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We study the two-dimensional attractive Hubbard model using the mapping onto the half-filled repulsive
Hubbard model in a uniform magnetic field coupled to the fermion spins. The low-energy effective action for
charge and pairing fluctuations is obtained in the hydrodynamic regime. We recover the action of a Bose
superfluid where half the fermion density is identified as the conjugate variable of the phase of the supercon-
ducting order parameter. By integrating out charge fluctuations, we obtain a phase-only action. In the zero-
temperature superconducting state, this action describes a collective phase mode smoothly evolving from the
Anderson-Bogoliubov mode at weak coupling to the Bogoliubov mode of a Bose superfluid at strong coupling.
At finite temperature, the phase-only action can be used to extract an effectiveXY model and thus obtain the
Berezinskii-Kosterlitz-Thouless(BKT) phase transition temperature. We also identify a renormalized classical
regime of superconducting fluctuations above the BKT phase transition, and a regime of incoherent pairs at
higher temperature. Special care is devoted to the nearly half-filled case where the symmetry of the order
parameter is enlarged to SO(3) due to strongq=sp ,pd charge fluctuations. The low-energy effective action is
then an SO(3) nonlinears model with a(symmetry breaking) magnetic field proportional to the doping. In the
strong-coupling limit, the attractive Hubbard model can be mapped onto the Heisenberg model in a magnetic
field, which reduces to the quantumXY model(except for a weak magnetic field, i.e., in the low-density limit
of the attractive model). In the low-density limit, the Heisenberg model allows one to recover the action of a
Bose superfluid, including thes=rd2 term (with r the density), and in turn the Gross-Pitaevskii equation.
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I. INTRODUCTION

Many superconducting systems such as high-Tc supercon-
ductors, organic conductors, heavy fermions systems, as well
as ultracold atomic Fermi gases cannot be understood within
the BCS theory. For instance, in high-Tc superconductors, the
low dimensionality reinforces the role of phase
fluctuations.1,2 The short coherence length in these systems
also suggests that they might be in an intermediate regime
between the weak-coupling BCS limit of superfluid fermions
and the strong-coupling limit of condensed composite
bosons.3,4 In ultracold atomic Fermi gases that are now ex-
perimentally available, it appears possible to monitor the
evolution from the BCS to the Bose limit.5

A superconducting system at low temperature is conve-
niently described by a low-energy effective action written in
terms of a few relevant(bosonic) variables. The minimum
description requires to consider the phase of the supercon-
ducting order parameter, but other variables such as the am-
plitude of the order parameter or the charge density may also
be included. The effective action(or the corresponding equa-
tions of motion) is sufficient to describe macroscopic quan-
tum phenomena such as the Meissner effect, the flux quanti-
zation, the Josephson effect, or the vortex dynamics.6,7 In a
Bose superfluid, the low-energy effective action leads to the
Gross-Pitaevskii equation,8,9 i.e., a nonlinear Schrödinger
equation for the complex(superfluid) order parameterC
whereuCu2=r is the condensate density. In a Fermi system,
there is in general no simple relation between the amplitude
of the superconducting order parameter and the density. In
the strong-coupling limit, where fermions form tightly bound

pairs which behave as bosons, we expect the Gross-
Pitaevskii equation to hold. Moreover, since Fermi and Bose
superfluids should behave similarly in many respects, a
Fermi superfluid should be described by a nonlinear
Schrödinger equation similar to the Gross-Pitaevskii equa-
tion even in the weak-coupling limit.6 This is the conclusion
reached by previous works,10–12 although the “wave func-
tion” in this case is not the superfluid order parameter(ex-
cept in the strong-coupling limit).

The low-energy effective action provides a convenient
framework to discuss the BCS-Bose crossover between the
weak-coupling BCS limit and the Bose limit of preformed
pairs.12–18In two dimensions(2D), there is an additional mo-
tivation to introduce an effective action written in terms of
the phase of the order parameter. The Berezinskii-Kosterlitz-
Thouless(BKT) phase transition19,20 which takes place in a
2D Fermi superfluid is clearly out of reach of fermionic ap-
proximations based on diagram resummations like the
T-matrix approximation.3

While the 2D attractive Hubbard model is not an appro-
priate microscopic model for most superconducting systems
of interest, it can be used to understand a number of general
issues relevant to many cases. The main characteristics of
this model are well known.21,22Away from half filling, there
is a BKT phase transition to a low-temperature supercon-
ducting phase. Long-range order sets in at zero temperature
and breaks SO(2) symmetry. At half filling,q=0 pairing and
q=sp ,pd charge fluctuations combine to form an order pa-
rameter with SO(3) symmetry. The superconducting transi-
tion then occurs at zero temperature and breaks SO(3) sym-
metry. In the weak-coupling limit, superconductivity is due
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to strongly overlapping Cooper pairs, and Bogoliubov quasi-
particle excitations dominate the low-energy physics. In the
strong-coupling limit, fermions form tightly bound pairs that
Bose condense at low temperature thus giving rise to super-
fluidity. Pair-breaking excitations are not possible at low en-
ergy and the thermodynamics is controlled by(collective)
phase fluctuations.

In this paper, we derive the low-energy effective action
for charge and pairing fluctuations in the 2D attractive Hub-
bard model on a square lattice. We discuss the BCS-Bose
crossover and the phase diagram. We use the mapping of the
attractive model onto the repulsivehalf-filled model in a
magnetic field which couples to the fermion spins. In this
mapping, the charge and pairing fields transform into the
three components of the spin-density field. At half filling, the
magnetic field vanishes in the repulsive model. This case has
been studied in detail in Refs. 23 and 24. At zero tempera-
ture, the system evolves from a Slater to a Mott-Heisenberg
antiferromagnet as the interaction strength(i.e., the on-site
Coulomb repulsion) increases. Because of the SO(3) symme-
try of the order parameter, the Néel temperature vanishes in
agreement with the Mermin-Wagner25 theorem. At finite
temperature, the system is in a renormalized classical(RC)
regime with an exponentially large antiferromagnetic corre-
lation length. Away from half filling, the magnetic field re-
duces the symmetry to SO(2) so that a BKT phase transition
occurs at finite temperature. In the attractive model, this cor-
responds to the suppression ofq=sp ,pd charge fluctuations
at low energy. The main advantage of studying the repulsive
model is that the SO(3) symmetry of the order parameter at
or near half filling can be easily handled.

In Sec. II, we map the attractive model onto the repulsive
one by a canonical particle-hole transformation26 and then
obtain the effective action for the spin fluctuations in the
presence of a finite magnetic field(i.e., away from half filling
in the attractive model). Collective bosonic fields are intro-
duced by means of a Hubbard-Stratonovich decoupling of
the Hubbard interaction. This crucial step in our approach
differs from the usual decoupling in two respects. First, we
write the interaction in an explicit SO(3) spin-rotation form
by introducing a unit vectorVr at each site and time.23,24,27,28

This allows one to recover the Hartree-Fock(HF) theory at
the saddle-point level, while maintaining SO(3) spin-rotation
symmetry(in the absence of the magnetic field). Second, we
introduce two auxiliary real fields. One is simply the
Hubbard-Stratonovich fieldmr

HS for the amplitude of the spin
density at siter . The other one,mr , is directly connected to
the actual amplitude of the spin density.29 While these two
fields are proportional at the saddle-point(i.e., Hartree-Fock)
level, they differ when fluctuations are taken into account. In
the weak- and strong-coupling limits,smr /2dVr can be iden-
tified with the spin density, which allows a direct interpreta-
tion of the low-energy actionSfm,Vg in terms of physical
quantities. Because of the magnetic field, the spin component
along the fieldSz takes a finite value and its fluctuations are
small at low energy. Since spin amplitude fluctuations are
also small, the important fluctuations correspond to rotations
around the magnetic field axis. We derive the effective action
Sfm,Vg in this case.Sfm,Vg takes a simple form in the
weak-coupling (Slater) and strong-coupling (Mott-

Heisenberg) limits. These two limits differ in the role of the
Berry phase term.

In Sec. II C, we deduce the effective actionSfr ,Dg of the
chargesrd and pairingsD= uDueiQd fluctuations in the attrac-
tive model. By integrating out amplitude fluctuationssuDud,
we recover the actionSfr ,Qg of a Bose superfluid where half
the fermion density is identified as the conjugate variable of
the phaseQ of the superconducting order parameter. This
action is parametrized by the massmb of the “bosons” and
the amplitude g of the repulsive interaction between
“bosons.” mb and g are computed as a function of particle
density and interaction strength. We then analyze in more
detail the weak(BCS) and strong(Bose) coupling limits. In
the BCS limit, we find that the action is a function of charge
and phase fluctuations only, since amplitude fluctuations of
the superconducting order parameter decouple. In the strong-
coupling limit, the amplitude of the superconducting order
parameter and the fermion densityr satisfy the relation
uDr u=

1
2
Îrrs2−rrd. The Bose superfluid actionSfr ,Qg

;SfuDu ,Qg then entirely describes the dynamics of the su-
perconducting order parameterD. In Sec. II D, we derive the
phase-only actionSfQg by integrating out charge fluctua-
tions. SfQg corresponds to an O(2) s model with an addi-
tional term proportional to the first-order time derivative of
Q. The phase stiffness and the velocity of the O(2) s model
are obtained as a function of particle density and interaction
strength. At zero temperature, superconducting long-range
order gives rise to a gapless(Goldstone) phase mode
smoothly evolving from the Anderson-Bogoliubov mode30 at
weak coupling to the Bogoliubov mode31 of a Bose super-
fluid at strong coupling. In Sec. II E, we show how we can
extract from the phase-only action an effective(classical) XY
model whose phase stiffness is a function of density, inter-
action strength and temperature. This allows us to determine
the value of the BKT phase transition temperature as a func-
tion of density and interaction strength. TheXY model also
yields an estimate of the crossover temperatureTX below
which the system enters a RC regime of phase fluctuations.
At higher temperature, forTXøTøTpair, there is a regime of
incoherent pairs[Cooper(local) pairs at weak(strong) cou-
pling] with no superconducting short-range order.Tpair is es-
timated from the HF transition temperature.

In the vicinity of half filling, the analysis of Sec. II is not
sufficient sinceq=sp ,pd charge fluctuations(in the attrac-
tive model) are not considered. For a weak magnetic field(in
the repulsive model), there are strong fluctuations ofSz, and
the analysis of Sec. II breaks down. This case is dealt with in
Sec. III. We show that the dynamics of spin fluctuations in
the repulsive model is governed by an SO(3) nonlinears
model with a (symmetry-breaking) magnetic field propor-
tional to the doping. The magnetic field defines a character-
istic temperatureTSOs3→2d above which the SO(3) spin-
rotation symmetry is restored. BelowTSOs3→2d, the system
enters a RC regime of spin fluctuations with SO(2) symme-
try. The global phase diagram, as a function of density, in-
teraction strength and temperature, is discussed in Sec. II F.
[For clarity, we discuss the phase diagram at the end of Sec.
II and postpone the technical analysis of the SOs3d
→SOs2d crossover near half filling to Sec. III.]
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In Sec. IV, we consider the strong-coupling limit in more
detail. First we show that the repulsive Hubbard model re-
duces to the Heisenberg model to leading order in 1/U. This
allows one to obtain the collective modes beyond the long-
wavelength approximation. We then show that except for a
strong magnetic field(i.e., in the low density limit of the
attractive model), the Heisenberg model in a magnetic field
reduces to the quantumXY model. In the low-density limit,
we recover from the Heisenberg model the usual action of a
Bose superfluid(for bosons of mass 1/J=U /4t2 and density
r /2), including the terms proportional tos=rrd2 that were
omitted in Sec. II. The classical equation of motion derived
from this action is nothing but the Gross-Pitaevskii equation.
We therefore obtain a correspondence between the Gross-
Pitaevskii equation in the attractive model and the semiclas-
sical spin dynamics in the repulsive model.

To our knowledge, there is no systematic study of the 2D
repulsive Hubbard model in a magnetic field. When trans-
lated in the language of the attractive model, our results re-
produce, in a unique framework, a number of previously
known results. We also obtain new results, in particular re-
garding the BCS-Bose crossover and the phase diagram.

II. AWAY FROM HALF FILLING

The attractive Hubbard model on a square lattice is de-
fined by the Hamiltonian

H = − o
r

cr
†st̂ + mdcr − Uo

r
nr↑nr↓, s1d

where t̂ is the nearest-neighbor hopping operator:

t̂cr = tscr+x̂ + cr−x̂ + cr+ŷ + cr−ŷd. s2d

x̂ and ŷ denote unit vectors along thex andy axis. With the
notation of Eq.(1), −U is the on-site interaction withUù0
in the attractive case. The operatorcrs

† scrsd creates(annihi-
lates) a fermion of spins at the lattice siter , cr =scr↑ ,cr↓dT,
and nrs=crs

† crs. At half filling, particle-hole symmetry im-
plies that the chemical potentialm equals −U /2. In the fol-
lowing, we will consider only hole doping so thatm
ø−U /2. We take the lattice spacing equal to unity and"
=kB=1.

Under the canonical particle-hole transformation26

cr↓ → s− 1drcr↓
† , cr↓

† → s− 1drcr↓, s3d

the Hamiltonian becomes(omitting a constant term)

H = − o
r

cr
†F t̂ + Sm +

U

2
Dsz +

U

2
Gcr + Uo

r
nr↑nr↓, s4d

where ssx,sy,szd denotes the Pauli matrices. The trans-
formed Hamiltonian(4) corresponds to the repulsive half-
filled Hubbard model in a magnetic field

h0 ; m +
U

2
s5d

along thez axis coupled to the fermion spins. In the attrac-
tive model, the chemical potentialm is fixed by the condition

kcr
†crl=r0=1−x, where r0 is the mean density andx the

doping. Under the particle-hole transformation(3), cr
†cr

→cr
†szcr +1. In the repulsive model, the magnetic fieldh0 is

then determined by

kcr
†szcrl = − x. s6d

The charge-density and pairing operators transform as

rr = cr
†cr → s2Sr

z + 1d,

Dr = cr↓cr↑ → s− 1drSr
−,

Dr
† = cr↑

† cr↓
† → s− 1drSr

+, s7d

whereSr
n=cr

†ssn /2dcr sn=x,y,zd and Sr
±=Sr

x± iSr
y. In the re-

pulsive model, spin fluctuations are clearly the collective
(bosonic) fluctuations of interest. Accordingly, in the attrac-
tive model, both pairing and charge fluctuations should be
considered on equal footing(see Fig. 1). One of the motiva-
tions to study the repulsive model is that one has to consider
only the particle-hole channel. On the contrary, a direct study
of the attractive model would require to consider both the
particle-hole and particle-particle channels in order to take
into account the charge and pairing fluctuations. The simul-
taneous introduction of auxiliary Hubbard-Stratonovich
fields in these two channels is not without problem if one
requires the saddle-point approximation to recover the HF
(or mean-field) theory.12 Furthermore, in the attractive model
at half filling, q=0 pairing andq=sp ,pd charge fluctuations
combine to form an order parameter with SO(3) symmetry.
The SO(3) symmetry of the order parameter is much more
easily handled in the repulsive model, where the distance
from half filling determines the(symmetry-breaking) mag-
netic fieldh0 (see Sec. III).

We can write the partition function of the repulsive model
as a path integral over Grassmann fieldscrs

* ,crs, with the
action

FIG. 1. Correspondence between the spin densitySr in the re-
pulsive model, and the charge densityrr and superconducting field
Dr = uDr ueiQr in the attractive model[see Eqs.(7)].
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S=E
0

b

dtHo
r

cr
†]tcr + Hfc†,cgJ , s8d

wheret is an imaginary time andb=1/T the inverse tem-
perature.Hfc†,cg is obtained from the Hamiltonian(4) by
replacing the operators by the corresponding Grassmann
fields. We now introduce auxiliary bosonic fields for the col-
lective spin fluctuations in a way that fulfills the three fol-
lowing requirements:(i) the HF (or mean-field) approxima-
tion is recovered from a saddle-point approximation,(ii ) the
SO(2) [or SO(3) if h0=0] spin-rotation symmetry is main-
tained,(iii ) the auxiliary fields correspond to the spin-density
field Sr =cr

†ss /2dcr not only at the saddle-point level, but
also when fluctuations are taken into accountfs
=ssx,sy,szdg.

We start from the identity23,24,27

nr↑nr↓ = 1
4fscr

†crd2 − scr
†s · Vrcrd2g, s9d

whereVr is an arbitrary site- and time-dependent unit vec-
tor. Vr is defined by its polar and azimuthal anglesur ,wr .
Spin-rotation invariance is made explicit by performing an
angular integration overVr at each site and time(with a
measure normalized to unity). The charge termscr

†crd2 is
decoupled by means of an auxiliary(real) field Dcr . In order
to decouple the spin termscr

†s ·Vrcrd2, we introduce in the
path integral the unit factor

1 =E Dfmgp
r ,t

dsmr − cr
†s · Vrcrd

=E Dfm,mHSge−e0
bdtor imr

HSsmr−cr
†s·Vrcr d, s10d

wheremr
HS is a Lagrange multiplier field which imposes the

constraintmr =2Sr ·Vr . Both m andmHS are real fields. Note
that integrating out themr field [see Eqs.(11) and (12) be-
low], one obtains the actionSfc†,c,Dc,mHSg whereDcr and
mHS are the Hubbard-Stratonovich fields which decouple the
interaction term(9). In general,smr /2dVr cannot be directly
identified with the spin densitySr , but the identification turns
out to be correct in the hydrodynamic regime both at weak
sU!4td and strongsU@4td coupling.

Using Eqs.(9) and (10), we write the action asS=S0
+Sint with

S0 =E
0

b

dto
r

cr
†S]t − t̂ − h0sz −

U

2
Dcr , s11d

Sint =E
0

b

dto
r
FDcr

2

U
−

U

4
mr

2 + imrmr
HS − cr

†siDcr

+ imr
HSs · VrdcrG . s12d

In the following, we shall consider the charge fieldDcr only
at the saddle-point level, i.e.,Dcr = isU /2dkcr

†crl= iU /2. The
term −icr

†Dcrcr in Eq. (12) cancels the chemical potential
term −sU /2dcr

†cr in Eq. (11).

Equations(11) and(12) are the starting point of our analy-
sis. In Sec. II A, we show that the HF theory is recovered
from a saddle-point approximation over the auxiliary fields
mr , mr

HS, and Vr . In the following sections, we go beyond
the HF theory and derive a low-energy effective action
Sfm,Vg for spin fluctuations, and deduce the effective action
Sfr ,Dg of charge and pairing fluctuations in the attractive
model.

A. Hartree-Fock theory

In the presence of the uniform magnetic field along thez
axis, we expect the ground state to exhibit AF order in the
sx,yd plane and a ferromagnetic order along thez axis. We
therefore consider a static saddle-point approximation with
mr =m0, mr

HS=m0
HS, and a classical configuration of the unit

vector fieldVr given by

Vr
cl = s− 1drsinu0x̂ + cosu0ẑ. s13d

The HF action then reads

SHF = bNS−
U

4
m0

2 + im0m0
HSD

+E
0

b

dto
r

cr
†f]t − t̂ − hsz − D0

HSs− 1drsxgcr , s14d

whereN is the total number of lattice sites and

D0
HS = im0

HS sinu0,

h = h0 + im0
HS cosu0. s15d

The HF action is quadratic and can be easily diagonalized.
The single-particle Green’s functions are given by

Gssk,ivd = − kcssk,ivdcs
* sk,ivdl =

− iv − eks

v2 + Eks
2 ,

Fssk,ivd = − kcssk,ivdcs̄
* sk + Q,ivdl =

D0
HS

v2 + Eks
2 , s16d

where

eks = ek − sh,

Eks = Îeks
2 + D0

HS2
. s17d

ek =−2tscoskx+coskyd is the energy of the free fermions on
the square lattice.s̄=−s, Q=sp ,pd, and v=pTs2n+1d (n
integer) is a fermionic Matsubara frequency.cssk , ivd is the
Fourier transformed field ofcrs.

The saddle-point equations are obtained from]ZHF/]m0
=]ZHF/]D0

HS=]ZHF/]h=0, whereZHF is the partition func-
tion in the HF approximation

m0 =
2

U
im0

HS, s18d

D0 ;
D0

HS

U
=

m0

2
sinu0 =

s− 1dr

2
kcr

†sxcrl, s19d
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m0 cosu0 =
2

U
sh − h0d = kcr

†szcrl. s20d

Equation(6) then implies

m0 cosu0 =
2

U
sh − h0d = − x. s21d

D0=s−1drkSr
xl is the AF order parameter in the repulsive

model, and the superconducting order parameter in the at-
tractive model.h is an effective magnetic field which takes
into account the mean ferromagnetic magnetizationkcr

†szcrl
along thez axis. In the attractive model,h=h0−xU/2=m
+r0U /2 corresponds to the chemical potential renormalized
by the Hartree self-energy.

Using Eqs.(16), we rewrite the saddle-point equations
(19)–(21) as

2

U
=E

k

tanhsbEk↑/2d
Ek↑

, s22d

x =E
k

ek↑
tanhsbEk↑/2d

Ek↑
, s23d

whereek =e−p
p sdkx/2pde−p

p sdky/2pd. At T=0, Eqs.(22) and
(23) determine the superconducting order parameterD0

HS (or,
equivalently,D0) and the renormalized chemical potentialh.
Using Eqs.(15) and(21), we then obtainh0, im0

HS, andu0 as
a function ofU and x (Figs. 2 and 3). Equations(22) and
(23) also determine the HF transition temperatureTc

HF where
AF long-range order(i.e., superconducting order in the at-
tractive model) sets in. At the transition, we haveD0=D0

HS

=0+, u0=p and im0
HS=xU/2. Partial analytical results can be

obtained in the limits of weak and strong couplings.

1. Weak coupling„U™4t…

At half filling sx=0d, h=h0=0 and u0=p /2. The zero-
temperature order parameter and the transition temperature
are given by

D0
HS . 32te−2pÎt/U, s24d

Tc
HF , te−2pÎt/U.

Note that at half filling, the SO(3) symmetry is restored and
the AF order parameter can have a component along thez
axis. The latter corresponds to aq=Q charge-density-wave
order in the attractive model. The choiceu0=p /2 corre-
sponds to a state with only superconducting order.

Away from half filling sh0,0d, u0.p and im0
HS.xU/2

since the superconducting order parameter is exponentially
small. AtT=0, the superconducting order parameter is deter-
mined by

2

U
=E

−4t

4t de

E
N0sed . N0shdE

−4t

4t de

E
, s25d

where E=fse−hd2+D0
HS2

g1/2. N0sed=s2p2td−1Kfs1
−e2/16t2d1/2g, with eP f−4t ,4tg, is the density of states of
free fermions on a square lattice[K is the complete elliptic
integral of the first kind]. Since the integral in Eq.(25) is

FIG. 2. Chemical potentialm=h0−U /2, order parameterD0
HS,

and u0 in the T=0 HF state vs dopingx=1−r0 for U=2t, 4t, and
12t (solid, dashed, and dotted lines, respectively). The energies are
measured in units oft.

FIG. 3. Chemical potentialm=h0−U /2, order parameterD0
HS,

and u0 in the T=0 HF state vsU for x=0.1, 0.5, and 0.9(solid,
dashed, and dotted lines, respectively). Here and in the following
figures, we use the analytical results in the weak-coupling regime
sU& td where the numerics becomes difficult because of the expo-
nentially small value ofD0

HS.
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peaked arounde=h for D0
HS→0, we have replaced the den-

sity of statesN0sed by its value at the renormalized chemical
potentialh. In the weak-coupling limit, we can also neglect
the effect of the order parameter on the chemical potential
[i.e., setD0

HS=0 in Eq.(23)]. We then haveh.eF whereeF is
the Fermi energy of the noninteracting system. With these
approximations, we obtain(for U→0 andx fixed)

D0
HS . 2fs4td2 − eF

2g1/2e−1/UN0seFd,

x .5
1

p2t
ueFuln

16et

ueFu
if x ! 1,

1 −
4t − ueFu

2pt
if 1 − x ! 1,6

m . eF − r0
U

2
. s26d

Sinceh.eF belongs to the noninteracting bandf−4t ,4tg, the
excitation gap(i.e., the minimum energy required to break a
pair) equals 2D0

HS.
Similar arguments show that the transition temperature is

given by

Tc
HF .

2g

p
fs4td2 − eF

2g1/2e−1/UN0seFd, s27d

whereg.1.78 is the exponential of the Euler constant. We
recover the results of the BCS theory withfs4td2−eF

2g1/2

playing the role of the cutoff energy[Eqs.(26) and (27)].

2. Strong coupling„Uš4t…

To leading order in 1/U (and x fixed), at T=0 we find
im0

HS=U /2 (or m0=1) and cosu0=−x=h0/2J. This gives

D0
HS =

U

2
s1 − x2d1/2,

m = −
U

2
− 2Jx. s28d

In the strong-coupling limit, the excitation gap equals 2sh2

+D0
HS2

d1/2=U to leading order in 1/U. For x!1, Tc
HF.U /4.

B. Effective action S†m,V‡

In 2D, the HF theory breaks down at finite temperature
since it predicts AF long-range order belowTc

HF. Neverthe-
less, the HF transition temperature bears a physical meaning
as a crossover temperature below which the amplitudeD0 of
the AF order parameter takes a finite value. This can be
interpreted as the appearance of local moments perpendicular
to the magnetic field and with an amplitudeD0=D0

HS/U.
Note that at weak coupling these “local” moments can be
defined only at length scales of orderj0, t /D0

HS@1, which
corresponds to the size of bound particle-hole pairs in the HF
state. Thus,stricto sensu, local moments form only in the
strong-coupling limit whenj0,1.

Below Tc
HF, the fluctuations of the fieldsm, mHS, and u

around their HF values are therefore expected to be small.
Below a crossover temperatureTXøTc

HF, AF short-range or-
der sets in. The AF correlation length becomes much larger
than the lattice spacing, and the effective action for AF fluc-
tuations (which correspond to rotations ofVr about thez
axis) can be derived within a gradient expansion. In this
section, we derive the low-energy effective actionSfm,Vg
for temperatures below the crossover temperatureTX. For T
!TXøTc

HF, the coefficients of the effective action(which are
related to HF quantities) can be evaluated in the zero tem-
perature limit. This means that we neglect the exponentially
small number of thermally excited quasi-particles which give
rise to nonanalytic contributions(Landau damping terms) to
the effective action.32,33 As shown below,TX,Js1−x2d /2
!Tc

HF in the strong-coupling limitsJ=4t2/Ud, but TX,Tc
HF

in the weak-coupling limit.
Fluctuations can be parametrized by

dmr = mr − m0,

dmr
HS = mr

HS − m0
HS,

pr =
ur − u0

2
,

qr = wr − Q · r . s29d

In the HF state,dmr =dmr
HS=pr =qr =0. The effective action

Sfp,q,mHS,mg is obtained by integrating out the fermions,
and assumingpr ,dmr ,dmr

HS and ]mpr ,]mdmr ,]mdmr
HS,]mqr

to be small(m=0,x,y and]0;]t). We do not assumeqr to
be small so that our approach is valid even in the absence of
AF long-range order. It is convenient to introduce a new
fermionic variablefr =sfr↑ ,fr↓dT defined bycr =Rrfr where
Rr is a time- and site-dependent SU(2)/U(1) matrix satisfying

Rrs · Vr
clRr

† = s · Vr . s30d

The above definition means thatRr , the SO(3) element as-
sociated toRr , mapsVr

cl onto Vr . The U(1) gauge freedom
is due to rotations aroundVr

cl, which do not change the
physical state of the system. The pseudofermionfr has its
spin quantized alongRr ẑ. The action(11) and(12) can then
be expressed as

S= SHF + S1 + S2

+E
0

b

dto
r
S−

U

4
dmr

2 + idmr
HSdmr −

2

U
m0

HSdmr
HSD ,

s31d

whereSHF is the HF action(14) and
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S1 =E
0

b

dto
r

fr
†A0rfr ,

S2 = − tE
0

b

dt o
kr ,r8l

sfr
†Ar ,r8fr8 + c.c.d. s32d

kr ,r 8l denotes nearest neighbors and we have introduced

A0r = Rr
†Ṙr − h0sRr

†szRr − szd − idmr
HSs · Vr

cl = o
n=x,y,z

A0r
n sn,

Ar ,r8 = Rr
†Rr8 − 1 = o

n=0,x,y,z
Ar ,r8

n
sn. s33d

We use the notationṘr =]tRr . s0 is the 232 unit matrix.
The effective actionSfp,q,mg is obtained by integrating

out the fermion fieldfr and the Hubbard-Stratonovich field
mr

HS. The final result reads

Sfp,q,mg =
1

2o
q̃

fp−q̃P̃ppsq̃dpq̃ + q−q̃P̃qqsq̃dqq̃

+ dm−q̃P̃mmsq̃ddmq̃ + 2p−q̃P̃pqsq̃dqq̃

+ 2p−q̃P̃pmsq̃ddmq̃ + 2q−q̃P̃qmsq̃ddmq̃g + dSB,

s34d

where q̃=sq , ivnd, with vn (n integer) a bosonic Matsubara

frequency. The coefficientsP̃ are given by Eq.(B24) and
dSB by Eq. (B21). Details of this rather long calculation are
given in Appendix B, to which we refer readers interested in
results for the repulsive Hubbard model[Eq. (4)]. In the bulk
of the manuscript, we shall focus on the attractive Hubbard
model as defined in Eq.(1).

C. Effective action S†r ,D‡

Results of Sec. II B can be easily translated to the attrac-
tive model. BelowTpair;Tc

HF, the finite amplitudeD0 of the
superconducting order parameter can be interpreted as the
appearance of incoherent pairs. At weak coupling, the size
j0, t /D0

HS of these(Cooper) pairs is much larger than the
lattice spacingsj0@1d. At strong coupling, the preformed
pairs are local and are expected to behave as hard-core
bosons(the hard-core constraint comes from the Pauli prin-
ciple which prevents double occupancy of a lattice site). The
crossover temperatureTX marks the onset of strong super-
conducting fluctuations(i.e., j@1 with j the superconduct-
ing correlation length).

As already pointed out, in generalsmr /2dVr cannot be
directly identified with the spin densitySr =cr

†ss /2dcr . In
order to find the relation betweenSr and smr /2dVr , we add
to the action the source term

SJ =E
0

b

dto
r

cr
†Jr · scr , s35d

with Jr =sJr
x,Jr

y,Jr
zd. The charge and pairing fields in the at-

tractive model are then obtained from[see Eq.(7)]

U dS

dJr
xU

J=0

; 2s− 1dr uDr ucosQr ,

U dS

dJr
yU

J=0

; − 2s− 1dr uDr usinQr ,

U dS

dJr
zU

J=0

; rr − 1. s36d

We then proceed as in the preceding section(see also Appen-
dix B). We integrate out the fermions to obtain the effective
action to second order inpr ,dmr ,]mpr ,]mdmr ,]mqr and first
order in Jr . Using then Eqs.(36), we obtain the relation
betweenmr ,Vr and Dr ,rr : see Eq.(D6) in Appendix D.
Equation (D6) takes a simple form in the BCS and Bose
limits (see Secs. II C 1 and II C 2).

To proceed further in the general case, we note that there
is no coupling between=q and p,q̇,m in the action

Sfp,q,mg (Appendix B). Since=Qr =−=qr , andQ̇ ,dr ,duDu
are functions ofp,q̇,m (Appendix D), Sfr ,Dg takes the gen-
eral form

Sfr,Dg =
1

2
E

0

b

dtE d2rFirrQ̇r +
k− Kl

8
s=Qrd2 + Prrsdrrd2

+ PuDuuDusduDr ud2 + 2PruDudrrduDr uG . s37d

Here we use the fact that half the fermion density is the
conjugate variable of the phase of the superconducting order
parameter, as required by gauge invariance.34 The action
Sfr ,Dg was previously obtained in Ref. 12. For our purpose,
it is not necessary to determine the expression of the coeffi-
cientsPrr, PuDuuDu andPruDu which can be found in Ref. 12.35

To make contact with the usual description of a Bose super-
fluid, we integrate out the amplitude fielduDu. We thus obtain
the action

Sfr,Qg =
1

2
E

0

b

dtE d2rHirrQ̇r +
k− Kl

8
s=Qrd2

+ sdrrd2FPrr −
PruDu

2

PuDuuDu
GJ . s38d

This action is similar to the superfluid action36

Sb =E
0

b

dtE d2rFirbrQ̇r +
rb0

2mb
s=Qrd2 +

g

2
sdrbrd2G

s39d

for bosons of massmb and densityrbr (rb0 is the mean den-
sity anddrbr =rbr −rb0). g is the amplitude of the repulsive
interaction between bosons. Comparing Eqs.(38) and (39),
we obtain
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rbr =
rr

2
,

mb =
4r0

k− Kl
,

g = 4SPrr −
PruDu

2

PuDuuDu
D . s40d

In order to calculateg without computingPrr, PuDuuDu and
PruDu, we integrate out charge fluctuations. This yields the
phase-only action

SfQg =E
0

b

dtE d2rF r0

4mb
s=Qrd2 +

Q̇r
2

2g
G

+
i

2
r0E

0

b

dtE d2rQ̇r . s41d

SfQg corresponds to an O(2) s model with an additional
term proportional to the first-order time derivative ofQ. mb
andg are related to the phase stiffnessrs

0 and the velocityc
of the O(2) s model:

mb =
r0

2rs
0 ,

g =
c2

rs
0 . s42d

SfQg can be directly obtained from the actionSfp,q,mg
(Sec. II D), which allows one to determiners

0 and c, and
thereforemb andg. Anticipating on the results of Sec. II D,
we show in Figs. 4 and 5mb andg as a function of doping
and interaction strength. Because bothrs

0 andc vanish in the
low-density limit, the numerical determination ofmb and g
from Eq.(42) is difficult whenx→1. We have therefore only
consideredxø0.9.

The low-energy effective action(38) and(39) ensures that
the Fermi superfluid will behave similarly to a Bose super-
fluid. Indeed, from the classical equation of motion, we ob-
tain the two basic equations(in imaginary time) of a
superfluid:36

i ṙbr + = ·Srb0

mb
= QrD = 0,

iQ̇r + gdrbr = 0. s43d

For a Bose superfluid, the coefficient in front ofs=Qd2 and
=Q in Eqs. (39) and (43) is the superfluid density(divided
by the boson mass). Here, because the coefficients of the
effective actionSfr ,Qg are calculated from the HF action,
we expect the superfluid density to be given by the full den-
sity rb0=r0/2. In Sec. IV, we derive the effective action
Sfr ,Qg in the strong-coupling low-density limit[including
the terms proportional tos=rrd2 that are omitted in Eq.(39)],
without relying on the HF theory. We obtain a boson mass
mb=1/J in agreement with(40) when U@4t [see Eq.(50)
below for x.1].

There is nevertheless an important difference with the
Bose superfluid case.Sfr ,Qg has been obtained by integrat-
ing out amplitude fluctuationssuDud and therefore does not
describe the full dynamics of the superconducting order pa-
rameterDr = uDr ueiQr (except in the strong coupling limit, see
Secs. II C 2 and IV).

Effective actions similar to Eq.(38) have been derived
previously for continuum or lattice models.1,10–12In this sec-
tion, we have obtained an effective action for the lattice case
which is valid for all values of the interaction strength. The
validity of our approach is quite obvious both at weak and
strong couplings. In the latter limit, it simply follows from
the mapping between the attractive model and the Heisen-
berg model under the particle-hole transformation(3) (see
Sec. IV). We therefore expect our approach to provide a
good description of the BCS-Bose crossover as the interac-
tion strength increases. We discuss the BCS and Bose limits
below in more detail.

FIG. 4. Boson massmb and interaction strengthg vs dopingx
=1−r0 for U=2t, 4t, and 12t (solid, dashed, and dotted lines,
respectively).

FIG. 5. Boson massmb and interaction strengthg vs U for x
=0.1, 0.5 and 0.9(solid, dashed, and dotted lines, respectively).
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1. BCS limit

Using the results of Appendix A 2, we deduce37 from Eq.
(D6)

drr = − dmr ,

duDr u = − prx. s44d

Equations (44) can be directly obtained by assumingSr
=smr /2dVr and considering the limitD0→0. This shows
that the identification betweenSr andsmr /2dVr holds in the
weak-coupling limit. When inverting the particle-hole trans-
formation(3), the kinetic energy remains unchanged and the
HF spin susceptibilityP00

zzs0,0d becomes the HF compress-
ibility k of the attractive model. The effective actionSfq,mg
[Eq. (B28)] then becomes

Sfr,Qg =
1

2
E

0

b

dtE d2rFirrQ̇r +
k− Kl

8
s=Qrd2

+ S1

k
−

U

2
Dsdrrd2G . s45d

Amplitude fluctuationssuDud do not couple to density and
phase fluctuations in the weak-coupling limit. We also verify
that half the fermion density is the conjugate variable of the
phaseQ of the pairing field. The gauge choicecr =wr /m0
[Eq. (B21)] is crucial to obtain this result. For instance, with
cr =0, one would obtainsrr −1d /2 as the conjugate variable
of Qr .

From Eq. (45), we conclude that in the BCS limit the
system behaves as a Bose superfluid withrbr =rr /2 and

mb = 4
r0

k− Kl
,

g = 4S1

k
−

U

2
D . s46d

2. Bose limit

In the strong-coupling limit, the auxiliary fieldsmr /2dVr
can be identified with the spin densitySr (see Appendix D 1)
so that

rr − 1 =Vr
z,

Dr =
s− 1dr

2
Vr

−, s47d

where Vr
±=Vr

x± iVr
y. The condition Vr

2=1 implies that
charge and amplitude fluctuations are not independent but
tied by the relation

uDr u = 1
2
Îrrs2 − rrd. s48d

There is therefore a one-to-one correspondence between the
bosonic field Cr =Îrr /2eiQr and the pairing field Dr
= uDr ueiQr. In the low-density limit, both fields coincide, since
uDr u.Îrr /2.

From Eq. (47), we deducedrr =−2 sinu0pr and duDr u
=cosu0pr (with cosu0=−x). These equations can also be ob-
tained from Eq.(D6). The effective actionSfr ,Qg then reads
[see Eq.(B33)]

Sfr,Qg =
1

2
E

0

b

dtE d2rFirrQ̇r +
J

4
s1 − x2ds=Qrd2

+ 2Jsdrrd2G . s49d

Again we verify that half the fermion density is the conju-
gate variable of the phaseQ of the pairing field. In the Bose
limit, we therefore have

mb =
2

Js1 + xd
,

g = 8J. s50d

The BCS and Bose limits differ in the role of the Berry
phase term

kfr
†Rr

†Ṙrfrl = iD0spr q̇r − ṗrqrd −
i

2
r0q̇r , s51d

where we have included the gauge-dependent contribution
Eq. (B20). For U@4t, the Berry phase term becomes

si /2drrQ̇r and therefore determines the entire dynamics of
the phaseQ. This is expected since the dynamics of the
Heisenberg model entirely comes from the Berry phase
term.38 For U!4t, the Berry phase term only gives

si /2dr0Q̇r and does not contribute to theT=0 phase collec-

tive mode. The missing termsi /2ddrrQ̇r , comes from the
second-order cumulantksS1+S2d2lc. For all values of the in-

teraction strength, the contributionsi /2dr0e0
bdtorQ̇r to the

action, which is responsible for the Magnus force acting a
vortex,10 is given by the Berry phase term of the effective
actionSfm,Vg.39

D. Phase-only actionS†Q‡

Integrating out p, dmHS, and dm in the action
Sfp,q,mHS,mg, and usingQr =−qr , we obtain the phase-only
action

SfQg =
rs

0

2
E

0

b

dtE d2rFs=Qrd2 +
Q̇r

2

c2 G
+

i

2
r0E

0

b

dtE d2rQ̇r , s52d

where we have taken the continuum limit in real space.
Equation(52) is valid in the hydrodynamic regime defined
by the momentum-space cutoffL,mins1,2D0

HS/cd. Its va-
lidity also requires the fluctuations ofu to be small, a con-
dition which is not fulfilled in the vicinity of half filling. This
case is discussed in detail in Sec. III. The(bare) phase stiff-
nessrs

0 and the velocityc of the O(2) s model in Eq.(52) are
determined by
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rs
0 =

k− Kl
8

,

rs
0

c2 =
P00

zzs0,0d
4

+ lim
q̃→0

1

vn
2

33 PqmHS
2 sq̃d

PmHSmHS8 sq̃d
+

SPqpsq̃d −
PqmHSsq̃dPmHSpsq̃d

PmHSmHS8 sq̃d D2

Pppsq̃d −
PpmHS

2 sq̃d

PmHSmHS8 sq̃d
4 .

s53d

At zero temperature, there is superconducting long-range or-
der (in the attractive model). From Eq.(52), we deduce the
existence of a gapless(Goldstone) mode with dispersionv
=cuqu. This collective mode smoothly evolves from the
Anderson-Bogoliubov mode30 at weak coupling to the Bogo-
liubov mode31 of a Bose superfluid at strong coupling(see
Secs. II D 1 and II D 2).

Figures 6 and 7 showc and rs
0 vs U and x. Our results

reproduce the collective mode velocity obtained from a
random-phase-approximation(RPA) calculation about the
zero-temperature HF superconducting state.40–42

1. BCS limit

In the weak-coupling limit, using the results of Appendix
B 1 and Sec. II C 1, we obtain

c2 =
4rs

0

k
S1 −

U

2
kD . s54d

We further simplify this result by noting thatD0
HS2

/ fse
−eFd2+D0

HS2g3/2;2dse−eFd in the limit D0
HS→0. This yields

[see Eq.(A7) in Appendix A]

k = 2N0seFd. s55d

Using also(Appendix C)

k− Kl = 2E
k

vk
2dsek − eFd, s56d

wherevk ==kek, we finally obtain

c2 =
vk

2

2
f1 − UN0seFdg,

vk
2 =

E
k

vk
2dsek − eFd

E
k

dsek − eFd
. s57d

vk
2 is the mean square velocity on the(non-interacting) Fermi

surface. Equations(57) reproduce the expression of the ve-
locity of the Anderson-Bogoliubov mode30 in a 2D con-
tinuum model if we identifyvk

2 with vF
2 =skF /md2 (with kF the

Fermi momentum andm the fermion mass). They were also
obtained in Ref. 41 from an RPA calculation about the zero-
temperature HF superconducting state.

2. Bose limit

In the strong-coupling limit, using the results of Appendix
B 2, we obtain

rs
0 =

J

4
s1 − x2d,

c = Î2JÎ1 − x2. s58d

We recover the velocityc=Îrb0g/mb of the Bogoliubov
mode in a Bose superfluid,36 where the massmb and the
interaction amplitudeg of the bosons are defined in Eq.(50)
srb0=r0/2d. At half filling, x=0, Eqs.(58) agree with results
obtained directly from the Heisenberg model.

E. Berezinskii-Kosterlitz-Thouless transition

The effective actionSfQg derived in Sec. II D is valid for
temperatures below the crossover temperatureTX, i.e., T

FIG. 6. Phase stiffnessrs
0 and velocityc vs dopingx=1−r0 for

U=2t, 4t, and 12t (solid, dashed, and dotted lines, respectively).

FIG. 7. Phase stiffnessrs
0 and velocityc vs U for x=0.1, 0.5,

and 0.9(solid, dashed, and dotted lines, respectively).
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!TX (see Sec. II B). Since TBKT ,TX,Tpair in the weak-
coupling limit (as will be shown below), this effective action
is not sufficient if one is interested in the BKT phase transi-
tion. In this section, we derive the phase-only actionSfQg for
temperaturesTøTpair and obtain the BKT phase transition
temperatureTBKT. We consider the static(i.e., classical)
limit, where nonanalytic contributions due to the Landau
damping terms32,33 are not present. In this limit, theq field
decouple from other fluctuations(p, dmHS, anddm), and we
obtain (see Appendix A)

SfQg =
rs

0

2T
E d2rs=Qrd2, s59d

rs
0 =

k− Kl
8

−
Pxx

zzs0,0d
4

=E
k
F ekek↑

8Ek↑
tanh

Ek↑
2T

−
t2 sin2 kx

2T cosh2sEk↑/2TdG . s60d

The action(59) is valid in the hydrodynamic regime and
must therefore be supplemented with a momentum-space
cutoff L,minf1,2D0

HSsTd /cg. Pxx
zzs0,0d is a current-current

correlation function in the attractive model. It vanishes at
zero temperature, and the phase stiffness reduces to the mean
kinetic energy as obtained in Sec. II D. The expression(60)
of the finite-temperature phase stiffness has also been ob-
tained in Refs. 43–45.

In order to extract the BKT phase transition temperature,
we assume that the system is described by anXY model
whose continuum limit is given by Eq.(59).43–47 Although
this assumption can be justified at strong-coupling(except in
the low-density limit) (see Sec. IV), it is in general not
correct.18 Nevertheless, it should give a reasonable estimate
of the BKT phase transition temperature. This leads us to the
2D XY Hamiltonian

HXY = − rs
0 o

kr ,r8l

cossQr − Qr8d, s61d

defined on a square lattice with spacing,L−1. The XY
model (61) is known to have a BKT phase transition at the
temperatureTBKT defined by

TBKT = Qrs
0sTBKTd, s62d

where Q.0.898 is estimated from Monte-Carlo
simulations.48–50 In Eq. (62), we have written explicitly the
temperature dependence ofrs

0. TBKT is obtained by solving
simultaneously Eqs.(22), (23), and(62).

From theXY model, we can extract another characteristic
temperature

TX = 2rs
0sTXd s63d

defined as the mean-field transition temperature ofHXY. TX
marks the onset of a RC regime of superconducting fluctua-
tions. In this regime, superconducting fluctuations become
quasi-static, the amplitudeuDr u of the order parameter takes a
finite value, and strong phase fluctuations develop(i.e., j
@1, with j the correlation length).51

In the strong coupling limit,TBKT .QJ
4s1−x2d and TX

. J
2s1−x2d!Tpair. In the weak-coupling limit,TBKT ,TX

,Tpair~e−1/UN0seFd is exponentially small.

F. Phase diagram

Near half filling,q=Q charge fluctuations become impor-
tant and are suppressed only at very small temperature.[This
corresponds to a weak magnetic fieldh0 in the repulsive
model.] We call TSOs3→2d the crossover temperature above
which charge fluctuations restore the SO(3) symmetry of the
order parameter. Postponing the determination ofTSOs3→2d to
Sec. III, we discuss in this section the phase diagram of the
2D attractive Hubbard model.

Let us first discuss the phase diagram as a function of
doping (Figs. 8 and 9). Below Tpair (not shown in the figure
for U=12t), the amplitude of the superconducting order pa-
rameter takes a finite value, but with no short-range order of
the phase(i.e., j,1 with j the superconducting correlation
length). This corresponds to the appearance of incoherent
pairs(Cooper pairs at weak coupling and local pairs at strong
coupling). Below TX, superconducting correlations start to
grow. The system enters a RC regime of fluctuations with
SO(2) symmetry: the phase correlation lengthj increases
and rapidly becomes much larger than the lattice spacing
sj@1d. At TBKT, a BKT phase transition occurs and the sys-
tem becomes superconducting. Superconducting long-range
order sets in atT=0. The situation is slightly different near
half filling where TSOs3→2d,TX. Below TX, both supercon-
ducting andq=Q charge fluctuations start to grow, and the

FIG. 8. TBKT, TSOs3→2d, TX, andTpair vs dopingx for U=12t, 4t,
and 2t. For U=12t, Tpair, which is nearly a vertical line aroundx
=1 on the scale of the figure, is not shown.
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order parameter has an effective SO(3) symmetry. For
T,TSOs3→2d, charge fluctuations are suppressed and only su-
perconducting fluctuations continue to grow. This corre-
sponds to a regime of fluctuations with SO(2) symmetry
which eventually drive a BKT phase transition at the tem-
peratureTBKT. Once the SO(2) regime is reached, the BKT
phase transition occurs rapidly, so thatTBKT can be estimated
by TSOs3→2d (see Sec. III B). Therefore, the true transition
temperature is estimated as minsTBKT ,TSOs3→2dd, whereTBKT

is the transition temperature obtained in Sec. II E, i.e., by
neglecting theq=Q charge fluctuations. The resulting phase
diagram is shown in Fig. 9. In the intermediate and strong-
coupling regimes(i.e., for U*4t), we clearly identify a RC
regime above the BKT superconducting phase and an
incoherent-pair regime at higher temperatures. We believe
the persistence of the incoherent-pair regime at weak cou-
pling (see Fig. 9 forU=2t) to be likely an artifact of our
simple estimate ofTpair. Due to many-body effects not taken
into account in our approach,Tpair is reduced with respect to
the HF transition temperature.52 We expectTpair.TX at weak
coupling and thus the disappearance of the incoherent-pair
regime. We also observe that the RC regime with SO(3) fluc-

tuations extends to higher doping at strong coupling. Figure
10 shows the phase diagram as a function ofU for x=0.1,
0.5, and 0.9.

Away from half filling, the BKT phase transition tempera-
ture derived from the criterionTBKT ~rs

0sTBKTd, with rs
0

given by Eq.(60), was also discussed in Refs. 43–46. Good
quantitative agreement with quantum Monte Carlo simula-
tions was obtained.45 Our estimation of the crossover tem-
peratureTX for U=4t also agrees with the quantum Monte
Carlo simulations of Ref. 51.

In the weak-coupling limit, we expect a pseudogap to
appear in the density of states and the spectral function
Ask ,vd=−p−1 ImGsk ,vd below the crossover temperature
TX [Gsk ,vd is the single-particle Green’s function].51–53This
pseudogap results from strong scattering of particles on col-
lective fluctuations in the RC regime.51,52 In the BCS limit,
the pseudogap region is small, except in the vicinity of half
filling where an SO(3) RC regime is observed over a wide
temperature ranges0øT&TXd (see Fig. 9).54 As the interac-
tion strength increases, the weak-coupling pseudogap should
progressively evolves into a strong-coupling gap due to the
formation of local singlet pairs whenT&Tpair. Pseudogaps in
the 2D attractive Hubbard model have been seen both in
quantum Monte Carlo simulations51,53,54 and analytical
approaches.1,51,52,55–57At half filling, the transformation of
the weak-coupling pseudogap into the strong-coupling gap
has been studied in Refs. 23 and 24.

III. NEAR HALF-FILLING

In this section, we calculate the crossover temperature
TSOs3→2d introduced in Sec. II F. The approach of Sec. II

FIG. 9. Phase diagram of the 2D attractive Hubbard model vs
dopingx for U=12t, 4t, and 2t. SC: superconducting phase(alge-
braic order). RC-SO(2): renormalized classical regime with fluctua-
tions of SO(2) symmetry. RC-SO(3): RC regime where the fluctua-
tions exhibit an effective SO(3) symmetry due to the presence of
strongq=Q charge fluctuations. FL: Fermi liquid. The incoherent-
pair (IP) regime corresponds to the formation of Cooper(local)
pairs at weak(strong) coupling, without short-range SC order. Su-
perconducting long-range order sets in atT=0.

FIG. 10. Phase diagram of the 2D attractive Hubbard model vs
U for x=0.1, 0.5 and 0.9.
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holds only whenq=Q charge fluctuations(in the attractive
model) are weak for all temperatures belowTX. In the repul-
sive model, this corresponds to the limit where the magnetic
field h0 is strong enough to suppress fluctuations of theSz

component of the spin density. Near half filling,q=Q charge
fluctuations are suppressed only at very low temperature. We
therefore expect a RC regime with SO(3) symmetry in the
temperature rangeTSOs3→2døTøTX followed by a RC re-
gime with SO(2) symmetry at lower temperature(TBKT øT
øTSOs3→2d).

In the repulsive model, a weak magnetic fieldh0=h0ẑ can
be treated perturbatively. When it vanishes, the low-energy
effective action for spin fluctuations is a nonlinears model
sNLsMd.23,24,28 From general arguments,58 we expect the
magnetic field to modify the kinetic term of the NLsM, ṅr

2

→ sṅr −2ih03nrd2, as obtained in the Heisenberg limit.59

[Here n sn2=1d is the Néel field describing low-energy AF
fluctuations.] We show below that this is indeed correct. We
consider the low-temperature limitT!TX where the coeffi-
cients of the effective action can be evaluated in the zero-
temperature limit.

Following Ref. 24, we introduce only one auxiliary field
smrd to decouple the spin termscr

†s ·Vrcrd2 in Eq. (9).60 The
action then reads

S=E
0

b

dto
r
Fcr

†s]t − t̂ − h0sz − mrs · Vrdcr +
mr

2

U
G .

s64d

At the HF level, neglecting the magnetic field, we havemr
=m0 and Vr

cl=s−1dr ẑ. We choose the AF magnetization
along thez axis as in Ref. 24. The saddle-point equation
reads 2m0/U=s−1drkcr

†szcrl. Following Haldane,38,61 in the
presence of AF short-range ordersT!TXd, we write

Vr = s− 1drnr
Î1 − L r

2 + L r . s65d

nr is the slowly varying Néel field, whereasL r is a canting
vector, orthogonal tonr , taking account of local ferromag-
netic fluctuations. We assumeL r to be small, which clearly
restricts the validity of this approach to weak magnetic
fields. As in Sec. II, we introduce a new fieldf defined by
cr =Rrfr whereRr is a time- and site-dependent SUs2d /Us1d
matrix satisfying

Rrs
zRr

† = s ·nr . s66d

Rr , the SO(3) element associated toRr , mapsẑ onto nr . We
also define the rotated canting fieldl r =Rr

−1L r . Given that
Rr

−1nr = ẑ andL r 'nr , the l r vector lies in thesx−yd plane.
In order to express the action in terms of thef field, it is

convenient to make use of the SU(2) gauge field Amr
=on=x,y,zAmr

n sn defined as

A0r = − Rr
†]tRr ,

Amr = iRr
†]mRr sm = x,yd. s67d

Since the gauge field is of orderOs]md, we can expand the
action with respect tol, Am, h0 anddm. To second order, we
obtain

S= SHF + Sp + Sl + Sd + Sl2 + Sh0
+ Sdm

+E
0

b

dto
r

dmr
2 + 2m0dmr

U
,

Sp = −E
0

b

dt o
m=0,x,y

n=x,y,z

r

jmr
n Amr

n ,

Sd =
t

2
E

0

b

dt o
m=x,y

n=x,y,z

r

Amr
n 2fr

† coss− i]mdfr + c.c.,

Sl = − m0E
0

b

dt o
n=x,y

r

l r
n j0r

n ,

Sl2 =
m0

2
E

0

b

dto
r

s− 1dr l r
2j0r

z ,

Sh0
= − h0E

0

b

dto
r

fr
†Rr

†szRrfr ,

Sdm = −E
0

b

dto
r

s− 1drdmr j0r
z , s68d

where the spin-density currentjmr
n is defined in Eq.(A2). For

h0=0, S reduces to the action derived in Ref. 24.SHF is the
HF action. Sp and Sd are paramagnetic and diamagnetic
terms, respectively.Sl andSl2 are first-order and second-order
corrections inl. Sdm is the contribution due to amplitude
fluctuations.62

The effective actionSfn ,L ,dmg is obtained by integrating
out the fermions. To second order inAm, l, dm, andh0, one
finds

Sfn,L ,dmg = Sfn,L ;h0 = dm= 0g + kSp + Sh0
+ Sdml

−
1

2
ksSh0

+ Sdmd2 + 2sSh0
+ SdmdsSp + Sldlc

+E
0

b

dto
r

dmr
2 + 2m0dmr

U
, s69d

where the averagesk¯l are taken with the HF action.
Sfn ,L ;h0=dm=0g is the action with no magnetic field(and
no amplitude fluctuations) and was derived in Ref. 24.kSpl is
a Berry phase term. It was ignored in Ref. 24, since it does
not play any role in the RC regime of theh0=0 NLsM. In
order to calculate the HF averages, we write
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Sh0
= − h0E

0

b

dt o
r

n=x,y,z

B0r
n j0r

n , s70d

whereB0r
n is defined byRr

†szRr =on=x,y,zB0r
n sn. Amr

n and B0r
n

are calculated using

Rr =1cosSur

2
De−i/2swr+cr d − sinSur

2
De−i/2swr−cr d

sinSur

2
Dei/2swr−cr d cosSur

2
Dei/2swr+cr d 2 .

s71d

Here we definenr by its polar and azimuthal anglesur and
wr . The anglecr comes from the U(1) gauge freedom in the
definition of Rr . We obtain

A0r
x =

i

2
u̇r sincr −

i

2
ẇr sinur coscr ,

A0r
y =

i

2
u̇r coscr +

i

2
ẇr sinur sincr ,

A0r
z =

i

2
ẇr cosur +

i

2
ċr ,

B0r
x = − sinur coscr ,

B0r
y = sinur sincr ,

B0r
z = cosur . s72d

Amr
n smÞ0d is obtained fromA0r

n with the replacement]t

→−i]m.
We find (see Appendix E)

kSpl = − i
m0

U
E

0

b

dto
r

s− 1drsẇr cosur + ċrd,

kSh0
l = 0,

kSh0

2 l = P00
xxE

0

b

dto
r

sh0 3 nrd2,

kSh0
Spl =

i

2
P00

xxE
0

b

dto
r

h0 · snr 3 ṅrd,

kSh0
Sll = m0P00

xxE
0

b

dto
r

h0 ·L r , s73d

andkSh0
Sdml=kSdmSpl=kSdmSll=0. There is therefore no cou-

pling between amplitude and direction fluctuations in the
limit of a small magnetic field. The HF correlation function
P00

xx;P00
xxs0,0d is given in Appendix A 2. Using the result of

Ref. 24 forSfn ,L ;h0=dm=0g, one has

Sfn,L g =E
0

b

dto
r
F k− Kl

16
s=nrd2

+
P00

xx

8
sṅr − 2ih0 3 nrd2 + m0

2S 1

U
−

P00
xx

2
DL r

2

−
i

2
m0P00

xxL r · snr 3 ṅr − 2ih0dG + SBfng, s74d

where we have taken the continuum limit in real space.kKl
is the mean kinetic energy in the HF state(for h0=0). We
denote the Berry phase termkSpl by SBfng. Integrating out
the L field with the constraintL r 'nr , we finally obtain

Sfng =
r̄s

0

2
E

0

b

dtE d2rFs=nrd2 +
sṅr − 2ih0 3 nrd2

c̄2 G + SBfng,

s75d

where

r̄s
0 =

k− Kl
8

,

c̄2 =
k− Kl

2
S 1

P00
xx −

U

2
D . s76d

r̄s
0 and c̄ are the spin stiffness and the spin-wave velocity in

the absence of field(h0=0, i.e., at half filling in the attractive
model). It can be checked analytically that the expression of
c̄ agrees with Eq.(53) evaluated ath0=0. The action(75) is
valid in the hydrodynamic regime defined by the
momentum-space cutoffL,mins1,2m0/ c̄d. In the strong-
coupling limit, c̄=Î2J and r̄s

0=J/4, we recover the NLsM
obtained from the Heisenberg model in a magnetic field.59

The crossover temperatureTX can be obtained from the cri-
terion j,1, wherej is the AF correlation length deduced
from the NLsM.24 However, sinceTX is weakly doping de-
pendent near half-filling, we can also consider the estimate
obtained in Sec. II F.[Eq. (63)].

A. Low-temperature limit

In the low-temperature limit, one expects to recover the
results obtained in Sec. II. Let us first consider the NLsM
(75) within a static saddle-point approximation where the
Néel field nr

cl lies in the sx,yd plane. The classical action
reads

Scl = − Nb
2r̄s

0h0
2

c̄2 . s77d

The magnetic fieldh0 is determined by the condition
kcr

†szcrl=sNbd−1]h0
ln Z=−x. From Eq.(77), we deduce

h0 = − x
c̄2

4r̄s
0 . s78d

The chemical potentialm;h0−U /2 obtained from Eq.(78)
is in very good agreement with the result of Sec. II forx
&0.2 (Fig. 11). In the strong-coupling limit,c̄=Î2J and r̄s

0

=J/4, we findh0=−2Jx as in Sec. II.
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Let us now consider fluctuations about the Néel state de-
fined bynr

cl.63 We have shown in Sec. II C that the phase of
the superconducting order parameter is obtained fromQr
=−arctansVr

y/Vr
xd+Q ·r [Eq. (D6)]. From Eq.(65), we then

deduceQr =−wr . It is also clear that theu field is related to
the q=Q charge fluctuations. In the low-temperature limit
unr

zu!1. The low-energy effective actionSfQ ,ug is obtained

by assumingu=Qr u , uQ̇r u , u=ur u , uu̇r u , uur −p /2u!1. For the
calculation of the Berry phase termSBfng, we choosecr
=s−1drwrU / s2m0d. As in Sec. II, this gauge choice ensures
that electromagnetic gauge invariance is satisfied.34 This
givesSfQ ,ug=Scl+SfQg+Sfug where

SfQg =
r̄s

0

2
E

0

b

dtE d2rFs=Qrd2 +
Q̇r

2

c̄2 G
+

i

2
r0E

0

b

dtE d2r Q̇r , s79d

Sfug =
r̄s

0

2
E

0

b

dtE d2rFs=urd2 +
u̇r

2

c̄2 +
s2h0d2

c̄2 Sur −
p

2
D2G .

s80d

SfQg corresponds to theh0=0 limit of the phase-only action
(52) derived in Sec. II.Sfug describesq=Q charge fluctua-
tions with a gap 2uh0u. These fluctuations were not considered
in Sec. II. We show in the next section that they play an
important role whenuh0u is small, i.e., near half filling in the
attractive model.

B. High-temperature limit: SO „3…\SO„2… crossover
and BKT transition

The preceding results are valid at low temperatures when
fluctuations ofur are small. In this regime, the SO(3) rotation
symmetry is broken by the magnetic field. At higher tem-
peratures, the gapped mode will be thermally excited thus
restoring the SO(3) spin-rotation symmetry. In this section,
we determine the crossover temperatureTSOs3→2d separating
these two regimes and the BKT transition temperature
TBKT øTSOs3→2d.

The SOs3d→SOs2d crossover can be understood from
renormalization group(RG) arguments. Following the stan-
dard procedure,64 we write the Néel field nr as fs1

−Pr
2d1/2,Prg, Pr =sPr

y,Pr
zd, with uPr u!1. This yields the

spin-wave action

S=
r̄s

0

2
E

0

b

dtE d2rFs=Prd2 +
Ṗr

2

c̄2 +
4h0

2

c̄2 Pr
z2G + S1,

s81d

with momenta bounded by the NLsM cutoff L. In agree-
ment with Sec. III A, we find a gap in the(bare) propagator
of thePz field. The interaction partS1 of the action is evalu-
ated ath0=0. RG equations are obtained by integrating out
degrees of freedom with momenta betweenL andLe−dl and
rescaling momenta, energies and fields.64 At the beginning of
the RG procedure, we can ignore the gap in the fluctuations
of Pz and treat the magnetic field perturbatively. We then
obtain the usual RG equations of the SO(3) NLsM sh0=0d
for the dimensionless coupling constantsg= c̄L / r̄s

0 and t
=T/ r̄s

0, together with the flow equationdh0/dl=h0. The RG
flow should be stopped when we reach the strong-coupling
regime of the SO(3) NLsM stsld,1d or when the magnetic
field cannot be treated perturbatively anymoresu2h0sldu
, c̄Ld. Introducing the characteristic lengthL−1el, the former
condition defines the SO(3) AF correlation lengthj while the
latter defines the magnetic lengthjh0

=c/ u2h0u. We are there-
fore left to consider two different cases. Ifj&jh0

, tsld,1
occurs beforeu2h0sldu, c̄L. The system is then disordered by
SO(3) fluctuations before reaching the SO(2) regime. This
will occur above the crossover temperatureTSOs3→2d defined
by jsTSOs3→2dd,jh0

.65 If jh0
&j, i.e., T&TSOs3→2d, an

SOs3d→SOs2d crossover takes place. Foru2h0sldu. c̄L,
fluctuations ofPz are suppressed, and only fluctuations ofPy

survive. This regime is described by an SO(2) NLsM with
coupling constantstslh0

d and gslh0
d where lh0

is defined by
u2h0slh0

du, c̄L. The very existence of the SO(2) regime im-
plies tslh0

d&1. The latter inequality is also approximately the
condition for the SO(2) NLsM to be in the low-temperature
BKT phase. This implies that the temperature range where
the system is disordered by SO(2) fluctuations is very nar-
row, so that we can identify the BKT transition temperature
with the SOs3d→SOs2d crossover temperatureTBKT

,TSOs3→2d.
In order to determineTSOs3→2d, we use the following ex-

pression for theh0=0 correlation lengthj:64

jsTd = K
c̄

r̄s

expS2pr̄s

T
D , s82d

whereK.0.05 andr̄s is the zero-temperature spin stiffness
in the Néel state. To estimater̄s, we use the one-loop RG
result64

r̄s = r̄s
0S1 −

c̄L

4pr̄s
0D . s83d

TSOs3→2d is therefore given by

FIG. 11. Zero-temperature chemical potentialm=h0−U /2 vs
doping x for U=2t, 4t, and 12t. The dashed lines show the result
obtained from Eq.(78). The solid lines reproduce the results ob-
tained by solving Eqs.(22) and (23) (see Fig. 2).
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TSOs3→2d =
2pr̄s

lnS r̄s

2Kuh0uD
.

2pr̄s

lnS10r̄s

uh0u D
, s84d

where we have takenK=0.05. TSOs3→2d, obtained from Eq.
(84), is shown in Fig. 8.

The definition ofTSOs3→2d is meaningful only below the
crossover temperatureTX which marks the onset of AF short-
range order and defines the temperature range where the
NLsM holds. OnceTSOs3→2d becomes of the order ofTX, as
uh0u increases,q=Q charge fluctuations(in the attractive
model) can be ignored. In this regime, the analysis of Sec. II
holds.

IV. STRONG-COUPLING LIMIT

In the strong-coupling limitU@4t, we can directly inte-
grate out the fermions to recover the actionSfVg of the
Heisenberg model in a magnetic field(Sec. IV A). We can
then go beyond the hydrodynamic limitsq→0d considered
in Sec. II and obtain the collective mode dispersion over the
entire Brillouin zone. Whenuh0u is weak enough(i.e., away
from the low-density limit in the attractive model), the
Heisenberg model reduces to the quantumXY model (Sec.
IV B ). In the low-density limit, the Heisenberg model allows
to recover the usual action of a Bose superfluid, including the
terms proportional tos=rrd2 that were omitted in Sec. II, and
in turn the Gross-Pitaevskii equation(Sec. IV C).

A. Heisenberg model

We write the action(11) and (12) in terms of thef field
defined bycr =Rrfr andRrs

zRr
†=s ·Vr :

S= Sat +E
0

b

dtFo
r

fr
†sRr

†Ṙr − h0Rr
†szRrdfr

− t o
kr ,r8l

sfr
†Rr

†Rr8fr8 + c . c .dG , s85d

Sat =E
0

b

dto
r

ffr
†s]t − im0

HSszdfrg, s86d

where we neglect spin amplitude fluctuations andim0
HS

=U /2 to leading order in 1/U (see Sec. II). Sat is the action
in the atomic limitst=0d. The effective action of the angular
variableV is obtained by integrating out the fermions. To
lowest order int /U andh0, we obtain

S=E
0

b

dto
r

fkfr
†Rr

†Ṙrfrl − h0kfr
†Rr

†szRrfrlg

−
1

2
E

0

b

dtdt8 o
r 1,r 2

r 18,r 28

tr 1,r 2
tr 18,r 28

ksfr 1

† Rr 1

† Rr 2
fr 2

dt

3 sfr 18
† Rr 18

† Rr 28
fr 28

dt8l, s87d

wheretr ,r8 equalst for r ,r 8 nearest neighbors and vanishes
otherwise. The averages in Eq.(87) are taken with the atomic
action. They can be easily calculated using the parametriza-
tion (71) of Rr . One finds

kfr
†Rr

†Ṙrfrl = kVr uV̇rl,

kfr
†Rr

†szRrfrl = Vr
z,

ksfr 1

† Rr 1

† Rr 2
fr 2

dtsfr 18
† Rr 18

† Rr 28
fr 28

dt8l

. dr 18,r 2
dr 28,r 1

dst − t8d
1

U
s1 − Vr 1

· Vr 2
d, s88d

where we have usedsRr
†Rr8dss̄sRr8

† Rrds̄s=s1−Vr ·Vr8d /2.
We have introduced the spin-1

2 coherent stateuVrl=Rr u↑ l
=cossur /2de−si/2dsfr+cr du↑ l+sinsur /2desi/2dswr−cr du↓ l.38 cr is
arbitrary and corresponds to the U(1) gauge freedom in the
definition of the SU(2) matrix Rr . We therefore recover the
action

S=E
0

b

dtHo
r

fkVr uV̇rl − h0 · Vrg + J o
kr ,r8l

Vr · Vr8

4 J
s89d

of the Heisenberg model in a magnetic fieldh0.
Consider first the classical ground-state defined byVr

cl

=s−1drsinu0x̂+cosu0ẑ. Minimizing the classical action

Scl = NbF− h0 cosu0 +
J

2
coss2u0dG s90d

with respect tou0, we find

cosu0 =
h0

2J
s91d

if uh0uø2J and u=p otherwise(for h0ø0). The condition
kcr

†szcrl=−x translates intokVr
zl=−x (see Appendix D 1),

i.e., cosu0=−x within the classical approximation. We thus
obtainh0=−2Jx as in Sec. II A 2.

The Heisenberg model allows to obtain the collective ex-
citations of the attractive Hubbard model in the strong-
coupling limit without taking the continuum limit. We intro-
duce the variablespr =sur −u0d /2 and qr =wr −Q ·r and
derive the effective action to quadratic order inpr and qr
−qr8 (for r ,r 8 first neighbors):

S=E
0

b

dtHo
r
F i

2
sinu0spr q̇r − ṗrqrd + 2h0 cosu0pr

2

−
i

2
r0q̇rG +

J

4 o
kr ,r8l

F− 2 coss2u0dspr + pr8d
2

+
sin2u0

2
sqr − qr8d

2GJ . s92d

The Berry phase termkVr uV̇rl has been evaluated withcr

=wr . This gauge choice is similar to the one made in Sec. II.
We thus obtain
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S=−
i

2
r0E

0

b

dto
r

q̇r +
1

2o
q̃

sp−q̃,q−q̃dD−1sq̃dSpq̃

qq̃
D ,

s93d

D−1sq̃d

=S− 4J coss2u0ds1 + gqd + 4h0 cosu0 vn sinu0

− vn sinu0 J sin2 u0s1 − gqd
D ,

s94d

where gq=scosqx+cosqyd /2. Equations(92)–(94) assume
the fluctuations ofp to be small and are therefore valid only
for h0Þ0, i.e., away from half filling in the attractive model.
At zero-temperature, there is AF long-range order(i.e., su-
perconducting order in the attractive model). Collective
modes are then obtained from detD−1sq̃d=0 with the analytic
continuation to real frequenciesivn→vq. This gives66

vq
2 = 2h0

2s1 − gqd − s2h0
2 − 4J2ds1 − gq

2d

= 8J2x2s1 − gqd − 4J2s2x2 − 1ds1 − gq
2d. s95d

Figure 12 showsvq for different values of the dopingx. For
q→0, we obtain a spin-wave mode(satisfying p.0) with
dispersionvq=cuqu, c=Î2JÎ1−x2. This mode corresponds to
the Bogoliubov mode obtained in Sec. II D 2. In the vicinity
of Q=sp ,pd, we find a mode with the dispersion

vq
2 = s2h0d2 ± Î2Ju1 − 3x2u1/2q2, s96d

where the +s−d sign refers to the casex,1/Î3sx.1/Î3d.
Whenx,1/Î3, this mode corresponds to a local minimum
of the energy with a gapu2h0u. It involves fluctuations along
the magnetic field axis which correspond in the attractive
model to q=Q charge-density fluctuations. At the critical
value of the dopingxc=1/Î3, this local minimum becomes a
local maximum. Note that the valueu2h0u of the gap was also
found in Sec. III A for a weak magnetic field but for all
values of the interactionU.67

B. Quantum XY model

In this section, we show that the attractive Hubbard model
in the strong-coupling limit reduces to the quantumXY
model(except in the low-density limit). The effective action
of the phaseQr =−qr =−wr +Q ·r of the superconducting or-

der parameter is obtained by integrating out thep field. To
quadratic order inp, the action reads

Sfp,Qg =E
0

b

dtHo
r
F i

2
r0Q̇r − i sinu0prQ̇r + 2h0 cosu0pr

2G
−

J

2
coss2u0d o

kr ,r8l

spr + pr8d
2 +

J

4

3 o
kr ,r8l

f1 − cossQr − Qr8dgfsin2u0 + sins2u0d

3spr + pr8d + 4 cos2 u0prpr8 − 2 sin2u0spr
2 + pr8

2 dgJ .

s97d

Since the fluctuations ofp are small, we can neglect all the
terms but sin2 u0 in the coefficient of 1−cossQr −Qr8d. This
approximation breaks down when sinu0→0 (i.e., u0→p),
which corresponds to the low-density limit of the attractive
Hubbard model. Integrating out thep field, we obtain the
action of the quantumXY model

SfQg =E
0

b

dtHo
r
F i

2
r0Q̇r +

Q̇r
2

16J
G

+
J

4
s1 − x2d o

kr ,r8l

f1 − cossQr − Qr8dgJ . s98d

Taking the continuum limit, we recover the phase-only ac-
tion derived in Sec. II forU@4t [Eqs.(52) and (58)].

C. Low-density limit: Gross-Pitaevskii equation

In the strong-coupling limit, fermions form tightly bound
pairs which behave as hard-core bosons(the hard-core con-
straint comes from the Pauli principle which prevents double
occupancy of a lattice site). In the low-density limit, the
hard-core constraint does not matter anymore and we expect
to recover the usual action of a Bose superfluid, and in turn
the Gross-Pitaevskii equation.

Using Eqs.(47) and (48),

Vr
± = s− 1drfrrs2 − rrdg1/2e7iQr ,

Vr
z = rr − 1, s99d

we deduce from the Heisenberg model[Eq. (89)]

Sfr,Qg =E
0

b

dtE d2rH i

2
rrQ̇r + Jrr

2 − sh0 + 2Jdrr

+
J

4
F s=rrd2

4rr
+ rrs=Qrd2GJ s100d

in the low-density limitsrr !1d and to second order in gra-
dient. We have taken the continuum limit in real space. In-
troducing the boson densityrbr =rr /2, we recover the action
of a Bose superfluid

FIG. 12. Collective mode dispersionvq in the strong-coupling
limit as obtained from the Heisenberg model[Eq. (95)] for x=0.1
(solid line), 0.5 (dashed line), and 0.9(dotted line). [G=s0,0d, M
=sp ,pd, andX=sp ,0d.]
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Sfrb,Qg =E
0

b

dtE d2rHirbrQ̇r +
g

2
rbr

2 − mbrbr

+
1

2mb
F s=rbrd2

4rbr
+ rbrs=Qrd2GJ

=E
0

b

dtE d2rFCr
*S]t − m −

=2

2mb
DCr

+
g

2
sCr

*Crd2G , s101d

whereCr =Îrbre
iQr.

mb =
1

J
,

mb = 2h0 + 4J,

g = 8J, s102d

are the mass, chemical potential, and interaction constant of
the bosons, respectively. Note that if we neglect thes=rbrd2

term and replacerbr by rb0 in the s=Qrd2 term, we recover
the actionSfr ,Qg (for x→1) derived in Sec. II C 2.

The classical equations of motion derived from the action
(101) yield the Gross-Pitaevskii equation

S]t − mb −
=2

2mb
DCr + guCr u2Cr = 0 s103d

for the complex order parameterCr =Îrbre
iQr. As pointed

out in Sec. II C 2,Cr equals the superconducting order pa-
rameterDr = uDr ueiQr in the strong-coupling low-density limit
of the attractive Hubbard model. Alternatively, the Gross-
Pitaevskii equation can be obtained from the semiclassical
spin dynamics

iV̇r =
J

2o
d

Vr+d 3 Vr − 2h0 3 Vr , s104d

within a second-order gradient expansion and in the low-
density limit rr =Vr

z+1!1. The sum overd in Eq. (104)
denotes a sum over nearest neighbors.

For continuum models, the time-independent Gross-
Pitaevskii equation has been obtained as the strong-coupling
limit of the Bogoliubov–de Gennes equations.68 It has also
been shown that the results obtained in the strong-coupling
limit of an RPA calculation about the BCS state can be re-
produced from the linearized version of the time-dependent
Gross-Pitaevskii equation.69 In this section, we have directly
shown the equivalence, in the low-density limit of the lattice
case, between the low-energy effective action of the super-
fluid order parameterDr ;Îrr /2eiQr and the action of a Bose
superfluid. Our approach is not limited to the low-density
limit. Equation (104), together with Eq.(99), holds for any
density and can be considered as a generalization of the
Gross-Pitaevskii equation to the lattice case.

V. CONCLUDING REMARKS

In this paper, we have studied the 2D attractive Hubbard
model using the mapping onto the half-filled repulsive model
in a uniform magnetic field coupled to the fermion spins. Our
approach reproduces, in a unique framework, a number of
previously known results.

One of our main new results is the derivation of a low-
energy effective actionSfr ,Qg which is valid for all values
of doping x=1−r0 and interaction strengthU. Sfr ,Qg has
been obtained by integrating out amplitude fluctuationssuDud
and therefore does not describe the full dynamics of the su-
perconducting order parameterDr = uDr ueiQr. Nevertheless, it
is similar to the action of a Bose superfluid with order pa-
rameterCr =Îrr /2eiQr, where the mass of the “bosons” and
their mutual interaction depend onx andU. This ensures that
a Fermi superfluid, as described by the 2D attractive Hub-
bard model, will behave similarly to a Bose superfluid and
exhibit the same macroscopic quantum phenomena. The ef-
fective actionSfr ,Qg also describes the smooth crossover
between the weak-coupling BCS limit and the Bose limit of
preformed(local) pairs.

Another important result obtained by our approach is a
complete description of the phase diagram of the 2D attrac-
tive Hubbard model. From the phase-only actionSfQg, we
are able to extract an effectiveXY model and in turn the
BKT phase transition temperatureTBKT. We identify a RC
regime of superconducting fluctuations in the temperature
rangeTBKT øTøTX and an incoherent-pair regime(with no
superconducting short-range order) for TXøTøTpair. The
values obtained forTpair andTX are in good agreement with
numerical results(when available). Near half filling, we find
that TBKT is suppressed due to the strongq=sp ,pd charge
fluctuations which enlarge the symmetry of the order param-
eter to SO(3).

In the strong-coupling limit, the attractive Hubbard model
maps onto the Heisenberg model in a uniform field. The
latter reduces to the quantumXY model (except for a weak
field, i.e., in the low-density limit of the attractive model). In
the low-density limit, we recover the usual action of a Bose
superfluid[including the terms proportional tos¹rrd2] and in
turn the Gross-Pitaevskii equation.
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APPENDIX A: HF CURRENT-CURRENT CORRELATION
FUNCTION

In this appendix we calculate the HF current-current cor-
relation function

Pmm8
nn8 sq̃,q̃8d = k jm

n sq̃d jm8
n8 s− q̃8dlc, sA1d

for q̃,q̃8=0,Q. The calculation is performed at finite tem-
perature in the classical limit: limq̃→0; limq→0limvn→0 and
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limq̃→Q; limq→Qlimvn→0. jm
n sq̃d is the Fourier transformed

field of

j0r
n = fr

†snfr ,

jmr
n = − itfr

†snfr+m̂ + c . c .sm = x,yd. sA2d

We have

jm
n sq̃d =

1
ÎbN

o
k̃

vmsk,qdf
k̃

†
snfk̃+q̃,

v0sk,qd = 1,

vmÞ0sk,qd = − itseiskm+qmd − e−ikmd. sA3d

k̃=sk , ivd where v=pTs2n+1d (n integer) is a fermionic
Matsubara frequency. In Eq.(A1), one must haveq̃= q̃8 or
q̃= q̃8+Q. The correlation functions of interest are

Pmm8
nn8 s0,0d = −

1

bN
o

k̃,s1,s2

fvmsk,0dvm8sk,0dss1s2

n ss2s1

n8

3Gs1
sk̃dGs2

sk̃d + vmsk,0dvm8sk + Q,0d

3ss1s2

n ss̄2s̄1

n8 Fs1
sk̃dFs2

sk̃dg,

Pmm8
nn8 sQ,Qd = −

1

bN
o

k̃,s1,s2

fvmsk,Qdvm8sk + Q,− Qd

3ss1s2

n ss2s1

n8 Gs1
sk̃dGs2

sk̃ + Qd

+ vmsk,Qdvm8sk,− Qdss1s2

n ss̄2s̄1

n8 Fs1
sk̃d

3Fs2
sk̃ + Qdg,

Pmm8
nn8 s0,Qd = −

1

bN
o

k̃,s1,s2

fvmsk,0dvm8sk,− Qd

3ss1s2

n ss2s̄1

n8 Fs1
sk̃dGs2

sk̃d + vmsk,0d

3vm8sk + Q,− Qdss1s2

n ss̄2s1

n8 Gs1
sk̃dFs2

sk̃dg,

sA4d

where

vmsk,0d = dm,0 + dmÞ02t sinkm,

vmsk + Q,0d = gmvmsk,0d,

vmsk,Qd = dm,0 + dmÞ02it coskm,

vmsk + Q,− Qd = gmvmsk,Qd, sA5d

and gm=dm,0−dmÞ0. We use the notationdmÞ0=1−dm,0 and
s̄=−s. The HF propagatorsG andF are defined in Eq.(16).
We have

1

b
o
v

Gssk,ivdGs8sk8,ivd

=
− 1

2sEks
2 − Ek8s8

2 d
FTksSEks +

eksek8s8

Eks

D
− Tk8s8SEk8s8 +

eksek8s8

Ek8s8
DG ,

1

b
o
v

Gssk,ivdGs8sk8 + Q,ivd

=
− 1

2sEks
2 − Ek8s̄8

2 d
FTksSEks −

eksek8s̄8

Eks

D
− Tk8s̄8SEk8s̄8 −

eksek8s̄8

Ek8s̄8
DG ,

1

b
o
v

Fssk,ivdFs8sk8,ivd =
− D0

HS2

2sEks
2 − Ek8s8

2 d
STks

Eks

−
Tk8s8

Ek8s8
D ,

1

b
o
v

Fssk,ivdGs8sk8,ivd =
D0

HSek8s8

2sEks
2 − Ek8s8

2 d
STks

Eks

−
Tk8s8

Ek8s8
D .

sA6d

whereTks=tanhsbEks /2d. Performing the sum overs1, s2

in Eq. (A4), we find that the only nonvanishing correlation

functions are[usingPmm8
nn8 sq̃,q̃8d=Pm8m

n8n sq̃8 ,q̃d]

Pmm
zz s0,0d =

1

2
E

k
vm

2sk,0dFTk↑
Ek↑

3 D0
HS2

s1 + gmd +
Uk↑
Ek↑

2 sEk↑
2 + ek↑

2 − gmD0
HS2

dG ,

Pmm
xx s0,0d =E

k

vm
2sk,0d

Ek↑
2 − Ek↓

2 FTk↑
Ek↑

sEk↑
2 + ek↑ek↓ + gmD0

HS2
d −

Tk↓
Ek↓

sEk↓
2 + ek↑ek↓ + gmD0

HS2
dG ,
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Pmm
yy s0,0d =E

k

vm
2sk,0d

Ek↑
2 − Ek↓

2 FTk↑
Ek↑

sEk↑
2 + ek↑ek↓ − gmD0

HS2
d −

Tk↓
Ek↓

sEk↓
2 + ek↑ek↓ − gmD0

HS2
dG ,

Pmm8
zz sQ,Qd = d̄m,m8E

k

vmsk,Qdvm8sk,Qd

Ek↑
2 − Ek↓

2 FTk↑
Ek↑

sgmsEk↑
2 − ek↑ek↓d − D0

HS2
d −

Tk↓
Ek↓

sgmsEk↓
2 − ek↑ek↓d − D0

HS2
dG ,

Pmm8
xx sQ,Qd = − d̄m,m8gm

1

2
E

k
vmsk,Qdvm8sk,QdFTk↑

Ek↑
S− 2 +

D0
HS2

Ek↑
2 s1 + gmdD − Uk↑

D0
HS2

Ek↑
2 s1 + gmdG ,

Pmm8
yy sQ,Qd = − d̄m,m8gm

1

2
E

k
vmsk,Qdvm8sk,QdFTk↑

Ek↑
S− 2 +

D0
HS2

Ek↑
2 s1 − gmdD − Uk↑

D0
HS2

Ek↑
2 s1 − gmdG ,

P0,mÞ0
xy sQ,Qd = −

1

2
E

k
ekSTk↑

ek↑
2

Ek↑
3 + Uk↑

D0
HS2

Ek↑
2 D ,

PmÞ0,0
xy sQ,Qd =

h0

U
,

P00
zxs0,Qd = D0

HSE
k

ek↑STk↑
Ek↑

3 −
Uk↑
Ek↑

2 D ,

P0,mÞ0
zy s0,Qd = −

D0
HS

2
E

k
ekek↑STk↑

Ek↑
3 −

Uk↑
Ek↑

2 D ,

P00
xzs0,Qd = 2D0

HShE
k

1

Ek↑
2 − Ek↓

2 STk↑
Ek↑

−
Tk↓
Ek↓

D ,

P0,mÞ0
yz s0,Qd = − D0

HSE
k

ek
2

Ek↑
2 − Ek↓

2 STk↑
Ek↑

−
Tk↓
Ek↓

D , sA7d

where Uks=b /2cosh2sbEks /2d and d̄m,m8=dm,0dm8,0

+dmÞ0dm8Þ0. In order to obtain Eqs.(A7), we have used the
gap equations(22) and (23) and the symmetry relationseks

=−ek+Qs̄, Eks=Ek+Qs̄, vmÞ0sk ,0d=−vmÞ0s−k ,0d=−vmÞ0sk
+Q ,0d, etc.

1. Strong-coupling limit Uš4t„T=0…

Expanding Eqs.(A7) to leading order in 1/U, we obtain
sT=0d

P00
zzs0,0d =

2

U
sin2 u0,

P00
xxsQ,Qd =

2

U
cos2 u0,

o
m,m8=x,y

Pmm8
yy sQ,Qd = 2Jcos2 u0,

P0x
xysQ,Qd =

8t2

U2 cosu0s2 − 3 cos2 u0d,

P00
zxs0,Qd = −

1

U
sins2u0d,

P0x
zys0,Qd = −

8t2

U2 sinu0s1 − 3cos2u0d. sA8d

Here we consider only the correlation functions that are use-
ful for the derivation of the effective actionSfr ,Dg and the
calculation of the velocityc of the phase collective mode.
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2. Correlation functions for h0=0 and Vr
cl=„−1…r ẑ„T=0…

In Sec. III, we need the HF current-current correlation
function at half filling and for a magnetization parallel to the
z axis. They can be deduced from Eqs.(A7) with h0=h=0
and by making the rotation in spin spacex̂→ ẑ, ẑ→ ŷ and
ŷ→ x̂. The only nonvanishing correlation functions are then
(the notations are those of Sec. III)

P00
xxs0,0d = P00

yys0,0d = m0
2E

k

1

Ek
3 ,

Pxx
zzs0,0d = Pyy

zzs0,0d = 4t2m0
2E

k

sin2 kx

Ek
3 ,

Pmm
xx sQ,Qd = Pmm

yy sQ,Qd = −E
k

ek
2

2Ek
3 sdm,0Ek

2 − dmÞ0ek
2d,

Pmm
zz sQ,Qd =E

k

«k
2

2Ek
3 sdmÞ0Ek

2 − dm,0ek
2d,

P0,mÞ0
yx s0,Qd = −

m0

2
E

k

«k
2

Ek
3 ,

P0,mÞ0
xy s0,Qd =

m0

2
E

k

ek
2

Ek
3 , sA9d

whereEk =Îek
2+m0

2.

APPENDIX B: EFFECTIVE ACTION S†m,V‡

In this appendix, we derive the effective actionSfm,Vg
=Sfp,q,mg [Eq. (34)] of spin fluctuations in the repulsive
Hubbard model. It is convenient to express the rotation ma-
trix Rr as Rr =MsVrdM†sVr

cld where MsVrd is defined by
MsVrdszM†sVrd=s ·Vr :

MsVrd =1cosSur

2
De−si/2dwr − sinSur

2
De−si/2dwr

sinSur

2
Desi/2dwr cosSur

2
Desi/2dwr 2 .

sB1d

We then obtain

A0r
x = s− 1drFS i

2
q̇r + h0Dsins2prd − sinu0idmr

HSG ,

A0r
y = − is− 1dr ṗr ,

A0r
z = − S i

2
q̇r + h0Dcoss2prd + h0 − cosu0idmr

HS,

Ar ,r8
0 = cosSqr − qr8

2
Dcosspr + pr8d − 1,

Ar ,r8
x = − is− 1drsinSqr − qr8

2
Dsinspr − pr8d,

Ar ,r8
y = is− 1drcosSqr − qr8

2
Dsinspr + pr8d,

Ar ,r8
z = i sinSqr − qr8

2
Dcosspr − pr8d. sB2d

Equations(B2) can be rewritten as

A0r
x = s− 1drF i

2
spr q̇r − ṗrqrd + 2h0pr − sinu0idmr

HSG ,

A0r
y = − is− 1dr ṗr ,

A0r
z = −

i

2
q̇r + 2h0pr

2 − cosu0idmr
HS,

Ar ,r8
0 = −

spr + pr8d
2

2
−

sqr − qr8d
2

8
,

Ar ,r8
x = −

i

2
s− 1drsqr − qr8dspr − pr8d,

Ar ,r8
y = is− 1drspr + pr8d,

Ar ,r8
z =

i

2
sqr − qr8d, sB3d

to quadratic order inpr , dmr
HS, ṗr , q̇r , andqr −qr8.

Keeping terms up to second-order inpr , dmr
HS, dmr , ṗr ,

q̇r , andqr −qr8 (r ,r 8 nearest neighbors), the effective action
is given by first- and second-order cumulants ofS1 and S2
with respect to the HF action

Sfp,q,mHS,mg = kS1 + S2l −
1

2
ksS1 + S2d2lc

+E
0

b

dto
r
S−

U

4
dmr

2 + idmr
HSdmr

−
2

U
m0

HSdmr
HSD . sB4d

Using

kfr
†s0frl = 1,

kfr
†sxfrl = s− 1dr2D0,

kfr
†syfrl = 0,

kfr
†szfrl = − x, sB5d

where the averages are taken with the HF action, we obtain
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kS1l =E
0

b

dto
r
FiD0spr q̇r − ṗrqrd + 4D0h0pr

− 2D0sinu0idmr
HS +

i

2
xq̇r − 2xh0pr

2 + x cosu0idmr
HSG .

sB6d

Similarly, from (r ,r 8 are nearest neighbors)

kfr
†s0fr8l =

k− Kl
4t

=
1

4t
E

k

ekek↑
Ek↑

tanh
bEk↑

2
,

kfr
†sxfr8l = 0,

kfr
†syfr8l = − is− 1dr D0h0

2t
,

kfr
†szfr8l = 0, sB7d

we deduce

kS2l =
k− Kl

4
E

0

b

dt o
kr ,r8l

Fspr + pr8d
2 +

sqr − qr8d
2

4
G

− 4D0h0E
0

b

dto
r

pr . sB8d

We have introduced the mean valuekKl of the kinetic energy
per site in the HF state.

When calculating the second-order cumulant, it is suffi-
cient to considerA0r andAr ,r8 to linear order inpr , dmr

HS, ṗr ,
q̇r , andqr −qr8:

A0r
x = s− 1drs2h0pr − sinu0idmr

HSd,

A0r
y = − is− 1dr ṗr ,

A0r
z = −

i

2
q̇r − cosu0idmr

HS,

Ar ,r8
0 = 0,

Ar ,r8
x = 0,

Ar ,r8
y = is− 1drspr + pr8d,

Ar ,r8
z =

i

2
sqr − qr8d. sB9d

In order to evaluateksS1+S2d2lc, we write the actionS1+S2

as

S1 + S2 =E
0

b

dt o
r

m=0,x,y

n=x,y,z

Amr
nstotd jmr

n , sB10d

Amr
nstotd = dm,0A0r

n − is1 − dm,0dAmr
n , sB11d

whereAmr
n =Ar ,r+m̂

n for m=x,y. The spin-density currentjmr
n is

defined by Eq.(A2). We then have

ksS1 + S2d2lc =E
0

b

dtdt8 o
r ,r8

m,m8=0,x,y

n,n8=x,y,z

Amr
nstotdstd

3Pmm8
nn8 sr ,t;r 8,t8dAm8r8

n8stotdst8d, sB12d

where

Pmm8
nn8 sr ,t;r 8,t8d = k jmr

n std jm8r8
n8 st8dlc sB13d

is the HF current-current correlation function.Pmm8
nn8 is calcu-

lated in Appendix A.
In order to calculate the second-order cumulant, we write

the actionsS1 andS2 [Eqs.(32)] as

S1 =E
0

b

dt o
r

n=x,y,z

A0r
n j0r

n ,

S2 = − iE
0

b

dt o
r

m=x,y

n=x,y,z

Amr
n jmr

n , sB14d

whereAmr
n =Ar ,r+m̂

n for m=x,y. A0r
n andAmr

n are given by Eqs.
(B9). The spin-density currentjmr

n is defined in Eq.(A2). In
Fourier space, we obtain

A0
nsq̃d = z0sq̃dFdn,ypq̃+Q + dn,z

qq̃

2
G

+ dn,xf2h0pq̃+Q − sinu0idmq̃+Q
HS g − dn,zcosu0idmq̃

HS,

− iAm
n sq̃d = zmsq̃dFdn,ypq̃+Q + dn,z

qq̃

2
G sm = x,yd,

sB15d

where

z0sq̃d = − vn,

zm=x,ysq̃d = 1 −eiqm. sB16d

We deduce
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ksS1 + S2d2lc = o
q̃,q̃8
H o

m,m8=0,x,y

Fzms− q̃ − Qdzm8sq̃8 + Qdp−q̃pq̃8Pmm8
yy sq̃ + Q,q̃8 + Qd +

1

4
zms− q̃dzm8sq̃8dq−q̃qq̃8Pmm8

zz sq̃,q̃8d

+
1

2
zms− q̃ − Qdzm8sq̃8dp−q̃qq̃8Pmm8

yz sq̃ + Q,q̃8d +
1

2
zms− q̃dzm8sq̃8 + Qdq−q̃pq̃8Pmm8

zy sq̃,q̃8 + QdG
+ o

m=0,x,y
Fzmsq̃8 + Qdr−q̃pq̃8P0m

xy sq̃ + Q,q̃8 + Qd +
1

2
zmsq̃8dr−q̃qq̃8P0m

xz sq̃ + Q,q̃8d

+ zms− q̃ − Qdp−q̃r q̃8Pm0
yx sq̃ + Q,q̃8 + Qd +

1

2
zms− q̃dq−q̃r q̃8Pm0

zx sq̃,q̃8 + Qd

− cosu0Szmsq̃8 + Qdidm−q̃
HSpq̃8P0m

zy sq̃,q̃8 + Qd +
1

2
zmsq̃8didm−q̃

HSqq̃8P0m
zz sq̃,q̃8d + zms− q̃ − Qdp−q̃idmq̃8

HS
Pm0

yz sq̃ + Q,q̃8d

+
1

2
zms− q̃dq−q̃idmq̃8

HS
Pm0

zz sq̃,q̃8dDG + r−q̃r q̃8P00
xxsq̃ + Q,q̃8 + Qd − cos2 u0dm−q̃

HSdmq̃8
HS

P00
zzsq̃,q̃8d

− cosu0fr−q̃idmq̃8
HS

P00
xzsq̃ + Q,q̃8d + idm−q̃

HSrq̃8P00
zxsq̃,q̃8 + QdgJ , sB17d

whererq̃=2h0pq̃−sinu0idmq̃
HS. To proceed further, we use the expression of the correlation functionPmm8

nn8 sq̃,q̃8d obtained in
Appendix A. We thus haveq̃= q̃8 in Eq. (B17). In order to obtain the effective action of theq field to lowest order in]mq, it
is sufficient to retain the first-order derivative terms]mq. Sincezmsq̃d=Os]md, one can usez0sq̃d=−vn, zmÞ0sq̃d=−iqm, z0sq̃
+Qd=0, zmÞ0sq̃+Qd=2, and evaluate the correlation functionsPmm8

nn8 at q̃= q̃8=0 in Eq. (B17). This gives

ksS1 + S2d2lc = o
q̃
Hp−q̃pq̃S4 o

m,m8Þ0

Pmm8
yy sQ,Qd + 4h0

2P00
xxsQ,Qd + 16h0P0x

xysQ,QdD + q−q̃qq̃S−
vn

2

4
P00

zzs0,0d +
q2

4
Pxx

zzs0,0dD,

− dm−q̃
HSdmq̃

HSfsin2 u0P00
xxsQ,Qd + cos2u0P00

zzs0,0d + sins2u0dP00
zxs0,Qdg − hp−q̃qq̃vnf2P0x

zys0,Qd + h0P00
zxs0,Qdg

− c.c.j − ihp−q̃dmq̃
HSf2h0 sinu0P00

xxsQ,Qd + 4 sinu0P0x
xysQ,Qd + 4 cosu0P0x

zys0,Qd + 2h0 cosu0P00
zxs0,Qdg + c.c.j

− iHq−q̃dmq̃
HSvn

2
fsinu0P00

zxs0,Qd + cosu0P00
zzs0,0dg − c.c.JJ . sB18d

A comment is in order here. The first-order cumulant(B6)
gives a term linear inqr :

dSB =
i

2
xE

0

b

dto
r

q̇r . sB19d

This term comes from the Berry phase termSB

=e0
bdtorkfr

†Rr
†Ṙrfrl. The SU(2) matrix Rr is defined up to

the U(1) gauge transformationRr →Rre
−si/2dcrs·Vr

cl
. The

Berry phase term depends on the gauge choice.38 The gauge-
dependent term is given by

−
i

2
E

0

b

dto
r

kfr
†s · Vr

clfrlċr = −
i

2
m0E

0

b

dto
r

ċr .

sB20d

In the following we takecr =wr /m0. As shown in Sec. II C,
this choice ensures that in the attractive model, half the fer-
mion density is identified as the conjugate variable of the

phaseQ of the superconducting order parameter, as required
by gauge invariance.34 Including the gauge-dependent term
of SB [Eq. (B20)] in dSB, we obtain

dSB = −
i

2
r0E

0

b

dto
r

q̇r . sB21d

From Eqs.(B6), (B8), (B18), and(B21), we then obtain

Sfp,q,mHS,mg =
1

2o
q̃
Fp−q̃Pppsq̃dpq̃ + q−q̃Pqqsq̃dqq̃

+ dm−q̃
HSPmHSmHSsq̃ddmq̃

HS + 2p−q̃Ppqsq̃dqq̃

+ 2p−q̃PpmHSsq̃ddmq̃
HS + 2q−q̃PqmHSsq̃ddmq̃

HS

+ 2idm−q̃dmq̃
HS −

U

2
dm−q̃dmq̃G + dSB,

sB22d

where
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Pppsq̃d = − 4 o
m,m8Þ0

Pmm8
yy sQ,Qd − 4h0

2P00
xxsQ,Qd

− 16h0P0x
xysQ,Qd − 4xh0 + 4k− Kl,

Pqqsq̃d =
vn

2

4
P00

zzs0,0d +
q2

8
k− Kl,

PmHSmHSsq̃d = sin2 u0P00
xxsQ,Qd + cos2 u0P00

zzs0,0d

+ sins2u0dP00
zxs0,Qd,

Ppqsq̃d = vnf2P0x
zys0,Qd + h0P00

zxs0,Qd + 2D0g,

PpmHSsq̃d = 2ifh0 sinu0P00
xxsQ,Qd + 2 sinu0P0x

xysQ,Qd

+ 2cosu0P0x
zys0,Qd + h0 cosu0P00

zxs0,Qdg,

PqmHSsq̃d =
i

2
vnfsinu0P00

zxs0,Qd + cosu0P00
zzs0,0dg.

sB23d

Equations (B23) are valid in the hydrodynamic regime
sq̃→0d. They are sufficient to obtain the effective action of
the AF fieldq to orderOs]m

2d.
Integrating out the Hubbard-Stratonovich fieldmHS, we

obtain Eq.(34) with

P̃pp = Ppp −
PpmHSPmHSp

PmHSmHS
,

P̃qq = Pqq −
PqmHSPmHSq

PmHSmHS
,

P̃mm=
1

PmHSmHS
−

U

2
,

P̃pq = Ppq −
PpmHSPmHSq

PmHSmHS
,

P̃pm= − i
PpmHS

PmHSmHS
,

P̃qm= − i
PqmHS

PmHSmHS
. sB24d

The actionSfp,q,mg takes a very simple form in the weak-
coupling (Slater) and strong-coupling(Mott-Heisenberg)
limits.

1. Slater limit

We assume that we are not too close to half filling so that
the zero-temperature order parameterD0

HS is given by Eq.
(26). SinceD0

HS is exponentially small at weak coupling,u0

.p andim0
HS.xU/2 [see Eqs.(15) and(21)]. We also have

P00
zxs0,Qd = D0

HSE
k

ek↑
Ek↑

3

. D0
HSN0seFdE

−4t

4t

de
e − eF

fse − eFd2 + D0
HS2

g3/2
. 0.

sB25d

Since the integral in Eq.(B25) is peaked arounde=eF for
D0

HS→0, we have replaced the density of statesN0sed by its
value at the Fermi energyeF [see the discussion after Eq.
(25)]. For the same reason, we can extend the integration
range tog−` ,`f, so that the integral vanishes. This result is
a consequence of the particle-hole symmetry which holds in
the weak-coupling(BCS) limit of the attractive model. Simi-
larly, we find P0x

zys0,Qd.0. We therefore have

Pqq =
P00

zzs0,0d
4

vn
2 +

k− Kl
8

q2,

PmHSmHS = P00
zzs0,0d,

Ppqsq̃d = 2vnD0 . 0,

PpmHSsq̃d = 0,

PqmHSsq̃d = −
i

2
P00

zzs0,0dvn. sB26d

Using Eqs.(B24), we deduce

P̃qq =
k− Kl

8
q2,

P̃mm=
1

P00
zzs0,0d

−
U

2
,

P̃qm= −
vn

2
sB27d

and P̃pq=P̃pm=0. p fluctuations do not couple toq and m
fluctuations. We therefore obtain the effective action

Sfq,mg =
1

2
E

0

b

dtE d2rFidmr q̇r +
k− Kl

8
s=qrd2

+ S 1

P00
zzs0,0d

−
U

2
Ddmr

2G + dSB, sB28d

where we have taken the continuum limit in real space.

2. Mott-Heisenberg limit

In the strong-coupling limit, there are well-defined local
moments with a fixed amplitude so that we can ignore the
fluctuations ofmHS and m. Low-energy fluctuations corre-
spond to direction fluctuations of these local moments. This
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can be seen explicitly by integrating out them field in the
action Sfp,q,mHS,mg [Eq. (B22)]. This yields the replace-
ment

PmHSmHS → PmHSmHS8 = PmHSmHS −
2

U
. sB29d

To leading order in 1/U, we have[see Eqs.(A8) in Appendix
A 1]

PmHSmHS8 sq̃d = −
2

U
,

PpmHS = OS t2

U2D ,

PqmHS = OSvnt

U2 D . sB30d

Integrating outmHS yields the correction terms

−
PpmHSPmHSp

PmHSmHS8
= OS t4

U3D ,

−
PqmHSPmHSq

PmHSmHS8
= OSvn

2t2

U3 D ,

−
PpmHSPmHSq

PmHSmHS8
= OSvnt

3

U3 D , sB31d

to Ppp, Pqq, and Ppq, respectively. These terms can be ig-
nored in the limitU@4t.

Using Eqs.(A8) of Appendix A 1, we therefore have

Pppsq̃d = 8J sin2 u0,

Pqqsq̃d = q2J

4
sin2 u0,

Ppqsq̃d = vn sinu0, sB32d

and PpmHS=PqmHS.0. Using thenP̃=P [Eqs. (B24)], we
obtain the effective action

Sfp,qg =
1

2
E

0

b

dtE d2rF2iÎ1 − x2pr q̇r +
J

4
s1 − x2ds=qrd2

+ 8Js1 − x2dpr
2G + dSB. sB33d

APPENDIX C: KINETIC ENERGY IN THE HF STATE
„T=0…

In this Appendix, we derive Eq.(56). We start from

=k ·S ek↑
Ek↑

vkD =
ek↑
Ek↑

=k ·vk + =kS ek↑
Ek↑

D ·vk

= −
ek↑ek

Ek↑
+

D0
HS2

Ek↑
3 vk

2, sC1d

wherevk ==kek. Integrating the left hand side of this equa-
tion over the entire Brillouin zone, we obtain

E
k

=k ·S ek↑
Ek↑

vkD = R ek↑
Ek↑

vk ·dlk = 0, sC2d

where the contour in the last integral is given by the Bril-
louin zone (BZ) boundary anddlk is perpendicular to the
contour. The integral vanishes sincevk ·dlk =0 at the BZ
boundary. We deduce from Eqs.(C1) and (C2)

k− KlT=0 =E
k

ek↑ek

Ek↑
= D0

HS2E
k

vk
2

Ek↑
3 . sC3d

In the weak-coupling limit, usingD0
HS2

/Ek↑
3 ;2dsek −eFd, we

obtain Eq.(56).

APPENDIX D: CHARGE „rr… AND PAIRING „Dr… FIELDS

In the section, we relate the chargesrrd and pairingsDrd
fluctuations of the attractive model to the fieldsp, q, anddm
defined in the repulsive model. We rewriteSJ [Eq. (35)] as

SJ =E
0

b

dto
r

fr
†B0rfr , sD1d

whereB0r =Rr
†Jr ·sRr =on=x,y,zB0r

n sn and

B0r
x = s− 1dr cossur − u0dfcoswrJr

x + sinwrJr
yg

− s− 1dr sinsur − u0dJr
z,

B0r
y = − s− 1dr sinwrJr

x + s− 1drcoswrJr
y,

B0r
z = sinsur − u0dfcoswrJr

x + sinwrJr
yg + cossur − u0dJr

z.

sD2d

To first order inJ and second order inp,dmHS,dm, the
effective action is given bykS1+S2+SJl− 1

2ksS1+S2+SJd2lc.
The first-order cumulant gives the source-dependent contri-
bution

SJ
s1d =E

0

b

dto
r

f2D0s− 1drB0r
x − xB0r

z g. sD3d

From the second-order cumulant, we obtain to linear order in
the source

BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION… PHYSICAL REVIEW B 70, 134502(2004)

134502-25



SJ
s2d = −E

0

b

dtdt8 o
r ,r8

n,n8=x,y,z

m8=0,x,y

B0r
n stdP0m8

nn8 sr ,t;r 8,t8dAm8r8
nstotdst8d

= −E
0

b

dto
r
Hs− 1drB0r

x F4P0x
xysQ,Qdpr

+ P00
xxsQ,Qds2h0pr − sinu0idmr

HSd

+ P00
zxs0,QdS−

i

2
q̇r − cosu0idmr

HSDG
+ B0r

z F4P0x
zys0,Qdpr + P00

zxs0,Qds2h0pr − sinu0idmr
HSd

+ P00
zzs0,0dS−

i

2
q̇r − cosu0idmr

HSDGJ , sD4d

where the last expression is valid in the hydrodynamic re-
gime. Am

nstotd is defined in Eq.(B11). In the presence of the
sourceJ, the effective actionSfp,q,mHS,mg [Eq. (B22)]
should be supplemented withSJ

s1d+SJ
s2d. The integration of

the mHS field then leads to the source-dependent actionSJ
s1d

+SJ
s2d8+SJ

s3d whereSJ
s2d8= uSJ

s2dudmHS=0 and

SJ
s3d = −

i

PmHSmHS
E

0

b

dto
r

hs− 1drB0r
x fsinu0P00

xxsQ,Qd

+ cosu0P00
zxs0,Qdg + B0r

z fsinu0P00
zxs0,Qd

+ cosu0P00
zzs0,0dgjsPmHSppr + PmHSq

r iq̇r + idmrd.

sD5d

We have introducedPmHSq
r =PmHSq/vn. In Eq. (D5), the cor-

relation functionsPmHSmHS,PmHSp,PmHSq
r are evaluated atq̃

=0. Taking the functional derivative ofSJ
s1d+SJ

s2d8+SJ
s3d with

respect toJ, we finally obtain

drr = prf− 4D0 − 2h0P00
zxs0,Qd − 4P0x

zys0,Qdg + P00
zzs0,0d

i

2
q̇r

−
i

PmHSmHS
fsinu0P00

zxs0,Qd + cosu0P00
zzs0,0dgsPmHSppr

+ PmHSq
r iq̇r + idmrd,

duDr u = prf− x − h0P00
xxsQ,Qd − 2P0x

xysQ,Qdg + P00
zxs0,Qd

i

4
q̇r

−
i

2PmHSmHS
fsinu0P00

xxsQ,Qd + cosu0P00
zxs0,Qdg

3sPmHSppr + PmHSq
r iq̇r + idmrd,

Qr = − qr . sD6d

Strong-coupling limit.In the strong-coupling limit, we can
obtain a simple relation betweenrr , Dr , andmrVr . In Sec.
IV, we show that the Hubbard model reduces to the Heisen-

berg model whenU@4t. We can carry out the same deriva-
tion in the presence of the source term(D1). Integrating out
the fermions, we obtain the source-dependent term

SJ =E
0

b

dto
r

kfr
†Rr

†Jr · sRrfrlat sD7d

to leading order in 1/U. The average in Eq.(D7) is taken
with respect to the atomic action(86). The matrixRr satisfies
Rrs

zRr
†=s ·Vr (see Sec. IV A). Using kfr

†snfrlat=dn,z and
Rr

†Jr ·sRr =s ·Rr
−1Jr , where

Rr = 1cosur coswr − sinwr sinur coswr

cosur sinwr coswr sinur sinwr

− sinur 0 cosur
2 sD8d

is the SO(3) rotation matrix which mapsẑ onto Vr , we ob-
tain

SJ =E
0

b

dto
r

Jr · Vr . sD9d

From Eqs.(36) we then deduce

rr − 1 =Vr
z,

Dr =
s− 1dr

2
Vr

−, sD10d

whereVr
±=Vr

x± iVr
y.

APPENDIX E: HF CUMULANTS ŠSp+Sh0
+Sdm‹

AND Š„Sh0
+Sdm…

2+2„Sh0
+Sdm…„Sp+Sl…‹c

In this appendix, we calculatekSp+Sh0
+Sdml and ksSh0

+Sdmd2+2sSh0
+SdmdsSp+Sldlc (Sec. III). The first-order cu-

mulants read

kSpl = −E
0

b

dto
r

A0r
z k j0r

z l

= − i
m0

U
E

0

b

dto
r

s− 1drsẇr cosur + ċrd,

kSh0
l = − h0E

0

b

dto
r

B0r
z k j0r

z l = −
2h0m0

U
E

0

b

dto
r

s− 1drnr
z,

sE1d

and

kSdml = −E
0

b

dto
r

s− 1drdmrk j0r
z l = −

2m0

U
E

0

b

dto
r

dmr ,

sE2d

where we have usednr
z=cosur and the saddle-point equation

2m0/U=s−1drkcr
†szcrl. Sincenr is slowly varying,kSh0

l van-
ishes. From Eqs.(E2) and(69), we conclude that there is no
linear contribution indm.

Let us now consider the second-order cumulant
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kSh0
Sdml = h0E

0

b

dtdt8 o
r ,r8

n=x,y,z

B0r
n stdP00

nzsr ,t;r 8,t8d

3s− 1dr8dmr8

= h0 o
q̃,q̃8

n=x,y,z

B0
ns− q̃dP00

nzsq̃,q̃8ddmq̃8+Q. sE3d

Pmm8
nn8 is the HF current-current correlation function forh0

=0 and an AF order parallel to thez axis [i.e., Vr
cl=s−1dr ẑ].

It is given in Appendix A 2. SinceB0r
n is slowly varying, we

can evaluatePmm8
nn8 sq̃,q̃8d at q̃=0 in order to obtain the result

to second order inh0, ]m and dm. Since P00
nzsq̃=0,q̃8d=0

(Appendix A 2), kSh0
Sdml vanishes. A similar calculation

shows thatkSpSdml=kSlSdml=0. We therefore conclude that
amplitude fluctuations decouple in the limit of a weak mag-
netic field.

The contribution due toSh0

2 is given by

kSh0

2 l = h0
2E

0

b

dtdt8 o
r ,r8

n,n8=x,y,z

B0r
n stdP00

nn8sr ,t;r 8,t8dB0r8
n8 st8d

= h0
2 o

q̃,q̃8

n,n8=x,y,z

B0
ns− q̃dP00

nn8sq̃,q̃8dB0
n8sq̃8d. sE4d

SinceB0r
n is slowly varying, we can evaluateP00

nn8sq̃,q̃8d at
q̃= q̃8=0:

kSh0

2 l = h0
2P00

xxE
0

b

dto
r

sin2 ur . sE5d

Here and in the following, we use the notationP00
nn8

;P00
nn8sq̃=0,q̃8=0d. We have usedP00

nn8~dn,n8sdn,x+dn,yd. A
similar calculation gives

kSh0
Spl = h0P00

xxE
0

b

dto
r

i

2
sin2 urẇr ,

kSh0
Sll = h0m0P00

xxE
0

b

dto
r

sinurs− coscr l r
x + sincr l r

yd.

sE6d

To expresskSh0

2 l, kSh0
Spl, andkSh0

Sll in terms ofn and l, we
use

sh0 3 nrd2 = h0
2 sin2 ur ,

h0 · snr 3 ṅrd = h0
2ẇr sin2 ur ,

Lr
z = sinurs− coscr l r

x + sincr l r
yd. sE7d

The last result follows fromL r =Rr l r and l r
z=0, whereRr is

given by

Rr = 1cosur coswr coscr − sinwr sincr − cosur coswr sincr − sinwr coscr sinur coswr

cosur sinwr coscr + coswr sincr − cosur sinwr sincr + coswr coscr sinur sinwr

− sinur coscr sinur sincr cosur
2 . sE8d

We therefore obtain

kSh0

2 l = P00
xxE

0

b

dto
r

sh0 3 nrd2,

kSh0
Spl =

i

2
P00

xxE
0

b

dto
r

h0 · snr 3 ṅrd,

kSh0
Sll = m0P00

xxE
0

b

dto
r

h0 ·L r . sE9d
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2kẑ·snr 3 ṅrdl
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