PHYSICAL REVIEW B, VOLUME 65, 245118

Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model
at weak coupling
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Starting from the Hubbard model in the weak-coupling limit, we derive a spin-fermion model where the
collective spin excitations are described by a nonlinear sigma model. This result is used to compute the fermion
spectral functiorA(k, ) in the low-temperature regime where the antiferromagriéti® coherence length is
exponentially largé“renormalized classical” regime At the Fermi level A(kg , ) exhibits two peaks around
+Aq (with Ay the mean-field ggp which are precursors of the zero-temperature AF bands, separated by a

pseudogap.
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[. INTRODUCTION mation (RPA) predicts a finite temperature phase transition

which is forbidden in two dimensional by the Mermin-

In the last two decades, the discovery of heavy-fermiorWagner theorem. More sophisticated approaches are there-
compounds, highF, superconductors, and organic conduc-fore required. In the weak-coupling limit, the pseudogap for-
tors has revived interest in strongly correlated electron syshation has been considered within the fluctuation exchange
tems. Of particular interest are metallic phases which, al{FLEX) approximatiofi and the two-particle—self-consistent
though conducting, are not described by Landau's Fermi{TPSQ theory**® which both satisfy the Mermin-Wagner
liquid theory because of the absence of well-definedgheorem. Or}Iy the TPS_C theory predlcts_the formation of a
quasiparticle excitations. A well-known example is given byPSeudogap in the fermion spectral functiéik, ) at low
the normal phase of higi; superconductors. Instead of qua- temperature. : : . .
siparticles, these systems exhibit a pseudogap at low ener%% Thi r;umthof tzhlgs hpallfr-)ﬁlrl '3 tHo Sgscgbe 3n|a}ltematlve 6I1<p
as shown by many experimerttélthough the origin of the oach 1o the ar-fiiied Hubbard modet in the wea

seudogap is still under debate, it is generally believed th oupling limit. We first derive a spin-fermion model where
pseudogap . - 9 Y %he collective spin excitations are described by a nonlinear
antiferromagneti¢AF) fluctuations play a crucial role.

X . . sigma model (NloM). The spin-wave velocity and the cou-
In this paper, we consider the pseudogap issue on th g ( ) P 4

. . . s 8Iing constant of the N&M are expressed in terms of the
basis of the half-filed two-dimensional2D) Hubbard g, hq_state properties of the system. Solving therNLin
model. We consider only the weak-coupling lirbitst (U is 5 “large-\" limit, we then compute the fermion spectral

the local Coulomb repulsion artdhe intersite hopping am-  fnction A(k, w) to lowest order in the spin-fermion interac-
plitude). [In the strong-coupling limit at half-filling, the finite  tion. At the Fermi level A(kg , ) exhibits two peaks around
temperature paramagnetic phase is a Mott-Hubbard insulator A, (with A, the mean-field gapwhich are precursors of
with a (charge gap of ordetU. At T=0, there is a transition the zero-temperature AF bands, separated by a pseudogap.

to a Neel antiferromagnetic stafd Although the ground state We compare our results with those of the TPSC theory.
is AF, long-range order is destroyed by classical fluctuations

at any finite temperature, in agreement with the Mermin- Il MODEL
Wagner theorem. Nevertheless, below a crossover tempera-
ture Ty (of the order of the mean-field transition tempera- The two-dimensional Hubbard model is defined by the
ture), the system enters a renormalized classical regimélamiltonian
where AF correlations start to grow exponentially. Contrary
to the 3D case, at the zero-temperature 2D phase transition He _t E
the system goes directly into ttiBleel) ordered state where
the fermion spectral functio\(k,w) exhibits two well- ) ) ) ) ) .
defined quasiparticléQP) peaks corresponding to the Bogo- Wheret is the intersite hopping amplitude ahtithe on-site
liubov QP's. By continuity, the two-peak structureAik, ) ~ Coulomb repulsionc,,; is a fermionic operator for a-spin
cannot disappear as soon as we raise the temperature. Rarticle at siter (0=1,1), andn,,=c/,c.,. (r,r’) denotes
pointed out in Ref. 3, the only possible scenario is that anearest-neighbor sites. We take the lattice spacing equal to
finite but low temperature the fermion spectral function ex-unity andz =kg=1 throughout the paper.
hibits two (broadenefipeaks which are precursors of tiie Since spin fluctuations play a crucial role in the Hubbard
=0 Bogoliubov QP’s, separated by a pseudogap. We therénodel at half-filling, it is convenient to introduce auxiliary
fore expect the presence of a pseudogap at finite temperatuﬂgms describing these collective excitations. The standard
due to the strongclassical AF fluctuations. approach is to write the interaction part of the Hamiltonian in
Clearly, traditional mean-field techniques fail to describeterms of charge and spin fluctuations, i®.,n, =[(c/c,)?
these phenomena. For instance, the random-phase approxi{c:‘azcr)z]m, and then perform a Hubbard-Stratonovich

(¢l CrgtHC)+UD nyny, (2.0
r

(rir'y,o
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transformation by means of twieea) auxiliary fieldsA. and  =(U/2)(— 1) (! o,¢,), is obtained by minimizing the free
Ag [cr=(cy ,crl)T]. Although this procedure recovers the energy. In the weak-coupling limit, this gives\y
standard mean-fieldor Hartree-Fock theory of the Nel ~te 2mTU 9

state within a saddle-point approximation, it leads to a loss of |ow-energy spin excitations correspond to fluctuations of
spin-rotation invariance and does not allow to obtain thethe unit vector fieldQ, around its saddle-point value. The
spin-wave excitations. Alternatively, one could writgn,;|  standard procedut®®’is then to assume at least local AF
in a spin-rotation invariant form, e.g. nyn;  order and writeQ,=n,(1—L?)Y?+(—1)'L,, where the

= —(c]oc,)?/6 wherea denotes the Pauli matrices, and use(Neel) order parameter fiela, is slowly varying in space

a vector Hubbard-Stratonovich field. Such decompositionsand time and_, is a small canting field|¢,|=1, L,-n,=0,
however, do not reproduce the mean-field results at th@nd|L,|<1). Integrating out bothp andL yields the action

saddle-point Iev<_a1. - _ of the NLoM.”*! In the strong-coupling limity>t, one re-
As noted earlief;® this difficulty can be circumvented by covers the action derived from the Heisenberg model.
writing n,;n, =[(cc;)?—(clo- Q,c,)21/4 whereQ, is an As we now verify explicitly, the small canting field,

arbitrary unit vector. Spin-rotation invariance is maintainedgives negligible contributions to the parameters of the
by averaging the partition function over all directions NLoM in the weak-coupling limitU<t. If we identify Q,

of &,. In a path-integral formalism2, becomes a time- with the slowly varying Nel field, Q,~n,, the effective
dependent variable. After the Hubbard-Stratonovich transactionS[n] is readily obtained. Integrating out the fermions
formation, the partition function is given byZ in Eq. (3.1) and taking the continuum limit in space, one
=JD[c",c]fD[Ac,As, 2]e”® with the action obtains to lowest order in gradiefite., in 9.R and V,R)*?

B 1 1
S=S+2 f dr{U<A§,+A§r>—CI<iAc,+Asra-ﬂr>c, . Sinl=5 f d?rdx?(2,m?+pA V3, (3.2
r 0

(22 Wherexf is the uniform transverse spin susceptibility in the

S, is the action in the absence of interaction. Since chargg'¢an-field state_andgz —(K)we/2+ HE)/"{ the spin stiff-
fluctuations are not criticaleven wherT—0), they can be NeSS. HeréK)yg is the mean value of the kinetic energy and
treated at the saddle poifite., Hartree-Fock level. Their [T} the correlation function of the transverse spin currgiit (
effect is to renormalize the chemical potengiafrom U/2 to  Or j*). Equation(3.2) should be supplemented with a short-
0. Equation(2.2) then corresponds to a spin-fermion model distance cutoffin momentum spageA ~ &, *, since short-
where the fermions interact with their collective spin degreegange AF order cannot be defined at length scales smaller
of freedom (A, €,). (We now denote\, by A, .) Below the that the coherence lengtfy~t/A,. Using the mean-field
crossover temperatui@g, i.e., whenT<Ty, low-energy ex-  actionSyg, one obtains i is the number of lattice sitgs
citations correspond to orientational spin fluctuations de-

scribed by the unit vector fiel®, . We can then considek, 0 A2 1 1 \/T

within a saddle-point approximation, i.eA,=Aq(—1)", XL17aN zk: Bt VU (33

where the fluctuations af are ignored. In order to compute k

the fermion spectral functioA(k,w), one should first deter- 242 2

mine the effective actio§] Q] of the unit vector fieldQ. pgzﬂ SI 3kx~t (3.4
N % E ' '

lll. SPIN FLUCTUATIONS whereE, = (e2+ A2)?is the Bogoliubov quasiparticle exci-

The effective action§[] is obtained by expanding tation energy in the mean-field statee,=—2t(cosk,
around the Nel state. We first introduce a new fieltl de- ~ +C€0sk)) is the dispersion of the free fermiohsWe can
fined by ¢, =Rlc,, whereR; is a SU2)/U(1) matrix which  Verify that Eqs(3.2—(3.4) can be directly obtained from the
rotates the spin-quantization axis fromto 0, (RrUZR: results of Refs. 7 an_d 11 in the wgak—coupllng I|n1ut<(étl)/‘.1
=Q,- o). In terms of this new field, the action becomes 1 N€ value of the spin-wave velocity=yp/x; ~t(U/t)
also agrees with the weak-coupling limit of the RPA restilt.

s The approximatiorf2,~n, is therefore justified whehkl <t.
S=Sye+ > f dr¢ R0 R ¢, While it restricts the validity of our approach to the weak-
rJo coupling limit, it makes the computation of fermionic corre-
s lation functions considerably simpler, since the fermions
—t> dd ¢/(RTR —1)¢, +c.c], (3.1 couple directly to the Nel field [see Eq(2.2)].
(rr’y Jo We solve the NloM within a “large-N" approach by
extending the number of components of the unit vector
where Sye=So+ =, JdT[AYU—Ao(— 1) ¢! o, ]. Within  from 3 to . When N -, the action(3.2) can be solved
a saddle-point approximation witf, =2 (R,=1), i.e., ig- exactly by a saddle-point methddiFigure 1 shows the re-
noring spin fluctuations, one recovers the mean-field actiogulting crossover diagram as a function of the dimensionless
Sur of the Neel state. The value of the order parametes,  coupling constanngngc/\//pg of the NLoM. In the
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FIG. 1. Crossover diagram derived from the lasggimit of the
2D NLoM. At T=0, there is long-range order when the dimension-
less couplingg=<g.= 4. The three finite temperature regimes cor-
respond to “renormalized classicallRC), “quantum critical”
(QO), and “quantum disorderedQD). (Ref. 15. The ground state
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FIG. 2. Lowest-order contribution to the fermion self-enekyy
The dashed line represents the spin propagatidq. (3.6)].

weak (@<<g., see Fig. 1L From Eq.(3.7), we then obtain the
AF coherence lengtli=c/m~ A ~texp(2mpJINT).

Note that we expect also a term?|w,|/w in the de-
nominator in Eq(3.6). This term comes from the damping of
spin fluctuations by gapless fermion excitatidhslt is
missed in our approach since we expand around the zero-

of the half-filled 2D Hubbard model on a square lattice is ordered€mperature AF state which has only gapped quasiparticle

for any value of the Coulomb repulsidd. At finite temperature,

excitations. Fluctuations are classical whersT and wg;

there are strong AF fluctuations with an exponentially large coher=<T. Both conditions are satisfied in the renormalized classi-

ence lengthRC regime.

weak-coupling limit of the Hubbard modelUt), g
=cAM (pdt)xe 2™V s exponentially small. This im-

cal regime T<Ty) since wg~& 2>—0 (critical slowing
down 3,6,16

IV. SPECTRAL FUNCTION

plies that the ground state has AF long-range order with very  knowing the effective actioiS[n] of the spin excitations
weak quantum fluctuations. This magnetic order persists INEq. (3.5)], we are now in a position to compute the spectral

the strong-coupling regimeU>t) wherd asac=47r (see

function A(k,w)=— 7 ImG(k,w) from the spin-fermion

Fig. D in agreement with conclusions based on the Heisenmodel (2.2). Here G(k,w) denotes the retarded part of the

berg modelfor a square lattice At finite temperature, mag-

fermionic Green'’s function. By integrating first the fermions

netic long-range order is suppressed as required by thend then the spin fluctuations, we can write the Green'’s func-
Mermin-Wagner theorem. The dominant fluctuations aretion as

classical since the gapin the spin excitation spectruisee
below) is much smaller than the temperatutkis regime is
known as “renormalized classical” in the literatdre

Since we are primarily interested in the fermion spectral

function A(k,w) at finite temperature, we shall consider the
actiong[n] in this regime. In the largg¥ limit, it reads

2 2+2 2 . 2
2gc &, (w?+c?g?+m?)|n(q.iw,)|?, (3.5

Sn]=

G(r—r',7— T'):%f Dinle” SG(r,7;r’, 7'|n).
(4.1

G(r,r;r',7'|n) is the Green’s function for a given configu-
ration of n: G~ n]=Gy'+Aqg(—1)'o-n,, where G, is
the Green’s function of the free fermions. Sin€gn] is
Gaussian in the largé/ limit, the averaging in Eq(4.1) is
easily done. The result can be written & (k,iw,)

where we have introduced the Fourier-transformed fi6|d=651(k,iwn)—2(k,iwn) (w, is a fermionic Matsubara fre-

n(g,iw,) (w, is a bosonic Matsubara frequencyhe length
of the vectorn, is no longer fixed to unity. In the largk‘
solution, the constrainn,|=1 is imposed only on average
(via the Lagrange multipliem).'* The massm of the spin-
fluctuation propagatord=1---N)

gc/N
w?+c?q?+m?
(3.6

X(qiiwl/):<na(qriwv)na(_q!_ [ (1),,))2

is determined by the saddle-point equation

T
N

1

do, w2+cg?+m?

1l=gc (3.7

qguency.
We consider the lowest-order contribution to the self-
energy2, (Fig. 2):

.
ko =A5G 2 Nx(@io,)

XGo(k—Q—gjivn~iw,)

>

aq

where the last line has been obtained in the classical limit
(w,=0) and Q=(m,7). At low temperature wherg— oo,
the sum ovenq in Eq. (4.2) diverges in two-dimensions due

1

~A2£
B 24 ¢ 2 ion—€-q-q

OcN

, (4.2

In the renormalized classical regime, we can neglect quarto the contribution of long wavelengthgi{0). We can

tum fluctuations. This approximation is excellent in the
weak-coupling regimel{ <t) since quantum fluctuations are

therefore expand- €, g o= €x—q=¢€x—Vi-q aroundq=0
(vy is the velocity of the free fermiofsLet us first consider
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a particle at the Fermi level. One easily finds that the imagifunction A(k,w) [Eq. (4.5], namely theT=0 order param-

nary part of the retarded self-energywt—w+i0") takes  eterA, and theT=0 spin stiffnesp?, do not appear in the
the form TPSC theory. Instead\(k,w) is expressed only in terms of
the paramagnetic properties of the system.

Two comments are in order here. The validity of Eg.
(4.2), which does not include vertex correction, may be
_ ) questioned® The importance of these corrections is a long-
where &n=|v|/T is the de Broglie thermal wavelength. standing problem which is still under debate. Vertex correc-
Since¢ grows exponentially belowy, it quickly becomes  tions are expected to play a crucial role when higher-order
larger thanéy,. As a result, lim_ &/&n= andX"(kg,@  self-energy contributions are taken into account. The FLEX
=0) diverges at low temperature in contradiction with the@pproximation, which sums up contributions to all order
Fermi-liquid theory hypothesis. Thus, the lowest-order perWithout vertex correction, does not predict the formation of a
turbation result shows that quasiparticles are suppressed [g)yieu_dogap iM(k,w) at low temperatufk(see Ref. 3 for a
spin fluctuations wheiT<Ty. This phenomenon is accom- detailed discussion of the FLEX approximation

Aj¢
ngth

2" (Kg,0=0)~— x—TE, 4.3

panied by the formation of a pseudogap. Fos+ € In the spin-fermion model defined by Eq8.2) and(3.2),
>|v,|/&, the real and imaginary parts of the self-energy arethere are only twdtransversespin excitation modes, as ex-
given by’ pected when only orientational fluctuations are important
(T<Ty). Unfortunately, this property is lost in the largé-
A2 3A2T limit of the NLoM [Eg. (3.5], where both transverse and
Y(ko)=——", X(ko)=———F—. (4.4 amplitude fluctuations are allowed. Following Ref. 21,
@ €k Ampglot e A(k,®) can be obtained exactly wher- by summing all

Note that the conditiofw + €|>|v,|/¢ is satisfied for any the self-energy diagrams. The result,
value of w except in an exponentially small window around

= — .. From Eq.(4.4), we deduce the spectral function 332 3 wl—él
v 0.(4.4), we deduce the spectral function )= = (02— &) (w+ gexd] — 5 "
) V2mA 2 Aj
AK )= % |o+ € 3AGT .
o) gy am X[6(0—|ed)— 6~ o—|ed)], .7

A(k, ) exhibits two peaks at E, that are precursors of the shows two broad. incoherent features, Io.cajted. around
AF bands that exist in th&=0 ordered state. The width of = V2/3A¢ for €=0, instead of the correGt=0 limit given
these peaks is given by//A0~TAo/p2~Te’2”mU. The by Eq.(4.6). The correct limit is obtained only when ampli-

; ; ; 2223 ~
precursors of the AF bands are separated by a pseudogap.]E e quctluaC?onhs are frozen in thhe l;]nﬁrt]_’ wb \éVe thﬁrel
particularA(k ) vanishes ats=0. ore conclude that our approach, which is based on the large-

N solution of the NloM, must break down at very low
WhenT—0 (y=0), temperature. The fact that the spectral functfdik,») de-
€x 1 €x rived from the lowest-order self-energy contribution does re-
1+ E_) o(w—Ep)+ E( 1- E_) S w+Ey), produce the correct result whéh—0 [Eq. (4.5)] appears
K K (4.6  Somewhat accidental. A correct treatment of The 0 limit
’ must freeze the amplitude fluctuations of theeNfeld n.

A(k !
( ,w)—>§

which is the spectral function of tHe=0 AF state. Thus, the
simple self-energy4.2) predicts that the pseudogap evolves
smoothly into the gap of the ground state when-0. It
should be noted that neglecting quantum fluctuations is jus- We have described a new approach to the pseudogap in
tified only at low energylw|<T. In particular, the precise the half-filled 2D Hubbard model at weak coupling. Within
location of the peaks arountt Ay should depend on quan- this approach, only orientational spin fluctuations are consid-
tum fluctuations sincé\ y~Ty>T. ered, whereas fluctuations of the amplitude of the local spin
The spectral functio\(k,w) [Eq. (4.5)] is similar to the density are ignored. This approximation is justified below a
result of the TPSC theoR?® In the latter, the position of the crossover temperatuf®, (of the order of the mean-field AF
maxima in A(kg,w) scales with the zero-temperature transition temperatujevhere the AF correlation length starts
gap®®and the width of these two peaks is proportional toto grow exponentiallyrenormalized classical regimeThe
T.3%6 These two features agree with our conclusions. Thigffective action of spin fluctuations is then given by a
similarity is not surprising since in both approaches a paraNLoM. Solving the NLoM within a “large-N" approach,
magnonlike self-energyEq. (4.2)] with a similar spin sus- we find that the ground state of the Hubbard model on a
ceptibility [Eq. (3.6)] is used to obtain the spectral function. square lattice is antiferromagnetiseel orde) for any value
The main difference comes from the spin-fluctuation propaof the Coulomb interactiot (Fig. 1).”
gator xy. While y comes from the N&M (which is itself We have obtained the fermion spectral functifk, ) in
based on an expansion around the ordered AF)stites  the weak-coupling limit by computing the self-energy
obtained by considering the paramagnetic phase in the TPSE(k, w) to lowest order in the spin-fermion interactigrig.
theory. As a result, the basic parameters entering the spectral. The QP peak which characterizes the Fermi-liquid state is

V. CONCLUSION
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suppressed by spin fluctuations whén<Ty. Instead, pseudogap to transform into(aharge gap of orderU, the
A(k,w) exhibits a pseudogap separating two broadenegrecursors of thef=0 AF bands becoming the upper and
peaks. These peaks are precursors of the Bogoliubov QPlewer Hubbard bands.
that appear at th€=0 AF transition. Our results are in very It is also possible to consider variants of the square lattice
good agreement with those obtained by the TPSC thibty. Hubbard model[Eq. (2.1)] where antiferromagnetism be-
An important limitation of our analysis comes from the comes frustrated. This would be the case for té Hub-
large-\/ solution of the NloM. The latter introduces ampli- bard model {’ is the hopping amplitude for next-nearest
tude fluctuations of the N field which should be frozen at neighbor$ or if the lattice is triangular instead of square.
low temperature. As a result, when going beyond the lowestDoping may also induce some kind of magnetic frustraffbn.
order contribution ta® (k,w), we do not obtain the correct This opens up the possibility to reach the quantum disor-
T—0 limit of the fermion spectral function. In Ref. 11, we dered and quantum critical regimes of the &V (Fig. 1
show how this difficulty can be circumvented. and to study the corresponding fermion spectral functions.
There are several directions in which this work could be
further developed. Since the MM description is valid both
at weak (U<t) and strong U>t) coupling, our analysis of
the fermion spectral function could be extended in the re- | would like to thank A.-M. Tremblay for useful discus-
gime U>t. In the Mott-Hubbard insulator, we expect the sions and a critical reading of the manuscript.

ACKNOWLEDGMENTS

IT. Timusk and B. Statt, Rep. Prog. Phy82, 61 (1999; J.L. 143, sachdevQuantum Phase Transition€ambridge University,
Tallon and J.W. Loram, Physica 819, 53 (200J). Cambridge, England, 1999

2Note that the pseudogap issue resurfaces in the strong-couplingS. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Re89B
limit when the system is doped away from half-filling. It is 2344(1989.
generally believed that the spectral function of the doped holes€A.J. Millis, H. Monien, and D. Pines, Phys. Rev. £, 167

exhibits a pseudogap governed by the energy stale (1990; P. Monthoux and D. Pineshid. 47, 6069(1993.
3Y.M. Vilk and A.-M.S. Tremblay, J. Phys. 7, 1309(1997). 7An exact expression of the retarded self-enelfk, o) [Eq.
“N.E. Bickers and D.J. Scalapino, Ann. Physl.Y.) 193 206 (4.2)] can be obtainedRefs. 3 and § The approximate expres-

(1989; M. Langer, J. Schmalian, S. Grabowski, and K.H. Ben-  sions(4.4) and (4.5 are nevertheless sufficient for our purpose.
nemann, Phys. Rev. Let?5, 4508 (1999; J.J. Deisz, D.W. 18A.-M. Dare Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. B3,

Hess, and J.W. Serenibjd. 76, 1312(1996. 14 236(1996.
5Y.M. Vilk and A.-M.S. Tremblay, Europhys. Let83, 159(1996.  °This gap differs from the mean-field gap due to the renormaliza-
5Y.M. Vilk, Phys. Rev. B55, 3870(1997). tion of U by vertex correctiongRef. 18.

"H.J. Schulz, Phys. Rev. Let5, 2462(1990; H.J. Schulz inThe 2Overtex corrections are included in the TPSC theory: they do not
Hubbard Mode| edited by D. Baeriswyl, D.K. Campbell, J.M.P. lead to any qualitative chang®efs. 3,5 and 6
Carmello, F. Guinea, and E. Lou{®lenum Press, New York, 2%J. Schmalian, D. Pines, and B. Stojkaviehys. Rev. B60, 667

1995. (1999.
87.Y. Weng, C.S. Ting, and T.K. Lee, Phys. Rev.48, 3790  220. Tchernyshyov, Phys. Rev. B9, 1358(1999.
(1992. ZFor quasione-dimensional Peierls systems, the influence of non-
9J.R. Schrieffer, X.G. Wen, and S.C. Zhang, Phys. Re\BB Gaussian fluctuations on the fermion spectral function has been
11 663(1989. discussed by H. Monien, Phys. Rev. L&, 126402(2002);
10 D.M. Haldane, Phys. Let3A, 464 (1983. cond-mat/0110178unpublishesl
11K, Borejsza and N. Dupuigunpublishedl 24Doping may not be easily included in our approach. When deriv-
2For quasi-1D systems, this procedure is carried out in detail in K. ing the NLo-M, one should first solve the Hartree-Fock theory.
Sengupta and N. Dupuis, Phys. Rev.6B, 13 493(2000; Y. Away from half-filling, the Hartree-Fock ground state is not
Tomio, N. Dupuis, and Y. Suzumurdid. 64, 125123(2001). definitely known. Many suggestions can be found in the litera-
AV, Chubukov and D.M. Frenkel, Phys. Rev. 86, 11 884 ture: incommensurate spin-density wave, spiral phase, stripes,
(1992. etc.

245118-5



