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Collective modes in a system with two spin-density waves: The Ribault phase
of quasi-one-dimensional organic conductors
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We study the long-wavelength collective modes in the magnetic-field-induced spin-density-wave~FISDW!
phases experimentally observed in organic conductors of the Bechgaard salts family, focusing on phases that
exhibit a sign reversal of the quantum Hall effect~Ribault anomaly!. We have recently proposed that two
SDW’s coexist in the Ribault phase, as a result of umklapp processes. When the latter are strong enough, the
two SDW’s become circularly polarized~helicoidal SDW’s!. In this paper, we study the collective modes that
result from the presence of two SDW’s. We find two Goldstone modes, an out-of-phase sliding mode and an
in-phase spin-wave mode, and two gapped modes. The sliding Goldstone mode carries only a fraction of the
total optical spectral weight, which is determined by the ratio of the amplitude of the two SDW’s. In the
helicoidal phase, all the spectral weight is pushed up above the SDW gap. We also point out similarities with
phase modes in two-band, bilayer, ord1 id8 superconductors. We expect our conclusions to hold for generic
two-SDW systems.
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I. INTRODUCTION

In electron systems with broken symmetries, such as
perconductors or density-wave~DW! systems, quasiparticle
excitations are often gapped, and the only low-lying exc
tions are collective modes. The latter thus play a crucial r
in various low-energy properties.

In an incommensurate spin-density-wave~SDW! system,
there are two~gapless! Goldstone modes: a sliding mode an
a spin-wave mode, which result from the spontaneous bre
ing of translation symmetry in real space and rotation sy
metry in spin space, respectively.1,2 Contrary to the case o
superconductors, collective modes in DW systems dire
couple to external probes and therefore show up in vari
experiments. For instance, the sliding mode, which is pin
by impurities in real systems, can be depinned by a str
electric field. This leads to nonlinear conduction, observed
DW systems.1

The aim of this article is to study long-wavelength colle
tive modes in a quasi-one-dimensional~quasi-1D! system
where the low-temperature phase exhibits two SDW’s. T
presence of two SDW’s gives rise to a rich structure of c
lective modes, which in principle can be observed
experiments.3

Our results are based on a particular case: the magn
field-induced spin-density-wave~FISDW! phases of the or-
ganic conductors of the Bechgaard salt family.4–7 These
FISDW phases share common features with standard S
phases, but also exhibit remarkable properties like the qu
tization of the Hall effect. We have shown that umkla
processes may lead in these systems to the coexisten
two SDW’s with comparable amplitudes, which provides
possible explanation of the sign reversal of the quantum H
effect ~QHE! ~the so-called Ribault anomaly8,9! observed in
PRB 610163-1829/2000/61~19!/12888~21!/$15.00
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these conductors. There are two motivations for studying
particular case.~i! The Bechgaard salts, as possible can
dates for a two-SDW system, present their own interest.~ii !
A conductor with two SDW’s is in general not easy to an
lyze, even at the mean-field level.10 The analysis simplifies
when a strong magnetic field quantizes the electron mot

Nevertheless, we expect our conclusions to be quite g
eral and to apply~at least qualitatively! to other systems with
two SDW’s. This hope is strongly supported by th
similarities3 that exist between collective modes in two-SD
conductors and phase modes in two-band,11 bilayer,12 or d
1 id8 ~Ref. 13! superconductors, and, to a lesser extent, p
mon modes in semiconductor double-well structures.14 These
similarities suggest that collective modes in two-compon
systems present generic features that do not depend on
particular case considered.

A. Umklapp processes in quasi-1D SDW systems

Consider a quasi-1D conductor with a SDW ground sta
In the presence of umklapp processes transferring mom
tum K (K being a vector of the reciprocal space!, spin fluc-
tuations at wave vectorsQ andK2Q are coupled. Thus, the
formation of a SDW at wave vectorQ1 will automatically be
accompanied by the formation of a second SDW at wa
vector Q25K2Q1, provided thatQ1ÞQ2. The caseQ1
5Q25K /2 corresponds to a~single! commensurate SDW
Umklapp processes pin the SDW whose position with
spect to the underlying crystal lattice becomes fixed: the s
ing mode is gapped. For two incommensurate SDW’s (Q1
ÞQ2),15 the total spin-density modulation can then be wr
ten as

^S~r !&5 (
i 51,2

Si cos~Qi•r1u i !, ~1.1!
12 888 ©2000 The American Physical Society
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PRB 61 12 889COLLECTIVE MODES IN A SYSTEM WITH TWO SPIN- . . .
wherer5(na,mb) ~with n,m integers! denotes the position
in real space (a and b being the lattice spacings along an
across the conducting chains!.

Even forQ1ÞQ2, the distinction between the two SDW’
may appear somewhat unjustified since one cannot dis
guish between cos(Q1•r ) and cos(Q2•r ) when r is taken as
a discrete variable. However, umklapp processes do lea
the presence of two nonvanishing order paramet
^ck↑

† ck1Q1↓& and ^ck↑
† ck1Q2↓&, in the SDW phase.16 This

doubles the number of degrees of freedom of the SDW c
densate, which yields, for instance, twice as many collec
modes~as compared to the case with a single SDW!. Thus, it
is natural to speak of two SDW’s in the ground state of
system. Furthermore, we note that cos(Q1•r1u1) and
cos(Q2•r1u2) are indistinguishable only ifu152u2 ~with,
again,r being a discrete variable!. This is precisely the equi
librium condition obtained by minimizing the mean-fie
condensation energy~see Sec. III!. Condensate fluctuation
do not in general satisfy the conditionu152u2, and it is
then more appropriate to view these fluctuations as origi
ing from two different SDW’s.

In a quasi-1D system with a single SDW, the wave vec
Q of the spin-density modulation is determined by the ne
ing properties of the Fermi surface:E(k1Q).2E(k),
where E(k) is the energy with respect to the Fermi leve
@For a perfectly nested Fermi surface, one would haveE(k
1Q)52E(k).# Umklapp processes are important only
both Q1 and Q25K2Q1 are good nesting vectors. Othe
wise, one of the two SDW’s has a very small amplitude a
can be ignored for any practical purpose.

For a 2D ~or 3D! conductor, the geometry of the Ferm
surface appears to be crucial. Consider the following disp
sion law, which is linearized in the vicinity of the Ferm
level:

Ea~kx ,ky!5vF~akx2kF!22tb cos~kyb1ak!1•••,
~1.2!

wherekx andky are the electron momenta along and acr
the conducting chains.a51 (2) corresponds to right~left!
movers with momenta close toakF . vF andkF are the Fermi
velocity and momentum for the motion along the chains,tb
the interchain transfer integral, andb the interchain spacing
The ellipses in Eq.~1.2! represent small corrections that ge
erate deviations from perfect nesting.k is a parameter which
parametrizes the shape of the Fermi surface.

Most calculations on quasi-1D SDW systems assumk
50, which corresponds to the Fermi surface shown in F
1~a!. There are two ‘‘best’’ nesting vectors:Q1.(2kF ,p/b
2d) andQ2.(2kF ,2p/b1d), where the small correction
d (udu!p/b) is due to deviations from perfect nesting.17,18

Since Q25(4kF,0)2Q1, these two vectors are coupled b
umklapp scattering if the system is half filled (4kF52p/a).
Two SDW’s with equal amplitudes will form simultaneous
at low temperature.

Consider now the casek5p/4 in a half-filled band, which
corresponds to the asymmetric Fermi surface shown in
1~b!. This Fermi surface has been proposed as a good
proximation to the actual Fermi surface of the Bechga
salts.19,20 The best nesting vectorQ15(2kF ,p/2b2d) is
now nondegenerate. By umklapp scattering,Q1 couples to
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Q25(2kF ,2p/2b1d), which is not a good nesting vecto
At low temperature, two SDW’s will form simultaneously
but the one with wave vectorQ2 will have a vanishingly
small amplitude.

B. The Ribault phase of the Bechgaard salts

The organic conductors of the Bechgaard salts fam
(TMTSF)2X ~where TMTSF stands for tetramethyltetrase
enafulvalene! are well known to have remarkable properti
in a magnetic field. In three members of this family (X
5ClO4, PF6 , ReO4), a moderate magnetic field of a few
tesla destroys the metallic phase and induces a serie
SDW phases separated by first-order phase transitions.4,5

According to the so-called quantized nesting mod
~QNM!,5 the formation of the magnetic-field-induced spi
density waves results from competition between the nes
properties of the Fermi surface and the quantization of
electron motion in a magnetic field. The formation of a SD
opens a gap, but leaves closed pockets of electrons an
holes in the vicinity of the Fermi surface. In the absence o
magnetic field, these pockets are too large~due to imperfect
nesting! for the SDW phase to be stable. In the presence o

FIG. 1. ~a! Fermi surface deduced from the dispersion law~1.2!
with k50. At half filling, the two ‘‘best’’ nesting vectorsQ1 and
Q2 are coupled by umklapp scattering.~b! Fermi surface fork
5p/4. There is only one ‘‘best’’ nesting vector (Q1). By umklapp
scattering, it couples toQ2, which is not a good nesting vector.



ls
,

ub

e-
a

a
ge
a
it
ta

th
n

a

ly
ith

te
c
p
e
be
f

pr

h

a
th
d
d

pl
e
th

at
ly
m

-

ul

in

l
cts

il-
ion
ry
rm
eld
and

e
by
ld
e’’

e
ed
g-

ite

e
ver-

cor-
W

d
-

12 890 PRB 61N. DUPUIS AND VICTOR M. YAKOVENKO
magnetic fieldH, they become quantized into Landau leve
~more precisely, Landau subbands!. In each FISDW phase
the SDW wave vector is quantized,QN5(2kF1NG,Qy)
with N integer, so that an integer number of Landau s
bands are filled.~HereG5eHb/\!kF and 2e is the elec-
tron charge.! As a result, the Fermi level lies in a gap b
tween two Landau subbands, the SDW phase is stable,
the Hall conductivity is quantized:sxy522Ne2/h per one
layer of the TMTSF molecules.6,7 As the magnetic field in-
creases, the value of the integerN changes, which leads to
cascade of FISDW transitions. The QNM predicts the inte
N to have always the same sign. While most of the H
plateaus are indeed of the same sign, referred to as pos
by convention, a negative QHE is also observed at cer
pressures~the so-called Ribault anomaly!.8,9 The most com-
monly observed negative phases correspond toN522 and
N524.

In the Bechgaard salts, a weak dimerization along
chains leads to a half-filled band. Umklapp processes tra
ferring 4kF52p/a are allowed. Thus the formation of
SDW at wave vectorQN5(2kF1NG,Qy) will be accompa-
nied by a second SDW at wave vectorQN̄5(4kF,0)2QN

5(2kF2NG,2Qy), i.e., there is coexistence of phasesN
and 2N.21 Note that, in our notation,QN̄ has the signs of
both N and Qy reversed compared toQN . As discussed in
the preceding section, actual coexistence may occur on
QN̄ ~like QN) is a good nesting vector. This is the case w
the Fermi surface shown in Fig. 1~a! ~sinceQy;p/b), but
not with the one shown in Fig. 1~b! ~sinceQy;p/2b).

In Ref. 21, we have studied the effect of umklapp scat
ing on the FISDW phases, starting from the Fermi surfa
shown in Fig. 1~a!. We have shown that for weak umklap
scatteringQyÞp/b. In that case, the SDW with negativ
quantum number2uNu has a vanishing amplitude and can
ignored. However, forN even, there exists a critical value o
the umklapp scattering strength above which the system
fers to form two transversely commensurate SDW’s (Qy

5p/b). For a certain dispersion law,22 the SDW with nega-
tive quantum number2uNu has the largest amplitude, whic
leads to a negative Hall plateau@Fig. 2~a!#. Since the um-
klapp scattering strength is sensitive to pressure, we h
suggested that this provides a natural explanation for
negative QHE~Ribault anomaly! observed in the Bechgaar
salts.23 ~In the following, the ‘‘negative’’ phases are referre
to as ‘‘Ribault’’ phases.!

It should be noted that this explanation relies on a sim
Fermi surface@Fig. 1~a!#, which does not necessarily provid
a good approximation to the actual Fermi surface of
Bechgaard salts. With the more realistic~according to band
calculations! Fermi surface shown in Fig. 1~b!, umklapp pro-
cesses have only a small effect and do not lead to a neg
QHE.24 Therefore, our explanation of the Ribault anoma
should be taken with caution. For it to be correct, the para
eterk should be smaller~typically not larger thanp/10) than
the valuep/4 predicted by band calculation. In the follow
ing, we consider only the casek50.

We have shown in Ref. 21 that the SDW’s in the Riba
phase are likely to become circularly polarized~helicoidal
SDW’s! when the umklapp scattering strength is further
-
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creased@Fig. 2~b!#. The QHE vanishes in the helicoida
phase. We will see that the circular polarization also affe
the collective modes.

C. Outline of the paper

In the next section, we introduce the effective Ham
tonian describing the FISDW phases. The partition funct
is written as a functional integral over a bosonic auxilia
field that describes spin fluctuations. In Sec. III, we perfo
a saddle-point approximation, thus recovering the mean-fi
results of Ref. 21. We obtain the mean-field propagators
the mean-field particle-hole susceptibilities. In Sec. IV, w
derive the low-energy effective action of the SDW phase
taking into account fluctuations of the bosonic auxiliary fie
around its saddle-point value. We consider only ‘‘phas
fluctuations, i.e., sliding and spin-wave collective modes. W
do not study amplitude collective modes, which are gapp
and do not couple to phase fluctuations in the lon
wavelength limit.1

We find two sliding modes: a~gapless! Goldstone mode
corresponding to a sliding of the two SDW’s in oppos
directions ~out-of-phase oscillations!, and a gapped mode
corresponding to in-phase oscillations~Sec. V!. The real part

FIG. 2. Transition temperatureTc
(N) between the metallic phas

and the FISDW phases in presence of umklapp processes. The
tical lines are only guides for the eyes and do not necessarily
respond to the actual first-order transition lines between FISD
phases.~a! g3 /g250.03.@g3 andg2 are the strengths of normal an
umklapp processes, respectively~see Sec. II!.# The shaded area cor
responds to the Ribault phaseN522. ~b! g3 /g250.06. Two nega-
tive phases,N522 andN524, are observed~shaded areas!. The
phaseN522 splits into two subphases: helicoidal~dark shaded
area! and sinusoidal~light shaded area!.
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of the conductivity exhibits two peaks, which reflect th
presence of two sliding modes. The low-energy mode car
only a fraction of the total spectral weightvp

2/4 (vp is the
plasma frequency!, which is determined by the ratio of th
amplitudes of the two SDW’s~Sec. VI!.

The spin-wave modes are studied in Sec. VII. There
Goldstone mode corresponding to in-phase oscillations of
two SDW’s, and a gapped mode corresponding to out
phase oscillations. The spectral function Imx ret is computed
in Sec. VIII (x ret is the retarded transverse spin-spin cor
lation function!. Both gapped modes are found to lie abo
the mean-field gap in the case of the Bechgaard salts.

In Sec. IX, we study the collective modes in the helicoid
phase where the two SDW’s are circularly polarized. Fo
helicoidal structure, one cannot distinguish between a u
form spin rotation and a global translation, so that there
only two phase modes. The Goldstone mode does not
tribute to the conductivity and is therefore a pure spin-wa
mode. Thus all the spectral weight in the conductivitys(v)
is pushed up above the mean-field gap. Both modes con
ute to the spin-spin correlation function.

It should be noted that the long-wavelength modes are
the only modes of interest in the FISDW phases. There a
exist magnetorotons at finite wave vectors (qx
5G,2G, . . . ).25,26 These modes are not considered in t
paper.

In the following, we take\5kB51.

II. MODEL AND EFFECTIVE HAMILTONIAN

In the vicinity of the Fermi energy, the electron dispersi
law in the Bechgaard salts is approximated as

E~kx ,ky!5vF~ ukxu2kF!1t'~kyb!, ~2.1!

wherekx andky are the electron momenta along and acr
the one-dimensional chains of TMTSF. In Eq.~2.1!, the lon-
gitudinal electron dispersion is linearized inkx in the vicinity
of the two one-dimensional Fermi points6kF , and vF
52ata sin(kFa) is the corresponding Fermi velocity (ta be-
ing the transfer integral anda the lattice spacing along th
chains!. Whenever necessary, we will impose an ultravio
energy cutoffE0 to simulate a finite bandwidth. The functio
t'(u), which describes the propagation in the transverse
rection, is periodic:t'(u)5t'(u12p). It can be expanded
in Fourier series as

t'~u!522tb cos~u!22t2b cos~2u!

22t3b cos~3u!22t4b cos~4u!•••. ~2.2!

If we retain only the first harmonic (tb), we obtain a Fermi
surface with perfect nesting at (2kF ,p/b). The other har-
monics t2b ,t3b , . . . !tb generate deviations from perfe
nesting. They have been introduced in order to keep a r
istic description of the Fermi surface despite the linearizat
around6kF . In the following, we shall retain onlytb , t2b ,
and t4b . t3b does not play an important role and can
discarded.21 We do not consider the electron dispersion
the z direction, because it is not important in the followin
s
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~its main effect is to introduce a 3D threshold field belo
which the FISDW cascade is suppressed5!.

The effect of the magnetic fieldH along thez direction is
taken into account via the Peierls substitutionk→2 i“
2eA. ~The chargee is positive since the actual carriers a
holes.! In the gaugeA5(0,Hx,0) we obtain the noninteract
ing Hamiltonian

H05(
a,s

E d2r ĉas
† ~r !@vF~2 ia]x2kF!

1t'~2 ib]y2Gx!1sh#ĉas~r !. ~2.3!

Here ĉas(r ) is a fermionic operator for right (a51) and
left (a52) moving particles.s51 (2) for up ~down!
spin. We use the notationr5(x,mb) (m integer! and *d2r
5b(m*dx. G5eHb is a magnetic wave vector andh
5mBH is the Zeeman energy~we assume the electron gyro
magnetic factor to be equal to 2!. Diagonalizing the Hamil-
tonian ~2.3! we obtain the eigenstates and eigenenergies

fk
a~r !5

1

ALxLy

eik•r1 i (a/vc)T'(kyb2Gx),

eas~k![eas~kx!5vF~akx2kF!1sh, ~2.4!

whereLxLy is the area of the system,vc5vFG, and

T'~u!5E
0

u

du8t'~u8!. ~2.5!

In the chosen gauge the energy depends only onkx , i.e., the
dispersion law is one dimensional. This reflects the locali
tion of the electron motion in the transverse direction, wh
is at the origin of the QNM~see Ref. 21 for a further discus
sion!. Note that, contrary toky , the quantum numberkx is
not the momentum since the operator]x does not commute
with the Hamiltonian.

The interacting part of the Hamiltonian contains tw
terms corresponding to forward (g2) and umklapp (g3) scat-
tering:

Hint5
g2

2 (
a,s,s8

E d2r ĉas
† ~r !ĉ ās8

†
~r !ĉ ās8~r !ĉas~r !

1
g3

2 (
a,s

E d2re2 ia4kFxĉ ās
†

~r !ĉ ās̄
†

~r !ĉas̄~r !ĉas~r !,

~2.6!

where ā52a and s̄52s. For repulsive interaction
g2 ,g3>0. We shall assume that umklapp scattering
‘‘weak’’: g3,g2. We do not consider backward scatterin
(g1) since it does not play an important role in the followin
The interaction strength is best parametrized by dimens
less coupling constantsg̃25g2N(0) andg̃35g3N(0), where
N(0)51/pvFb is the density of states per spin.
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In a mean-field theory, the cutoffE0 is of the order of the
bandwidth ta . It is well known, however, that mean-fiel
theory completely neglects fluctuations and cannot be
rectly applied to quasi-1D systems where the physics, at l
at high temperature, is expected to be one dimensional.
general wisdom is that there is at low temperature a dim
sional crossover from a 1D to a 2D~or 3D! regime.27,28 In
Bechgaard salts~at ambient pressure!, this dimensional
crossover occurs via coherent single-particle interchain h
ping. Although the experimental assignment of the crosso
temperature is still under debate~see, for instance, Refs. 29
31!, the success of the QNM in explaining the phase diagr
of the compounds (TMTSF)2PF6 and (TMTSF)2ClO4 pro-
vides clear evidence of the relevance of the Fermi surfac
low temperature. In the 3D regime, a mean-field theory
justified provided that the parameters of the theory are
derstood as effective parameters~renormalized by 1D
fluctuations!.27 E0 is then smaller than the bare bandwid
(;ta) and corresponds to the renormalized transverse b
width. For the same reason, the interaction amplitudesg2
and g3 can be different from their bare values. The Ham
tonian @Eqs.~2.3! and ~2.6!# should therefore be understoo
as an effective low-energy Hamiltonian.

Since collective modes are best studied within a fu
tional integral formalism, we write the partition function a
Z5*Dc* Dce2S02Sint where c (* ) is an anticommuting
Grassmann variable. The actionsS0 andSint are given by

S05E dtH(
a,s

E d2rcas* ~r ,t!]tcas~r ,t!1H0@c* ,c#J ,

Sint52
1

2 (
a,a8,s

E d2rdtOas* ~r ,t!ĝaa8~r !Oa8s~r ,t!,

~2.7!

where the imaginary timet varies between 0 andb51/T.
We have introduced the composite field

Oas~r ,t!5cās̄
* ~r ,t!cas~r ,t! ~2.8!

and the matrix

ĝ~r !5S g2 g3ei4kFx

g3e2 i4kFx g2 D . ~2.9!

Introducing a complex auxiliary fieldDas(r ,t), we de-
coupleSint by means of a Hubbard-Stratonovich transform
tion. This leads to the action

S5S01E d2rdtD↑
†~r ,t!ĝ~r !D↑~r ,t!

2(
s

E d2rdtDs
†~r ,t!ĝ~r !Os~r ,t!. ~2.10!

We use the spinor notationDs5(D1s ,D2s)T and Os

5(O1s ,O2s)T. Since Das couples to the fieldOas(r ,t)
5Oās̄

* (r ,t), it satisfies the constraintDas(r ,t)5Dās̄
* (r ,t).

Note that the action~2.10! maintains spin-rotation invarianc
around the magnetic field axis. In the FISDW phase, beca
i-
st
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of the Zeeman term, the magnetization is perpendicula
the magnetic field axis, so that the only spin-wave mo
corresponds to rotation around thez axis. In zero magnetic
field, a different approach should be used in order to ma
tain the full SU~2! spin symmetry~see Ref. 2!.

III. MEAN-FIELD THEORY

In this section we look for a mean-field solution corr
sponding to a phase with two sinusoidal~i.e., linearly polar-
ized! SDW’s:

^Sx~r !&5 (
p56

M pN cos~fpN!cos~QpN•r1upN!,

^Sy~r !&5 (
p56

M pN sin~fpN!cos~QpN•r1upN!,

^Sz~r !&50, ~3.1!

whereSn(r )5(ass8cās
* (r )tss8

n cas8(r ) is the spin-density
operator andtn (n5x,y,z) the Pauli matrices. Because o
the Zeeman coupling with the magnetic field, the SDW’s a
polarized in the (x,y) plane. The variablefpN determines
the polarization axis, whileupN gives the position of the
SDW’s with respect to the underlying crystal lattice.

We assume that the external parameters~magnetic field,
pressure, etc.! are such that the system is in the Riba
phase, characterized by a negative QHE and the coexist
of two SDW’s with comparable amplitudes. We choose t
sign of N such thatN refers to the SDW with the larges
amplitude (MN>MN̄). (N is even and negative in the Rib
ault phase.!

The mean-field solution corresponds to a saddle-point
proximation with a static auxiliary field32

Das~r !5^Oas~r ,t!&5(
p

Das
(pN)eiaQpN•r. ~3.2!

The relation betweenDas and ^Oas& results from the sta-
tionarity condition of the saddle-point action@see Eq.~3.4!
below#. Because of the constraintDas* (r )5Dās̄(r ), the order
parameters satisfyDas

(pN)* 5Dās̄
(pN) . Among the eight complex

order parameters, only four are therefore independent
sufficient to characterize the SDW phase. The order par

eters Das
(pN)5uDas

(pN)ueiwas
(pN)

are related to the spin-densit
modulation~3.1! by

uDas
(pN)u5

M pN

4
,

upN5 1
2 ~w1↑

(pN)2w2↑
(pN)!,

fpN52 1
2 ~w1↑

(pN)1w2↑
(pN)!. ~3.3!

Since by conventionMN>MN̄ , we have uDas
(N)u>uDas

(N̄)u.
Note that the conditionDas

(pN)* 5Dās̄
(pN) imposes wās̄

(pN)
5

2was
(pN) .

The mean-field action is given by
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SMF5bE d2rD↑
†~r !ĝ~r !D↑~r !2(

a
E d2rdtE d2r 8dt8~ca↑* ~r ,t!,cā↓* ~r ,t!!

3S Ga↑
(0)21~r ,t;r 8,t8! d~r2r 8!d~t2t8!D̃a↑~r !

d~r2r 8!d~t2t8!D̃a↑* ~r ! Gā↓
(0)21

~r ,t;r 8,t8! D S ca↑~r 8,t8!

cā↓~r 8,t8!
D . ~3.4!
e

f

rs
c
av

a-

ning

ngu-

nd is
el.
m-
and
vel,
c-

r

2

HereGa↑
(0)(r ,t;r 8,t8) is the Green’s function in the absenc

of interaction (g25g350). The effective potentialD̃as(r )
acting on the electrons is defined by

D̃as~r !5g2Das~r !1g3eia4kFxDās~r !, ~3.5!

i.e., D̃s(r )5ĝ(r )Ds(r ). Rewriting the action in the basis o
the eigenstatesfk

a of H0 @Eq. ~2.4!#, we obtain

SMF5bE d2rD↑
†~r !ĝ~r !D↑~r !

2 (
a,k,k8,v

~ca↑* ~k,v!,cā↓* ~k,v!!

3S dk,k8@ iv2ea↑~kx!# D̃a↑~k,k8!

D̃ā↓~k,k8! dk,k8@ iv2eā↓~kx!#D
3S ca↑~k8,v!

cā↓~k8,v!
D . ~3.6!

We denote byv52pT(n11/2) (n integer! fermionic Mat-
subara frequencies. We emphasize that herek andk8 refer to
the quantum numbers of the eigenstatesfk

a of H0. We have
introduced the~particle-hole! pairing amplitudes

D̃as~k,k8!5E d2rfk
a* ~r !fk8

ā
~r !D̃as~r !

5dk
y8 ,ky2p/b(

p
~g2Das

(pN)1g3Dās
( p̄N)

!

3 (
n52`

`

I neian(kyb2p/2)dk
x8 ,kx2aQ

x
(pN)1anG ,

~3.7!

whereI n[I n(qy5p/b). The coefficientsI n(qy), defined by

I n~qy!5E
0

2p du

2p
einu1( i /vc)[T'(u1qyb/2)1T'(u2qyb/2)],

~3.8!

are well known in the QNM. They depend on the transve
dispersion lawt'(kyb) and measure the degree of perfe
nesting of the Fermi surface. For a perfect nesting at w
vector (2kF ,p/b), one would haveI n(p/b)5dn,0 , while in
the generic situation~imperfect nesting! uI n(qy)u,1.33 The
convention MN̄<MN implies uI N̄u<uI Nu. Note that kx is
coupled not only tokx2aQx

(pN) but also to kx2aQx
(pN)
e
t
e

1anG @Eq. ~3.7!#. This reflects the fact thatkx is not the
momentum in the gaugeA5(0,Hx,0).

From now on, we shall use the quantum limit approxim
tion ~QLA! ~also known as the single-gap approximation5!.
This approximation, which is valid whenvc is much larger
than the temperature and the SDW gap, consists in retai
only the most singular~particle-hole! pairing channels. In the
metallic phase, these channels present the logarithmic si
larity ; ln(E0 /T) ~which is characteristic of a SDW system
with perfect nesting!. This singularity results from pairing
between electron and hole states of the same energy a
responsible for the opening of a gap at the Fermi lev
While the QLA strongly underestimates the transition te
perature and the value of the gap at low temperature,
also neglects gaps opening above and below the Fermi le
it is an excellent approximation when calculating the colle
tive modes~we shall come back to this point!.25

Thus, in the QLA, D̃as(k,k8) is not zero only if
eas(kx)52eās̄(kx8), which requireskx85kx2a2kF . Only
the term withn5pN survives in Eq.~3.7!, which yields

D̃as~k,k8!5dk8,k2aQ0
D̃as~ky!,

D̃as~ky!5(
p

D̃as
(pN)eiapN(kyb2p/2), ~3.9!

whereQ05(2kF ,p/b). We have introduced the new orde
parametersD̃as

(pN) related toDas
(pN) by

D̃as
(pN)5I pN~g2Das

(pN)1g3Dās
( p̄N)

!5D̃ās̄
(pN)* ,

Das
(pN)5

g2I p̄ND̃as
(pN)2g3I pND̃ās

( p̄N)

~g2
22g3

2!I NI N̄

. ~3.10!

In the QLA, the mean-field action therefore reduces to a
32 matrix ~as in BCS theory!:

SMF5bE d2rD↑
†~r !ĝ~r !D↑~r !

2 (
a,k,v

~ca↑* ~k,v!,cā↓* ~k2aQ0 ,v!!

3S iv2ea↑~kx! D̃a↑~ky!

D̃a↑* ~ky! iv1ea↑~kx!D
3S ca↑~k,v!

cā↓~k2aQ0 ,v!
D , ~3.11!
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using eā↓(kx2a2kF)52ea↑(kx). It is remarkable that
within the QLA the mean-field action can still be written
a 232 matrix. The presence of a second SDW changes
expression of the pairing amplitude~which becomesky de-
pendent!, but not the fact that the state (k,2) couples only to
(k1Q0 ,1). This is not true in zero magnetic field where th
presence of a second SDW leads to complicated mean-
equations.10

A. Ground-state energy

The mean-field action being Gaussian, we can integ
out the fermion fields to obtain the ground-state conden
tion energy~per unit area!, DE52(T ln Z)/LxLy2EN , where
T→0 andEN52N(0)E0

2 is the normal state energy:

DE5(
a

F(
p

Da↑
(pN)* D̃a↑

(pN)

I pN
1

N~0!

2
uD̃a↑

(N̄)u2

2
N~0!

2 (
p

uD̃a↑
(pN)u2S 1

2
1 ln

2E0

uD̃a↑
(N)u D G . ~3.12!

To obtain Eq.~3.12!, we have explicitly taken into accoun

the facts thatuD̃as
(N)u>uD̃as

(N̄)u and uDas
(N)u>uDas

(N̄)u. The latter
inequality follows fromMN>MN̄ , while the former is de-
rived below Eq. ~3.15!. Using the gap equation
]DE/]D̃a↑

(pN)* 50, we can rewrite the condensation ener
as

DE52
N~0!

4 (
a,p

uD̃a↑
(pN)u2, ~3.13!

a form which is reminiscent of the BCS-like expression o
SDW system with perfect nesting@DE52N(0)uDu2/2 with
D the SDW gap#. As stated above, the QLA amounts
taking into account only the ‘‘perfect nesting component’’
the particle-hole pairing.

The requirement thatDE is minimal with respect to varia
tion of the order parameters leads to constraints on
phases of the complex order parametersD̃as

(pN)

5uD̃as
(pN)uei w̃as

(pN)
:

w̃a↑
(N)2w̃ ā↑

(N̄)
5H 0 if I NI N̄.0

p if I NI N̄,0.
~3.14!

For t4b50, I N̄5(21)N/2I N . When t4b is finite but small,
sgn(I NI N̄)5(21)N/2. Using Eqs.~3.10! and ~3.14!, we then
obtain

Dā↑
(N̄)

Da↑
(N)

5
uD̃ā↑

(N̄)/D̃a↑
(N)u2r uI N̄ /I Nu

uI N̄ /I Nu2r uD̃ā↑
(N̄)/D̃a↑

(N)u
. ~3.15!

Equation~3.15!, together withuDās
(N̄)/Das

(N)u5MN̄ /MN<1 and

uI N̄ /I Nu<1, implies uD̃ās
(N̄)/D̃as

(N)u<1. It also shows that

Dā↑
(N̄)/Da↑

(N) is a real number, so that the phaseswa↑
(N) andwā↑

(N̄)

are identical modulop:

wa↑
(N)5wā↑

(N̄)
@p#. ~3.16!
e

ld

te
a-

e

From Eqs.~3.3! and ~3.16!, we then deduce

fN5f N̄ , uN52u N̄ . ~3.17!

In the mean-field ground state, the two SDW’s have the sa
polarization axis (fN5f N̄). The conditionuN52u N̄ means
that the two SDW’s can be displaced in opposite directio
without changing the energy of the system. They can the
fore be centered either on the lattice sites or on the bon
For uN5u N̄50, both SDW’s are centered on the sites, wh
for uN52u N̄5p/2, they are centered on the bonds. T
condition uN1u N̄50 is related to the pinning that woul
occur for a commensurate SDW. Indeed, for a single SD
with wave vector (2kF ,p/b), it becomes 2u50 whereu is
the phase of the SDW.1

This degeneracy of the ground state results from ro
tional invariance around thez axis in spin space,34 and trans-
lational invariance in real space. The latter holds in t
FISDW states, since the SDW’s are incommensurate w
respect to the crystal lattice.35 According to the mean-field
analysis, and in agreement with general symmetry consi
ations, we therefore expect two~gapless! Goldstone modes: a
spin-wave mode corresponding to a uniform rotation arou
the z axis of the common polarization axis, and a slidin
mode corresponding to a displacement of the two SDW’s
opposite directions.

Without loss of generality, we can choose the pha
w̃as

(pN) andwas
(pN) equal to 0 orp. The order parametersD̃as

(pN)

andDas
(pN) are then real~positive or negative! numbers. Fur-

thermore, since the constraints obtained by minimizing

free energy relatew̃as
(N) (was

(N)) only to w̃ ās
(N̄) (wās

(N̄)), we can

also imposew̃as
(N)5w̃ ās

(N) andwas
(N)5wās

(N) . With such a choice,

D̃as
(pN)[D̃pN , Das

(pN)[DpN ~3.18!

are real~positive or negative! numbers independent ofa and
s. upN50 andfN5f N̄50 or p. The SDW’s are polarized
along thex axis. Introducing the notations

r 5
g3

g2
, z5

I N̄

I N
,

g5
D N̄

DN
, g̃5

D̃ N̄

D̃N

, ~3.19!

~with ugu5MN̄ /MN), we deduce from Eq.~3.10!

g̃5z
g1r

11rg
, g5

g̃2r z

z2r g̃
. ~3.20!

Note thatg̃ and z have the same sign@see Eq.~3.14!#, and
ugu,ug̃u,r ,uzu<1. In the Ribault phase,ugu.ug̃u.21 Both
SDW’s have the same amplitude whenuzu51. In that case
g̃5z andg51.

B. Mean-field propagators

The normal and anomalous Green’s functions are defi
by
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Gas~r ,r 8,v!52^cas~r ,v!cas* ~r 8,v!&

5(
k,k8

Gas~k,k8,v!fk
a~r !fk8

a* ~r 8!,

Fas~r ,r 8,v!52^cas~r ,v!cās̄
* ~r 8,v!&

5(
k,k8

Fas~k,k8,v!fk
a~r !fk8

ā* ~r 8!.

~3.21!

From Eq.~3.11!, we deduce that

Gas~k,k8,v!5dk,k8Gas~k,v!,

Fas~k,k8,v!5dk8,k2aQ0
Fas~k,v!, ~3.22!

with

Gas~k,v!5
2 iv2eas~kx!

v21eas
2 ~kx!1uD̃as~ky!u2

,

Fas~k,v!5
D̃as~ky!

v21eas
2 ~kx!1uD̃as~ky!u2

. ~3.23!

The excitation energies are given by6Eas(k), where

Eas~k!5Aeas
2 ~kx!1uD̃as~ky!u2. ~3.24!

Writing D̃a↑
(pN)5uD̃a↑

(pN)uei w̃as
(pN)

, we obtain~for N even!

uD̃as~ky!u25(
p

uD̃pNu212uD̃ND̃ N̄u

3cos~2aNkyb1w̃as
(N)2w̃as

(N̄)!. ~3.25!

The quasiparticle excitation gap 2uD̃as(ky)u depends on the
transverse momentumky ~Fig. 3!. When both SDW’s have
the same amplitude,uD̃Nu5uD̃ N̄u, the spectrum becomes ga
less sinceD̃as(ky) vanishes at some points on the Fer
surface.

FIG. 3. Quasiparticle excitation gap 2uD̃1↑(ky)u in the phase

N522 for ug̃u51/3.
i

We have shown in Ref. 21 that the occurrence of helic
dal phases prevents the spectrum from becoming gap
Indeed, the stability of the sinusoidal phase requires

minky
uD̃as~ky!u

maxky
uD̃as~ky!u

5
12ug̃u

11ug̃u
*0.32, ~3.26!

i.e., ug̃u&0.52. Equation~3.26! is deduced from a Ginzburg
Landau expansion of the free energy~valid only close to the
transition line! and may be slightly changed at low temper
ture.

In the helicoidal phase, there is no dispersion of the g
with respect toky ~see Sec. IX!. Since the spectrum become
gapless forug̃u51, it is natural that the system, above
certain value ofug̃u, prefers to form helicoidal SDW’s in
order to lower the free energy by opening a large gap on
whole Fermi surface.

C. Mean-field susceptibilities

The results reported in this section are derived in detai
Appendix A. We study the mean-field susceptibilities~which
will be useful in Sec. IV!

x̄as,a8s8~r ,t;r 8,t8!5^Oas~r ,t!Oa8s8
* ~r 8,t8!&

2^Oas~r ,t!&^Oa8s8
* ~r 8,t8!&,

~3.27!

where the mean valuê•••& is taken with the mean-field
actionSMF @Eq. ~3.11!#. Since the latter is Gaussian, we im
mediately deduce the only two nonvanishing component

x̄as,as~r ,t;r 8,t8!52Gas~r ,t;r 8,t8!Gās̄~r 8,t8;r ,t!,

x̄as,ās̄~r ,t;r 8,t8!52Fas~r ,t;r 8,t8!Fas~r 8,t8;r ,t!.
~3.28!

At T50 and forqy50, the Fourier-transformed suscep
bilities are given by~Appendix A!

x̄1↑,1↑~q1QpN ,q1QpN ,vn!

5
N~0!

2
I pN

2 S ln
2E0

uD̃Nu
2

1

2
2

vn
21vF

2qx
2

6~12g̃2!D̃N
2 D ,

x̄1↑,1↑~q1QpN ,q1Qp̄N ,vn!

52
N~0!

4
I NI N̄g̃S 12

vn
21vF

2qx
2

3~12g̃2!D̃N
2 D ,

x̄1↑,2↓~q1QpN ,q2QpN ,vn!

52dp,1

N~0!

4
I N

2 ~12g̃2!S 12
vn

21vF
2qx

2

6~12g̃2!D̃N
2 D ,

x̄1↑,2↓~q1QpN ,q2Qp̄N ,vn!52
N~0!

4
I NI N̄g̃,

~3.29!
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where vn52pTn (n integer! is a bosonic Matsubara fre
quency. Equations~3.29! are valid in the low-energy limit

vF
2qx

2 ,vn
2!D̃N

2 (12g̃2). We have used the QLA~see Appen-
dix A!, whose validity is discussed in detail in Ref. 25. A
though the QLA does not predict accurately the value of
mean-field gapsD̃pN andDpN , it is an excellent approxima
tion of the low-energy properties~such as the long-
wavelength collective modes! once the values ofD̃pN and
DpN are known. Since the absolute value of the latter do
play an important role for our purpose, the QLA turns out
be a perfect mean to compute the collective modes.

IV. LOW-ENERGY EFFECTIVE ACTION

In this section we derive the low-energy effective acti
determining the sliding and spin-wave modes. We do
consider amplitude modes, which are gapped and do
couple to ‘‘phase’’ fluctuations in the long-wavelength lim
We consider only longitudinal fluctuations (qy50) ~i.e.,
those with the wave vector parallel to the chains!. These
fluctuations are of particular interest since they couple to
electric field applied along the chains~which is a common
experimental situation!: see Sec. VI on the optical conduc
tivity. Including a finite qy would allow one to obtain the
effective mass of the collective modes in the transverse
rection. Such a calculation is, however, much more involv
and will not be attempted here.

The low-energy effective action is derived by studyi
fluctuations of the auxiliary fieldDas(r ,t) around its saddle-
point value Das(r ). We write Das(r ,t)5Das(r )
1has(r ,t) and calculate the effective action to quadra
order in the fluctuating fieldh. The fermionic action~2.10!
can be rewritten as

S@c* ,c#5SMF@c* ,c#2(
s

E d2rdths
†~r ,t!Õs~r ,t!

1E d2rdt$h↑
†~r ,t!ĝ~r !h↑~r ,t!

1@h↑
†~r ,t!D̃↑~r !1c.c.#%. ~4.1!

Integrating out the fermions, we obtain to quadratic orde
h the effective action

S@h* ,h#5
1

2E d2rdtE d2r 8dt8 (
a,a8,s,s8

has* ~r ,t!

3@ds,s8d~r2r 8!d~t2t8!ĝaa8~r !

2x̃as,a8s8~r ,t;r 8,t8!#ha8s8~r 8,t8!, ~4.2!
e

t

t
ot

n

i-
d

n

where the susceptibilityx̃ is defined by Eq.~A13!. There is
no linear term since we expand around the saddle point. C
sidering phase fluctuations only,

Das~r ,t!5(
p

DpNeiaQpN•r1 iwas
(pN)(r ,t), ~4.3!

we have

has~r ,t!5 i(
p

DpNeiaQpN•rwas
(pN)~r ,t! ~4.4!

to lowest order in the~real! phase fieldwas
(pN)(r ,t). Note that

the property Das* (r ,t)5Dās̄(r ,t) imposes wās̄
(pN)(r ,t)5

2was
(pN)(r ,t). Using this latter condition, we deduce from

Eq. ~4.2! the effective action for the phase:

S@w#5 (
p,p8

DpNDp8N (
a,a8,q̃

wa↑
(pN)~2q̃!wa8↑

(p8N)
~ q̃!

3@g2da,a8dp,p81g3da,ā8dp,p̄81Aaa8
pp8 ~ q̃!#,

~4.5!

whereq̃5(qx ,vn), and

Aaa8
pp8 ~ q̃!52x̃a↑,a8↑~q1aQpN ,q1a8Qp8N ,vn!

1x̃a↑,ā8↓~q1aQpN ,q2a8Qp8N ,vn!.

~4.6!

In Eq. ~4.6! q5(qx ,qy50). Using Eq.~A15!, and introduc-
ing charge and spin variables as in the mean-field theory@see
Eq. ~3.3!#,

upN~r ,t!5 1
2 @w1↑

(pN)~r ,t!2w2↑
(pN)~r ,t!#,

fpN~r ,t!52 1
2 @w1↑

(pN)~r ,t!1w2↑
(pN)~r ,t!#, ~4.7!

we obtain a decoupling of the sliding and spin-wave mod
which are determined by the actions

S@u#5
1

2 (
q̃

~uN~2q̃!,u N̄~2q̃!!Dch
21~ q̃!S uN~ q̃!

u N̄~ q̃!
D ,

~4.8!

S@f#5
1

2 (
q̃

~fN~2q̃!,f N̄~2q̃!!Dsp
21~ q̃!S fN~ q̃!

f N̄~ q̃!
D ,

~4.9!

with
Dch
21~ q̃!54g2DN

2 S 12c112r 2c2212rc12 2gr ~12c112c22!2g~11r 2!c12

2gr ~12c112c22!2g~11r 2!c12 g2~12c222r 2c11!12g2rc12
D , ~4.10!

Dsp
21~ q̃!54g2DN

2 S 12c112r 2c2222rc12 gr ~12c112c22!2g~11r 2!c12

gr ~12c112c22!2g~11r 2!c12 g2~12c222r 2c11!22g2rc12
D . ~4.11!
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The coefficientscpp8[cpp8(q̃) are linear combinations o
the mean-field susceptibilitiesx̄ and are defined in Appendi
A.

The effective actions@Eqs.~4.8! and~4.9!# have been ob-
tained by expanding the auxiliary field with respect to t
phase fluctuationswas

(pN)(r ,t) @Eq. ~4.4!#. While this proce-
dure turns out to be correct at zero temperature, an alte
tive and more rigorous approach consists in performin
chiral rotation of the fermion fields, which allows one
directly expand with respect to]twas

(pN)(r ,t) and
“was

(pN)(r ,t).2,36 The drawback of this approach is that o
has to calculate the nontrivial Jacobian of the chiral trans
mation ~the so-called chiral anomaly!.

V. SLIDING MODES

The dispersion of the sliding modes is obtained fro
detDch

21(q̃)50. From Eq.~4.10!, we deduce

detDch
21~ q̃!516g2

2DN
4 g2~12r 2!@~12c11!~12c22!

2r 2c11c2212rc122~12r 2!c12
2 #.

~5.1!

The gap equation~A12! shows that detDch
21(q̃50)50,

which indicates that there is a gapless mode with vanish
energy in the limit of long wavelength (qx→0). Equation
~5.1! simplifies into

dc11

r z

g̃
1dc22

r g̃

z
22rdc12

2~12r 2!~dc11dc222dc12
2 !50. ~5.2!

A. Goldstone mode

Equation ~5.2! admits the solutionvn
21vF

2qx
250. After

analytical continuation to real frequencies (ivn→v1 i01),
we obtain a mode with a linear dispersion law~Fig. 4!,

FIG. 4. Dispersion laws of the two sliding modes in the Riba
phase. The gapped mode is generally expected to lie above

quasiparticle excitation gap. The latter varies between 2uD̃Nu(1
2ug̃u) and 2uD̃Nu(11ug̃u) ~Fig. 3!.
a-
a

r-

g

v5vFqx , ~5.3!

uN~qx ,v!52u N̄~qx ,v!. ~5.4!

As expected from the mean-field analysis~Sec. III!, the
Goldstone mode corresponds to an out-of-phase oscilla
of the two SDW’s. We do not find any renormalization of th
mode velocity because we have not taken into account lo
wavelength charge fluctuations. The latter couple to the s
ing modes and renormalize the velocity tovF@1
1g4N(0)#1/2, whereg4 is the forward scattering strength1

In order to obtain this velocity renormalization, it woul
have been necessary to include forward scattering in the
teraction Hamiltonian and to introduce an auxiliary field f
the long-wavelength charge fluctuations.2

B. Gapped mode

The second mode obtained from Eq.~5.2! corresponds to
a gapped mode with dispersion law~Fig. 4!

v25vF
2qx

21v0
2 , ~5.5!

v0
25

12

g̃2

r

12r 2

315g̃2

3g̃2 UD̃ND̃ N̄

I NI N̄
U . ~5.6!

The oscillations of this mode satisfy

uN

u N̄

5
r z2g̃

r g̃2z

r ~31g̃214g̃z !21~12r !24zg̃~31g̃2!

~31g̃214r g̃z !2
.

~5.7!

If we consider the case where the two SDW’s have the sa
amplitude~which is not physical because of the appearan
of the helicoidal phase!, which occurs wheng̃5z561, we
obtain the simple resultuN5u N̄ .

Using the physical parameters of the Bechgaard salts
find that v0 is generally larger than the order paramete
uD̃6Nu, so that the gapped sliding mode appears above
quasiparticle excitation gap~in general, within the first Lan-
dau subband above the Fermi level!. We therefore expec
this mode to be strongly damped due to the coupling with
quasiparticle excitations. Note that Eq.~5.6! giving v0 is
correct only if v0!uD̃Nu(12g̃2)1/2, since it was obtained
using expressions of the susceptibilitiescpp8 valid in the
limit vn

2 ,vF
2qx

2!D̃N
2 (12g̃2).

It is worth pointing out that the two sliding modes be
some similarities with phase modes occurring in two-ban11

or bilayer12 superconductors.@This also holds for the spin
wave modes~Sec. VII! and the collective modes of the hel
coidal phase~Sec. IX!.# g3 /g2 plays the same role as th
ratio between the interband~or interlayer! and intraband~or
intralayer! coupling constants. There are also analogies w
phase modes ind1 id8 superconductors, and, to some exte
with plasmon modes occurring in conducting bilay
systems.14 While the corresponding phase modes in a sup
conducting systems have not yet been observed, plas
modes in a semiconductor double-well structure have b
observed recently via inelastic-light-scatterin
experiments.37

t
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VI. OPTICAL CONDUCTIVITY

At T50 there are no thermally excited carriers above
SDW gap. The response to a low-frequency electric field
then entirely due to fluctuations of the SDW condensa
Since the electric field does not couple to the amplitu
modes, we only have to consider the phase fluctuations s
ied in the preceding sections. In the next section, we de
mine the charge (rDW) and current (j DW) fluctuations in-
duced by phase fluctuations of the condensate. In Sec. V
we calculate the current-current correlation functi
^ j DWj DW& which determines the conductivity.

A. Charge and current operators

In this section we calculate explicitly the charge induc
by phase fluctuations of the condensate. The current is
obtained from the continuity equation.

We consider a source fieldA0(r ,t) which couples to the
~long-wavelength! charge density fluctuations. This adds
the fermionic action the contribution
re
at
-

ice
e
is
.

e
d-
r-

B,

en

DS@c* ,c#5E d2rdtA0~r ,t!(
a,s

cas* ~r ,t!cas~r ,t!.

~6.1!

The charge operator is then obtained from the action
functional differentiation with respect to the external fie
A0:

r~r ,t!5
dS

dA0~r ,t!
uA050 . ~6.2!

Following Sec. II, we introduce the auxiliary fieldDas(r ,t)
and integrate out the fermions. This leads to the action

S@D* ,D,A0#5E d2rdtD↑
†~r ,t!ĝ~r !D↑~r ,t!

2(
a

Tr ln~2G a
211Â0!, ~6.3!

where
G a
21~r ,t;r 8,t8!5S Ga↑

(0)21~r ,t;r 8,t8! d~r2r 8!d~t2t8!D̃a↑~r ,t!

d~r2r 8!d~t2t8!D̃a↑* ~r ,t! Gā↓
(0)21

~r ,t;r 8,t8!
D , ~6.4!
tor

r

tua-
Â0~r ,t;r 8,t8!5d~r2r 8!d~t2t8!A0~r ,t!1̂. ~6.5!

We denote by 1ˆ the 232 unit matrix. Expanding the action
with respect toA0, we obtain

S@D* ,D,A0#5S@D* ,D#1(
a

Tr@GaÂ0#1O~A0
2!,

~6.6!

whereS@D* ,D# is the action without the source field. He
Tr denotes the trace with respect to time, space, and m
indices. From Eq.~6.2!, we then obtain the following expres
sion of the charge operator:

r~r ,t!5(
a

tr Ga~r ,t;r ,t!, ~6.7!

where tr denotes the trace with respect to the matrix ind
only @i.e., TrÔ5*d2rdt tr Ô(r ,t;r ,t) for any operatorÔ#.

To calculater, we write

D̃s~r ,t!5D̃s~r !1h̃s~r ,t!,

h̃s~r ,t!5ĝ~r !hs~r ,t!. ~6.8!

Then we have

G a
215G a

MF212Sa , ~6.9!
rix

s

Sa~r ,t;r 8,t8!52d~r2r 8!d~t2t8!

3S 0 h̃a↑~r ,t!

h̃a↑* ~r ,t! 0
D , ~6.10!

whereG MF is the mean-field propagator. The charge opera
is given by

r~r ,t!5(
a

tr G a
MF~r ,t;r ,t!

1(
a

tr@G a
MFSaG a

MF#~r ,t;r ,t!1O~ h̃2!.

~6.11!

The first term in the right-hand side of Eq.~6.11! is the
uniform charge densityr0 in the mean-field state. The othe
terms correspond to charge fluctuationsrDW induced by the
condensate fluctuations. To lowest order in phase fluc
tions, we obtain

rDW~r ,t!5(
a

tr@G a
MFSaG a

MF#~r ,t;r ,t!. ~6.12!

Considering only phase fluctuations@Eq. ~4.4!#, we obtain
~Appendix B!

rDW~r ,t!5
1

pb
]xũN~r ,t!, ~6.13!

where
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ũN~r ,t!5 1
2 @w̃1↑

(N)~r ,t!2w̃2↑
(N)~r ,t!#, ~6.14!

w̃as
(pN)~r ,t!5

g2DpNwas
(pN)~r ,t!1g3D p̄Nwās

( p̄N)
~r ,t!

g2DpN1g3D p̄N

.

~6.15!

Note thatrDW(r ,t) depends only onũN(r ,t), i.e., on the
largest component of the effective potentialD̃as(r ,t).

Using the continuity equation~in imaginary time!

ie]trDW~r ,t!1]xj DW~r ,t!50, ~6.16!

we obtain the current fluctuations induced by the phase fl
tuations:

j DW~r ,t!52
ie

pb
]tũN~r ,t!. ~6.17!

Note that the currentj DW is parallel to the chains. Conden
sate fluctuations do not induce current fluctuations in
transverse direction.

This simple result@Eqs.~6.13! and ~6.17!# can be under-
stood as follows. For a system with a single SDW, the cha
fluctuationrDW5]xu/pb is obtained by requiring the SDW
gap to remain tied to the Fermi level. Let us briefly recall th
argument. A fluctuating SDW potentialDas(x,t)
5Daseia2kFx1 iwas(x,t).Daseia2kFx1 ix]xwas(x,t) couples the
state (kx ,↓) to „kx12kF1]xw1↑(x,t),↑…, and (kx ,↑) to
„kx12kF2]xw2↑(x,t),↓…. ~For simplicity, we neglect the
transverse direction.! The resulting gap will open at th
Fermi level only if the system modifies its density in such
way that

dkF1↑~x,t!1dkF2↓~x,t!5]xw1↑~x,t!,

dkF1↓~x,t!1dkF2↑~x,t!52]xw2↑~x,t!. ~6.18!

Here we denote bya@kF1dkFas(x,t)# the Fermi wave vec-
tor on the (as) branch of the spectrum. This Fermi wav
vector is time and space dependent because of the de
fluctuations. Equations~6.18! imply the charge-density
variation

dr~x,t!5
1

2pb (
s

@dkF1s~x,t!1dkF2s~x,t!#

5
1

2pb
]x@w1↑~x,t!2w2↑~x,t!#

5
1

pb
]xu~x,t!. ~6.19!

Let us now go back to the case of interest. We should c
sider the effective potentialD̃as(r ,t), since it isD̃as(r ,t)
@and notDas(r ,t)# that couples to the electrons. In the pre
ence of two SDW’s, it is not possible to satisfy Eq.~6.18! for
the two components (N and2N) of the effective potential.
Nevertheless, it is natural to assume that the largest gap
mains tied to the Fermi level. This immediately yields E
~6.13!, and, from the continuity equation, Eq.~6.17!. ~The
latter can also be obtained by a similar argument with
c-

e

e

ity

n-

-

re-
.

t

using the continuity equation.1! In conclusion, Eqs.~6.13!
and~6.17! express the fact that the largest gap remains tie
the Fermi level.

Finally, we can express the charge and current fluct
tions directly in terms ofuN andu N̄ :

rDW~r ,t!5
1

pb

]xuN~r ,t!2rg]xu N̄~r ,t!

11rg
,

j DW~r ,t!52
ie

pb

]tuN~r ,t!2rg]tu N̄~r ,t!

11rg
. ~6.20!

B. Current-current correlation function

In this section we calculate the correlation function

P~vn!5^ j DW~vn! j DW~2vn!&, ~6.21!

where j DW(vn)[ j DW(q50,vn) is the Fourier transform of
the current operator given by Eq.~6.17!. We have

P~vn!5
2e2vn

2

p2b2~11gr !2

3@Dch
11~vn!1r 2g2Dch

22~vn!22rgDch
12~vn!#,

~6.22!

whereDch
pp8(vn)5^upN(vn)up8N(2vn)& @see Eq.~4.8!#.

The conductivity is defined by s(v)52 i /(v
1 i01)P ret(v) where the retarded correlation functio
P ret(v) is obtained fromP(vn) by analytical continuation
to real frequencyivn→v1 i01. Using the expression o
cpp8 ~Appendix A!, we obtain the dissipative part of the con
ductivity,

Re@s~v!#5
vp

2

4 S d~v!
3~12g̃2!

315g̃2
1d~v6v0!

4g̃

315g̃2D ,

~6.23!

where vp5A8e2vF /b is the plasma frequency. Equatio
~6.23! satisfies the conductivity sum rule

E
2`

`

dv Re@s~v!#5
vp

2

4
. ~6.24!

Thus all the spectral weight is exhausted by the collect
sliding modes. Quasiparticle excitations above the me
field gap do not contribute to the~longitudinal! optical con-
ductivity, a result well known in SDW systems.1 Because
both modes contribute to the conductivity, the low-ener
~Goldstone! mode carries only a fraction of the total spectr
weight. We obtain Dirac peaks at6v0 because we have
neglected the coupling of the gapped mode with quasipa
cle excitations. Also, in a real system~with impurities!, the
Goldstone mode would broaden and appear at a finite
quency~below the quasiparticle excitation gap! due to pin-
ning by impurities. In the clean limit, which is appropriate
(TMTSF)2X salts, the presence of impurities does not
store any significant spectral weight to quasiparticle exc
tions above the mean-field gap.1 Therefore, the fraction of
spectral weight carried by the two modes is correctly giv
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by Eq. ~6.23!. By measuring the optical conductivitys(v),

we can therefore obtain the ratioug̃u.ugu of the amplitudes
of the two SDW’s.

We have shown in Ref. 21 that the sinusoidal phase
comes unstable against the formation of a helicoidal ph

when ug̃u reaches a critical valueg̃c . By comparing the
mean-field condensation energies of the sinusoidal@Eq.
~3.12!# and helicoidal@Eq. ~9.5! in Sec. IX below# phases,

we find g̃c;0.4, which is in good agreement with the res

g̃c;0.52 obtained from the Ginzburg-Landau expansion
the free energy close to the transition line.21

Since ug̃u varies between 0 and 0.4 in the sinusoid
phase, the Goldstone mode can carry between;100% and
;50% of the total spectral weight~Fig. 5!. When this frac-

tion is reduced below;50% ~i.e., whenug̃u*0.4), a first
order transition to the helicoidal phase takes place. In
helicoidal phase, there is only one Goldstone mode~see Sec.
IX !. This mode is a pure spin-wave mode and does not c
tribute to the optical spectral weight.

Experimentally, the helicoidal phase can be stabilized
decreasing pressure, which increases the ratior 5g3 /g2 ~Fig.

2!.21 Figure 6 showsug̃u and the low-energy spectral weigh

as a function ofr for H.10 T. In the helicoidal phase,g̃ is
defined by Eq.~9.8!.

VII. SPIN-WAVE MODES

For the spin-wave modes, the condition detDsp
21(q̃)50

yields

dc11

r z

g̃
1dc22

r g̃

z
12rdc12

2~12r 2!~dc11dc222dc12
2 !50. ~7.1!

FIG. 5. Fraction of the total optical spectral weightvp
2/4 carried

by the low-energy collective modes. In the sinusoidal phaseug̃
u<g̃c;0.4), the low-energy sliding mode carries the fraction 3

2g̃2)/(315g̃2) of the total spectral weight. In the helicoida
phase, there is no spectral weight at low energy~see Sec. IX!.
e-
se

f

l

e

n-

y

A. Goldstone mode

From Eq.~7.1! we deduce the existence of a mode with
linear dispersion law

v5vFqx , ~7.2!

fN~qx ,v!5f N̄~qx ,v!. ~7.3!

The spin-wave Goldstone mode corresponds to in-phase
cillations of the two SDW’s, in agreement with the concl
sion of the mean-field analysis~Sec. III!. We do not find any
renormalization of its velocity because we have not tak
into account the coupling with the long-wavelength sp
fluctuations.1

B. Gapped mode

The other solution of Eq.~7.1! corresponds to a gappe
mode with the dispersion law

v25vF
2qx

21v1
2 ,

v1
25

12

g̃2

r

12r 2

12g̃2

g̃2 UD̃ND̃ N̄

I NI N̄
U . ~7.4!

The oscillations of this mode satisfy

fN~qx ,v!52rgf N̄~qx ,v!. ~7.5!

In the gapped mode, the oscillations of the two SDW’s a
out of phase.38 As expected, the larger SDW has the smal
oscillations. Like the gapped sliding mode, this mode
found to lie in general above the quasiparticle excitation g
and is therefore expected to be strongly damped due to
pling with quasiparticle excitations. Thus, the spin-wa
modes are similar to the sliding modes as shown in Fig.

VIII. SPIN-SPIN CORRELATION FUNCTION

In this section we calculate the transverse spin-spin c
relation function. For real order parametersDas

(pN) , the mean-
field magnetization̂ S(r )& is parallel to thex axis. Trans-
verse~to the magnetization! spin fluctuations correspond t
fluctuations of the operator

FIG. 6. ug̃u ~dashed line! and low-energy optical spectral weigh
~solid line! as a function ofr 5g3 /g2 in the phaseN522 (H
510 T!. The transition from the sinusoidal to the helicoidal pha
occurs forr;0.06.
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Sy~r ,t!5
i

2 (
a,s

sOas~r ,t!. ~8.1!

The correlation functionxyy5^SySy& can be expressed as
functional derivative of the free energy with respect to
external field that couples to the spin operatorSy . This stan-
dard procedure allows us to rewritexyy as

xyy~r ,t;r 8,t8!5
1

4 (
a,a8,s,s8

ss8^Das~r ,t!Da8s8
* ~r 8,t8!&

2
1

2
d~r2r 8!d~t2t8! (

a,a8
ĝaa8

21
~r !, ~8.2!

where the mean valuê•••& is taken with the effective action
S@D* ,D#. In the following, we drop the last term, whic
does not contribute to the spectral function Imxyy

ret . To first
order in phase fluctuations,

xyy~r ,t;r 8,t8!54(
p,p8

DpNDp8N cos~QpN•r !

3cos~Qp8N•r 8!Dsp
pp8~r ,t;r 8,t8!,

~8.3!

where Dsp
pp8(r ,t;r 8,t8)5^fpN(r ,t)fp8N(r 8,t8)&. Taking

the Fourier transform, we obtain

xyy~q1aQpN ,q1a8Qp8N ,vn!5DpNDp8NDsp
pp8~ q̃!,

~8.4!

whereq5(qx ,qy50). Because of the presence of SDW
the spin-spin correlation function is not diagonal in mome
tum space. In Eq.~8.4!, q̃ corresponds to the momentum an
energy of the spin-wave mode and tends to zero for lo
wavelength fluctuations. We therefore consider the spec
function Im Trqxyy

ret , where Trq is a partial trace correspond
ing to a given spin-wave mode momentumq5(qx ,qy50):

Trqxyy5(
a,p

xyy~q1aQpN ,q1aQpN ,vn!

52DN
2 @Dsp

11~ q̃!1g2Dsp
22~ q̃!#. ~8.5!

Using the expression ofcpp8 ~Appendix A!, we obtain

Im Trqxyy
ret5

2p

g2
2N~0!

UD̃ND̃ N̄

I NI 2N
U

3Fd~v2vFqx!

vFqx
S 24r

~12r 2!2
1

11r 2

~12r 2!2

g̃21z2

ug̃zu
D

1
d~v2v1!

v1

3~11r 2!

2~12r 2!2

12g̃2

ug̃zu
G ~8.6!

for v,qx.0 andqy50. Both spin-wave modes contribute
the spectral function. The spectral weight carried by
Goldstone mode diverges as 1/qx , as expected for a quantum
antiferromagnet.39

Equations~6.23! and ~8.6! predict that all the spectra
weight is carried by the in-phase modes, i.e., the gap
-

-
al

e

d

sliding mode and the gapless spin-wave mode, whene
both SDW’s have the same amplitude (g̃5z561).

IX. HELICOIDAL PHASE

The analysis of the helicoidal phase turns out to be m
simpler than that of the sinusoidal phase. In the helicoi
phase, the mean-field gap does not depend on the trans
momentumky , which significantly simplifies the computa
tion of the collective modes. In this section, we shall d
scribe the properties of the helicoidal phase, but skipp
most of the technical details of the derivation.

A. Mean-field theory

The helicoidal phase is characterized by the or
parameter21

Das~r !5^Oas~r ,t!&5DaseiaQp(a,s)N•r, ~9.1!

with

p~1,↑ !5p~2,↓ !51, p~1,↓ !5p~2,↑ !52.
~9.2!

In the notations of the preceding sections, this correspond

D1↑
(N)[D1↑5D2↓* , D1↓

(N̄)[D1↓5D2↑* , D1↓
(N)5D2↑

(N)50, and

D1↑
(N̄)5D2↓

(N̄)50. The fact that some order parameters van
in the helicoidal phase makes the computation of the col
tive modes much simpler. The spin-density modulation
given by21

^Sx~r !&52uD1↑ucos~2QN•r2w1↑!

12uD2↑ucos~QN̄•r2w2↑!,

^Sy~r !&52uD1↑usin~2QN•r2w1↑!

12uD2↑usin~QN̄•r2w2↑!,

^Sz~r !&50, ~9.3!

which corresponds to two helicoidal SDW’s with oppos
chiralities. The mean-field action is still given by Eq.~3.6!,
but the pairing amplitudes are given by~in the QLA!

D̃as~k,k8!5dk8,k2aQ0
D̃as~ky!,

D̃as~ky!5D̃aseiap(a,s)N(kyb2p/2),

D̃as5I p(a,s)N~g2Das1g3Dās!. ~9.4!

The ground-state energy reads

DE5(
a

1

I p(a,↑)N
Da↑* D̃a↑

2
N~0!

2 (
a

S uD̃a↑u2

2
1uD̃a↑u2ln

2E0

uD̃a↑u
D

52
1

4
N~0!(

a
uD̃a↑u2, ~9.5!
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where the last line is obtained using the gap equa
]DE/]D̃a↑* 50. From the latter, we also deduce~writing

D̃as5uD̃asuei w̃as)

w̃1↑2w̃2↑5H 0 if I NI N̄.0

p if I NI N̄,0,
~9.6!

and

w1↑5w2↑ . ~9.7!

Without loss of generality, we can choose the order para
eters real, and introduce

g5
D2↑
D1↑

, g̃5
D̃2↑
D̃1↑

. ~9.8!

g and g̃ satisfy Eqs.~3.20!.
The mean-field propagators are then

Gas~k,v!5
2 iv2eas~kx!

v21eas
2 ~kx!1uD̃asu2

,

Fas~k,v!5
D̃aseiap(a,s)N(kyb2p/2)

v21eas
2 ~kx!1uD̃asu2

. ~9.9!

The excitation energyEas(k)5@eas
2 (kx)1uD̃asu2#1/2 does

not depend onky . The spectrum is shown in Fig. 7. Not
that all the branches are gapped, due to the presence o
SDW’s. In contrast, in the presence of a single helicoi
SDW, some branches would remain gapless.

As in the sinusoidal phase, we can compute the me
field susceptibilities. They are given in Appendix C.

B. Collective modes

Considering phase fluctuations only, we have

has~r ,t!5DaseiaQp(a,s)N•r1 iwas(r ,t)2Das~r ,t!

. iDas~r !was~r ,t! ~9.10!

to lowest order in phase fluctuations. Following Sec. IV,
then obtain the effective action

FIG. 7. Quasiparticle excitation spectrum in the helicoid
phase. The solid~dashed! line corresponds to up~down! spins. For
clarity, we have not shown the Zeeman splitting.
n

-

wo
l

n-

S@w#5
1

2 (
q̃

~w1↑~2q̃!,w2↑~2q̃!!D 21~ q̃!S w1↑~ q̃!

w2↑~ q̃!
D ,

~9.11!

D 21~ q̃!52g2D1↑
2

3S 12c112r 2c22 gr ~12c112c22!

gr ~12c112c22! g2~12c222r 2c11!
D .

~9.12!

The dispersion of the collective modes is obtained fro
detD 21(q̃)50. We find a Goldstone mode satisfying

v5vFqx , w1↑5w2↑ . ~9.13!

This mode corresponds to a uniform spin rotation. Equi
lently, it can also be seen as a translation of the two SDW
in opposite directions.40 Thus it combines characteristics o
the two Goldstone modes of the sinusoidal phase.

There is also a gapped mode with dispersion lawv2

5vF
2qx

21v2
2 , where

v2
25

16

g̃2

r

12r 2UD̃1↑D̃2↑
I NI N̄

U . ~9.14!

The oscillations satisfy

w1↑
w2↑

5
g2~12r 2!212rg~g1r !212rg~11gr !2

g2~12r 2!222~g1r !222r 2~11gr !2
.

~9.15!

When the two SDW’s have the same amplitude (g51),
w1↑ /w2↑521. As for the sinusoidal phase, the gapp
mode is found to lie above the quasiparticle excitation ga

The similarities with phase modes in two-band or bilay
superconductors are more pronounced in the helicoidal ph
than in the sinusoidal phase. In fact, Eq.~9.14! gives exactly
the gap of the phase modes in these superconducting
tems. In the helicoidal phase, the order parameterDas(r )
@Eq. ~9.1!# and the effective potentialD̃as(r )5g2Das(r )
1g3eia4kFxDās(r ) have only one component;eiaQp(a,s)N•r.
Thus, the helicoidal phase is more BCS-like than the si
soidal phase. This explains why the quasiparticle excitat
spectrum does not depend onky , and also the absence of
g̃-dependent factor in the energy of the gapped mode@Eq.
~9.14!#. We have shown in Sec. VI that in the sinusoid
phase only the largest gap remains tied to the Fermi leve
the presence of condensate fluctuations. This yields a m
fication of the condensation energy, which is at the origin
the g̃-dependent factors in the expressions ofv0 andv1.

C. Spectral functions

In the helicoidal phase, it is not clear whether the colle
tive modes should be seen as sliding or spin-wave mode40

In this section, we compute the spectral functions Re@s(v)#
and Im Trqx

ret to answer this question.

l
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1. Optical conductivity

The charge and current operators are given by

rDW~r ,t!5
1

2pb
]x@w̃1↑~r ,t!2w̃2↑~r ,t!#, ~9.16!

j DW~r ,t!52
ie

2pb
]t@w̃1↑~r ,t!2w̃2↑~r ,t!#, ~9.17!

where

w̃as~r ,t!5
g2Daswas~r ,t!1g3Dāswās~r ,t!

g2Das1g3Dās

~9.18!

is the fluctuating phase of the effective potentialD̃as . From
Eq. ~9.17! we can calculate the current-current correlati
function, which yields the conductivity

Re@s~v!#5
vp

2

8
d~v6v2!. ~9.19!

The Goldstone mode does not contribute to the conducti
and is therefore a pure spin-wave mode~in the limit q→0!.
This result could have been anticipated since the condi
w1↑5w2↑ implies w̃1↑5w̃2↑ and the vanishing of the cur
rent ~9.17!. Thus all the spectral weight is pushed up abo
the quasiparticle excitation gap at frequencies of the orde
v2. This implies that there is no low-energy collective mo
corresponding to a uniform sliding of the condensate. Si
nonlinear conduction in SDW systems results from the
pinning of such a mode~from the impurity potential! above a
threshold electric field, we conclude that there is no non
ear conductivity in the helicoidal phase.

In Ref. 21, we have shown that the helicoidal phase
characterized by a vanishing QHE (sxy50) and a kinetic
magnetoelectric effect. By studying the collective modes,
have found a third possibility for the experimental detect
of the helicoidal phase, namely, the absence of nonlin
conduction.

2. Spin-spin correlation function

We consider the spin-spin correlation function

xmn~r ,t;r 8,t8!5^Sm~r ,t!Sn~r 8,t8!&. ~9.20!

As in Sec. VIII, we shall compute the partial trace Trqxmn ,
where the momentumq of the collective mode is held fixed
@Again, we drop the last term of Eq.~8.2!.# We find

Trqxmm5
1

2 (
a

Da↑
2 Daa~ q̃!,

Trqxxy50. ~9.21!

This yields the spectral function
ty

n

e
of

e
-

-

s

e

ar

Im Trqxmm
ret 5

p

2g2
2N~0!

UD̃1↑D̃2↑
I NI N̄

UFd~v2vFqx!

vFqx

3S 2
4r

~12r 2!2
1

11r 2

~12r 2!2

g̃21z2

g̃z
D

1
d~v2v2!

v2
S 4r

~12r 2!2
1

11r 2

~12r 2!2

g̃21z2

g̃z
D G

~9.22!

for v,qx.0 andqx→0. Both modes contribute to the spe
tral function. Although the Goldstone mode is a pure sp
wave mode, the gapped mode has characteristics of bo
spin wave and a sliding mode, as can be seen from the s
tral function.

X. CONCLUSION

We have studied the long-wavelength collective modes
the FISDW phases of quasi-1D conductors, focusing
phases that exhibit a sign reversal of the QHE~Ribault
anomaly!. We have recently proposed that two SDW’s, wi
wave vectorsQN5(2kF1NG,Qy) and QN̄5(2kF2NG,
2Qy), coexist in the Ribault phase, as a result of umkla
scattering. When the latter is strong enough, the two SDW
become circularly polarized~helicoidal SDW’s!. The pres-
ence of two SDW’s gives rise to a rich structure of collecti
modes, which strongly depends on the polarization~linear or
circular! of the SDW’s.

Regarding the sliding modes, we find that the out-
phase oscillations are gapless in the long-wavelength lim
The fact that this Goldstone mode corresponds to out
phase~and not in-phase! oscillations is related to the pinnin
by the lattice~due to umklapp processes! that would occur
for a single commensurate SDW. The other sliding mode
gapped and corresponds to in-phase oscillations. In Be
gaard salts, this mode is expected to lie above the quas
ticle excitation gap and should therefore be strongly dam
due to the coupling with the quasiparticle excitations. In t
helicoidal phase, there is no low-energy sliding mode, si
the Goldstone mode is a pure spin-wave mode.~For a heli-
coidal SDW, one cannot distinguish between a uniform s
rotation and a global translation, so that we cannot clas
the modes into sliding and spin-wave modes.!

The dissipative part of the conductivity, Re@s(v)#, ex-
hibits two peaks: a low-energy peak corresponding to
Goldstone mode, and a~broader! peak at high energy due t
the incoherent gapped mode. The low-energy spectral we
is directly related to the ratio of the amplitudes of the tw
SDW’s that coexist in the Ribault phase. When the umkla
scattering strength (g3) increases~experimentally this corre-
sponds to a pressure decrease!, spectral weight is transferre
from the low-energy peak to high energies. Above a criti
value ofg3, the sinusoidal phase becomes unstable with
spect to the formation of a helicoidal phase. At the transiti
the low-energy spectral weight suddenly drops to zero~Fig.
5!, since there is no low-energy optical spectral weight in
helicoidal phase. Thus, the formation of the helicoidal ph
can be detected by measuring the low-energy optical spe
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weight. We also note that the absence of a low-energy s
ing mode means that there is no infinite Fro¨hlich
conductivity41 in this helicoidal phase, which is therefore
true insulating phase even in an ideal system~i.e., one with
no impurities!. In a real system~with impurities!, this implies
the absence of nonlinear dc conductivity.

The spin-wave modes exhibit a similar structure. The
phase oscillations of the two SDW’s are gapless~Goldstone
mode!, while the out-of-phase oscillations are gapped. In
helicoidal phase, the Goldstone mode is a pure spin-w
mode, but the gapped mode contributes both to the con
tivity and to the transverse spin-spin correlation function.

As discussed in the Introduction, these conclusions r
on a simple Fermi surface@Fig. 1~a!#, which does not neces
sarily provide a good approximation to the actual Fermi s
face of the Bechgaard salts. They should therefore be ta
with caution regarding their relevance to the organic cond
tors of the Bechgaard salts family. However, we have
rived a number of experimental consequences that sh
allows tests of our theory. In the sinusoidal phase, we pre
a possible reentrance of the phaseN50 within the cascade.21

The low-energy peak in the optical conductivity Re@s(v)#
carries only a fraction of the total spectral weightvp

2/4. This
fraction should decrease with pressure. At low pressure,
sinusoidal phase may become helicoidal. The helico
phase is characterized by a vanishing QHE,21 a kinetic mag-
netoelectric effect,21 and the absence of low-energy spect
weight in the optical conductivity as well as the absence
nonlinear dc conductivity. In the alternative scenario p
posed by Zanchi and Montambaux,23 the Ribault phase doe
not exhibit any special features compared to the posi
phases, apart from the unusual behavior of the magnetor
modes,26 but these modes have not been observed yet.

We expect our conclusions regarding the structure of
collective modes and the associated spectral function
hold for generic two-SDW systems and not only for t
FISDW phases that exhibit the Ribault anomaly. It is cle
that the existence of four long-wavelength collective mod
~two spin-wave and two sliding modes! results from the pres
ence of a second SDW, which doubles the number of deg
of freedom. Two of these modes should be gapless as
pected from the Goldstone theorem in a system where
continuous symmetries are spontaneously broken: the tr
lation symmetry in real space and the rotation symmetry
spin space.

This belief is supported by the striking analogy with co
lective modes in other systems like two-band, bilayer, a
d1 id8 superconductors,11–13and, to a lesser extent, plasmo
modes in semiconductor double-well structures.14 While
phase modes are in general difficult to observe in superc
ductors, since they do not directly couple to external pro
~see, however, Ref. 13!, collective modes in SDW system
directly show up in response functions like, for instance,
dc and optical conductivities.

Finally, we point out that we expect a similar structure
collective modes in the FISDW phases of the compou
(TMTSF)2ClO4. Due to anion ordering, the unit cell con
tains two sites, which leads to two electronic bands at
Fermi level. This doubles the number of degrees of freed
and therefore the number of collective modes~without con-
sidering the possible formation of a second SDW due
d-
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umklapp scattering!. As for phonon modes in a crystal wit
two molecules per unit cell, we expect an acoustic~Gold-
stone! mode and an optical mode.
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APPENDIX A: MEAN-FIELD SUSCEPTIBILITIES
x̄ AND x̃

Using the expression~3.21! of the mean-field propagator
G andF, we obtain

x̄as,as~q1aQpN ,q81aQp8N ,vn!

52dq,q8

T

LxLy
(
k,v

(
n52`

`

Gas~k,v!

3Gās̄~k2aQ02q1anG,v2vn!

3I pN1n~p/b1qy!I p8N1n~p/b1qy!

3e2 ia(p2p8)N(kyb2qyb/22p/2), ~A1!

x̄as,ās̄~q1aQpN ,q82aQp8N ,vn!

52dq,q8

T

LxLy
(
k,v

(
n52`

`

Fas~k,v!

3Fas~k2q1anG,v2vn!I pN1n~p/b1qy!

3I p8N2n~p/b1qy!e2 ia(p1p8)N(kyb2qyb/22p/2).

~A2!

Here we have assumed thatuqxu,uqx8u!G, which is the case
of interest when studying the low-energy fluctuations arou
the mean-field solution.

In the QLA, we retain only the termn50 in the above
equations, since the other terms are strongly suppre
when vc@T,uD̃pNu in the limit of long-wavelength
fluctuations.25 Restricting ourselves toqy50, we then obtain

x̄as,as~q1aQpN ,q1aQp8N ,vn!

52
T

LxLy
(
k,v

Gas~k,v!Gās̄~k2aQ02q,v2vn!

3I pNI p8Ne2 ia(p2p8)N(kyb2p/2), ~A3!

x̄as,ās̄~q1aQpN ,q2aQp8N ,vn!

52
T

LxLy
(
k,v

Fas~k,v!Fas~k2q,v2vn!

3I pNI p8Ne2 ia(p1p8)N(kyb2p/2). ~A4!
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Performing the sum overkx , we obtain atT50 and in the
limit uvFqxu,uvnu!uD̃as(ky)u

x̄as,as~q1aQpN ,q1aQp8N ,vn!

5I pNI p8N

N~0!

2N'
(
ky

e2 ia(p2p8)N(kyb2p/2)

3S ln
2E0

uD̃sa~ky!u
2

1

2
2

vn
21vF

2qx
2

6uD̃as~ky!u2
D ,

~A5!

x̄as,ās̄~q1aQpN ,q2aQp8N ,vn!

5I pNI p8N

N~0!

2N'
(
ky

e2 ia(p1p8)N(kyb2p/2)

3S 2
1

2
1

vF
2qx

21vn
2

12uD̃as~ky!u2D . ~A6!

Equations~A5! and ~A6! are obtained by expanding to firs
order in vn

2/uD̃as(ky)u2 and vF
2qx

2/uD̃as(ky)u2. This calcula-
tion is standard when evaluating the long-wavelength col
tive modes of a SDW system and can be found, for instan
in Ref. 25. Equations~3.29! are then obtained by summin
over ky .

It is useful to introduce the notations

cpp85g2@ x̄1↑,1↑~q1QpN ,q1Qp8N ,vn!

2x̄1↑,2↓~q1QpN ,q2Qp8N ,vn!#

5 c̄pp81dcpp8 , ~A7!

where c̄pp85cpp8uq5vn50 and dcpp8 are deduced from Eqs
~3.29!.

The gap equation can be written as a function of the st
(vn50) susceptibilitiesx̄ ~or c̄). From Das(r )5^Oas(r )&
5T(vFas(r ,r ,v), we deduce

DpN5I pN

T

LxLy
(

k,v,p8

e2 i (p2p8)N(kyb2p/2)

v21e1↑
2 ~kx!1uD̃1↑~ky!u2

D̃p8N .

~A8!

This can be rewritten in terms of the mean-field propagat

DpN52I pN

T

LxLy
(

k,v,p8
e2 i (p2p8)N(kyb2p/2)

3@G1↑~k,v!G2↓~k2Q0 ,v!2uF1↑~k,v!u2#D̃p8N

5(
p8

1

I p8N

@ x̄1↑,1↑~QpN ,Qp8N ,vn50!

2x̄1↑,2↓~QpN ,2Qp8N ,vn50!#D̃p8N . ~A9!

Using the relation betweenDpN and D̃pN , we obtain
-
e,

ic

s:

D̃N

~12r 2!I N

2
r D̃ N̄

~12r 2!I N̄

5
c̄11D̃N

I N
,

D̃ N̄

~12r 2!I N̄

2
r D̃N

~12r 2!I N

5
c̄22D̃ N̄

I N̄

. ~A10!

From Eq.~A10!, we deduce the relations

c̄115
1

11gr
, c̄225

g

g1r
, ~A11!

which give, by eliminatingg,

~12 c̄11!~12 c̄22!2r 2c̄11c2250. ~A12!

Equation~A12! is nothing but the gap equation rewritten
terms of the static mean-field susceptibilitiesc̄.

In the study of the collective modes, the natural quan
to consider is notx̄ but the susceptibilityx̃ defined by

x̃as,a8s8~r ,t;r 8,t8!5^Õas~r ,t!Õa8s8
* ~r 8,t8!&

2^Õas~r ,t!&^Õa8s8
* ~r 8,t8!&,

~A13!

whereÕs(r ,t)5ĝ(r )Os(r ,t). x̃ is related tox̄ by

x̃as,a8s8~q,q8,vn!

5g2
2x̄as,a8s8~q,q8,vn!

1g3
2x̄ ā s,ā8s8~q2a4kF ,q82a84kF ,vn!

1g2g3@ x̄ ā s,a8s8~q2a4kF ,q8,vn!

1x̄as,ā8s8~q,q82a84kF ,vn!# ~A14!

and satisfies

x̃a↑,a8↑~q1aQpN ,q1a8Qp8N ,vn!

2x̃a↑,ā8↓~q1aQpN ,q2a8Qp8N ,vn!

5g2da,a8~cpp81r 2cp̄p̄8!1g3da,ā8~cp̄p81cpp̄8!.

~A15!

Equation~A15! is used in Sec. IV.

APPENDIX B: CHARGE OPERATOR rDW

Using

G a
MF~r ,t;r 8,t8!5S Ga↑~r ,t;r 8,t8! Fa↑~r ,t;r 8,t8!

F ā↓~r ,t;r 8,t8! Gā↓~r ,t;r 8,t8!
D ,

~B1!

where G and F are the mean-field propagators~see Sec.
III B !, we rewrite Eq.~6.12! as
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rDW~r ,t!52(
a

E d2r 8dt8

3@Ga↑~r ,t;r 8,t8!h̃a↑~r 8,t8!F ā↓~r 8,t8;r ,t!

1Fa↑~r ,t;r 8,t8!h̃a↑* ~r 8,t8!Ga↑~r 8,t8;r ,t!

1F ā↓~r ,t;r 8,t8!h̃a↑~r 8,t8!Gā↓~r 8,t8;r ,t!

1Gā↓~r ,t;r 8,t8!h̃a↑* ~r 8,t8!Fa↑~r 8,t8;r ,t!#.

~B2!

If we consider phase fluctuations only,has is given by
Eq. ~4.4!, which gives@using Eq.~6.8!#

h̃as~r ,t!5 i(
p

eiaQpN•r@g2DpNwas
(pN)~r ,t!

1g3D p̄Nwās
( p̄N)

~r ,t!#. ~B3!

Defining the fluctuating phasesw̃as
(pN) of the effective poten-

tial D̃as by

D̃as~r ,t!5(
p

D̃pN

I pN
eiaQpN•r1 i w̃as

(pN)(r ,t), ~B4!
we have

h̃as~r ,t!5 i(
p

D̃pN

I pN
eiaQpN•rw̃as

(pN)~r ,t!. ~B5!

The relation betweenw̃as
(pN) andwas

(pN) is given by Eq.~6.15!
to lowest order in phase fluctuations.

From Eqs.~B2! and ~B5!, we deduce

rDW~ q̃!52 i
T

LxLy
(

p

D̃pN

I pN
(
a,q̃8

w̃a↑
(pN)~ q̃8!

3E d2rdtE d2r 8dt8e2 i (q•r2vnt)1 i (q8•r82vn8t8)

3$eiaQpN•r8@Ga↑~r ,t;r 8,t8!F ā↓~r 8,t8;r ,t!

1F ā↓~r ,t;r 8,t8!Gā↓~r 8,t8;r ,t!#

2e2 iaQpN•r8@Fa↑~r ,t;r 8,t8!Ga↑~r 8,t8;r ,t!

1Gā↓~r ,t;r 8,t8!Fa↑~r 8,t8;r ,t!#%, ~B6!

whereq5(qx ,qy50) andq̃5(qx ,vn). Using
E d2rdtE d2r 8dt8e2 i (q•r2vnt)1 i (q8•r82vn8t8)1 iaQpN•r8Ga↑~r ,t;r 8,t8!F ā↓~r 8,t8;r ,t!

5d q̃,q̃8I pN(
k,v

Ga↑~k,v!F ā↓~k2aQ02q,v2vn!eiapN(kyb2p/2), ~B7!

E d2rdtE d2r 8dt8e2 i (q•r2vnt)1 i (q8•r82vn8t8)1 iaQpN•r8F ā↓~r ,t;r 8,t8!Gā↓~r 8,t8;r ,t!

5d q̃,q̃8I pN(
k,v

F ā↓~k,v!Gā↓~k2q,v2vn!eiapN(kyb2p/2), ~B8!

E d2rdtE d2r 8dt8e2 i (q•r2vnt)1 i (q8•r82vn8t8)2 iaQpN•r8Fa↑~r ,t;r 8,t8!Ga↑~r 8,t8;r ,t!

5d q̃,q̃8I pN(
k,v

Fa↑~k,v!Ga↑~k2q,v2vn!e2 iapN(kyb2p/2), ~B9!

E d2rdtE d2r 8dt8e2 i (q•r2vnt)1 i (q8•r82vn8t8)2 iaQpN•r8Gā↓~r ,t;r 8,t8!Fa↑~r 8,t8;r ,t!

5d q̃,q̃8I pN(
k,v

Gā↓~k,v!Fa↑~k1aQ02q,v2vn!e2 iapN(kyb2p/2), ~B10!

we obtain

rDW~ q̃!52 i(
a,p

D̃pNw̃a↑
(pN)~ q̃!

T

LxLy
(
k,v

$eiapN(kyb2p/2)@Ga↑~k,v!F ā↓~k2aQ02q,v2vn!1F ā↓~k,v!Gā↓~k2q,v2vn!#

2e2 iapN(kyb2p/2)@Fa↑~k,v!Ga↑~k2q,v2vn!1Gā↓~k,v!Fa↑~k1aQ02q,v2vn!#%. ~B11!

To lowest order invFqx andvn , we have~for qy50!



ar
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T

bLx
(
kx ,v

Gas~k,v!F ās̄~k2aQ02q,v2vn!

52N~0!
D̃a↑* ~ky!

8uD̃a↑~ky!u2
~ ivn1avFqx!, ~B12!

T

bLx
(
kx ,v

F ās̄~k,v!Gās̄~k2q,v2vn!

52N~0!
D̃a↑* ~ky!

8uD̃a↑~ky!u2
~2 ivn1avFqx!.

~B13!

This leads to

rDW~ q̃!5
iN~0!

4N'
(

p,a,ky

D̃pNavFqxe
iapN(kyb2p/2)

3
D̃a↑* ~ky!

uD̃a↑~ky!u2
@w̃a↑

(pN)~ q̃!2w̃ ā↑
(pN)

~ q̃!#. ~B14!

Performing the sum overky , we finally obtain

rDW~ q̃!5 i
qx

2pb
@w̃1↑

(pN)~ q̃!2w̃2↑
(pN)~ q̃!#, ~B15!

which yields Eq.~6.13!.

APPENDIX C: MEAN-FIELD SUSCEPTIBILITIES
IN THE HELICOIDAL PHASE

In the helicoidal phase, the mean-field susceptibilities
given by
r

e

x̄as,as~q1aQp(a,s)N ,q1aQp(a,s)N ,vn!

5I p(a,s)N
2 N~0!

2 F ln
2E0

uD̃asu
2

1

2
2

vn
21vF

2qx
2

6D̃as
2 G ,

~C1!

x̄as,ās̄~q1aQp(a,s)N ,q2aQp(a,s)N ,vn!

5I p(a,s)N
2 N~0!

2 F2
1

2
1

vn
21vF

2qx
2

12D̃as
2 G , ~C2!

for qy50 anduvnu,vFuqxu!uD̃asu. Introducing the notations

c115g2@ x̄1↑,1↑~q1QN ,q1QN ,vn!

2x̄1↑,2↓~q1QN ,q2QN ,vn!#,

c225g2@ x̄2↑,2↑~q2QN̄ ,q2QN̄ ,vn!

2x̄2↑,1↓~q2QN̄ ,q1QN̄ ,vn!#, ~C3!

the gap equation reads

~12 c̄11!~12 c̄22!2r 2c̄11c̄2250, ~C4!

where c̄1151/(11gr ) and c̄225g/(g1r ) ( c̄pp
5cppu q̃50).
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