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Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model
at weak coupling

N. Dupuis
Laboratoire de Physique des Solides, Associe´ au CNRS, Universite´ Paris-Sud, 91405 Orsay, France

~Received 11 December 2001; published 24 June 2002!

Starting from the Hubbard model in the weak-coupling limit, we derive a spin-fermion model where the
collective spin excitations are described by a nonlinear sigma model. This result is used to compute the fermion
spectral functionA(k,v) in the low-temperature regime where the antiferromagnetic~AF! coherence length is
exponentially large~‘‘renormalized classical’’ regime!. At the Fermi level,A(kF ,v) exhibits two peaks around
6D0 ~with D0 the mean-field gap!, which are precursors of the zero-temperature AF bands, separated by a
pseudogap.
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I. INTRODUCTION

In the last two decades, the discovery of heavy-ferm
compounds, high-Tc superconductors, and organic condu
tors has revived interest in strongly correlated electron s
tems. Of particular interest are metallic phases which,
though conducting, are not described by Landau’s Fer
liquid theory because of the absence of well-defin
quasiparticle excitations. A well-known example is given
the normal phase of high-Tc superconductors. Instead of qu
siparticles, these systems exhibit a pseudogap at low en
as shown by many experiments.1 Although the origin of the
pseudogap is still under debate, it is generally believed
antiferromagnetic~AF! fluctuations play a crucial role.

In this paper, we consider the pseudogap issue on
basis of the half-filled two-dimensional~2D! Hubbard
model. We consider only the weak-coupling limitU!t (U is
the local Coulomb repulsion andt the intersite hopping am
plitude!. @In the strong-coupling limit at half-filling, the finite
temperature paramagnetic phase is a Mott-Hubbard insu
with a ~charge! gap of orderU. At T50, there is a transition
to a Néel antiferromagnetic state.2# Although the ground state
is AF, long-range order is destroyed by classical fluctuati
at any finite temperature, in agreement with the Merm
Wagner theorem. Nevertheless, below a crossover temp
ture TX ~of the order of the mean-field transition temper
ture!, the system enters a renormalized classical reg
where AF correlations start to grow exponentially. Contra
to the 3D case, at the zero-temperature 2D phase trans
the system goes directly into the~Néel! ordered state where
the fermion spectral functionA(k,v) exhibits two well-
defined quasiparticle~QP! peaks corresponding to the Bog
liubov QP’s. By continuity, the two-peak structure inA(k,v)
cannot disappear as soon as we raise the temperature
pointed out in Ref. 3, the only possible scenario is that
finite but low temperature the fermion spectral function e
hibits two ~broadened! peaks which are precursors of theT
50 Bogoliubov QP’s, separated by a pseudogap. We th
fore expect the presence of a pseudogap at finite tempera
due to the strong~classical! AF fluctuations.

Clearly, traditional mean-field techniques fail to descri
these phenomena. For instance, the random-phase app
0163-1829/2002/65~24!/245118~5!/$20.00 65 2451
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mation ~RPA! predicts a finite temperature phase transiti
which is forbidden in two dimensional by the Mermin
Wagner theorem. More sophisticated approaches are th
fore required. In the weak-coupling limit, the pseudogap f
mation has been considered within the fluctuation excha
~FLEX! approximation4 and the two-particle–self-consisten
~TPSC! theory3,5,6 which both satisfy the Mermin-Wagne
theorem. Only the TPSC theory predicts the formation o
pseudogap in the fermion spectral functionA(k,v) at low
temperature.

The aim of this paper is to describe an alternative
proach to the 2D half-filled Hubbard model in the wea
coupling limit. We first derive a spin-fermion model whe
the collective spin excitations are described by a nonlin
sigma model (NLsM). The spin-wave velocity and the cou
pling constant of the NLsM are expressed in terms of th
ground-state properties of the system. Solving the NLsM in
a ‘‘large-N’’ limit, we then compute the fermion spectra
functionA(k,v) to lowest order in the spin-fermion interac
tion. At the Fermi level,A(kF ,v) exhibits two peaks around
6D0 ~with D0 the mean-field gap! which are precursors o
the zero-temperature AF bands, separated by a pseudo
We compare our results with those of the TPSC theory.

II. MODEL

The two-dimensional Hubbard model is defined by t
Hamiltonian

H52t (
^r ,r8&,s

~crs
† cr8s1H.c.!1U(

r
nr↑nr↓ , ~2.1!

wheret is the intersite hopping amplitude andU the on-site
Coulomb repulsion.crs is a fermionic operator for as-spin
particle at siter (s5↑,↓), andnrs5crs

† crs . ^r ,r 8& denotes
nearest-neighbor sites. We take the lattice spacing equa
unity and\5kB51 throughout the paper.

Since spin fluctuations play a crucial role in the Hubba
model at half-filling, it is convenient to introduce auxiliar
fields describing these collective excitations. The stand
approach is to write the interaction part of the Hamiltonian
terms of charge and spin fluctuations, i.e.,nr↑nr↓5@(cr

†cr)
2

2(cr
†szcr)

2#/4, and then perform a Hubbard-Stratonovi
©2002 The American Physical Society18-1
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N. DUPUIS PHYSICAL REVIEW B 65 245118
transformation by means of two~real! auxiliary fieldsDc and
Ds @cr5(cr↑ ,cr↓)T#. Although this procedure recovers th
standard mean-field~or Hartree-Fock! theory of the Ne´el
state within a saddle-point approximation, it leads to a los
spin-rotation invariance and does not allow to obtain
spin-wave excitations. Alternatively, one could writenr↑nr↓
in a spin-rotation invariant form, e.g., nr↑nr↓
52(cr

†scr)
2/6 wheres denotes the Pauli matrices, and u

a vector Hubbard-Stratonovich field. Such decompositio
however, do not reproduce the mean-field results at
saddle-point level.7

As noted earlier,7,8 this difficulty can be circumvented b
writing nr↑nr↓5@(cr

†cr)
22(cr

†s•Vrcr)
2#/4 whereVr is an

arbitrary unit vector. Spin-rotation invariance is maintain
by averaging the partition function over all direction
of Vr . In a path-integral formalism,Vr becomes a time-
dependent variable. After the Hubbard-Stratonovich tra
formation, the partition function is given byZ
5*D@c†,c#*D@Dc ,Ds ,V#e2S with the action

S5S01(
r
E

0

b

dtH 1

U
~Dcr

2 1Dsr
2 !2cr

†~ iDcr1Dsrs•Vr !crJ .

~2.2!

S0 is the action in the absence of interaction. Since cha
fluctuations are not critical~even whenT→0), they can be
treated at the saddle point~i.e., Hartree-Fock! level. Their
effect is to renormalize the chemical potentialm from U/2 to
0. Equation~2.2! then corresponds to a spin-fermion mod
where the fermions interact with their collective spin degre
of freedom (D rVr). ~We now denoteDsr by D r .) Below the
crossover temperatureTX , i.e., whenT!TX , low-energy ex-
citations correspond to orientational spin fluctuations
scribed by the unit vector fieldVr . We can then considerD r
within a saddle-point approximation, i.e.,D r5D0(21)r,
where the fluctuations ofD0 are ignored. In order to comput
the fermion spectral functionA(k,v), one should first deter
mine the effective actionS@V# of the unit vector fieldV.

III. SPIN FLUCTUATIONS

The effective actionS@V# is obtained by expanding
around the Ne´el state. We first introduce a new fieldf de-
fined byf r5Rr

†cr , whereRr is a SU~2!/U~1! matrix which

rotates the spin-quantization axis fromẑ to Vr (RrszRr
†

5Vr•s). In terms of this new field, the action becomes

S5SMF1(
r
E

0

b

dtf r
†Rr

†]tRrf r

2t (
^r ,r8&

E
0

b

dt@f r
†~Rr

†Rr821!f r81c.c.#, ~3.1!

where SMF5S01( r*dt@D0
2/U2D0(21)rf r

†szf r#. Within

a saddle-point approximation withVr5 ẑ (Rr51), i.e., ig-
noring spin fluctuations, one recovers the mean-field ac
SMF of the Néel state. The value of the order parameter,D0
24511
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5(U/2)(21)r^f r
†szf r&, is obtained by minimizing the free

energy. In the weak-coupling limit, this givesD0

;te22pAt/U.9

Low-energy spin excitations correspond to fluctuations
the unit vector fieldVr around its saddle-point value. Th
standard procedure10,8,7 is then to assume at least local A
order and writeVr5nr(12Lr

2)1/21(21)rL r , where the
~Néel! order parameter fieldnr is slowly varying in space
and time andLr is a small canting field (unru51, Lr•nr50,
anduLru!1). Integrating out bothf andL yields the action
of the NLsM.7,11 In the strong-coupling limitU@t, one re-
covers the action derived from the Heisenberg model.

As we now verify explicitly, the small canting fieldLr
gives negligible contributions to the parameters of t
NLsM in the weak-coupling limitU!t. If we identify Vr
with the slowly varying Ne´el field, Vr'nr , the effective
actionS@n# is readily obtained. Integrating out the fermion
in Eq. ~3.1! and taking the continuum limit in space, on
obtains to lowest order in gradient~i.e., in ]tR and“ rR)12

S@n#5
1

2E d2rdt@x'
0 ~]tn!21rs

0~“ rn!2#, ~3.2!

wherex'
0 is the uniform transverse spin susceptibility in th

mean-field state andrs
052(^K&MF/21P'

0 )/4 the spin stiff-
ness. HerêK&MF is the mean value of the kinetic energy an
P'

0 the correlation function of the transverse spin currentj x

or j y). Equation~3.2! should be supplemented with a sho
distance cutoff~in momentum space! L;j0

21, since short-
range AF order cannot be defined at length scales sm
that the coherence lengthj0;t/D0. Using the mean-field
actionSMF , one obtains (N is the number of lattice sites!

x'
0 5

D0
2

4N (
k

1

Ek
3
;

1

t
A t

U
, ~3.3!

rs
05

t2D0
2

N (
k

sin2kx

Ek
3

;t, ~3.4!

whereEk5(ek
21D0

2)1/2 is the Bogoliubov quasiparticle exci
tation energy in the mean-field state@ek522t(coskx
1cosky) is the dispersion of the free fermions#. We can
verify that Eqs.~3.2!–~3.4! can be directly obtained from th
results of Refs. 7 and 11 in the weak-coupling limit (U!t).
The value of the spin-wave velocityc5Ars

0/x'
0 ;t(U/t)1/4

also agrees with the weak-coupling limit of the RPA result13

The approximationVr'nr is therefore justified whenU!t.
While it restricts the validity of our approach to the wea
coupling limit, it makes the computation of fermionic corr
lation functions considerably simpler, since the fermio
couple directly to the Ne´el field @see Eq.~2.2!#.

We solve the NLsM within a ‘‘large-N’’ approach by
extending the number of components of the unit vectornr
from 3 to N. When N→`, the action~3.2! can be solved
exactly by a saddle-point method.14 Figure 1 shows the re
sulting crossover diagram as a function of the dimension
coupling constantḡ5Lg5LcN/rs

0 of the NLsM. In the
8-2
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weak-coupling limit of the Hubbard model (U!t), ḡ
5cD0N/(rs

0t)}e22pAt/U is exponentially small. This im-
plies that the ground state has AF long-range order with v
weak quantum fluctuations. This magnetic order persist
the strong-coupling regime (U@t) where7 ḡ&ḡc54p ~see
Fig. 1! in agreement with conclusions based on the Heis
berg model~for a square lattice!. At finite temperature, mag
netic long-range order is suppressed as required by
Mermin-Wagner theorem. The dominant fluctuations
classical since the gapm in the spin excitation spectrum~see
below! is much smaller than the temperature~this regime is
known as ‘‘renormalized classical’’ in the literature15!.

Since we are primarily interested in the fermion spec
function A(k,v) at finite temperature, we shall consider t
actionS@n# in this regime. In the large-N limit, it reads

S@n#5
N

2gc (
q,vn

~vn
21c2q21m2!un~q,ivn!u2, ~3.5!

where we have introduced the Fourier-transformed fi
n(q,ivn) (vn is a bosonic Matsubara frequency!. The length
of the vectornr is no longer fixed to unity. In the large-N
solution, the constraintunru51 is imposed only on averag
~via the Lagrange multiplierm).14 The massm of the spin-
fluctuation propagator (a51•••N)

x~q,ivn!5^na~q,ivn!na~2q,2 ivn!&5
gc/N

vn
21c2q21m2

~3.6!

is determined by the saddle-point equation

15gc
T

N (
q,vn

1

vn
21c2q21m2

. ~3.7!

In the renormalized classical regime, we can neglect qu
tum fluctuations. This approximation is excellent in t
weak-coupling regime (U!t) since quantum fluctuations ar

FIG. 1. Crossover diagram derived from the large-N limit of the
2D NLsM. At T50, there is long-range order when the dimensio

less couplingḡ<ḡc54p. The three finite temperature regimes co
respond to ‘‘renormalized classical’’~RC!, ‘‘quantum critical’’
~QC!, and ‘‘quantum disordered’’~QD!. ~Ref. 15!. The ground state
of the half-filled 2D Hubbard model on a square lattice is orde
for any value of the Coulomb repulsionU. At finite temperature,
there are strong AF fluctuations with an exponentially large coh
ence length~RC regime!.
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weak (ḡ!ḡc , see Fig. 1!. From Eq.~3.7!, we then obtain the
AF coherence lengthj5c/m;L21exp(2prs

0/NT).
Note that we expect also a termm2uvnu/vsf in the de-

nominator in Eq.~3.6!. This term comes from the damping o
spin fluctuations by gapless fermion excitations.16 It is
missed in our approach since we expand around the z
temperature AF state which has only gapped quasipar
excitations. Fluctuations are classical whenm!T and vsf
!T. Both conditions are satisfied in the renormalized clas
cal regime (T!TX) since vsf;j22→0 ~critical slowing
down!.3,6,16

IV. SPECTRAL FUNCTION

Knowing the effective actionS@n# of the spin excitations
@Eq. ~3.5!#, we are now in a position to compute the spect
function A(k,v)52p21ImG(k,v) from the spin-fermion
model ~2.2!. Here G(k,v) denotes the retarded part of th
fermionic Green’s function. By integrating first the fermion
and then the spin fluctuations, we can write the Green’s fu
tion as

G~r2r 8,t2t8!5
1

ZE D@n#e2S[n]G~r ,t;r 8,t8un!.

~4.1!

G(r ,t;r 8,t8un) is the Green’s function for a given configu
ration of n: G21@n#5G0

211D0(21)rs•nr , where G0 is
the Green’s function of the free fermions. SinceS@n# is
Gaussian in the large-N limit, the averaging in Eq.~4.1! is
easily done. The result can be written asG21(k,ivn)
5G0

21(k,ivn)2S(k,ivn) (vn is a fermionic Matsubara fre
quency!.

We consider the lowest-order contribution to the se
energyS ~Fig. 2!:

S~k,ivn!5D0
2 T

N (
q,vn

Nx~q,ivn!

3G0~k2Q2q,ivn2 ivn!

.D0
2 gT

cN (
q

1

q21j22

1

ivn2ek2Q2q
, ~4.2!

where the last line has been obtained in the classical l
(vn50) and Q5(p,p). At low temperature whenj→`,
the sum overq in Eq. ~4.2! diverges in two-dimensions du
to the contribution of long wavelengths (q;0). We can
therefore expand2ek2Q2q5ek2q.ek2vk•q aroundq50
(vk is the velocity of the free fermions!. Let us first consider

-

d

r-

FIG. 2. Lowest-order contribution to the fermion self-energyS.
The dashed line represents the spin propagatorx @Eq. ~3.6!#.
8-3
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N. DUPUIS PHYSICAL REVIEW B 65 245118
a particle at the Fermi level. One easily finds that the ima
nary part of the retarded self-energy (ivn→v1 i01) takes
the form

S9~kF ,v50!'2
D0

2j

rs
0j th

}2Tj, ~4.3!

where j th5uvku/T is the de Broglie thermal wavelength
Sincej grows exponentially belowTX , it quickly becomes
larger thanj th . As a result, lim

T→0
j/j th5` and S9(kF ,v

50) diverges at low temperature in contradiction with t
Fermi-liquid theory hypothesis. Thus, the lowest-order p
turbation result shows that quasiparticles are suppresse
spin fluctuations whenT!TX . This phenomenon is accom
panied by the formation of a pseudogap. Foruv1eku
@uvku/j, the real and imaginary parts of the self-energy
given by17

S8~k,v!.
D0

2

v1ek
, S9~k,v!.2

3D0
2T

4prs
0uv1eku

. ~4.4!

Note that the conditionuv1eku@uvku/j is satisfied for any
value ofv except in an exponentially small window aroun
v52ek . From Eq.~4.4!, we deduce the spectral function

A~k,v!5
g

p

uv1eku

~v22Ek
2!21g2

, g'
3D0

2T

4prs
0

. ~4.5!

A(k,v) exhibits two peaks at6Ek that are precursors of th
AF bands that exist in theT50 ordered state. The width o
these peaks is given byg/D0;TD0 /rs

0;Te22pAt/U. The
precursors of the AF bands are separated by a pseudoga
particularA(kF ,v) vanishes atv50.

WhenT→0 (g→0),

A~k,v!→ 1

2 S 11
ek

Ek
D d~v2Ek!1

1

2 S 12
ek

Ek
D d~v1Ek!,

~4.6!

which is the spectral function of theT50 AF state. Thus, the
simple self-energy~4.2! predicts that the pseudogap evolv
smoothly into the gap of the ground state whenT→0. It
should be noted that neglecting quantum fluctuations is
tified only at low energyuvu,T. In particular, the precise
location of the peaks around6D0 should depend on quan
tum fluctuations sinceD0;TX@T.

The spectral functionA(k,v) @Eq. ~4.5!# is similar to the
result of the TPSC theory.3,5,6 In the latter, the position of the
maxima in A(kF ,v) scales with the zero-temperatu
gap,18,19 and the width of these two peaks is proportional
T.3,5,6 These two features agree with our conclusions. T
similarity is not surprising since in both approaches a pa
magnonlike self-energy@Eq. ~4.2!# with a similar spin sus-
ceptibility @Eq. ~3.6!# is used to obtain the spectral functio
The main difference comes from the spin-fluctuation pro
gator x. While x comes from the NLsM ~which is itself
based on an expansion around the ordered AF state!, it is
obtained by considering the paramagnetic phase in the T
theory. As a result, the basic parameters entering the spe
24511
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function A(k,v) @Eq. ~4.5!#, namely theT50 order param-
eterD0 and theT50 spin stiffnessrs

0 , do not appear in the
TPSC theory. Instead,A(k,v) is expressed only in terms o
the paramagnetic properties of the system.

Two comments are in order here. The validity of E
~4.2!, which does not include vertex correction, may
questioned.20 The importance of these corrections is a lon
standing problem which is still under debate. Vertex corr
tions are expected to play a crucial role when higher-or
self-energy contributions are taken into account. The FL
approximation, which sums up contributions to all ord
without vertex correction, does not predict the formation o
pseudogap inA(k,v) at low temperature4 ~see Ref. 3 for a
detailed discussion of the FLEX approximation!.

In the spin-fermion model defined by Eqs.~2.2! and~3.2!,
there are only two~transverse! spin excitation modes, as ex
pected when only orientational fluctuations are import
(T!TX). Unfortunately, this property is lost in the large-N
limit of the NLsM @Eq. ~3.5!#, where both transverse an
amplitude fluctuations are allowed. Following Ref. 2
A(k,v) can be obtained exactly whenj→` by summing all
the self-energy diagrams. The result,

A~k,v!5
33/2

A2pD0
3 ~v22ek

2!1/2~v1ek!expS 2
3

2

v22ek
2

D0
2 D

3@u~v2ueku!2u~2v2ueku!#, ~4.7!

shows two broad incoherent features, located aro
6A2/3D0 for ek50, instead of the correctT50 limit given
by Eq. ~4.6!. The correct limit is obtained only when ampl
tude fluctuations are frozen in the limitj→`.22,23We there-
fore conclude that our approach, which is based on the la
N solution of the NLsM, must break down at very low
temperature. The fact that the spectral functionA(k,v) de-
rived from the lowest-order self-energy contribution does
produce the correct result whenT→0 @Eq. ~4.5!# appears
somewhat accidental. A correct treatment of theT→0 limit
must freeze the amplitude fluctuations of the Ne´el field n.

V. CONCLUSION

We have described a new approach to the pseudoga
the half-filled 2D Hubbard model at weak coupling. With
this approach, only orientational spin fluctuations are cons
ered, whereas fluctuations of the amplitude of the local s
density are ignored. This approximation is justified below
crossover temperatureTX ~of the order of the mean-field AF
transition temperature! where the AF correlation length star
to grow exponentially~renormalized classical regime!. The
effective action of spin fluctuations is then given by
NLsM. Solving the NLsM within a ‘‘large-N’’ approach,
we find that the ground state of the Hubbard model on
square lattice is antiferromagnetic~Néel order! for any value
of the Coulomb interactionU ~Fig. 1!.7

We have obtained the fermion spectral functionA(k,v) in
the weak-coupling limit by computing the self-energ
S(k,v) to lowest order in the spin-fermion interaction~Fig.
2!. The QP peak which characterizes the Fermi-liquid stat
8-4
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suppressed by spin fluctuations whenT!TX . Instead,
A(k,v) exhibits a pseudogap separating two broade
peaks. These peaks are precursors of the Bogoliubov Q
that appear at theT50 AF transition. Our results are in ver
good agreement with those obtained by the TPSC theory3,5,6

An important limitation of our analysis comes from th
large-N solution of the NLsM. The latter introduces ampli
tude fluctuations of the Ne´el field which should be frozen a
low temperature. As a result, when going beyond the low
order contribution toS(k,v), we do not obtain the correc
T→0 limit of the fermion spectral function. In Ref. 11, w
show how this difficulty can be circumvented.

There are several directions in which this work could
further developed. Since the NLsM description is valid both
at weak (U!t) and strong (U@t) coupling, our analysis of
the fermion spectral function could be extended in the
gime U@t. In the Mott-Hubbard insulator, we expect th
pl
is
le

n

.
,

K

24511
d
’s

t-

-

pseudogap to transform into a~charge! gap of orderU, the
precursors of theT50 AF bands becoming the upper an
lower Hubbard bands.

It is also possible to consider variants of the square lat
Hubbard model@Eq. ~2.1!# where antiferromagnetism be
comes frustrated. This would be the case for thet-t8 Hub-
bard model (t8 is the hopping amplitude for next-neare
neighbors! or if the lattice is triangular instead of squar
Doping may also induce some kind of magnetic frustration24

This opens up the possibility to reach the quantum dis
dered and quantum critical regimes of the NLsM ~Fig. 1!
and to study the corresponding fermion spectral function
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