Ref. [19] to the strong-coupling limit
of a continuum model. The particle-particle and particle-hole
channels are considered on the same footing, and the (physi-
cal) density (p,) and pairing (A,) fields are introduced from
the outset. The low-energy effective action is derived by as-
suming small fluctuations of the collective fields about their
mean-field values. We find that fluctuations of p, and A, are
not independent, so that the low-energy ac_tion can be written
in terms of a single complex field ,.=p,/2¢'%. We recover
the standard action of a Bose superfluid with mz=2m and
gp=4mag/mg,ag=2a. For a lattice model (Sec. III), we fol-
low the approach introduced in Ref. [20]. We map the attrac-
tive Hubbard model onto the half-filled repulsive Hubbard
model in a uniform magnetic field coupled to the fermion
spins. In the strong-coupling limit, the latter reduces to the
Heisenberg model in a uniform field. The low-energy effec-
tive action of the attractive model is finally deduced from the
coherent state path integral representation of the Heisenberg
model. In the low-density limit, where the Pauli principle
(which prevents two composite bosons to occupy the same
site) should not matter, |A,|=p,/2 and the superfluid Fermi
system can be described by the complex field i,=1p,/2¢'%.
We find that the effective description of the Fermi superfluid
is a Bose-Hubbard model with intersite hopping amplitude
tg=J/2 and an on-site repulsive interaction Uz=2Jz (where z
is the number of nearest-neighbor sites).

II. CONTINUUM MODEL

We consider a three-dimensional superfluid fermion sys-
tem with the action S=Sy+S;,

B V2
So=f de &r cI(o'?T—,u——>cr,
0 2m

B
Sim=—gf de d’r cpyCp Cr Crps (1)
0

(*) : _ T
where ¢~ are Grassmann variables Cr_(CrT’Cl“l) ,7T an

imaginary time, and S=1/T the inverse temperature. —g is
the attractive interaction between fermions (g=0). The
chemical potential u fixes the average fermion density p,. To
suppress ultraviolet divergences appearing in the perturba-
tion theory, one regularizes [15] the local fermion-fermion
interaction with a cutoff A acting on the fermion dispersion:
&=|k[>/2m<A. g and A determine the s-wave scattering
length a defined by the low-energy limit of the two-body
problem in vacuum

m 1 I’k 1
—=——+ T (2)
47a g < 27)° 2¢,

k=

a is negative for small g and diverges when g=27>/mA. For
g>2m/mA, there is a two-body bound state (composite bo-
son) with energy Ez=—1/ma* and the scattering length a is

PHYSICAL REVIEW A 72, 013606 (2005)

positive. The latter also determines the extension of the
bound state. Low-energy properties depend solely on a (and
not g or A); we shall therefore take the limit g—0 and A
— with a fixed. In the following, we consider the BEC
limit defined by pya®<1(a>0), where superfluidity origi-
nates from BEC of composite bosons.

The (real) density and (complex) pairing fields

pr=cicy,
S5 =clote,,
Ar=cpicprs
A= C:Tc:l, (3)

can be introduced in the action by means of real (p?s,ﬁils)
and complex (A") Lagrange multipliers:

B V2
S=f dTJd31' CI<(9T_/’L__)Cr_g7|Ar|2
0 2m

ga z . T .
=5 02— )+ (e~ cle) + S(S3 - cloe)

+I[ATS(AL = L) +e e ]}. 4)

(0%,07,0%) denotes the Pauli matrices. Integrating over
p?s,ﬁys,A?S, and p;,S;, A, we recover the original action
(1) if we choose a+y=1 [25]. The relative weights « and y
of the particle-hole and particle-particle channels are arbi-
trary. All the resulting effective actions are equivalent when
treated exactly. However, to recover the mean-field results
from a saddle-point approximation, we take a=7y=1. When
only low-energy long-wavelength fluctuations about the
mean-field state are considered, there is no overlapping of
the two channels and therefore no overcounting [19]. Note
that by integrating out the physical fields S%, p,, and A, one
recovers the action S[c, erS, ﬁ?S,ArHS] which is generally ob-
tained by means of a Hubbard-Stratonovich decoupling of
the interaction term. Thus the Lagrange multipliers pfs,ﬁfs
and Alr'ls enforcing the constraints (3) can also be seen as
Hubbard-Stratonovich fields [19]. In the following, we ne-
glect spin fluctuations ('pfIS and S3) since they do not play an

important role when the interaction is attractive.

A. Mean-field theory

The mean-field theory is obtained from a saddle-point ap-
proximation where the fields pr,A,,pys, and Afs are taken
space and time independent. The saddle-point equations read

- s 8
po={cley), iphS= 2P0

A0 = <CrlCrT>, ZAgS = gAO?
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i = gy, (5)

With no loss of generality, we can take Ay= A; real. iAHS

Ag={cpcr).  iAg

—ZAHS is then real at the saddle pomt It is convenlent to

redefine zAHSHAgS and lAHS —>AHS (so that AHS—AHS is
real) and absorb i p S in the deﬁnltlon of the chemlcal poten-
tial. The mean-field action is then (up to an additive con-
stant)

B 3 " V2 HS, * *
SMF:fo drfdr cr<(97—,u—%>cr—Ao (cpiCy)

+c.c.)]. (6)

From Eq. (6), we readily obtain the normal and anomalous
Green functions

G(K,iw) =—{c (K, zw)c (Kk,iw)) = LEng,
HS
Fk,iw) == {c,(K,iw)cz(- k,— iw)) = Ei,
F'(k,iw) == (co(- k,— iw)c,(K,iw)) = F(K,iw), (7)

where Ek=(§i+A(ﬁISz)1/2,§k=ek—M, and o=-0. c,(Kk,iw) is
the Fourier transformed field of ¢, and w a fermionic Mat-
subara frequency. Using Egs. (2) and (7), we can rewrite the
saddle-point Egs. (5) as

11_f<l__L>
dma ) \26 2E.)
_ Sk
Po—fk<1—Ek>, (®)

where [ = [d’k/(21)3. Equations (8) determine the chemi-
cal potential w and the order parameter Ags= gAy. In the
strong-coupling limit pya® <1, one obtains (see Appendix B)

1
3
== 5 (1 - 2mpid),
Ao\ 12
AN = (#) 1+ 7—Tpoa3 . 9)
m-a 4

B. Low-energy effective action

In this section, we derive the low-energy effective action
for the physical fields p, and A,. Since our derivation par-
tially follows Ref. [19], we describe only the main steps
(technical details are given in Appendix A). The maln as-
sumption is that the collective bosonic fields pr,pr S.A,, and
AHS weakly fluctuate about their mean-field values.

Starting from the action (4) (with a=y=1), where

=A™, (10)

we perform the change of variables
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cr— cel APS L ATSi0 (11)

We then cons1der the shift ot Hpo +pr ,zAHSHAHS
+1AHS and zAHS AHSHAHS (recall that a factor i has been

included in Ags and AHS ), so that the Hubbard-Stratonovich
fields pHS and AHS now describe (small) fluctuations about
the mean-field values This leads to the action

(V6

B i, i <
S=Syp+ | dr| & T(—e-—va-V+ L
ME Jo Tf r{cr 2" 4m r 8m

_ % - ip?s>cr - i(A?Sc;c; +c.c.)+ (iAIr_IS* + iA?S

+200%)|A,] - glA, |2——pr+(lpo +ip, S)Pr}’ (12)

where V=V -V. Here we write the chemical potential as u
=ump+ Mp/2 where uyp is the chemical potential in the
mean-field approximation. The next step is to shift
P ipS — ipS476,/2+(V 6,)/8m— /2, and to introduce
Nambu spinors (;Sr:(ch,ciL)T. This gives

B
S:SMF+S’+J ded3r[—g|Ar|2—§p§+(2AgS+iAI:S
0

' i. (V6,)?
+l'A:IS )|Ar|+pr(ipgs+ipl}jls+50r+@_&):|’

8m 2
(13)
where
B 1
=J er &’r ( iptSjs .+ EV Oy — i05j5
0
—M?%J, (14)
jér = ¢17Z¢r = CICr’
Joe= i b= cricrys
]ar = ¢I T_¢r =Cr|Crps
=——¢T b= ——C VC (15)

(7., 7,,7,) are Pauli matrices acting in Nambu space. The
effective action S[p, p"'S,A,APS] is obtained by integrating
out the fermions. To quadratic order in the bosonic fields and
their gradient (4, or V), it is sufficient to retain the first and
second-order cumulants of S’ with respect to the mean-field
action
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/2 B
— +f drf d3r[—g|Ar|2
2 c 0

- ot QAP iAT +iaA

Ve @)}
8m 2/
(16)

S[p,pHS,A,AHS] — <Sr

.- HS , . HS i
+pr(lp0 +lpr +§6r+

where the averages (--), are calculated with respect to the
mean-field action Syp. Calculating the first- and second-
order cumulants and integrating out the Hubbard-
Stratonovich fields pI™ and A™ (Appendix A), we obtain

. 2
ot [ a8

+E<5p_q,ﬂA|_q< ~ S )( %, )

gay &g /\dAl,
(17)

where 8p, and S|A|, are the Fourier transforms of dp,=p,
—-po and 8|A,|=|A|-A, and

By=5 i) - & - M0 T @),

2 Cq

|
- gag= (@) 15 (@),

Cy=-1T55(q) - ITi5 () + 21055 (q) ' TG (q)>. (18)

We use the notation ¢=(q,iw,) and quﬁq,wv where w, is a
bosonic Matsubara frequency. The mean-field correlation
function I (q) (/ 0(@)j; (—q)). is calculated in Appendix B
and H&’)’ (q)—Hg(’)’ (q,w,=0). jj(g) is the Fourier trans-
formed field of j;,. [Eq. (15)]. Equation (17) shows that half
the fermion density is the conjugate variable of the phase 6,
of the pairing field. Equations (17) and (18) agree with Eq.
(2.3) of Ref. [19] except for the coefficient of dp_,d|Al,
which is found to have opposite sign [26].

We now discuss the strong-coupling limit (not considered
3

12
9 1
) (1 + Z'n'poa3 + g|q|2a2),

(Appendix B) [27]

1
o, =
4 ( dmpya’

1
Bq: 2(1 +477p0a3+2|q|2a2),

2pgma
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m 3
1 + =mpya’ +— 2 2) 19
V=5 ( 5P q (19)

Denoting by )\+ and A\ the two eigenvalues of the fluctuation
matrix appearmg in Eq. (17), we have

Bq+g By
K‘=g2(7 —&'ﬁ) (20)
q q IBq ’

to order O(g?). For g—0 (at fixed a), the mode correspond-
ing to the eigenvalue )\; is frozen, which leads to

%zl(L)"z_

(21)
opr 8

pom’a

Density (dp,) and modulus (8]A,|) fluctuations do not fluc-
tuate independently in the low-energy limit but are tied by
the relation (21). From Egs. (17), (19), and (21), we deduce
that the dynamics of the Fermi superfluid is determined by
the effective action

B . (V6 TTa
Slp.61= | dr | & r(iar —r——B) —(3p,)>
L] fo Tf r[p 20t g T2 ) T o 0P

V 6p,)?

@} 22}

32pgm

Introducing the bosonic field

U= \/%dpf, (23)

we recover the standard action of a Bose superfluid,

B V2
S[t//*,t//]=f de d3r[l/fi<é’f—ﬂ3— )
0 2mpg

—po/Z)Q}, (24)

27m3

(lﬁr e

where mp=2m and ag=2a are the mass and the scattering
length of the bosons. The result ag=2a corresponds to the
Born approximation for the boson-boson scattering, while
the exact result is az=0.6a [28]. Equations (24) and (22) are
equivalent in the hydrodynamic regime where (Vp,)?/p,
=(Vp,)*/p, [29].

Thus, we have shown how, by introducing the physical
fields p, and A, from the outset and expanding about the
mean-field state in the strong-coupling limit, one obtains the
standard action of a Bose superfluid. Our approach should be
contrasted with a number of previous works [6,13-18] where
only the pairing Hubbard-Stratonovich field ArHS is consid-
ered and the expansion is carried out about the non-
interacting state, which gives the action (24) but for the field

Vpr! 2¢1%" instead of the i field defined in (23) [30].
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III. LATTICE MODEL

In this section, we consider the attractive Hubbard model
on a bipartite lattice, with Hamiltonian

H=—12 (clepr+h.c.)- ,LLECCr UEannrl
(rx’)
(25)

The operator CIU(CW.) creates (annihilates) a fermion with
spin o at the lattice site r,crz(ch,crl)T, and an:CI(rCrU'
(r,r’) denotes nearest-neighbor sites. The chemical potential
w fixes the average density p, (i.e., the average number of
fermions per site) and —U(U=0) is the on-site attractive
interaction.

We are interested in the strong-coupling limit U>t where
fermions form tightly bound composite bosons which behave
as local pairs. The latter Bose condense at low temperature
giving rise to superfluidity. In order to derive the low-energy
effective action, we could follow the procedure used in Sec.
II. Here, we shall use a different method, based on the map-
ping of the attractive Hubbard model in the strong-coupling
limit onto the Heisenberg model in a uniform magnetic field
[20]. Thus this approach is based on a ¢/ U expansion about
the =0 limit rather than on an expansion about the mean-
field state [31].

Under the canonical particle-hole transformation [32]

cf = (= Dy, (26)

the Hamiltonian becomes (omitting a constant term)

H=—1t> (CCr+h c.)- 2c(—+hoal>

(rr’) 2

+UD, Ryl s (27)
r

cl‘l - (_ l)rczl3

and corresponds now to the repulsive Hubbard model in a
magnetic field hy=hyZ along the z axis,

U
hO sp+ T, (28)
2
coupled to the fermion spins. The chemical potential U/2 in
Eq. (27), together with particle-hole symmetry, implies that
the system is half-filled. The density and pairing operators
transform into the three components of the spin density op-
erator

pr=cle, — clofe, + 1,

Ar = crlCrT - (_ 1)rCILCrT’

Ar = cITcIL — (= 1)rcITc,L. (29)

The equation fixing ,u,(c:cr>= po, becomes an equation fix-
ing the magnetic field: (c/o%c,)=py—1.

In the strong-coupling limit U> ¢, the Hamiltonian (27)
simplifies into [20]
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H=J, S, S, —2h,- Esr, (30)
(rr’)
where J=41*/U and S, is a spin-1/2 operator. Using spin-
1/2 coherent states |Qr>(93=1) [33], the action of the
Heisenberg model (30) can be written as

QJ+J > ———

P .
S[Q] = J dr E [<Qr|Qr> - hO . 4
0 r (r,r')

@31

where |Q,)=4,|Q,).

The effective action S[p,A] of the superfluid system is
obtained by rewriting the action (31) in terms of the density
and pairing fields of the attractive model. In the strong-
coupling limit, Egs. (29) (written now for fields rather than
operators) become [20]

=i+,
- 1)r
Arz( )Q;’
2
. 1)"
A= = )Q+ (32)

where QF=QF+i()). The condition ;=1 implies that p, and
A, do not fluctuate independently but are tied by the relation

1
|Ar| = 5[pr(2 - pr)]l/2~ (33)

In the low-density limit (p, << 1), where the Pauli principle
(which prevents two composite bosons to occupy the same
site) should not matter, we expect to recover the standard
=\p,/2; the
palr density |A,> equals half the fermlon den51ty _Qr_and

+=|A,|e!’ coincides with the bosonic field =1 p,/2e'%.
To order O(pr) we deduce from Egs. (31)—(33)

A Jz
S[P, 0] =J dr 2 |: pr r (h0+ )pr:| + - E [prpr’
0 F L2 4 4< )

- (prpr')l/z(z - Pr)COS(er - 01")] . (34)

The term (i/2)p.6, comes from the Berry phase term
(Q,]Q,) of the action S[Q] [Eq. (31)] with a proper gauge
choice [20]. If we further assume that p, and 6, are slowly
varying in space, we obtain

B Jz) Jz }
S[p.6]=| d ho + +=p?
[P ] fo T ?[zpr r (0 4 Pr 4pr

J
-3 > (pepr) 2 cos(6,— 6,) ¢, (35)
(rr')

or, equivalently
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0 r

~t5 2 (Ythor+c.c.) s (36)
(rr')

where t3=J/2,Up=2Jz, up=2hg+Jz/2, and z is the number
of nearest-neighbor sites. We therefore obtain the action of
the Bose-Hubbard model with on-site repulsive interaction
Up and nearest-neighbor hopping amplitude 7. In the con-
tinuum limit and for a cubic lattice, the latter gives a boson
mass mg=1/J as obtained in Ref. [20].

IV. CONCLUDING REMARKS

In this paper, we have shown that a Fermi superfluid in
the strong-coupling limit, where superfluidity originates from
BEC of composite bosons, can be described by the complex
field =1\ p,/2¢'%, where p, is the fermion density and 6,
the phase of the pairing field A,. Such description is made
possible by the fact that density (p,) and amplitude (|A|)
fluctuations are not independent in the strong-coupling limit.
The effective action S[p, 6] is derived by introducing the
physical fields p, and A, from the outset by means of
Lagrange multiplier fields p?s and A?S. The latter play the
role of the Hubbard-Stratonovich fields usually introduced
via a Hubbard-Stratonovich transformation of the fermion-
fermion interaction.

For continuum models, the effective action is derived
from an expansion about the mean-field state. It corresponds
to the usual action of a Bose superfluid of density p,./2 where
the bosons have a mass mg=2m and interact via a contact
potential with amplitude gz=4mag/mg,agz=2a.

For lattice (Hubbard) models, the effective action is ob-
tained from an expansion about the =0 limit, using the map-
ping of the attractive Hubbard model in the strong-coupling
limit onto the Heisenberg model in a uniform magnetic field.
The effective model is a Bose-Hubbard model with an on-
site repulsion Uz=2Jz (with z the number of nearest-
neighbor sites) and a nearest-neighbor intersite hopping am-
plitude t5=J/2, where J=41*/U.

APPENDIX A: LOW-ENERGY EFFECTIVE ACTION
S[p,A]

In this Appendix, we derive the effective action (17) start-
ing from Eq. (16). The first- and second-order cumulants are
given by

ﬂ *
(8= f dr f &= ipopy° = ig(AF° + AP )],
0

M (q)= (_

o0 (@) + I (q) ' TI5(q)?
I (q) + I55(q) TG (q)?

PHYSICAL REVIEW A 72, 013606 (2005)

(8%, —2[ PTG ()Pl = 20T (@) AL

_ ZPHSHzO(q)AHs* _ AHSH++( )AHS
- AP T (q) Al - 2815 (g) A%

The second-order cumulant is written in Fourier space.

The mean-field correlation function Hé’g,(q)z(jg(q) j(’)’l(—q)>c
is defined in Sec. I B. To obtain Eq. (A1), we have used
the fact that mean-field correlation functions involving
the current j(r) vanish (Appendix B). In the low-energy

limit, we can approximate Hg(’)”(q) by its static limit
155 (@) =115 (g, @,=0).

Integrating out the Hubbard-Stratonovich field p
obtain

. (V6,)?
J dff d3r[—gﬂAr|2——5pr pr( A +(8 2

- (A1)

* 1
- %) A" + A?S)w} +2 {Enaa(q)m?;&;s
q

re.c.)+ AP TI (@AM + —Hézo(q)_l[5p_q5pq

~ 2illT5(q) 3p_,(AMS + AS') — T (q)2(AMSAES

49

+ ABSTABS L o|AlS) | 1 (A2)

where 8p,=p,—p, and A |=A,—A,. Here we have ne-
glected constant terms and use the saddle-point Egs. (5).
To obtain the action S[p,A] in terms of the physical fields

only, one has then to integrate out the Hubbard-Stratonovich
field AHS

f D[AHS]exp{— So[AMS] >, (AHS AHS )MAH
q

ol Mig(a) 5p-q]} ) CXP{‘ ST (Al

X (A1 + Aol 1Al = TT5i o) TT5@ 5o, [AL,

T30 T (@] =expt 3 S [y, () + Man(a)

q
II55(a) ™' T155(a) dp, L A1A L,

~ TT55(a) ™' T155(a) 3p_, ]

+2M12(‘l)][ﬂA|q_

(A3)
where averages (- - ), are taken with the Gaussian action

1 . AHS
S[AT] = = (AL ATy ‘(q)( e )
q

-q

- 1135 (q) + I5(q) " I5G (q)z) (Ad)

- 55 (@) + M5 ()" TGo(q)?
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EFFECTIVE ACTION FOR SUPERFLUID FERMI...

In the following, we denote by A, and B, the diagonal and
off-diagonal components of M~ 1(q) and Cq=Aq+Bgy. The
effective action S[p,A] deduced from Egs. (A2) and (A3) is
given by Eq. (17).

APPENDIX B: MEAN-FIELD CORRELATION FUNCTION

In this Appendix, we calculate the mean-field correlation

function HZL (@)=0(9)], (=) (v v =y, 2
=0,x,y,z) in the strong- couphng limit pya’<1 and for
lqla<<1.

1. General expression

Jjn(q) is the Fourier transformed field of j}, [Eq. (15)]:

HOE —E B0 Dy

o)== m( gl w20, B

VBV &

where V is the volume of the system and V'S, =, for V
— o, k=(k,iw) and ;=3 , where o is a fermionic Mat-
subara frequency. We have

= (@) == — 3 [GRIG(k + )~ FRIF(k+ )],
BV

23 Gle+ QF(k),

I56(q) = TI5o(= ¢) == B2

1
IG5 (q) =I5 (g) = - ﬁ_Vg F(k)F(k+q),

1
t0(q) = B_VE;:' G(k)G(-k~-q),
n,@=- =3

du
T VS m ( 2><k“’+ 2)

X [G(k+q)G(k) + F(k+ q)F(k)], (B2)

where G and F are the mean-field propagators [Eq. (7)]. The
correlation function (if;(q) jo(—¢))(u# 0) vanishes. ,
In the following, we consider the static limit 115 (q)

=H(’;(’j’(q,w,,=0). Performing the sum over Matsubara fre-
quency in Eq. (B2) in the T=0 limit, we obtain

2
4 _ 1 gkgkﬂ] AOHS
o()((I) = I- + s
k Ex + Exiq ExExiq  ExExiq
I15(q) = G(q) = f
% o (Ex + Ek+q)EkEk+q
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AHS2

H++()=H__()=—J ,
00t 00t K 2(Ex + Ek+q)EkEk+q

§k§k+q )

. (B3)
EyEy.q

o 1
Moo (@)= J « 2By + Erg) (1 ’

The correlation function H
J multiplies d,, 6, in the actlon S’, it is sufficient to consider
HG# (q=0) to obtam the effective action S[p,A] to order
(9,0,

We next expand the correlations to order O(|q|?). Writing
&irq= b+ Xy q With Xy =K-q/m+|q|*/2m, we obtain

Al
1&(q) = f —
RN

(q) vanishes for q=0. Since

2
3§k 351;
+<— Tt 5 X
2E, 2E;
1 3 5
+( P gsk__%>xiq ’
2B B 2EL)F

AHS 3 3E: - 108
éﬁq)=f—° g“(l—ﬁx e Whya |,
k

2E; 2EITRYT 4t TRa
Agsz 36
M (q) = =—J—<1-—
00 (q) 00 (q) . 4Ei 2Ei k.q

3EL - 104, )
- 2 k,
4E, q

1 1 38
Haa(q>=—f [— & +(§—'2——§';>Xk,q
2Ju L 2Ec  2E, \4E, 4E;

1 75 5&)\ .,
L i s D O B
8ES 8E, AE]

2. Strong-coupling limit pga®<1

(B4)

In the strong-coupling limit, the chemical potential wu is
negative. We then have

f mA m3/2|lu| 172
&

\'27T
o k4
f dk—3 =
o &k

Other useful relations are obtained by differentiating Eqgs.
(B5) with respect to u. Note that A is sent to infinity when-
ever the integral over k converges. In the strong-coupling

El

3 77_’/'15/2

—_— (B5)
2\,’2|M| 172

limit, the small parameter expansion is A?Sz/ |ul? ~ poa’. Ap-
proximate expressions of the mean-field correlation func-
tions can be obtained by expanding Egs. (8) and (B4) in
power of Ag‘SZ and using Egs. (B5) [as well as those obtained
from (B5) by differentiating with respect to w]. A straight-
forward (but somewhat lengthly) calculation then gives Eq.
(9) and
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lal*a®
II55(q) = poma2<1 —4mpya’ - A

2 \112 2.2

. pym’a 7 qf’a

6a(q>=(°—) (1—_7TP003— )
4
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2
poma 5
13500 = 221 - dmpn - Zaf)
_ 1 pyma? malq|*
o(q) = — - (1 - 4mpya’) - (B6)
g 4 32
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