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We study the two-dimensional attractive Hubbard model using the mapping onto the half-filled repulsive
Hubbard model in a uniform magnetic field coupled to the fermion spins. The low-energy effective action for
charge and pairing fluctuations is obtained in the hydrodynamic regime. We recover the action of a Bose
superfluid where half the fermion density is identified as the conjugate variable of the phase of the supercon-
ducting order parameter. By integrating out charge fluctuations, we obtain a phase-only action. In the zero-
temperature superconducting state, this action describes a collective phase mode smoothly evolving from the
Anderson-Bogoliubov mode at weak coupling to the Bogoliubov mode of a Bose superfluid at strong coupling.
At finite temperature, the phase-only action can be used to extract an eff&timeodel and thus obtain the
Berezinskii-Kosterlitz-Thoules@88KT) phase transition temperature. We also identify a renormalized classical
regime of superconducting fluctuations above the BKT phase transition, and a regime of incoherent pairs at
higher temperature. Special care is devoted to the nearly half-filled case where the symmetry of the order
parameter is enlarged to 8 due to strongy=(r, ) charge fluctuations. The low-energy effective action is
then an S@) nonlinearoc model with a(symmetry breakingmagnetic field proportional to the doping. In the
strong-coupling limit, the attractive Hubbard model can be mapped onto the Heisenberg model in a magnetic
field, which reduces to the quantudY model(except for a weak magnetic field, i.e., in the low-density limit
of the attractive modgl In the low-density limit, the Heisenberg model allows one to recover the action of a
Bose superfluid, including théVp)? term (with p the density, and in turn the Gross-Pitaevskii equation.
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I. INTRODUCTION pairs which behave as bosons, we expect the Gross-
Pitaevskii equation to hold. Moreover, since Fermi and Bose
Many superconducting systems such as higlsupercon-  superfluids should behave similarly in many respects, a
ductors, organic conductors, heavy fermions systems, as weflermi superfluid should be described by a nonlinear
as ultracold atomic Fermi gases cannot be understood withiSchrodinger equation similar to the Gross-Pitaevskii equa-
the BCS theory. For instance, in high-superconductors, the tion even in the weak-coupling lim#This is the conclusion
low dimensionality reinforces the role of phase reached by previous work8:12 although the “wave func-
fluctuationst? The short coherence length in these systemgion” in this case is not the superfluid order parameex-
also suggests that they might be in an intermediate regimeept in the strong-coupling limit
between the weak-coupling BCS limit of superfluid fermions The low-energy effective action provides a convenient
and the strong-coupling limit of condensed compositeframework to discuss the BCS-Bose crossover between the
bosons®* In ultracold atomic Fermi gases that are now ex-weak-coupling BCS limit and the Bose limit of preformed
perimentally available, it appears possible to monitor thepairs*?~*8In two dimensiong2D), there is an additional mo-
evolution from the BCS to the Bose lintit. tivation to introduce an effective action written in terms of
A superconducting system at low temperature is convethe phase of the order parameter. The Berezinskii-Kosterlitz-
niently described by a low-energy effective action written in Thouless(BKT) phase transitiof-2° which takes place in a
terms of a few relevantbosonig variables. The minimum 2D Fermi superfluid is clearly out of reach of fermionic ap-
description requires to consider the phase of the supercomroximations based on diagram resummations like the
ducting order parameter, but other variables such as the arff-matrix approximatiors.
plitude of the order parameter or the charge density may also While the 2D attractive Hubbard model is not an appro-
be included. The effective actidior the corresponding equa- priate microscopic model for most superconducting systems
tions of motion is sufficient to describe macroscopic quan- of interest, it can be used to understand a number of general
tum phenomena such as the Meissner effect, the flux quantissues relevant to many cases. The main characteristics of
zation, the Josephson effect, or the vortex dynafhids a  this model are well knowAt?? Away from half filling, there
Bose superfluid, the low-energy effective action leads to thés a BKT phase transition to a low-temperature supercon-
Gross-Pitaevskii equatidh’, i.e., a nonlinear Schrédinger ducting phase. Long-range order sets in at zero temperature
equation for the complexsuperfluig order parametefr  and breaks S@) symmetry. At half filling,q=0 pairing and
where|¥|?=p is the condensate density. In a Fermi systemg=(m, ) charge fluctuations combine to form an order pa-
there is in general no simple relation between the amplitudeameter with S@) symmetry. The superconducting transi-
of the superconducting order parameter and the density. Ition then occurs at zero temperature and break€B&ym-
the strong-coupling limit, where fermions form tightly bound metry. In the weak-coupling limit, superconductivity is due
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to strongly overlapping Cooper pairs, and Bogoliubov quasiHeisenberglimits. These two limits differ in the role of the
particle excitations dominate the low-energy physics. In theBerry phase term.
strong-coupling limit, fermions form tightly bound pairs that  In Sec. Il C, we deduce the effective actifip,A] of the
Bose condense at low temperature thus giving rise to supecharge(p) and pairing(A=|A|€'®) fluctuations in the attrac-
fluidity. Pair-breaking excitations are not possible at low en-tive model. By integrating out amplitude fluctuatiotid|),
ergy and the thermodynamics is controlled tpllective)  we recover the actio p,®] of a Bose superfluid where half
phase fluctuations. _ _ ~the fermion density is identified as the conjugate variable of
In this paper, we derive the low-energy effective actionthe phase® of the superconducting order parameter. This
for Charge and pairing ﬂUCtua..tionS in the 2D attractive HUb'action is parametrized by the masy of the “bosons” and
bard model on a square lattice. We discuss the BCS-Bosgie amplitude g of the repulsive interaction between
crossover and the phase diagram. We use the mapping of thgosons.”m, and g are computed as a function of particle
attractive model onto the repulsivealf-filled model in a  density and interaction strength. We then analyze in more
magnetic field which couples to the fermion spins. In thisdetail the weak BCS) and strongBose coupling limits. In
mapping, the charge and pairing fields transform into thehe BCS limit, we find that the action is a function of charge
three components of the spin-density field. At half filling, the ang phase fluctuations only, since amplitude fluctuations of
magnetic field vanishes in the repulsive model. This case hage syperconducting order parameter decouple. In the strong-

antiferromagnet as the interaction strengtle., the on-site 1 . .
Coulomb re%ulsio}]increases. Because ofgthe SPsymme- |Ar|-§\Pr(2 ~Pr)- T_he Bose . superfluid act_lorS[p,]

try of the order parameter, the Néel temperature vanishes i /A[,0] then entirely describes the dynamics of the su-
agreement with the Mermin-Wagrértheorem. At finite Perconducting order parametér In Sec. Il D, we derive the
temperature, the system is in a renormalized clasgk@) Phase-only actior§ @] by integrating out charge fluctua-
regime with an exponentially large antiferromagnetic corredions. §@] corresponds to an @) o model with an addi-
lation length. Away from half filling, the magnetic field re- tional term proportional to the first-order time derivative of
duces the symmetry to $2) so that a BKT phase transition ©. The phase stiffness and the velocity of the0 model
occurs at finite temperature. In the attractive model, this corare obtained as a function of particle density and interaction
responds to the suppressiongpt (r, 7) charge fluctuations strength. At zero temperature, superconducting long-range
at low energy. The main advantage of studying the repulsiv@rder gives rise to a gaplesgsoldstong¢ phase mode
model is that the S@) symmetry of the order parameter at Smoothly evolving from the Anderson-Bogoliubov méiat

or near half filling can be easily handled. weak coupling to the Bogoliubov motfeof a Bose super-

In Sec. Il, we map the attractive model onto the repulsivefluid at strong coupling. In Sec. Il E, we show how we can
one by a canonical particle-hole transformatfoand then  extract from the phase-only action an effectieeassical XY
obtain the effective action for the spin fluctuations in theModel whose phase stiffness is a function of density, inter-
presence of a finite magnetic figlide., away from half filing ~ action strength and temperature. This allows us to determine
in the attractive modgl Collective bosonic fields are intro- the value of the BKT phase transition temperature as a func-
duced by means of a Hubbard-Stratonovich decoupling ofion of density and interaction strength. TH& model also
the Hubbard interaction. This crucial step in our approactyields an estimate of the crossover temperaflitebelow
differs from the usual decoupling in two respects. First, weWhich the system enters a RC regime of phase fluctuations.
write the interaction in an explicit S®) spin-rotation form At higher temperature, fofy<T= Ty, there is a regime of
by introducing a unit vectof), at each site and tin#:2427.28  incoherent pairgCooper(local) pairs at weakstrong cou-
This allows one to recover the Hartree-FaekF) theory at ~ Pling] with no superconducting short-range ordgf;, is es-
the saddle-point level, while maintaining &pspin-rotation ~ timated from the HF transition temperature.

Symmetry(in the absence of the magnetic fik|second' we In the ViCinity of half fllllng, the analySiS of Sec. Il is not
introduce two auxiliary real fields. One is simply the sufficient sinceq=(m,m) charge fluctuationsin the attrac-
Hubbard-Stratonovich field{'s for the amplitude of the spin tive mode) are not considered. For a weak magnetic fieid
density at site'. The other onem,, is directly connected to the repulsive modgl there are strong fluctuations &f, and

the actual amplitude of the spin densiiWhile these two the analysis of Sec. Il breaks down. This case is dealt with in
fields are proportional at the saddle-paiin¢., Hartree-Fock ~ Sec. lll. We show that the dynamics of spin fluctuations in
level, they differ when fluctuations are taken into account. Inthe repulsive model is governed by an (8Pnonlinearo

the weak- and strong-coupling limitsn, /2)Q, can be iden- model with a(symmetry-breaking magnetic field propor-
tified with the spin density, which allows a direct interpreta- tional to the doping. The magnetic field defines a character-
tion of the low-energy actior§{m, 2] in terms of physical istic temperatureTsqs..,) above which the S@) spin-
quantities. Because of the magnetic field, the spin componefigtation symmetry is restored. BeloWsqs .2, the system
along the fields takes a finite value and its fluctuations are enters a RC regime of spin fluctuations with @0symme-
small at low energy. Since spin amplitude fluctuations arery. The global phase diagram, as a function of density, in-
also small, the important fluctuations correspond to rotationgeraction strength and temperature, is discussed in Sec. Il F.
around the magnetic field axis. We derive the effective actioFor clarity, we discuss the phase diagram at the end of Sec.
9dm, Q] in this case.9m,Q] takes a simple form in the 1l and postpone the technical analysis of the (30
weak-coupling (Slatey and strong-coupling (Mott-  — SQO(2) crossover near half filling to Sec. NI.
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In Sec. IV, we consider the strong-coupling limit in more
detail. First we show that the repulsive Hubbard model re-
duces to the Heisenberg model to leading order id.IVhis
allows one to obtain the collective modes beyond the long-
wavelength approximation. We then show that except for a
strong magnetic fieldi.e., in the low density limit of the
attractive mode| the Heisenberg model in a magnetic field
reduces to the quantuXY model. In the low-density limit,
we recover from the Heisenberg model the usual action of a
Bose superfluidfor bosons of mass I£FU/4t? and density
p/2), including the terms proportional ttVp,)? that were
omitted in Sec. Il. The classical equation of motion derived
from this action is nothing but the Gross-Pitaevskii equation.
We therefore obtain a correspondence between the Gross- FIG. 1. Correspondence between the spin derSitin the re-
Pitaevskii equation in the attractive model and the semiclaspulsive model, and the charge densityand superconducting field
sical spin dynamics in the repulsive model. A, =|A/|€® in the attractive moddisee Eqs(7)].

To our knowledge, there is no systematic study of the 2D
repulsive Hubbard model in a magnetic field. When transcfc )= =1-x, where p, is the mean density ang the

lated in the language of the attractive model, our results redoping Under the particle-hole transformatia8), c'c
. ’ r~r

produce, in a unique framework, a number of previously To_zcr+1_ In the repulsive model, the magnetic fiiglis

. . ) —C|
known results. We also obtain new results, in particular "®then determined by

garding the BCS-Bose crossover and the phase diagram.

o=l

x

(clo?c,y == x. (6)

Il. AWAY FROM HALF FILLING

_ The attractive .Hub'bard model on a square lattice is deTpe charge-density and pairing operators transform as
fined by the Hamiltonian

H=-2 c/+we -UX nng, (1) pr=Cc — (25 +1),
r r
heret is th t-neighbor hoppi tor:
wneret IS the nearest-neignobor nopping operator Ar = ¢ G — (_ 1)r$’
fo, =tlcg+cgt Cray * Cr—y). (2)

X andy denote unit vectors along theandy axis. With the
notation of Eq.(1), —U is the on-site interaction witkd =0
in the attractive case. The operauﬁg (c,,) creategannihi-
lateg a fermion of spino at the lattice site, ¢, =(c,;,¢, )",
and nm:cfocm. At half filling, particle-hole symmetry im-
plies that the chemical potential equals +J/2. In the fol-

Al=clcdl - (-1's, (7)
where §'=c(0*/2)c, (v=x,y,2) and §=S+iS. In the re-
pulsive model, spin fluctuations are clearly the collective
(bosonig fluctuations of interest. Accordingly, in the attrac-

lowing, we will consider only hole doping so that
<-U/2. We take the lattice spacing equal to unity and
:szl'
Under the canonical particle-hole transformatfon
¢ =D, =D,

)

the Hamiltonian becomea®mitting a constant term
R u U
H=->cl|t+ pts, 01+E c+UXngn, (4)
r r

where (%,0¥,0% denotes the Pauli matrices. The trans-
formed Hamiltonian(4) corresponds to the repulsive half-
filled Hubbard model in a magnetic field

U
hOEM+— (5)

2

along thez axis coupled to the fermion spins. In the attrac-
tive model, the chemical potentialis fixed by the condition

tive model, both pairing and charge fluctuations should be
considered on equal footingee Fig. 1. One of the motiva-
tions to study the repulsive model is that one has to consider
only the particle-hole channel. On the contrary, a direct study
of the attractive model would require to consider both the
particle-hole and particle-particle channels in order to take
into account the charge and pairing fluctuations. The simul-
taneous introduction of auxiliary Hubbard-Stratonovich
fields in these two channels is not without problem if one
requires the saddle-point approximation to recover the HF
(or mean-fielgl theory*? Furthermore, in the attractive model
at half filling, q=0 pairing andq=(, 7) charge fluctuations
combine to form an order parameter with @Dsymmetry.
The S@3) symmetry of the order parameter is much more
easily handled in the repulsive model, where the distance
from half filling determines th&symmetry-breaking mag-
netic fieldhy (see Sec. I\

We can write the partition function of the repulsive model
as a path integral over Grassmann fietd§,cm, with the
action
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(8) sis. In Sec. Il A, we show that the HF theory is recovered

from a saddle-point approximation over the auxiliary fields

. . . . . HS : :
where 7 is an imaginary time an@=1/T the inverse tem- M, M, and 2. In the following sections, we go beyond

perature.H[c',c] is obtained from the Hamiltoniad) by ~ the HF theory and derive a low-energy effective action
replacing the operators by the corresponding Grassmand M. ] for spin fluctuations, and deduce the effective action
fields. We now introduce auxiliary bosonic fields for the col- Sp.A] of charge and pairing fluctuations in the attractive
lective spin fluctuations in a way that fulfills the three fol- model.
lowing requirements(i) the HF (or mean-fielgl approxima-

tion is recovered from a saddle-point approximati@r), the

SQ(2) [or SQ?3) if hy=0] spin-rotation symmetry is main- In the presence of the uniform magnetic field along zhe
tained,(iii ) the auxiliary fields correspond to the spin-densityaxis, we expect the ground state to exhibit AF order in the
field S,=c/(o/2)c, not only at the saddle-point level, but (x,y) plane and a ferromagnetic order along thaxis. We
also when fluctuations are taken into accoupr  therefore consider a static saddle-point approximation with

B Equationg11) and(12) are the starting point of our analy-
S=J dr{ cloc + H[c*,c]},
r

0

A. Hartree-Fock theory

=(c*, 0¥, 9. m.=m,, m'S=m’S, and a classical configuration of the unit
We start from the identif# 2427 vector fieldQ, given by
cl_ (e s S
ey = 3l(cfe)? - (clo - Q,c,)2], (9) Q= (- 1) sin X + cosyz. (13

whereQ, is an arbitrary site- and time-dependent unit vec-11e HF action then reads

tor. Q, is defined by its polar and azimuthal anglés ¢,. U
Spin-rotation invariance is made explicit by performing an S—IF:BN<_ Zm%’f imomg's)
angular integration ovef), at each site and timéwith a
measure normalized to unjtyThe charge terrr(cfcr)2 is

decoupled by means of an auxiliameal) field A.,. In order +J
to decouple the spin terr(rc,Ta-Qrcr)z, we introduce in the

B
dr>, ¢/[9, -t - ho? - ASS(- 1" o¥]c,, (14)

0 r

path integral the unit factor whereN is the total number of lattice sites and
AHS=imS sin 6y,
1 :f DIm][] s(m - clo - Q,c)) ° °
o h=hy +imtS cos . (15)
:fD[m, mHS]eSBdrrimy Sm—clo ey (100  The HF action is quadratic and can be easily diagonalized.

The single-particle Green’s functions are given by

wherem™® is a Lagrange multiplier field which imposes the . —iw- e
constraintm, =2S; -Q,. Bothm andm"S are real fields. Note G,(k,iw) == (c (K,im)c (K,im)) = 2—2"
that integrating out then, field [see Eqs(11) and(12) be- o+ B,
low], one obtains the actiofc',c,A.,m"S] whereA,, and oS
mHS are the Hubbard-Stratonovich fields which decouple the CoN R SN 0
interaction term9). In general(m,/2)Q, cannot be directly Folkilo) == (¢ kio)czk + Qiiw) = o’ +Ef, (16)
identified with the spin densit$,, but the identification turns
out to be correct in the hydrodynamic regime both at weak'ere
(U<4t) and strongU > 4t) coupling. €k, = € — oh,
Using Egs.(9) and (10), we write the action as$=S,

S Euo= Ve, + 015 an

B
S = f dr>, C:(gT—f_ hoo? - !)Cn (11)  &=—2t(cosk,+cosk,) is the energy of the free fermions on
o r 2 the square latticeo=-0, Q=(m, ), and w=7T(2n+1) (n
intege) is a fermionic Matsubara frequenay,(k ,iw) is the

B A<2:r U . T Fourier transformed field o, ..
Snt:f dr>) T Zmr2+ im:m™ = ¢ (1A The saddle-point equations are obtained fré:/ m,
o T = 0Zuel IASS= 92,4l h=0, whereZ, is the partition func-
tion in the HF approximation
+imfSe - Q,)c; | (12) )
my = —img>, (18
In the following, we shall consider the charge fie\g only U
at the saddle-point level, i.eAq =i(U/2){clc,)=iU/2. The s
term -ic/AqcC, in Eq. (12) cancels the chemical potential _A mg (D
term «U/2)c’c, in Eq. (11). Bo= =7 sinfo=——(eoe), (19
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FIG. 2. Chemical potentigh=hy—U/2, order parameteA}”,
and 6, in the T=0 HF state vs doping=1-p, for U=2t, 4t, and
12t (solid, dashed, and dotted lines, respectiyelihe energies are
measured in units df

FIG. 3. Chemical potentigl=h,—U/2, order parameteA5=,
and 6, in the T=0 HF state vaU for x=0.1, 0.5, and 0.9solid,
dashed, and dotted lines, respectiyeliere and in the following
figures, we use the analytical results in the weak-coupling regime
(U =t) where the numerics becomes difficult because of the expo-

2 nentially small value ofARS,

Mo COS 6, = U(h -hy) =(clo?c,). (20) y 0
=0%, Gy=m andim{S=xU/2. Partial analytical results can be

Equation(6) then implies obtained in the limits of weak and strong couplings.

2
Mg COS6p = U(h =ho) =-x. (21) 1. Weak coupling(U <4t)

At half filling (x=0), h=hy=0 and 6y==/2. The zero-

Ap=(-1)(S) is the AF order parameter in the repulsive -
model, and the superconducting order parameter in the a%t_emperature order parameter and the transition temperature

tractive modelh is an effective magnetic field which takes are given by

into account the mean ferromagnetic magnetiza(hi#c,) AQSZ 32te—2mW, (24)
along thez axis. In the attractive modeh=hy—xU/2=y
+poU/2 corresponds to the chemical potential renormalized THF _ tg2mi0

A .

by the Hartree self-energy.
Using Egs.(16), we rewrite the saddle-point equations Note that at half filling, the S@) symmetry is restored and
(19+21) as the AF order parameter can have a component along the
2 tant(BE, /2) axis. The latter corresponds toge=Q charge-density-wave
—:J el S (22)  order in the attractive model. The choiegg==/2 corre-
u Ji = sponds to a state with only superconducting order.
Away from half filling (hy<0), 6= andim}S=xU/2

B tanh(BE,/2) since the superconducting order parameter is exponentially
X= ) €1 = ' (23 small. AtT=0, the superconducting order parameter is deter-
mined by
where [ =/ _(dk/2m) [T (dk,/2m). At T=0, Egs.(22) and s g 2t
(23) determine the superconducting order paramatEt (or, d :f —6/\/0(6) =~ No(h) d_f (25)
equivalently,Aq) and the renormalized chemical potential u J4E 4 E

Using Egs(15) and(21), we then obtairh,, im5, and 4, as @

a function ofU andx (Figs. 2 and ® Equations(22) and  where E=[(e-h)?+A§S V2 No(e)=(27°) K[ (1
(23) also determine the HF transition temperat@ife where — —€%/16t)Y2], with e e [-4t,4t], is the density of states of
AF long-range ordefi.e., superconducting order in the at- free fermions on a square lattik is the complete elliptic
tractive model sets in. At the transition, we hauk,=AlS  integral of the first kindl Since the integral in Eq25) is
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peaked around=h for AHS—0, we have replaced the den-  Below T:F, the fluctuations of the fields, m"S, and ¢

sity of statesVy(e) by its value at the renormalized chemical around their HF values are therefore expected to be small.
potentialh. In the weak-coupling limit, we can also neglect Below a crossover temperatungTEF, AF short-range or-
the effect of the order parameter on the chemical potentiadler sets in. The AF correlation length becomes much larger
li.e., setAlS=0in Eq.(23)]. We then havér=e- wheree- is  than the lattice spacing, and the effective action for AF fluc-
the Fermi energy of the noninteracting system. With theséuations(which correspond to rotations &2, about thez

approximations, we obtaifor U— 0 andx fixed) axis) can be derived within a gradient expansion. In this
AHS = 2[(4 = 2] WNoten) fs:rc:ieorz, we derive the low-energy effective actigm, )]
peratures below the crossover temperalyre~or T
<Ty=<THF, the coefficients of the effective actigwhich are
1 leet . related to HF quantitigscan be evaluated in the zero tem-
—|eln — if x<1, o ; _
4t |€g| perature limit. This means that we neglect the exponentially
X= 4t - e small number of thermally excited quasi-particles which give
1-—F if1-x< 1, rise to nonanalytic contributiondandau damping termsgo
2mt the effective actiof?33 As shown below, Ty~ J(1-x?)/2
<TH in the strong-coupling limi(J=4t>/U), but Ty~ TH"
v (26) in the weak-coupling limit.
K=~ Poy- Fluctuations can be parametrized by

Sinceh= ¢ belongs to the noninteracting bahe#t, 4t], the
. . . - &nr =m, —my,
excitation gap(i.e., the minimum energy required to break a
pair equals A5S.
Similar arguments show that the transition temperature is

HS _ - HS _ HS
given by om==m == my”,
HE _ 2Y 2 1/2~11UN(€g)
Toh = —[(40)? - ef]oe NP, (27 6 -0
w p, = r 0
r— )
. . 2
where y=1.78 is the exponential of the Euler constant. We
recover the results of the BCS theory wiftdt)?—e2]"2
playing the role of the cutoff enerdfqgs.(26) and(27)]. QG=¢ -Q-r. (29)

2. St ling(U>4t . .
rong coupling( ) In the HF state m, =om*=p,=q,=0. The effective action

To leading order in 1V (and x fixed), at T=0 we find  gp,q,m"S,m] is obtained by integrating out the fermions,

|m5|S:U/2 (Or Mp= 1) and CO%OZ_X:ho/ZJ. This gives and assuming)r , mr , m:"'s and aMpr , aMéan , aMé}nrsyaﬂqr
U to be small(w=0,x,y anddy=4,). We do not assume, to
ALS= E(l -x3)12, be small so that our approach is valid even in the absence of

AF long-range order. It is convenient to introduce a new
fermionic variableg, =(¢, ¢ )" defined byc, =R, ¢, where

= U 23x (29) R is a time- and site-dependent &YU(1) matrix satisfying
> .

In the strong-coupling limit, the excitation gap equal&? Ro-QfR'=0-Q,. (30
+AHS)12=U to leading order in 10. Forx<1, T?F=U/4.
The above definition means th&t,, the S@3) element as-
] , sociated toR,, mapsﬂf' onto Q,. The U1) gauge freedom
B. Effective action m, 2] is due to rotations aroun@¢, which do not change the
In 2D, the HF theory breaks down at finite temperaturephysical state of the system. The pseudofermfgprhas its
since it predicts AF long-range order beldW". Neverthe- spin quantized alon®,z. The action(11) and(12) can then
less, the HF transition temperature bears a physical meanirige expressed as
as a crossover temperature below which the amplit\glef
the AF order parameter takes a finite value. This can be g- Se+S+S,
interpreted as the appearance of local moments pe&gendicular p y )
to the magnetic field and with an amplitudg,=A;>/U. U o o HSo. 2 HS o HS
Note that at weak coupling these “local” momengs can be +j0 de:‘( 4&11, +iommom, Um° oy >
defined only at length scales of ordgy~t/A5S>1, which
corresponds to the size of bound particle-hole pairs in the HF
state. Thusstricto sensylocal moments form only in the
strong-coupling limit wheré,~ 1. whereS is the HF action(14) and

(31
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b T
S= f dr> ¢ Ao ¢,
0 r

B
S=-t| dr X (¢/A ¢ +c.C). (32)

0 )
(r,r’y denotes nearest neighbors and we have introduced
g

Ao =RIR. — ho(RIo™R, — o) —ion®c - Q' = 3 AYo”,

=Xy, Z

A =RR/-1= X A 0" (33

v=0X,y,Z

We use the notatioR, =d,R,. ¢° is the 2x 2 unit matrix.

The effective actior§ p,q,m] is obtained by integrating
out the fermion fielde, and the Hubbard-Stratonovich field
m'S. The final result reads

1 ~ ~
Sp,aml =5 2 [Pl lpp@ P + a5 oq(@)
q

+ AN @) M + 2p 1 T,(@) g
+ 2p—'dﬁpm(a)&nﬁ + 2q—ﬁﬁqm@) a'n‘d] + 588:
(34)

whereg=(q,iw,), with o, (v intege) a bosonic Matsubara
frequency. The coefficientdl are given by Eq(B24) and

8S; by Eq.(B21). Details of this rather long calculation are
given in Appendix B, to which we refer readers interested in

results for the repulsive Hubbard modEl. (4)]. In the bulk

of the manuscript, we shall focus on the attractive Hubbar

model as defined in Eql).

C. Effective action §[p,A]

PHYSICAL REVIEW B 70, 134502(2004)

oS
— =2(- 1)'|A,|cos®,,
5‘Jr J=0
oS
— =-2(-1)|A,[sin®,,
o | =0
oS
=z =p -1 (36)
r1J=0

We then proceed as in the preceding sectsae also Appen-
dix B). We integrate out the fermions to obtain the effective
action to second order ip,, ém;,d,p;,d,6m;,d,q, and first
order in J,. Using then Eqs(36), we obtain the relation
betweenm,,Q, and A,,p,: see Eq.(D6) in Appendix D.
Equation(D6) takes a simple form in the BCS and Bose
limits (see Secs. IIC 1 and Il C)2

To proceed further in the general case, we note that there
is no coupling betweerVg and p,q,m in the action

9p,q,m] (Appendix B. SinceV®,=-Vq,, and®, &p, 5A|
are functions op,q,m (Appendix D, §p,A] takes the gen-
eral form

=K

1(” -
Sp,A]= Ef de dzr{lpr®r + T(V@)r)z + pr(gpr)Z
0

+ I8 (1A )2 + 2Hp|A|6pr5|Ar|:| : (37

Here we use the fact that half the fermion density is the

q«;)onjugate variable of the phase of the superconducting order

arameter, as required by gauge invariatfc&he action
9p,A] was previously obtained in Ref. 12. For our purpose,
it is not necessary to determine the expression of the coeffi-

cientsll,, [T andIl, 5 which can be found in Ref. 13

Results of Sec. Il B can be easily translated to the attracTo make contact with the usual description of a Bose super-

tive model. BelowT,,,=TE", the finite amplitude\, of the

fluid, we integrate out the amplitude figldi|. We thus obtain

superconducting order parameter can be interpreted as thige action
appearance of incoherent pairs. At weak coupling, the size

&~t/ALS of these(Coopey pairs is much larger than the
lattice spacing(&,>1). At strong coupling, the preformed

pairs are local and are expected to behave as hard-core
bosons(the hard-core constraint comes from the Pauli prin-

ciple which prevents double occupancy of a lattice)sitde

crossover temperaturg marks the onset of strong super-

conducting fluctuationsi.e., £&>1 with & the superconduct-
ing correlation length

As already pointed out, in generéin,/2)Q, cannot be
directly identified with the spin densit$, =c/(a/2)c,. In
order to find the relation betwee® and(m,/2)Q,, we add
to the action the source term

B
SJ:f dr>, ¢/J, - oc,,

0 r

(35

g o
ip,@]:%J dTJ dzr{ipr®r+< 8K>(V®,)2
0

HZ
+(5p,)2lnpp——ﬂn 2 ” (39)
[A[[A]
This action is similar to the superfluid actf§n
P Lo Pro g
$= J;) de d’r | ppr O +2_mb(v®r)2+ 5(5Pbr)2
(39

for bosons of masaey, and densitypy, (pyo iS the mean den-
sity and Spy, = ppr — Pro)- 9 is the amplitude of the repulsive

with J,=(J,JY,J). The charge and pairing fields in the at- interaction between bosons. Comparing E&®) and (39),

r+Vro

tractive model are then obtained frdisee Eq(7)]

we obtain
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FIG. 4. Boson mass, and interaction strength vs dopingx FIG. 5. Boson mass, and interaction strength vs U for x
=1-py for U=2t, 4t, and 12 (solid, dashed, and dotted lines, =0.1, 0.5 and 0.9solid, dashed, and dotted lines, respectiyely
respectively.

The low-energy effective actiof38) and(39) ensures that

or the Fermi superfluid will behave similarly to a Bose super-
Por = PR fluid. Indeed, from the classical equation of motion, we ob-
tain the two basic equationgin imaginary time of a
superfluid3®
m, = 4po
(-K) ipy + V -<@V®,):0,
My
T
=411, - . 40 .
J ( P HAA) (40 i, +gdpy = 0. (43)

In order to calculateg without computingll,,, ITjy s and For a Bose superfluid, the coefficient in front ()2 and
I1,j5, we integrate out charge fluctuations. This yields theV® in Eqgs.(39) and(43) is the superfluid densitydivided

phase-only action by the boson magsHere, because the coefficients of the
) effective actiongp,®] are calculated from the HF action,

B B > | Po ) 0? we expect the superfluid density to be given by the full den-
S0]= o dr [ d 4_mb(v®f) +2_g sity ppo=po/2. In Sec. IV, we derive the effective action

9p,0] in the strong-coupling low-density limitincluding
b fﬁd sz o (a1) the terms proportional ttV p,)? that are omitted in Eq:39)],
2P =" ror. without relying on the HF theory. We obtain a boson mass
my,=1/J in agreement with40) when U> 4t [see Eq.(50)
g 0] corresponds to an @) o model with an additional below forx=1].

term proportional to the first-order time derivative ®f m, There is nevertheless an important difference with the
andg are related to the phase stiffngssand the velocitce ~ Bose superfluid cas& p,®] has been obtained by integrat-
of the Q2) o model: ing out amplitude fluctuation§A|) and therefore does not

describe the full dynamics of the superconducting order pa-

my = ﬂ, rameterA, =|A,|€®r (except in the strong coupling limit, see
2pg Secs. IIC 2 and IY.
Effective actions similar to Eq(38) have been derived
c? previously for continuum or lattice modéeld%-*2In this sec-
9= ;2' (42) tion, we have obtained an effective action for the lattice case

which is valid for all values of the interaction strength. The
§0] can be directly obtained from the actidp,q,m]  validity of our approach is quite obvious both at weak and
(Sec. Il D, which allows one to determinpg andc, and  strong couplings. In the latter limit, it simply follows from
thereforem, andg. Anticipating on the results of Sec. Il D, the mapping between the attractive model and the Heisen-
we show in Figs. 4 and &, andg as a function of doping berg model under the particle-hole transformati@n (see
and interaction strength. Because bpffandc vanish in the  Sec. V). We therefore expect our approach to provide a
low-density limit, the numerical determination of, andg  good description of the BCS-Bose crossover as the interac-
from Eq.(42) is difficult whenx— 1. We have therefore only tion strength increases. We discuss the BCS and Bose limits
consideredk=0.9. below in more detail.
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1. BCS limit From Eq. (47), we deducedp,=-2 sindpp, and 8|4,
Using the results of Appendix A 2, we deddéérom Eq. =coFyp; (with cosfy=-x). These equations can also be ob-
(D6) g PP g tained from Eq(D6). The effective actiorf p,®] then reads
[see Eq(B33)]
op; =— om,,
" r Sp.0] 1f3d fdzr{i 6, +2(1-x3)(V0,)?
p,O]=2 [ dr P 1= :

AA|=-prx. (44) 2), 4 f

Equations(44) can be directly obtained by assumirg) 2

=(m,/2)Q, and considering the limiAg— 0. This shows +2J(5pr) } (49)
that the identification betwee® and(m,/2)Q, holds in the ) ) ) o )
weak-coupling limit. When inverting the particle-hole trans-A92in we verify that half the fermion density is the conju-
formation(3), the kinetic energy remains unchanged and thed@te variable of the phase of the pairing field. In the Bose
HF spin susceptibilitd124(0,0) becomes the HF compress- IMit, we therefore have

ibility « of the attractive model. The effective acti§, m] 2
[Eqg. (B28)] then becomes my = AL+’
1(f 2.0 ¢ =K 2
S[p,®]:§fo dff d f[lpr®r +T(V®r) g=8J. (50)
U The BCS and Bose limits differ in the role of the Berry
+ <_ _ E)(gpr)Z] (45) phase term

Amplitude fluctuations(|A|) do not couple to density and (6IR'R ¢, =iAo(prlr — PrOy) — '—poq,, (51
phase fluctuations in the weak-coupling limit. We also verify 2

that half the fermion density is the conjugate variable of thewhere we have included the gauge-dependent contribution
phase® of the pairing field. The gauge choieg=¢,/my  Eq. (B20). For U>4t, the Berry phase term becomes
[Eqg. (B21)] is crucial to obtain this result. For instance, with (i12)p 0. and therefore determines the entire dynamics of
¢:=0, one would obtairip; ~1)/2 as the conjugate variable the pFlage(ﬁ). This is expected since the dynamics of the

of . . . Heisenberg model entirely comes from the Berry phase
From Eq.(45), we conclude that in the BCS limit the term3 For U<4t, the Berry phase term only gives

system behaves as a Bose superfluid wj /2 and
4 v uperfiuid Wit o (i/2)pg®, and does not contribute to tlie=0 phase collec-

m. = 40 tive mode. The missing terrfi/2)8p,0,, comes from the
°T T -K)! second-order cumularitS, +S,)?).. For all values of the in-
teraction strength, the contributidiiv2)p,/5d7=, 0, to the
924(} _ 9) (46) action, which is responsible for the Magnus force acting a
k 2/ vortexC is given by the Berry phase term of the effective
actiongm, Q].%°
2. Bose limit D. Phase-only actionS[@]

In the strong-coupling limit, the auxiliary fielthm,/2)Q, Integrating out p, om™S, and ém in the action
can be identified with the spin densiy (see Appendix DL g p,q,m"S,m], and usingd, =-q,, we obtain the phase-only
so that action

Pr— 1 :Qf! pO B @2
g01==| dr | d|(VO,)?+—
) 2Jo ¢

A = > Q,, (47

i B
| .
+ —pof drf d’r@,, (52
where QF=QX+iQ)Y. The condition Q?=1 implies that 2o
charge and amplitude fluctuations are not independent b

. ! Where we have taken the continuum limit in real space.
tied by the relation

Equation(52) is valid in the hydrodynamic regime defined
INEENPYCErS) (48 Dby the momentum-space cutoff~ min(1,2A8%/c). Its va-

lidity also requires the fluctuations @fto be small, a con-
There is therefore a one-to-one correspondence between thition which is not fulfilled in the vicinity of half filling. This
bosonic field W, =\p,/2¢9 and the pairing fieldA, case is discussed in detail in Sec. lll. Ttoare phase stiff-
=|A;|€®". In the low-density limit, both fields coincide, since nessp? and the velocityc of the Q2) o model in Eq(52) are
A =1p, /2. determined by
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FIG. 6. Phase stiffnes;{ and velocityc vs dopingx=1-p, for
U=2t, 4t, and 12 (solid, dashed, and dotted lines, respectiyely

(-K)
pg: 8 !
0 zz
Ps _ 00(0,0) i i
2 4 n >
_ G—0 W, -
I ps(@)IT 1s,(Q) 2
2 (qu('ﬁ)— : , o
% quHs(a) HmHSmHS(a)
1] s 1s(@) 112, 5@
" pr(a)_ /p
HmHSmHS(a)

At zero temperature, there is superconducting long-range o

der (in the attractive model From Eq.(52), we deduce the
existence of a gapleg&oldstong mode with dispersion
=c|g|. This collective mode smoothly evolves from the
Anderson-Bogoliubov mod€at weak coupling to the Bogo-
liubov modé?! of a Bose superfluid at strong coupliigee
Secs.lID1and lID2

Figures 6 and 7 show and p? vs U and x. Our results

FIG. 7. Phase stiffness. and velocityc vs U for x=0.1, 0.5,
and 0.9(solid, dashed, and dotted lines, respectiyely

PHYSICAL REVIEW B 70, 134502(2004)

reproduce the collective mode velocity obtained from a
random-phase-approximatioRPA) calculation about the
zero-temperature HF superconducting sté&té?

1. BCS limit

In the weak-coupling limit, using the results of Appendix
B 1 and Sec. Il C 1, we obtain

-3

We further simplify this result by noting thanHS’/[(e
- )2+ AYZP2=25(e- &) in the limit AJS— 0. This yields
[see Eq(A7) in Appendix A]

40
2= Ps
K

(54)

K= 2/\/0(€|:) . (55)
Using also(Appendix Q
(-K)= ZJ vEoe — ), (56)
k
wherev, =V, ¢, we finally obtain
2
¢?= 1~ UNjle)),
f vi&(ek - €r)
2= (57)

f e — &)
k

;E is the mean square velocity on tfren-interacting Fermi
Surface. Equation&7) reproduce the expression of the ve-
locity of the Anderson-Bogoliubov modtin a 2D con-
tinuum model if we identifw?2 with vZ = (ke/m)? (with ke the
Fermi momentum anch the fermion mass They were also
obtained in Ref. 41 from an RPA calculation about the zero-
temperature HF superconducting state.

2. Bose limit

In the strong-coupling limit, using the results of Appendix
B 2, we obtain

J
0 2
p 1-x9),
s 1( )

c=20V1 -2 (598

We recover the velocityc=1ppg/m, of the Bogoliubov
mode in a Bose superfluif, where the massn, and the
interaction amplitudeg of the bosons are defined in E&O)
(ppo=po/ 2). At half filling, x=0, Eqs.(58) agree with results
obtained directly from the Heisenberg model.

E. Berezinskii-Kosterlitz-Thouless transition

The effective actior§ @] derived in Sec. Il D is valid for
temperatures below the crossover temperafligei.e., T
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<Tx (see Sec. Il B Since Tk~ Tx~ Tpair in the weak-
coupling limit (as will be shown beloyy this effective action 0.2 /
is not sufficient if one is interested in the BKT phase transi- -~_;i_\
tion. In this section, we derive the phase-only act#@] for
temperature§ <T,,, and obtain the BKT phase transition
temperatureTgkr. We consider the stati¢i.e., classical
limit, where nonanalytic contributions due to the Landau
damping term®32 are not present. In this limit, the field
decouple from other fluctuatiorgp, Sm™S, and dm), and we

obtain(see Appendix A 0.

U=12t

-
K Ts0(3+2)

0
_bs 2 2
90]= ZTId r(ve,)-, (59

o (-K)_TI(0,0
Ps = -

8 4 o
E t2 sirt k 0.4

= J [mtanhﬁ——x . (60
« L 8Ex; 2T 2T cost(E/2T) 0.

The action(59) is valid in the hydrodynamic regime and
must therefore be supplemented with a momentum-space
cutoff A~min[1,2A55(T)/c]. T1240,0) is a current-current
correlation function in the attractive model. It vanishes at
zero temperature, and_the phase stiffness reduces to the meang 5 g Ter Tsoa_2), T andTyq, vs dopingx for U=121, 4t,
kinetic energy as obtained in Sec. ,” D. The expresgk) and 2. For U=12, T, which is nearly a vertical line arourxi
of the finite-temperature phase stiffness has also been ob- o the scale of the figure, is not shown.
tained in Refs. 43—45.

In order to extract the BKT phase transition temperature,
we assume that the system is described byXdhmodel

In the strong coupling Iimit,TBKT:Q%(l—xz) and Ty

whose continuum limit is given by Eq59).43-47 Although 2%(1‘X2)<1—Pair- In the weak-coupling limit, Tgir ~Tx

this assumption can be justified at strong-couplieggept in ~ ~ Tpar> € WNolF) is exponentially small.

the low-density limiy (see Sec. IV, it is in general not

correct!® Nevertheless, it should give a reasonable estimate F. Phase diagram

of the BKT phase transition temperature. This leads us to the . ) .

2D XY Hamiltonian Near half filling,q=Q charge fluctuations become impor-

tant and are suppressed only at very small temperdflings
Hyy=—p > cog0, - 0,)), (61)  corresponds to a weak magnetic fidlg in the repulsive
«r’y model] We call Tsq3_., the crossover temperature above

which charge fluctuations restore the (80Dsymmetry of the
order parameter. Postponing the determinatiofgef;_,,) to
Sec. lll, we discuss in this section the phase diagram of the
2D attractive Hubbard model.

TBKT:ng(TBKT)v (62) L_et us first discuss the phase diagram as a function of

_ _ doping(Figs. 8 and 9 Below T, (not shown in the figure

where Q=0.898 is estimated from Monte-Carlo for U=12t), the amplitude of the superconducting order pa-
simulations®®—°In Eq. (62), we have written explicitly the rameter takes a finite value, but with no short-range order of
temperature dependence @ff. Tgyr is obtained by solving  the phasei.e., é~1 with ¢ the superconducting correlation

defined on a square lattice with spacirgA™. The XY
model (61) is known to have a BKT phase transition at the
temperaturel g7 defined by

simultaneously Eqg22), (23), and(62). ~length. This corresponds to the appearance of incoherent
From theXY model, we can extract another characteristicpairs(Cooper pairs at weak coupling and local pairs at strong
temperature coupling. Below Ty, superconducting correlations start to
row. The system enters a RC regime of fluctuations with
Tx=2pY(Ty) 63 ¢ Y o

SQ(2) symmetry: the phase correlation lengthincreases
defined as the mean-field transition temperatur¢igf. T, ~ and rapidly becomes much larger than the lattice spacing
marks the onset of a RC regime of superconducting fluctuaté>1). At Tgyr, @ BKT phase transition occurs and the sys-
tions. In this regime, superconducting fluctuations becoméem becomes superconducting. Superconducting long-range
quasi-static, the amplitudd, | of the order parameter takes a order sets in af=0. The situation is slightly different near
finite value, and strong phase fluctuations develiop., ¢  half filling where Tgq3_, <Tx. Below Ty, both supercon-

> 1, with & the correlation lengtP! ducting andg=Q charge fluctuations start to grow, and the
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- - FIG. 10. Phase diagram of the 2D attractive Hubbard model vs
z U for x=0.1, 0.5 and 0.9.

FIG. 9. Phase diagram of the 2D attractive Hubbard model v
dopingx for U=12t, 4t, and 2. SC: superconducting phasalge-
braic ordey. RC-S@2): renormalized classical regime with fluctua-

tions of SA2) symmetry. RC-S(B): RC regime where the fluctua- . .
tions exhibit an effective S@) symmetry due to the presence of Away from half filling, the BKT phase transition tempera-

strongq=Q charge fluctuations. FL: Fermi liquid. The incoherent- tUré derived from the C”te_nonTBKToc_ps(TBKT)i with  pg
pair (IP) regime corresponds to the formation of Cooplercal) ~ given by Eq.(60), was also discussed in Refs. 43-46. Good

pairs at weak(strong coupling, without short-range SC order. Su- quantitative agreement with quantum Monte Carlo simula-
perconducting long-range order sets inTat0. tions was obtainet Our estimation of the crossover tem-

peratureTy for U=4t also agrees with the quantum Monte
order parameter has an effective 8D symmetry. For Carlo simulations of Ref. 51.
T<Tsos-.2, charge fluctuations are suppressed and only su- |n the weak-coupling limit, we expect a pseudogap to
perconducting fluctuations continue to grow. This corre-appear in the density of states and the spectral function
sponds to a regime of fluctuations with &p symmetry A(k,w)=-7"1ImG(k,w) below the crossover temperature
which eventually drive a BKT phase transition at the tem-T, [G(k, w) is the single-particle Green’s functip-53This
peratureTgyr. Once the SQ) regime is reached, the BKT pseudogap results from strong scattering of particles on col-
phase transition occurs rapidly, so tigfr can be estimated |ective fluctuations in the RC regint¥52In the BCS limit,
by Tsos_.2 (see Sec. Il B. Therefore, the true transition the pseudogap region is small, except in the vicinity of half
temperature is estimated as fWiggr, Tsgs_.2), WhereTger  filling where an S@) RC regime is observed over a wide
is the transition temperature obtained in Sec. Il E, i.e., bytemperature rang@<T=Ty) (see Fig. 9.>* As the interac-
neglecting theg=Q charge fluctuations. The resulting phasetion strength increases, the weak-coupling pseudogap should
diagram is shown in Fig. 9. In the intermediate and strong{progressively evolves into a strong-coupling gap due to the
coupling regimegi.e., for U=4t), we clearly identify a RC  formation of local singlet pairs wheh= T, Pseudogaps in
regime above the BKT superconducting phase and athe 2D attractive Hubbard model have been seen both in
incoherent-pair regime at higher temperatures. We believguantum Monte Carlo simulatiofs354 and analytical
the persistence of the incoherent-pair regime at weak cowapproache$>°255-57At half filling, the transformation of
pling (see Fig. 9 foru=2t) to be likely an artifact of our the weak-coupling pseudogap into the strong-coupling gap
simple estimate of ;. Due to many-body effects not taken has been studied in Refs. 23 and 24.
into account in our approach,,;, is reduced with respect to
the HF transition temperatuPéWe expectT, pair=Tx at weak
coupling and thus the disappearance of the incoherent-pair In this section, we calculate the crossover temperature
regime. We also observe that the RC regime witi@@uc-  Tggs_. introduced in Sec. Il F. The approach of Sec. Il

Yuations extends to higher doping at strong coupling. Figure
10 shows the phase diagram as a functiorJofor x=0.1,
0.5, and 0.9.

IIl. NEAR HALF-FILLING
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holds only whenq=Q charge fluctuationgin the attractive S=S+S,+S+S+S2+ sno + S
mode) are weak for all temperatures beldw. In the repul- 5
sive model, this corresponds to the limit where the magnetic . fﬁ m> oMy + 2myom,
field hy is strong enough to suppress fluctuations of e 0 » U '
component of the spin density. Near half fillirgg= Q charge
fluctuations are suppressed only at very low temperature. We
therefore expect a RC regime with &) symmetry in the : B i
temperature rang@sq;_,<T=Ty followed by a RC re- $=-| dr Y]
gime with S@2) symmetry at lower temperatu@gcr<T vmxy.z
<Tsoz-2)- ]
In the repulsive model, a weak magnetic fiblg=hyz can
be treated perturbatively. When it vanishes, the low-energy -
effective action for spin fluctuations is a nonlineamodel _ L v 2t i
(NLoM).232428 From general argument8,we expect the S= 2J), dTIFEX:y Aur¢r COS=1d,) ¢ + C.C.,
magnetic field to modify the kinetic term of the MM, hr2 szvyyvz
—(n,—2ihgxn,)?, as obtained in the Heisenberg lirAit. .
[Heren (n2=1) is the Néel field describing low-energy AF
fluctuations] We show below that this is indeed correct. We P
consider the low-temperature limit<Ty where the coeffi- S=- mof dr > iy,
cients of the effective action can be evaluated in the zero- 0 1=xy
temperature limit. r
Following Ref. 24, we introduce only one auxiliary field
(m,) to decouple the spin teriit/ o Q,c,)? in Eq. (9).° The o
action then reads So= %f drS (- 1132,
B m2 0 r
s:f dry, [CJ(&T—f—hooz—mro--Qr)cr + U’ .

0 r

14 14
,u_rAMr ’
0 w=0xy

B
(64) S, =—Mo f drX ¢/RI0"R ¢,
0 r

At the HF level, neglecting the magnetic field, we hawe
=m, and Qf'=(—1)f2. We choose the AF magnetization

along thez axis as in Ref. 24. The saddle-point equation _ A f o iz
reads 2ny/U=(-1)'(c/o%c,). Following Haldan&®%!in the Som= o dT; (= D'omjor, (68)
presence of AF short-range ord@r<Ty), we write
Q. =(-1)'n r L2+ (65) where the spin-density currejff; is defined in Eq(A2). For
r ry r re

hy=0, Sreduces to the action derived in Ref. Bl is the
n, is the slowly varying Néel field, whereas is a canting HF action. S, and S are paramagnetic and diamagnetic
vector, orthogonal ta,, taking account of local ferromag- terms, respectivel\§ andS2 are first-order and second-order
netic fluctuations. We assunig to be small, which clearly corrections inl. S, is the contribution due to amplitude
restricts the validity of this approach to weak magneticfluctuationst?

fields. As in Sec. I, we introduce a new fiettl defined by The effective actiorgn,L ,dm] is obtained by integrating
¢ =R ¢ whereR, is a time- and site-dependent &)/U(1)  out the fermions. To second order Ay, |, ém, andhy, one
matrix satisfying finds
“R'=0-n,. 66
AR ©9 gL oml=Sn Lihg= om=01+(S,+ S, + Sy
R, the S@3) element associated &, mapsz onton,. We L
also define the rotated canting fielo=R,'L,. Given that _t 2
R;'n,=2 andL, L n,, thel, vector lies in rthe(x—y) plane. 2((310‘* Som)”+ 2Shy * Som) (Sp + S))e
In order to express the action in terms of wdield, it is B P+ 2mpom,
convenient to make use of the &) gauge fieldA,, +| drp —————1, (69)
=2 exy. A0’ defined as 0o r U
__pt
Aor =~ RIR,, where the average¢--) are taken with the HF action.
. n,L ;hy=8m=0] is the action with no magnetic fieldnd
A =iRIGR (=xY). 67 IMLih ! g \

no amplitude fluctuationsand was derived in Ref. 24S,) is
Since the gauge field is of ord€(d,), we can expand the a Berry phase term. It was ignored in Ref. 24, since it does
action with respect tb, A, hy and dm. To second order, we not play any role in the RC regime of thig=0 NLoM. In
obtain order to calculate the HF averages, we write
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B
sno=—hoj dr > Byis, (70)
0 r
V=X,Y,Z

where By, is defined bnyoer:E,,:X,y,ZBgroV. A, and B,
are calculated using

0, 0.\ _
co e_|/2(¢r+‘//r) —_ Sln( ) _|/2((Pr_wr)
el -
S|n< >e|/2(¢r 'vbr) CO< 0 ) |/2((Pr+¢’r)
2 2

(71)

Here we define, by its polar and azimuthal angles and
¢,. The angley, comes from the (L) gauge freedom in the
definition of R.. We obtain

A5 —56 siny, — (pr sin 6, cosy;,

i i .
Al = 56, cosy, + 2% sin 6, sin,,

AOr _(Pr cosé, + - lﬁr,
By, = — sin 6, cos,
By, =sin g, siny;,
or = COS6,. (72
Al (u#0) is obtained fromAg with the replacement,
—=id,.
o

We find (see Appendix k&

<Sp>__|_f dTE( 1)'(¢; cos6; +¢r)
(S=0,

B
(&) =115[ arS (o x n?
0 r
i A .
<Sﬁosp> = EH)(())(()I dTE ho- (N, Xny),

0

B
(S =mitgs] darSho-L, 73

and<&08m>=<smsp>=<sms>:0. There is therefore no cou-
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gn,L]= deEP_ (Vn,)?

H XX
+?( —2|h0><nr)+m§( %))L,Z

- S (0, X, - Ziho)} +sfnl, (74

where we have taken the continuum limit in real spg&e.
is the mean kinetic energy in the HF stafer hy=0). We
denote the Berry phase ter(8,) by Sg[n]. Integrating out
theL field with the constraint, L n,, we finally obtain

—5 B . _ . 2
9n] :%fo drf dzr{(Vnr)2+ W] +Sg[n],

(75
where
2= K
EZ=<_—2K>(%—%> (76)
00

p2 andc are the spin stiffness and the spin-wave velocity in

the absence of fielthy=0, i.e., at half filling in the attractive
mode). It can be checked analytically that the expression of

¢ agrees with Eq(53) evaluated ahy,=0. The action75) is

valid in the hydrodynamic regime defined by the
momentum-space_cutole&~min(1,2mola. In the strong-
coupling limit, c=y2J and pJ=J/4, we recover the N&M
obtained from the Heisenberg model in a magnetic figld.
The crossover temperatuflg, can be obtained from the cri-
terion £~ 1, where¢ is the AF correlation length deduced
from the NLoM.2* However, sinceTy is weakly doping de-
pendent near half-filling, we can also consider the estimate
obtained in Sec. Il F[EqQ. (63)].

A. Low-temperature limit

In the low-temperature limit, one expects to recover the
results obtained in Sec. Il. Let us first consider theoNL
(75) within a static saddle-point approximation where the
Néel field nf' lies in the (x,y) plane. The classical action
reads

h2
Si=- NB (77

The magnetic fieldh, is determined by the condition
<c;ralcr>=(N,B)‘1ah0 In Z=-x. From Eq.(77), we deduce

c?

ho = - X_ (78)
4Ps

pling between amplitude and direction fluctuations in theThe chemical potentigk=h,—U/2 obtained from Eq(78)

limit of a small magnetic field. The HF correlation function
II55=1I30,0) is given in Appendix A 2. Using the result of

Ref. 24 fordn,L ;hy=8m=0], one has

is in very good agreement with the result of Sec. Il for
=0.2 (Fig. 11). In the strong-coupling limitc= V2J and p? Ps
=J/4, we findhy=-2Jx as in Sec. Il.
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-11,9%2 11,], I, =(I1Y,11%), with |II,|<1. This yields the
spin-wave action

20 (8 M2 4h2
5<% [[or [ | oo o Bhe |,
2J) C C

(81)

FIG. 11. Zero-temperature chemical potentiaéhy—U/2 vs  with momenta bounded by the NIM cutoff A. In agree-
dopingx for U=2t, 4t, and 12. The dashed lines show the result ment with Sec. Il A, we find a gap in th@are propagator
optained from. Eq(78). The solid lines re_produce the results ob- of the I12 field. The interaction par$, of the action is evalu-
tained by solving Eqs(22) and(23) (see Fig. 2 ated ath,=0. RG equations are obtained by integrating out

degrees of freedom with momenta betweeand Ae™® and

Let us now consider fluctuations about the Néel state derescaling momenta, energies and fiéftlat the beginning of
fined bynf'.63 We have shown in Sec. Il C that the phase ofthe RG procedure, we can ignore the gap in the fluctuations
the superconducting order parameter is obtained ffdm of I1? and treat the magnetic field perturbatively. We then
=-arctari(2¥/ Q) +Qr [Eq. (D6)]. From Eq.(65), we then  obtain the usual RG equations of the @ONLoM (hy=0)
deduce®, =-¢,. It is also clear that thé field is related to  for the dimensionless coupling constargscA/p? and t
the q=Q charge fluctuations. In the low-temperature limit =T/p2, together with the flow equatiodhy/dl=h,. The RG
Inf|<1. The low-energy effective actio§ ®, 4] is obtained  flow should be stopped when we reach the strong-coupling
by assuming|V©,|,|0,|,|V6.],|6,],]6,-m/2|<1. For the regime of the S@) NLoM (t(I) ~ 1) or when the magnetic
calculation of the Berry phase ter@[n], we choosey,  field cannot be treated perturbatively anymafi@hq(l)|
=(-1)"¢,U/(2my). As in Sec. Il, this gauge choice ensures ~CA). Introducing the characteristic lengttt e, the former
that electromagnetic gauge invariance is satisfe@ihis  condition defines the SG) AF correlation lengtht while the

gives§ 0, 0]=S,+9 0]+ 4] where latter defines the magnetic Ienggpozc/|2h0|. We are there-
) fore left to consider two different cases. §& &hy t(h~1
(P 5 , . ©7 occurs beforé2hy(1)| ~CcA. The system is then disordered by
SW]“EL de drl (VO) +§ SQO(3) fluctuations before reaching the &) regime. This

will occur above the crossover temperatiigy; ., defined
+ lpodeTf d2rr' (79) by §(qu3_,2))~§h0.65 If thS ¢, ie., TSTng,_)z),_an
2 ) SQ(3) —»SO(2) crossover takes place. Fdehy(l)|>cA,
fluctuations oflI1* are suppressed, and only fluctuationdI&f
2 survive. This regime is described by an @DNLoM with
<,9r - 7_7) } coupling constant$(|h0) and g(lho) wherely, is defined by
2 |2hq(In )|~ CA. The very existence of the $9) regime im-
(80) pliest(lho) =< 1. The latter inequality is also approximately the
condition for the S@) NLoM to be in the low-temperature

§.0] corresponds to thBy=0 limit of thf phase-only action g1 phase. This implies that the temperature range where
(52) derived in Sec. 11§ 6] describesj=Q charge fluctua-  he system is disordered by & fluctuations is very nar-

tions with a gap fho|. These fluctuations were not consideredyqy, so that we can identify the BKT transition temperature

in Sec. Il. We show in the next section that they play anyith the S@3)—SO2) crossover temperatureTgyr
important role whenhg| is small, i.e., near half filling in the

attractive model.

e (* 6 (2hy)?
5[6]:%J0 dfrfdzr[(V0r)2+C§+ ES

~Tsaz—2):
In order to determindgqs_.2), we use the following ex-

_ o pression for then,=0 correlation lengthe:54
B. High-temperature limit: SO (3) —SO(2) crossover

and BKT transition _ _
c F{ 27Tps>

The preceding results are valid at low temperatures when &(T) =K—ex (82)

fluctuations off, are small. In this regime, the $8) rotation Ps

symmetry is broken by the magnetic field. At higher tem- — . L

p)ératureg, the gappedymode W?” be thermally egcited thu/hereK =0.05 andp; is the zero-temperature spin stiffness

restoring the S(B) spin-rotation symmetry. In this section, n the4NeeI state. To estimaje, we use the one-loop RG

we determine the crossover temperatiligg; ., Separating resulf

these two regimes and the BKT transition temperature _

Tekr<Tsoz-2)- 33:52(1_ cA ) (83)
The S@3)—SO(2) crossover can be understood from

renormalization grougRG) arguments. Following the stan-

dard procedur& we write the Néel fieldn, as [(1  Tsgs_p is therefore given by
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wheret, ;» equalst for r,r’ nearest neighbors and vanishes
otherwise. The averages in E§7) are taken with the atomic
action. They can be easily calculated using the parametriza-
tion (71) of R,. One finds

(HIRIR ) = (Q,]Q)),
($RIR @) = OF,

27ps De

Tsozoo) = — = — (84)
m( Ps ) ,n<10ps>

2K|hy| [hyl

where we have takeK=0.05. Tsq3 ), oObtained from Eq.
(84), is shown in Fig. 8.

The definition of Tgg3 .5 is meaningful only below the
crossover temperatuiig, which marks the onset of AF short-
range order and defines the temperature range where the
NLoM holds. OnceTgqs .5 becomes of the order dfy, as
|ho| increases,q=Q charge fluctuationgin the attractive
mode) can be ignored. In this regime, the analysis of Sec. Il
holds.

(SRR b ) () RUR b))

1

= 5ri,r25ré,r15(7'_ T,)U(l _er : Qr2)1 (88
where we have usedR'R/),7R R)7=(1-Q,-Q,)/2.
We have introduced the spi-coherent statéQ )=R/|1)
zcogerlz)e_(i/z)((ﬁr'“//r” T > +Sir(0r/2)e(i/2)(</’r_‘//r)| l>.38 lpr is
arbitrary and corresponds to thg1) gauge freedom in the
definition of the SW2) matrix R,. We therefore recover the
action

IV. STRONG-COUPLING LIMIT

In the strong-coupling limiU>4t, we can directly inte-
grate out the fermions to recover the acti§f}] of the
Heisenberg model in a magnetic figl8ec. IV A). We can

then go beyond the hydrodynamic lin{ij— 0) considered B Q.0
in Sec. Il and obtain the collective mode dispersion over the S:f dr > [<Qr|gr> -hy-Q,]+3 > il
entire Brillouin zone. Wheiihy| is weak enouglti.e., away 0 r e’ 4

from the low-density limit in the attractive modelthe

Heisenberg model reduces to the quantéivimodel (Sec.

IV B). In the low-density limit, the Heisenberg model allows of the Heisenberg model in a magnetic filgl
to recover the usual action of a Bose superfluid, including the Consider first the classical ground-state definedﬂﬂ/
terms proportional t¢Vp,)? that were omitted in Sec. I, and =(-1)"sin g,%+cos6,2. Minimizing the classical action

(89

in turn the Gross-Pitaevskii equati¢8ec. IV Q.

A. Heisenberg model

We write the action(11) and(12) in terms of the¢ field
defined byc, =R ¢; andR o"R' =0 -Q;:

B )
S=Sy+ f dT[E ¢! (RIR ~ hoRI "R, ) ¢
0 r

-t (¢IRIRw¢rr+c.c.>], (85
rr’)

B
Su= f dr> [4l (9.~ im5SeP) ¢,], (86)
0 r

where we neglect spin amplitude fluctuations aina}'>
=U/2 to leading order in 1U (see Sec. ) S, is the action

in the atomic limit(t=0). The effective action of the angular
variable ) is obtained by integrating out the fermions. To

lowest order int/U andhy, we obtain

B .
S= f dr [(HRIR ¢) = (BT RI R ;)]

0 r

1(” ) t ot
2 Jo drdr z oo b8 RER ),
1

[
ETE )

X (RO Reybry) o), (87)

J
Si= NB{— hg cos 6, + > cog26,) (90
with respect tof,, we find
h
cosfy = 2 (91)

2]

if |ho|<2J and #=m otherwise(for hy<0). The condition
(clo?c,)=-x translates into{Q%)=-x (see Appendix D },
i.e., cosf,=-x within the classical approximation. We thus
obtainhy=-2Jx as in Sec. Il A 2.

The Heisenberg model allows to obtain the collective ex-
citations of the attractive Hubbard model in the strong-
coupling limit without taking the continuum limit. We intro-
duce the variablesp,=(6,-6y)/2 and q,=¢,—Q-r and
derive the effective action to quadratic order pp and g,
—q, (for r,r’ first neighbork

A i .
S= f dT{E |:5 sin 6o(p; G — Prar) + 2hg cosﬁopf

0 r

i J
- IEPqu:| *2 > [— 2 cog260)(p; + pr1)?
(rr'y
+ Sinzzao(Qr - Qr’)2:| } . (92)

The Berry phase terrfﬂr|Qr> has been evaluated wit
=¢,. This gauge choice is similar to the one made in Sec. Il.
We thus obtain
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S : der parameter is obtained by integrating out fhéeld. To
3 quadratic order irp, the action reads

B i .
9p.0]= f dT{E |:|§P0®r —isin6op, O, +2hg C(-)S(E’Oprz]
0 r

-5 005(290) E (pr+pr ) +_

2
FIG. 12. Collective mode dispersian in the strong-coupling @’
limit as obtained from the Heisenberg modER. (95)] for x=0.1 % E [1-cogO, - ®r')][5in200+ sin(26,)
(solid line), 0.5 (dashed ling and 0.9(dotted ling. ['=(0,0), M '’
=(ar, ), andX=(r,0).]

X(py + prr) + 4 cog 6op, pyr — 2 SirPl(p? + pf,)]}.

Pz

S=- _Pof d‘fz g+ E (p—a,Q—a)D_1@)< q) )
25 O

(97
(93)  Since the fluctuations gf are small, we can neglect all the
terms but sif 6, in the coefficient of 1-cd®,-0,,). This
D@) approximation breaks down when 3951—>0 (i.e., p— m), .
which corresponds to the low-density limit of the attractive

- ; Hubbard model. Integrating out the field, we obtain the
4J co926p)(1 + y,) + 4hgy cosf sin 6
:( 2001+ 7g) 0 0 @ 0 ) action of the quantunxXyY model

- w,sinb, Jsin? 6y(1 = yq)
(94) :
' 90] dr 2po® 16J
where y,=(cosq,+cosq,)/2. Equations(92)—(94) assume 0 r
the fluctuations op to be small and are therefore valid only
for hg# 0, i.e., away from half filling in the attractive model. £ (1 ) S [1-co$0, - 0,)] (98)

At zero-temperature, there is AF long-range or@es., su-
perconducting order in the attractive modeCollective
modes are then obtained from @&t(q) =0 with the analytic  Taking the continuum limit, we recover the phase-only ac-
continuation to real frequencié®, — wgq. This give§® tion derived in Sec. Il folU> 4t [Egs.(52) and(58)].

wg =251 = yy) - (2hg - 4P (1 - %))

— 2,2 2

=81~y A (2¢-1)(L- yé). (95) In the strong-coupling limit, fermions form tightly bound
Figure 12 showsw, for different values of the doping. For  pairs which behave as hard-core bos@he hard-core con-
q—0, we obtain a spin-wave modsatisfyingp=0) with straint comes from the Pauli principle which prevents double
dispersionuwy =clq, ¢=12JV1-x2. This mode corresponds to occupancy of a lattice sifeln the low-density limit, the
the Bogohubov mode obtained in Sec. Il D 2. In the vicinity hard-core constraint does not matter anymore and we expect

rr’)

C. Low-density limit: Gross-Pitaevskii equation

of Q=(r, ), we find a mode with the dispersion to recover the usual action of a Bose superfluid, and in turn
. o1/2 o the Gross-Pitaevskii equation.
= (2hg)* £ V2J[1 - 0%, (96) Using Eqgs.(47) and(48),
where the ) sign refers to the case<1/y3(x>1/v3). Q= (- 1)'[p,(2 - p,) M2,

Whenx< 1/4/3, this mode corresponds to a local minimum
of the energy with a gaf2hy|. It involves fluctuations along 0= p - (99)
the magnetic field axis which correspond in the attractive pr— 1,

model to q=Q charge-density fluctuations. At the critical \ye deduce from the Heisenberg mo@Ety. (89)]
value of the doping.=1/43, this local minimum becomes a

local maximum. Note that the valy2h,| of the gap was also _ A o )i 2
found in Sec. lll A for a weak magnetic field but for all Sp.0]= o dr | dr 5Pr@r+‘]pr ~ (ho+23)p,
values of the interactioty.®’ ,
; Q[M +pr(V®r>2H (100
B. Quantum XY model 4L 4o

In this section, we show that the attractive Hubbard modeln the low-density limit(p, <1) and to second order in gra-
in the strong-coupling limit reduces to the quantdtY  dient. We have taken the continuum limit in real space. In-
model(except in the low-density limjt The effective action troducing the boson densipy, =p,/2, we recover the action
of the phaséd,=-q,=—¢, +Q r of the superconducting or- of a Bose superfluid
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V. CONCLUDING REMARKS

B
. - g 2
T 0] 0 ’ Porr 2pbr HoPor In this paper, we have studied the 2D attractive Hubbard

1 2 model using the mapping onto the half-filled repulsive model
+ _{M + Pbr(v®r)2:|} in a uniform magnetic field coupled to the fermion spins. Our

2my [ App approach reproduces, in a unique framework, a number of
B V2 previously known results.

:f er dzr[\lf:(a;,u— —)\Ifr One of our main new results is the derivation of a low-
0 energy effective actiol p,®] which is valid for all values

. of doping x=1-py and interaction strengthl. §p,0] has
(‘I’r‘I’r)z] (101))  been obtained by integrating out amplitude fluctuatigas)
and therefore does not describe the full dynamics of the su-
perconducting order paramet&r=|A,|€®r. Nevertheless, it
is similar to the action of a Bose superfluid with order pa-
rameter?, = p,/26/®, where the mass of the “bosons” and

g9

+_
2

where W, =p,, €.

My = 3 their mutual interaction depend ocrandU. This ensures that
a Fermi superfluid, as described by the 2D attractive Hub-
bard model, will behave similarly to a Bose superfluid and
My =2 + 4], exhibit the same macroscopic quantum phenomena. The ef-
fective actiongp,®] also describes the smooth crossover
g=8J, (102 between the weak-coupling BCS limit and the Bose limit of

preformed(local) pairs.
are the mass, chemical potential, and interaction constant of Another important result obtained by our approach is a
the bosons, respectively. Note that if we neglectp,,)> complete description of the phase diagram of the 2D attrac-
term and replacey, by pyo in the (VO,)2 term, we recover tive Hubbard model. From the phase-only acti§i®], we

the actiong p,®] (for x— 1) derived in Sec. I C 2. are able to extract an effectiv€Y model and in turn the
The classical equations of motion derived from the actiorBKT phase transition temperatufigyr. We identify a RC
(101) yield the Gross-Pitaevskii equation regime of superconducting fluctuations in the temperature

rangeTgkt < T=<Tyx and an incoherent-pair reginfith no
V2 5 superconducting short-range orgldor Ty<T<T,,. The
I~ o |Vt g [V, =0 (103 values obtained fol,,; and Ty are in good agreement with
® numerical resultgwhen available Near half filling, we find
for the complex order parametdr, =yp, €®r. As pointed that Texr is suppressed due to the strogg (w,m) charge
out in Sec. Il C 2,%¥, equals the superconducting order pa-fluctuations which enlarge the symmetry of the order param-
rameterA, =|A,|€® in the strong-coupling low-density limit €ter to S@3).
of the attractive Hubbard model. Alternatively, the Gross- In the strong-coupling limit, the attractive Hubbard model

Pitaevskii equation can be obtained from the semiclassicanaps onto the Heisenberg model in a uniform field. The
spin dynamics latter reduces to the quantukl model (except for a weak

field, i.e., in the low-density limit of the attractive moglein
e d the low-density limit, we recover the usual action of a Bose
iQ, = 52 Qpy5X Q= 2ho X (104 syperfluidfincluding the terms proportional &7p,)?] and in
? turn the Gross-Pitaevskii equation.

within a second-order gradient expansion and in the low-
density limit p,=Q?+1<1. The sum overd in Eq. (104 ACKNOWLEDGMENTS
denotes a sum over nearest neighbors.

For continuum models, the time-independent Gross- We thank A.M.-S. Tremblay and B. Delamotte for discus-
Pitaevskii equation has been obtained as the strong-couplirgjons and K. Borejsza for advice regarding the numerical
limit of the Bogoliubov—de Gennes equatidfidt has also  calculations.
been shown that the results obtained in the strong-coupling
limit of an RPA calculation about the BCS state can be re-
produced from the linearized version of the time-dependentAPPENDIX A: HF CURRENT-CURRENT CORRELATION
Gross-Pitaevskii equatidif.In this section, we have directly FUNCTION
shown the equivalence, in the low-density limit of the lattice | this appendix we calculate the HF current-current cor-
case, between the low-energy effective action of the supely|ation function
fluid order parametek, = \p,/2€®r and the action of a Bose
superfluid. Our approach is not limited to the low-density v EE) = @i (-
limit. Equation (104), together with Eq(99), holds for any @)= G, @1, e, (A
density and can be considered as a generalization of thfer G,q’=0,Q. The calculation is performed at finite tem-
Gross-Pitaevskii equation to the lattice case. perature in the classical limit: Iiﬁaozlimqﬁolimwﬁo and
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Iim—qﬁQEIimq_)QlimmV_,o. j;(d) is the Fourier transformed

field of
er = ¢:0'V¢rv
jt = =itglo"dap+c.C(m=xy). (A2)
We have
in@= —Ev (K, Q) Lo v
Uo(kyQ) = 1!
v,z0(k,q) = = it(€®ut) — g7ku)., (A3)

F:(k,iw) where w=7T(2n+1) (n integep is a fermionic
Matsubara frequency. In EgAl), one must hav&=q" or
9=0q'+Q. The correlation functions of interest are

("1(1'2 (7'20'1

mn” o (0, 0)——'8— > [vu(k,0v,(k,0)0"

k,o1,0%

X Gy, (G, (K) +0,,(k, 00,/ (K +Q,0)
XY 05 (OF 5, ()],

! 1
MQQ=-28 2 [k Quuk+Q-Q)

k,oq,0p

Xao’

(7'10'2 0'2()'1

.G, (G, k+Q)
+0,(K, Qv (k,~ Q)crglgzcr;z;lF

XFq,(k+Q)],

oK)

n (OQ)——ﬂ—N > [v,k,0v,(k,~-Q)

k,o1,0p

75 F o (KGy,(K) +0,,(k,0)

0'10'2 0'20'

X0, (k+Q,~Q)al . o% , G, (WF,, K],
(A4)

Xao’

where

UM(k,O) = 5/_1”0 + 5##021: sin k/“

11%,(0,0) = % f v2(K, 0)[—%?5 (1+7,) +
k

kT
I1%,(0,0) = J vuk.0). {T—"L
EkT Ekl Ex;

PHYSICAL REVIEW B 70, 134502(2004)

vu(k+Q,0) = y,v,(Kk,0),

v,(k,Q) =

0,#02it COSK,,,

vu(k+Q,-Q)=y,v,(K Q), (A5)

and y, =9, 0= 9,0 We use the notatiow,.q=1-6, o and
o=-0. The HF propagator@ andF are defined in Eq(16).
We have

%2 G,(K,iw)G, (k' iw)

- 1 €€k’ o’
= = | Tke| Exo *
2(E¢, - Ep. ) Exo
€€k’ o’
Ek!a./ ’
1 . .
[—;2 G,(K,iw)G, (k' +Q,iw)

-1 €€k’ T
—|:Tko-(Ek(r_ ik )
Z(Ekg- ’ r) EkU’

€ko€k’o’
Ek';’ ’

Vi (& ) Tw)
Z(Eko'_ Ek' /) Ek(r Ek'U"

Agsfkro./ <h—_Tk’0”)
2(E3,-EL,,)\Exs Eror)

(A6)

_Tk’a"(Ek'o" +

- Tk’o”(Ek'(T’ -

—EF (K,iw)F (k' iw) =

%E F(K,iw)G,: (k' iw) =

where T, ,=tanH BE,,/2). Performing the sum over;, o,
in Eqg. (A4), we find that the only nonvanishing correlation

functions areusing H;L @.,9") =H;,,’;L(5]’ 0]

2
(EkT + EkT YMAHS )} ,

2
(EkT+6kTEkl+7MAOSZ) _L(Ekl+€kTEkl+ ’yMAgS):|y
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v (k 0|T > T 2
I%,(0,0) = f {—” (B2, + €cr€i) = 7, A6S) = (B2 + er6c) — 7, A5° )} :
E —Ek L Eq Byl

U,u,(ka)v,u,’(k1Q) |:TJK

— T, 2
1”2 ,(Q,Q) =3¢ f EZ - —AHS) - KLy, (B2, - - Af® }
m (Q Q) N . EET _ EEL EkT(Y,u( k1 Ekakl) 0 ) EkL(YM( k| EkTEkl) 0 )

1 T AL A
IT,,(Q,Q) = f“”’“zf v (k,Q)vM/(k,Q)_Eﬁ;T(-2+ELET(1+7,)> = (1+7,L)

1 T A A |
I .(Q,Q)= ,L,ﬂﬁzfv (k,Qv,/(k,Q) EJET(-Z = —(1- m) Ui —— = (- n)

1 2 A
H)SYM#o(Q,Q):—EL € TkTEkT U=z~ e, )
« h
H,};&o,o(QyQ) = UO,

T, U
240,Q) = AHS J em(—?} - —'2‘1)
k Eqi

AHS T U
zy (OQ):—L €€ (_kl__kt
0,u#0\s k€1 )
a 2 J, Ey, Ef

1 T, T,
5(0,Q) = 2A5% f ﬁ(—” - —“),
Kk E _Ekl EkT Ekl

2
_ & (Tu_Ta
I2,.6(0,Q) = - Ag f—( - , (A7)
o Ef, - Ef \Eq Ex
I
where  Uy,=p/2cosR(BE,/2) and EM,#':%,o@u,o > Hﬁu(QvQ):ZJCOSZ 6o,

+03,200,+0- In order to obtain EqQYA7), we have used the
gap equationg22) and(23) and the symmetry relations,,
==€+Qe Eko=Ek+qa Upzo(K,00==0,0(-K,00=-v 0k
+Q,0), etc.

ITE'8Y

IT5(Q,Q) = 0 c0300(2 3 cog ),
1. Strong-coupling limit US4t(T=0)

Expanding Eqs(A7) to leading order in 1U, we obtain 50,Q) =

-— sm(2¢90)
(T=0)

2
80,0 = sm2 6o, 113%(0,Q) = - 8t2 sin Gy(1 — 3cog6y). (A8)

Here we consider only the correlation functions that are use-
£ co2 ful for the derivation of the effective actiof p,A] and the
00Q,Q) = co 6o . , :
calculation of the velocity of the phase collective mode.
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2. Correlation functions for hg=0 and Qf':(—l)‘i(T:O)

G — Q-

AL === 1)rsin( )sin(pr—prr),

In Sec. Ill, we need the HF current-current correlation T’
function at half filling and for a magnetization parallel to the
z axis. They can be deduced from E@A7) with hy=h=0
and by making the rotation in spin spake-2, z—Y and A =i(- 1)fcog<
y—X. The only nonvanishing correlation functions are then '
(the notations are those of Sec)lll

Gr =0/

)sin(pr +pr),

. (9 — G
1 AL = ( ) —o). B2
Héé(0,0>:H%%<0.0):n%j = ¢ =isin| == |cogp, ~p.) 82)
k Bk

Equations(B2) can be rewritten as

Siré k,
E3

H>Z<>Z<(O’0) = H)Z/)Z/(O*O) = 4t2n%fk ' Aér = (_ 1)r {Iz(prqr - prqr) + 2hOpr - sin 9oi b}‘n'r_'S:| ’

62 yr:_.(_l)r.ry
IP%(Q,Q) =I1%,(Q.Q) =~ fk 22 O~ Do) Por= 1P

2 Gy == 5 + 2hop? — ot o,
- €k

IT72(Q,Q) = fk Z—EE(@H&OEﬁ - 5%05&), 2 2

(pr + pr’) (Qr - qr’)

0 __ -
my (= T &
X —_
118,+0(0,Q) = - ) . E_E i
A== 5@ = )P = pro),
62
HSY##O(O,Q) = % E_ks’ (A9)
k Bk AL =i=D (p+ ),
whereE, =&+,
i
z -_——_— =
APPENDIX B: EFFECTIVE ACTION S[m, Q] A= 2(0'r A, (B3)

=9p,d,m] [Eq. (34)] of spin fluctuations in the repulsive  Keeping terms up to second-order gp, oM™S, sm,, p,,
Hubbard model. It is convenient to express the rotation mag,, andq,—q,. (r,r’ nearest neighboysthe effective action

trix R as R, =M(2,)M(Q¢) where M(€,) is defined by s given by first- and second-order cumulantsSpfand S,

M(Q)o*M(Q,)=0o-Q;: with respect to the HF action
Hr ~(i/2)¢ i ar ~(i12)¢ HS 1 2
e YA AL YL Tp.amEm=(S+S) - S+ e
M(€) = 6, 6, ' B
. r i r i
S'”(E)ewzm COS(E>GWZM ¥ J dr> (— %am% i omtSom,
0
(B1) ,
We then obtain - UmgséTnES> (B4)
A = (- 1){('?1r + h0>sin(2p,) ~ sin 6 am'ﬁs] : Using
($lo®p)=1,
A% =_i(_ 1)rpri
r (o) = (- 1)'2A,,
i, .
A=~ (5qr * ho) cos(2p;) + hy = cos fi ™, (dla¥e) =0,
. 5( r ) (Pl ==X, (B5)
, = +p.)— 1, . . .
Arr =0 2 cospr + py) where the averages are taken with the HF action, we obtain
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B
<Sl> = f dTE |:iA0(prqr - prqr) + 4AOhOpr
0 r

i .
= 2ASin Goi SIS + 5XG - 2xhgp? + X cos fi o™= | .

(B6)
Similarly, from (r,r’ are nearest neighbors
(d{c% >—— f—lékekt h—[
T a4 T at), By
(¢lo*¢) =0,
: Agh
(B0 ==i(-1= 2,
(¢lo*¢) =0, (B7)
we deduce
=0 w3 [<|or+|or %)
0 (rr")
_4A0h0f dTE Pr- (88)
0 r

We have introduced the mean vaki€ of the kinetic energy

per site in the HF state.

When calculating the second-order cumulant, it is suffi-

cient to consideA,, andA, ;. to linear order inp,, oM™, p,,
Qr» aner_qr’:

A%, = (= 1)"(2hop; — sin 61 om™),
A =-i(-1)'py,
Aér =- IEqr - COSé’Oi éTnlr_{s,

A0

rr’

:O,

A, =0,

r,r’

A?-/,rr =i(=1"(p +prr),

[
Airr = E(Qr — ). (B9)

In order to evaluaté(S,+S,)?)., we write the actior;+S,
as

PHYSICAL REVIEW B 70, 134502(2004)

Si+S= f dr E A (B10)
ﬂ-OVva
V=X,Y,Z
v(tot) _ vV o_ i1 _ v
A = 6,,0A0 i(1 5M,0)A;Lr' (B11)

whereA; =A ,H for u=x,y. The spin-density currenf, is
defined by Eq(A2) We then have

B
(S1+9)?)c= f drdr’ X A7)
0 rr’

o' =0y
v, =Xy,2
v’ . r (tot),
XTI, (r,mr’, )A# e (7),  (B12)
where
I, mir 7)) = (D e (7)) (B13)
is the HF current-current correlation functidﬂi”;’, is calcu-

lated in Appendix A.
In order to calculate the second-order cumulant, we write
the actionsS; and S, [EQs.(32)] as

B
slzf dr 2 At
0 r

V=XY,Z

B
SZ:—if dr > A (B14)
0

v v
,ur];u’
r

XY
V=X,Y,Z

whereA) —Ar”rw for u=x,y. Ag, andA are given by Egs.

(B9). The spin-density current,, is defined in Eq(A2). In
Fourier space, we obtain

AN@) = 25(G) { 8,y Prq + 5V,z%}

+ 8, 2P = Sin ol M, ] = 8, ,C0S i O,

_|A,Z(E|) z (E])[ Vypa+Q+5vz(;:| (MzXaY),
(B15)

where

@ =-ow

2y (@) =1 = €%, (B16)

We deduce
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1
> {z( G- Q2@ + QP11 @+ QT + Q)+ 2,(~ Wz (@)aq 17, G

' =0y

(S+S)Hc= 2 {
a4
1

- S S -
+ 52T~ Q)2 @)p-gay 1T, @+ Q.4 + Ezﬂ(— 42,@ +Qagpy 1T, @ +Q)

+ > {Z,L@’+Q)r_aparﬂ G+Q.9’ +Q)+ 2,(@')r 40 115, (@ + Q,9")

n=0xy

+2,(-9- Q)prg 116G+ Q.4 +Q)+ 2,(- 094 604 + Q)

—cosao(z,m + Q)i omPpg 115G, +Q) + z(ﬁ)um_qqqnzzaiq>+z< G- Qpgi oy TAG+Q.T')
+ z( )04 o, 1 (ﬁq))}+r-arafﬂééq+Q,ﬁ’+Q)—cosz0o&nT§&r§,SHéé(ﬁ,ﬁ’)

— cosf[r i OMETIZEE + Q,8') +iom g IIEKG.' + Q)]} , (B17)

whererg=2hopg—sin 6 5mg's. To proceed further, we use the expression of the correlation funH}fL(’;;n(Tq,Tq’) obtained in

Appendix A. We thus havg=4q’ in Eq. (B17). In order to obtain the effective action of tiafield to lowest order ir,g, it
is sufficient to retain the first-order derivative termgy. Sincez,(q)=0(d,), one can usey(q)=-w,, Z,.o(@)=-iq,, 20

+Q)=0, z,.0(G+Q)=2, and evaluate the correlation functio‘fl%i, atg=q'=0 in Eq.(B17). This gives

2
(S1+9)9)e=2 {p_apa(4 2 I,(Q,Q) +4nIIHHQ.Q) + 16hoH6§(Q,Q>> + q_ao@( ”Héé(o 0+ —H %0, 0>)

q o #0
— omPomEYsir? foIT5H(Q, Q) + coghpl155(0,0) + sin(26p)11550,Q)] — {p_gtke,[2113/(0,Q) + hol155(0,Q)]
-c.ct-i{pgomy HS[2hg sin 6,1155(Q, Q) + 4 sin OlT5(Q, Q) + 4 coshl1F(0,Q) + 2hy cospl15H0,Q)] + c.c}

{q 5O HS ”[sm 6ol155(0,Q) +cos¢90H(z)6(0,0)]—c.c}} (B18)

A comment is in order here. The first-order cumulésb) phase® of the superconducting order parameter, as required
gives a term linear imy,: by gauge invarianc& Including the gauge-dependent term
g of S5 [EQ. (B20)] in 6S5, we obtain

i .
8Sp=_x| dr2 .. (B19)
27 ) T 583:--pof dTE O - (B21)

This term comes from the Berry phase terrg;
=[Bd7=(#/RIR ¢,). The SU2) matrix R, is defined up to

. (i 0! 1

the U1) gauge transformatiorR, —R.e (2% o The mHS mil = = { 11 +0.-I1

Berry phase term depends on the gauge chidhe gauge- Sp.a.mm 2% P-alTpp(@Pg + -allag @G
dependent term is given by

From Eqs.(B6), (B8), (B18), and(B21), we then obtain

_ | + AT tsys(@) OME'S + 21T (@)
L arS o 0= tmo [ arSs + 2 1) A + 20, T gs@) O
2), Tr r O r b = 2mO o Tr . P-gllpmsiq a'na q-gllgmrslq &na

(B20) +2Ié]ﬂ:(§h1'js——&n_~éh1q +6Ss,

In the following we takey; = ¢, /my. As shown in Sec. Il C,
this choice ensures that in the attractive model, half the fer-
mion density is identified as the conjugate variable of thewhere

(B22)
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= imHS ~
I,,@) =~ 4 > HTL'(Q,@ Sk (eXe)) = andimy~=xU/2 [see Eqs(15) and(21)]. We also have
pop' #0
0 ASS
~ 160gIT(Q.Q) - dxhy + 4(- K), 0(0.Q) = E
W’ 2  AHS €~ €
q(ﬁ)——” 50(0,0 + 1 < K, Ao NO(EF)JM [(E )2+ AHsz]s/z
(B25)
— ol XX Y4
Mysups(@) = iff GolT5g(Q. Q) + cos 6olT5(0,0 Since the integral in EqB25) is peaked arouné=eg for
+sin(260)11250,Q), AHS—0, we have replaced the density of statége) by its
value at the Fermi energy:- [see the discussion after Eq.
(@) = w,[2118(0,Q) + helTZ5(0,Q) + 2A,], (25)]. For the same reason, we can extend the integration

range to]-«,co[, so that the integral vanishes. This result is
a consequence of the particle-hole symmetry which holds in

— i ; XX ; Xy
Mpris(Q) = 2i[ho sin GolTgo(Q. Q) + 2 sin Go1155(Q. Q) the weak-couplingBCS) limit of the attractive model. Simi-
+ 2c0s6pI1E(0,Q) + hy cos6oI15H0,Q)], larly, we findII§)(0,Q) =0. We therefore have
i — 66(010) (,()2+ <_ K>q2
Hgnps(@) = va[Sin 6o1155(0,Q) + cospll55(0,0)]. 4 4 voo8
(B23) I pspis = 11550, 0),
Equations (B23) are valid in the hydrodynamic regime
(@—0). They are sufficient to obtain the effective action of 1,4 = 20w,A0=0
the AF fieldq to orderO(d?).
Integrating out the Hubbard Stratonovich fiaid'S, we I,s(@) =0,
obtain Eq.(34) with
~ I, sl T
pr= pr_ pntStimAsp quS@ == EHZZ(O O)w,,. (826)
I HspHs
Using Eqs.(B24), we deduce
~ [ S ) e
gq=1lgq— ;I qu, I :ﬂ 2
mHSHS qq 8 as,
g -1+ U ~ 1 U
T Mapses - 27 Hom™ 11250.0) " 2"
~ I TS )
_ _ mHSq ~ o,
Mpq=1pq I s Hgm=- > (B27)
5 [ and ﬁpq:ﬁpm:o. p fluctuations do not couple tqg and m
om= 1 P , fluctuations. We therefore obtain the effective action
I HspHs
1(* ol o . (=K) X
So,m]= [ dr [ d7|iomq + (Va)
~ anﬁs 2), 8

Hgn= i . (B24)
mHSmHS U

+( = ——)amz] + 85, (B28)
The actiongp,q,m] takes a very simple form in the weak- 00,0 2

coupling (Slatey and strong-coupling(Mott-Heisenbery \ypare we have taken the continuum limit in real space.
limits.

2. Mott-Heisenberg limit

1. Slater limit In the strong-coupling limit, there are well-defined local

We assume that we are not too close to half filling so thamoments with a fixed amplitude so that we can ignore the
the zero-temperature order paramaﬁ%ls is given by Eq. fluctuations ofmHS and m. Low-energy fluctuations corre-
(26). SinceA{® is exponentially small at weak coupling,  spond to direction fluctuations of these local moments. This
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can be seen explicitly by integrating out thefield in the
action §p,q,m™,m] [Eq. (B22)]. This yields the replace-

ment

2
I, Hss — Hr,nH%HS =Tl HspHs — TR

To leading order in 1, we havesee Eqs(A8) in Appendix

A1]

2

H,'anmHs(d) == G.

tz
Mpps= O(m) ,

w,t
Hgops= O( U2 ) .

Integrating outm™ yields the correction terms
_ sl Tihsy _ O(ﬁ)

H[,-nHSmHS U3 ,

Hgnpslpsg _ O(ﬁ)

T, ispis U

— —HpmHSHmHSq = O(&t?’)

¥ (B31)

Hr’anmHs

to pr, g and Il
nored in the limitU> 4t.
Using Eqs.(A8) of Appendix A 1, we therefore have

pr(a) =8J S|r]2 00,
_ood
M@ =q 2 Sir? 6y,

1,4 = w, sin 6o, (B32

and I,ps=11gHs=0. Using thenll=I1 [Egs. (B24)], we

obtain the effective action
1(” — . J
Sp.ql= Ef drf dzr{Zl V1-X°p,q, + 24 -x°)(Vay)?
0

+8J(1 —xz)p?] + 65, (B33

APPENDIX C: KINETIC ENERGY IN THE HF STATE
(T=0)

(B29)

(B30)

pg espectively. These terms can be ig-

PHYSICAL REVIEW B 70, 134502(2004)

€ _L
Vk <4V> Vk Vk+Vk( ) Vi
Eq Exq Exy
HS?
_M_,_AO 2 (C1)
Ei Ey ©

wherev, =V, €. Integrating the left hand side of this equa-
tion over the entire Brillouin zone, we obtain

f (ilv) 3€4vk dl, =0, (C2)
K E; Exq

where the contour in the last integral is given by the Bril-
louin zone(BZ) boundary andll, is perpendicular to the
contour. The integral vanishes sineg-dl,=0 at the BZ
boundary. We deduce from Eq€1) and(C2)

2

Ek 6 Uk
Khroo= | —15K = f— c3
< >T 0 J EkT EaT ( )

In the weak-coupling limit, usm@OSZIE 1 =268(€e—€r), We
obtain Eq.(56).

APPENDIX D: CHARGE (p,) AND PAIRING (A,) FIELDS

In the section, we relate the chargg) and pairing(4,)
fluctuations of the attractive model to the fielolsg, and ém
defined in the repulsive model. We rewrig [Eq. (35)] as

B
S = j dr> /By ¢, (D1)
0 r

whereBg, =R/J, -0R =3 -, ,Bf, 0 and

= (= 1" cog 6, - Op)[cose.Jf +sin g JY]
= (= 1) sin(6; - 6p)J7,
BY = — (- 1)" sing.Jf + (- 1)'cosp, JY
6 = Sin(6; — B)[cose,J; + sin ¢, JY] + cog 6, — 6,)J7.
(D2)

To first order inJ and second order ip, sm™S, om, the
effective action is given b)(Sl+SZ+SJ>—%<(Sl+SZ+SJ)2>C.
The first-order cumulant gives the source-dependent contri-
bution

B
SRE f d7>, [2A(- 1)"BY, — xB%,]. (D3)
0 r

From the second-order cumulant, we obtain to linear order in

In this Appendix, we derive Eq56). We start from the source
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B
! . v(tot,
532)=—J0 drdr D Bgr(T)HS;}u(r,T,r,,T,)A;/.('?I)(T,)
rr’
v, =x,y,z

n'=0xy
B
=— f dry, {(— 1)sz3{4113¥(€2,<2)|0r
0 r

+I155(Q,Q)(2hp; - sin 64i omt'S)
+ éé(O,Q)<— 'Eqr ~ COS By ém'r*sﬂ

+Bjr {4Hé§(0,Q)pr + T155(0,Q) (2hgp; = sin i my™)

+ éé(o,0>(— i;‘qr—coseoim”s)” (D4)

where the last expression is valid in the hydrodynamic re-
is defined in Eq(B11). In the presence of the

gime. A"V

sourceJ, the effective actiongp,q,m"S m] [Eq. (B22)]

should be supplemented wi”+S?. The integration of
the m"'S field then leads to the source-dependent acﬂgﬁh

+S§2),+S§3) WhereS(Jz),: S(Jz)|&an=0 and

; B
§¥=- = ! f dr> {(= 1)"By [sin 6oIT55(Q.Q)
mHSmHSJ o r

+c0s6l155(0,Q)] + B, [sin 6pT15(0,Q)
+ COSpLI55(0, O)TH(IL sy + I sy, +10m).
(DS)

We have introducedl ys,=TTyysq/ w,. In Eq. (DS), the cor-
relation functionsHmHsmHs,HmHsp,H[anq are evaluated &

=0. Taking the functional derivative (331)+$§2)'+S§3> with
respect tal, we finally obtain

i
5pl’ = pl’[_ 4A0 - 2h0H6)(()(0!Q) - 4Hé¥(0!Q)] + Héé(o, O)qu’

I HsmHS[sin 6o1155(0,Q) + cosfol155(0, 0) J(I s,y
m

+ le‘anqlqr + i&nr)r
8IA| = p[—x— hoII5§(Q,Q) — 2ITH(Q,Q)] + HEB(O’Q)LIqu

- I— i XX X
ZHmHSmHs[SIn GOHOO(QvQ) + COSBQHOO(O,Q)]

><(Hm"‘sppr + H:nHSqlqr +iom),

0,=-q. (D6)

Strong-coupling limitin the strong-coupling limit, we can

obtain a simple relation between, A,, andm,£,. In Sec.

PHYSICAL REVIEW B 70, 134502(2004)

berg model wherJ > 4t. We can carry out the same deriva-
tion in the presence of the source te(bil). Integrating out
the fermions, we obtain the source-dependent term

B
SE f dr ($RIJ, - oR @)t (D7)
0 r

to leading order in 1U. The average in Eq.D7) is taken

with respect to the atomic acti@B6). The matrixR, satisfies

RoR'=a-Q, (see Sec. IV A Using (¢! "¢ )a=5,, and

RlJ,-oR =0 R, where

C0S6, COSe, —SiNg, Sin 6, coSy,

Cos6, sing, COS¢,
—-sin g, 0

R, = sin 6, sin ¢,

cosé,

(D8)

is the S@3) rotation matrix which mapg onto Q,, we ob-
tain

B
sJ:f dr>, J, - Q,. (D9)
0 r
From Egs.(36) we then deduce
pr—1 =Q?'
G
A= 2 Q;, (D10

where Oy =QX+i()).

APPENDIX E: HF CUMULANTS (Sp+Sho+Ssm)
AND (S, +Sam)?+2(Sn, + San) (Sp+ S))

In this appendix, we calculatéS,+S, +Syy and (S,
+Som)+ 2(Sy + Som) (Sp+ ) (Sec. 1ll). The first-order cu-
mulants read

B
<SD> =- fo dT; ASior)

B .
:_i%f dTE (= D'(¢; cosb, + ),
0 r

B 2h B
<sn0>=—hof drS Bh(j5) = -~ J drS (-1,
0 r 0 r

U
(ED)

and

B B
(Sym) =~ fo dr (- 1>f&nr<jér>:—27m° i dr>, om,

(E2)

where we have usetf=cosé, and the saddle-point equation
2mO/U=(—1)r<cIalcr>. Sincen, is slowly varying,<5h0> van-
ishes. From Eq9E2) and(69), we conclude that there is no
linear contribution indm.

IV, we show that the Hubbard model reduces to the Heisen-

Let us now consider the second-order cumulant
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B
<31056m>=h0f drdr’ >, Bg, (DIIge(r, 71, 7')

0 rr’

v=X,Y,Z
X(-=1)" om,.
=hy X By(-OIEHE.T") oy 1o

.4’
VXY, Z

(E3)

HZZL/, is the HF current-current correlation function fbg
=0 and an AF order parallel to tieaxis[i.e., Q¢'=(-1)'2].
It is given in Appendix A 2. Sincdg, is slowly varying, we
can evaluatd]l’:i,(ﬁ,'q’) atq=0 in order to obtain the result
to second order irhy, d, and ém. Since I155(G=0,q')=0
(Appendix A 2, (S, Sy Vvanishes. A similar calculation

shows thatS;S,,) =(SSy=0. We therefore conclude that
amplitude fluctuations decouple in the limit of a weak mag-

netic field.
The contribution due t@ﬁo is given by

ﬂ ’
(Sﬁ[)):hgfo drd? X, B(DIIE, (r,7r’,7)Bg (7))

rr’

v =xy,2
— h2 vi_ = v =/ v =0
=hg 2 By-Olg G,3)B; @), (E4)
el
v, =XY,2

SinceBy, is slowly varying, we can evalualﬁggy(a,"q’) at
4=4'=0:

PHYSICAL REVIEW B 70, 134502(2004)

B
(S =ho SSJ dr) si? 6. (E5)
0 r

Here and in the following, we use the notatidﬂ(ﬁg'
=115% (§=0,3'=0). We have usedl}y =5, ,/(5,.+3,,). A
similar calculation gives

B .
(S,S» =ho EEJ dr>, |§ sir? 6, ¢, ,
0 r

B

(S,S) =hemy Séf dr2 sin 6,(= cosyly +sinysly).
0 r

(E6)

To expresiS@,O), ($,Sp)» and($, S) in terms ofn andl, we
use

(ho X n,)?=h2sir? 6,,
ho - (N, X Ny) = h3¢, Sir? 6,

L?=sin 6,(— cosy, X + siny1Y). (E7)

The last result follows front., =R,l, andl?=0, whereR, is
given by

COS6, COS¢, COSY, —Sing, SiNy, — COSH, COSe, Sin Y, — Sing, COSY, Sin O, COSe,

R, =| €COSH, Sin g, COSY, + COSe, SiN ¢
- sin 6, cosy,

We therefore obtain

— C0S6, Sin ¢, Sin i, + COSe, COSY;

sin 6, sin ¢,
cosé,

(E8)
sin 6, sin

B
(Shy) =105 f dr> (ho X n,)?,

0

r

; B
(5,30 = 2115 fo 43, - (0, X ),

B
($,S)=mg ééf dr ho-L,.
0 r

(E9)
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