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We study the long-wavelength collective modes in the magnetic-field-induced spin-densityR&aV)
phases experimentally observed in organic conductors of the Bechgaard salts family, focusing on phases that
exhibit a sign reversal of the quantum Hall effé&ibault anomaly. We have recently proposed that two
SDW'’s coexist in the Ribault phase, as a result of umklapp processes. When the latter are strong enough, the
two SDW'’s become circularly polarizdgtielicoidal SDW’S. In this paper, we study the collective modes that
result from the presence of two SDW'’s. We find two Goldstone modes, an out-of-phase sliding mode and an
in-phase spin-wave mode, and two gapped modes. The sliding Goldstone mode carries only a fraction of the
total optical spectral weight, which is determined by the ratio of the amplitude of the two SDW'’s. In the
helicoidal phase, all the spectral weight is pushed up above the SDW gap. We also point out similarities with
phase modes in two-band, bilayer,@tid’ superconductors. We expect our conclusions to hold for generic
two-SDW systems.

[. INTRODUCTION these conductors. There are two motivations for studying this
particular case(i) The Bechgaard salts, as possible candi-

In electron systems with broken symmetries, such as sudates for a two-SDW system, present their own inter@st.
perconductors or density-wa\®W) systems, quasiparticle A conductor with two SDW's is in general not easy to ana-
excitations are often gapped, and the only low-lying excitalyze, even at the mean-field levéiThe analysis simplifies
tions are collective modes. The latter thus play a crucial rolévhen a strong magnetic field quantizes the electron motion.
in various low-energy properties. Nevertheless, we expect (_)ur_conclusmns to be quite gen-

In an incommensurate spin-density-wa&DW) system, eral and to apply:—__lt least quz_ihtatlvelyto other systems with
there are twdgapless Goldstone modes: a sliding mode and W0 SDW's. This hope is strongly supported by the
a spin-wave mode, which result from the spontaneous brea,@_lmllantle? that exist between cpllectlve modes mltzwo—SDW
ing of translation symmetry in real space and rotation sym<conductors and phase modes in two-b&htiilayer;? or d
metry in spin space, respectivéf§.Contrary to the case of +id’ (Ref. 1_3 supgrconductors, and, to a lesser extent, plas-
superconductors, collective modes in DW systems directiynon modes in semiconductor double-well structdfeEhese
couple to external probes and therefore show up in variouySimilarities suggest that_ collective modes in two-component
experiments. For instance, the sliding mode, which is pinne@yStéms present generic features that do not depend on the
by impurities in real systems, can be depinned by a strongarticular case considered.
electric field. This leads to nonlinear conduction, observed in
DW systems.

The aim of this article is to study long-wavelength collec- Consider a quasi-1D conductor with a SDW ground state.
tive modes in a quasi-one-dimensiorguasi-1D system In the presence of umklapp processes transferring momen-
where the low-temperature phase exhibits two SDW's. Theaum K (K being a vector of the reciprocal spacspin fluc-
presence of two SDW'’s gives rise to a rich structure of col-tuations at wave vectoi® andK — Q are coupled. Thus, the
lective modes, which in principle can be observed information of a SDW at wave vect@®; will automatically be
experiments. accompanied by the formation of a second SDW at wave

Our results are based on a particular case: the magnetigector Q,=K —Q,, provided thatQ;#Q,. The caseQ;
field-induced spin-density-wav@=ISDW) phases of the or- =Q,=K/2 corresponds to #single commensurate SDW.
ganic conductors of the Bechgaard salt faniilf.These ~Umklapp processes pin the SDW whose position with re-
FISDW phases share common features with standard SD\pect to the underlying crystal lattice becomes fixed: the slid-
phases, but also exhibit remarkable properties like the quanag mode is gapped. For two incommensurate SDWDs (
tization of the Hall effect. We have shown that umklapp #Q,),!® the total spin-density modulation can then be writ-
processes may lead in these systems to the coexistence teh as
two SDW'’s with comparable amplitudes, which provides a
possible explanation of the sign reversal of the quantum Hall _ . _
effect (QHE) (the so-called Ribault anom&l§) observed in (Sn) ig,z S cosQi-r+ ), @3

A. Umklapp processes in quasi-1D SDW systems
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wherer =(na,mb) (with n,m integers$ denotes the position k
in real space § andb being the lattice spacings along and
across the conducting chajns

Even forQ,# Q,, the distinction between the two SDW'’s
may appear somewhat unjustified since one cannot distin- Q
guish between cof);-r) and cosQ,-r) whenr is taken as 1
a discrete variable. However, umklapp processes do lead to
the presence of two nonvanishing order parameters, (a) k,
(ckiChiq,) and (cliCeiq, ), in the SDW phasé® This
doubles the number of degrees of freedom of the SDW con-
densate, which yields, for instance, twice as many collective Q2
modes(as compared to the case with a single SDWhus, it \
is natural to speak of two SDW'’s in the ground state of the
system. Furthermore, we note that &s(r+6;) and
cos@Q-- r + 6,) are indistinguishable only i#, = — 6, (with,
again,r being a discrete variableThis is precisely the equi-
librium condition obtained by minimizing the mean-field
condensation energfsee Sec. I). Condensate fluctuations ky
do not in general satisfy the conditioh=—6,, and it is
then more appropriate to view these fluctuations as originat-
ing from two different SDW's.

In a quasi-1D system with a single SDW, the wave vector Q
Q of the spin-density modulation is determined by the nest- l
ing properties of the Fermi surfacdE(k+ Q)= —E(k),
where E(k) is the energy with respect to the Fermi level. (b) k x
[For a perfectly nested Fermi surface, one would hB{k
+Q)=—E(k).] Umklapp processes are important only if Q2 \
both Q; and Q,=K —Q; are good nesting vectors. Other-
wise, one of the two SDW'’s has a very small amplitude and
can be ignored for any practical purpose.

For a 2D (or 3D) conductor, the geometry of the Fermi
surface appears to be crucial. Consider the following disper-
sion law, which is linearized in the vicinity of the Fermi

FIG. 1. (a) Fermi surface deduced from the dispersion [dv2)
with «k=0. At half filling, the two “best” nesting vector; and

level: Q, are coupled by umklapp scatteringh) Fermi surface forx
= /4. There is only one “best” nesting vectof)). By umklapp
Ea(ky ky) =ve(aky,—kg) = 2t, cogkb+ax)+ -, scattering, it couples tQ,, which is not a good nesting vector.

(1.2

wherek, andk, are the electron momenta along and acros
the conducting chaingy=+ (—) corresponds to rightieft)
movers with momenta close tekg . v andkg are the Fermi
velocity and momentum for the motion along the chaigs,
the interchain transfer integral, abdhe interchain spacing.
The ellipses in Eq(1.2) represent small corrections that gen-
erate deviations from perfect nestingis a parameter which
parametrizes the shape of the Fermi surface. The organic conductors of the Bechgaard salts family
Most calculations on quasi-1D SDW systems asswme (TMTSF),X (where TMTSF stands for tetramethyltetrasel-
=0, which corresponds to the Fermi surface shown in Figenafulvalengare well known to have remarkable properties
1(a). There are two “best” nesting vectorQ,=(2kg ,w/b in a magnetic field. In three members of this famil} (
—0) andQ,=(2kg ,— w/b+ &), where the small correction =CIQ,, PFR;, ReQ,), a moderate magnetic field of a few
6 (|6]<m/b) is due to deviations from perfect nestitigt®  tesla destroys the metallic phase and induces a series of
Since Q,=(4kg,0)—Q;, these two vectors are coupled by SDW phases separated by first-order phase transitions.

SQz=(2kF ,— /2b+ 6), which is not a good nesting vector.
At low temperature, two SDW's will form simultaneously,
but the one with wave vecto, will have a vanishingly
small amplitude.

B. The Ribault phase of the Bechgaard salts

umklapp scattering if the system is half filledk4=2m/a). According to the so-called quantized nesting model
Two SDW'’s with equal amplitudes will form simultaneously (QNM),® the formation of the magnetic-field-induced spin-
at low temperature. density waves results from competition between the nesting

Consider now the case= /4 in a half-filled band, which  properties of the Fermi surface and the quantization of the
corresponds to the asymmetric Fermi surface shown in Figelectron motion in a magnetic field. The formation of a SDW
1(b). This Fermi surface has been proposed as a good ajppens a gap, but leaves closed pockets of electrons and/or
proximation to the actual Fermi surface of the Bechgaardoles in the vicinity of the Fermi surface. In the absence of a
salts!®?° The best nesting vecto®,=(2kg,7/2b—8) is  magnetic field, these pockets are too latdee to imperfect
now nondegenerate. By umklapp scatteri@y, couples to  nesting for the SDW phase to be stable. In the presence of a
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magnetic fieldH, they become quantized into Landau levels
(more precisely, Landau subbandk each FISDW phase,
the SDW wave vector is quantize@y=(2kg+NG,Q,)

with N integer, so that an integer number of Landau sub-
bands are filled(Here G=eHb/A <k and —e is the elec-

tron charge. As a result, the Fermi level lies in a gap be-
tween two Landau subbands, the SDW phase is stable, and
the Hall conductivity is quantizedr,,= —2Né?/h per one
layer of the TMTSF molecule’! As the magnetic field in-
creases, the value of the integeéichanges, which leads to a
cascade of FISDW transitions. The QNM predicts the integer
N to have always the same sign. While most of the Hall
plateaus are indeed of the same sign, referred to as positive

TN (K)
S = N W~ WU

25

by convention, a negative QHE is also observed at certain £
pressuresthe so-called Ribault anomal§® The most com- 2
monly observed negative phases correspondN+$o—2 and 25
N=—-4. )

In the Bechgaard salts, a weak dimerization along the %1 s
chains leads to a half-filled band. Umklapp processes trans- g
ferring 4kg=2m/a are allowed. Thus the formation of a & 1 e
SDW at wave vectoQy=(2kg+NG,Q,) will be accompa- 0.5 ’ﬂ/
nied by a second SDW at wave vectQg= (4kg,0)—Qp 0 Tags4 7
=(2ke—NG,—Q,), i.e., there is coexistence of phasds 5 10
and —N.2! Note that, in our notationQy has the signs of H (1)

both N and Q, reversed compared Q. As discussed in
the preceding section, actual coexistence may occur only if FIG. 2. Transition temperath"é(cN) between the metallic phase
Qy (like Qy) is a good nesting vector. This is the case withand the FISDW phases in presence of umklapp processes. The ver-

the Fermi surface shown in Fig(d (sinceQ,~ m/b), but tical lines are only guides for the eyes and do not necessarily cor-
not with the one shown in Fig.(t) (sinceQ ~y11-/2b) ’ respond to the actual first-order transition lines between FISDW
’ Y ’ phases(a) g;/g,=0.03.[ g5 andg, are the strengths of normal and

In Ref. 21, we have studied the effect of umklapp SC"jltt(_:‘r_umklapp processes, respectivédge Sec. )l] The shaded area cor-

ing on _the _FISDW phases, starting from the Fermi surfacqespondS to the Ribault phabe= — 2. (b) g3 /g,=0.06. Two nega-
shown in Fig. 1a). We have shown that for weak umklapp tjye phasesN=—2 andN=—4, are observeshaded areasThe
scatteringQy# «/b. In that case, the SDW with negative phaseN=—2 splits into two subphases: helicoidalark shaded
quantum number-|N| has a vanishing amplitude and can be area and sinusoidallight shaded area

ignored. However, foN even, there exists a critical value of

the umklapp scattering strength above which the system pre-

fers to form two transversely commensurate SDWG, ( creased[Fig. 2(b)]. The QHE vanishes in the helicoidal
= 7r/b). For a certain dispersion laff,the SDW with nega- phase. We will see that the circular polarization also affects
tive quantum number- |N| has the largest amplitude, which the collective modes.

leads to a negative Hall plated&ig. 2(a)]. Since the um-

klapp scattering strength is sensitive to pressure, we have C. Outline of the paper

sugge;ted that _this provides a natural gxplanation for the In the next section, we introduce the effective Hamil-
negaztéve QHE(RlbagIt anomal)/obs'erved in the Bechgaard ionian describing the FISDW phases. The partition function
salts™ (In the following, the “negative” phases are referred s \ritten as a functional integral over a bosonic auxiliary
to as “Ribault” phases. field that describes spin fluctuations. In Sec. IIl, we perform
It should be noted that this explanation relies on a simpley saddle-point approximation, thus recovering the mean-field
Fermi surfacgFig. 1(a)], which does not necessarily provide results of Ref. 21. We obtain the mean-field propagators and
a good approximation to the actual Fermi surface of thehe mean-field particle-hole susceptibilities. In Sec. IV, we
Bechgaard salts. With the more realisfacording to band derive the low-energy effective action of the SDW phase by
calculationg Fermi surface shown in Fig(f)), umklapp pro-  taking into account fluctuations of the bosonic auxiliary field
cesses have only a small effect and do not lead to a negativwound its saddle-point value. We consider only “phase”
QHE2* Therefore, our explanation of the Ribault anomaly fluctuations, i.e., sliding and spin-wave collective modes. We
should be taken with caution. For it to be correct, the paramelo not study amplitude collective modes, which are gapped
eterx should be smalleftypically not larger thanr/10) than  and do not couple to phase fluctuations in the long-
the valuew/4 predicted by band calculation. In the follow- wavelength limit
ing, we consider only the case=0. We find two sliding modes: &aples$ Goldstone mode
We have shown in Ref. 21 that the SDW's in the Ribaultcorresponding to a sliding of the two SDW's in opposite
phase are likely to become circularly polarizétklicoidal  directions (out-of-phase oscillations and a gapped mode
SDW'’s) when the umklapp scattering strength is further in-corresponding to in-phase oscillatiof®ec. \j. The real part
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of the conductivity exhibits two peaks, which reflect the (its main effect is to introduce a 3D threshold field below
presence of two sliding modes. The low-energy mode carriewhich the FISDW cascade is suppres$ed

only a fraction of the total spectral weightf)/4 (wp is the The effect of the magnetic field along thez direction is
plasma frequendy which is determined by the ratio of the taken into account via the Peierls substitutikn> —iV
amplitudes of the two SDW'$Sec. V). —eA. (The chargee is positive since the actual carriers are

The spin-wave modes are studied in Sec. VII. There is doles) In the gaugeA=(0,Hx,0) we obtain the noninteract-
Goldstone mode corresponding to in-phase oscillations of theng Hamiltonian
two SDW'’s, and a gapped mode corresponding to out-of-
phase oscillations. The spectral function ¥ is computed
in Sec. VIII (y™is the retarded transverse spin-spin corre-
lation function. Both gapped modes are found to lie above )
the mean-field gap in the case of the Bechgaard salts. +t, (—ibdy—GxX)+ ah]i,.(r). (2.3
In Sec. IX, we study the collective modes in the helicoidal

phase where the two SDW's are circularly polarized. For a4, ..(r) is a fermionic operator for right¢=+) and
helicoidal structure, one cannot distinguish between a “nireft (ai"_) moving particles.o=+ (—) for up (down)

form spin rotation and a global translation, so that there ar%pin We use the notation=(x,mb) (m intege) and [d2r

only two phase modes. The Goldstone mode does not con- p< [dx. G=eHb is a magnetic wave vector and
m/ dx.

trlbgte Elf)hthe <|:Iotr;1ductlwt)t/ alnd 'S :]P:gretfrc]) re a pduret_spln-wave: wgH is the Zeeman energyve assume the electron gyro-
mode. Thus all the spectral weight in the conductivitw) magnetic factor to be equal tg.2Diagonalizing the Hamil-

is pushed up aboye the megn-fleld gap. Both modes ContrlkEE)nian (2.3) we obtain the eigenstates and eigenenergies,
ute to the spin-spin correlation function.

It should be noted that the long-wavelength modes are not
the only modes of interest in the FISDW phases. There also

Ho=2 | d?r gl (Dlve(—iad,—kg)

- e ape) ik-r+i(alwg) T, (kyb—GX)
exist magnetorotons at finite wave vectorsq, ( éi () He ¢ Y )
=G,2G, ...)??% These modes are not considered in this x=y
paper.
In the following, we takei =kg=1. €,0(K)=€,5(Kky) =vp(aky—Kkg)+oh, (2.9

whereL,L, is the area of the system,.=v¢G, and
Il. MODEL AND EFFECTIVE HAMILTONIAN

In the vicinity of the Fermi energy, the electron dispersion T _ f”d "ty 2
law in the Bechgaard salts is approximated as LW o 1 (). @9

E (ks ’ky)ZUF(|kx| —ke) +t.(kyb), 2.1 In the chosen gauge the energy depends onligri.e., the
ispersion law is one dimensional. This reflects the localiza-
on of the electron motion in the transverse direction, which
is at the origin of the QNMsee Ref. 21 for a further discus-
sion). Note that, contrary td&,, the quantum numbek, is
not the momentum since the operatyrdoes not commute
with the Hamiltonian.

The interacting part of the Hamiltonian contains two

wherek, andk, are the electron momenta along and acrosg
the one-dimensional chains of TMTSF. In Eg.1), the lon- :
gitudinal electron dispersion is linearizedkipin the vicinity
of the two one-dimensional Fermi pointskg, and vg
=2at, sin(kza) is the corresponding Fermi velocity,(be-
ing the transfer integral and the lattice spacing along the
chaing. Whenever necessary, we will impose an ultraviolet /

energy cutoffe, to simulate a finite bandwidth. The function ter_ms.correspondlng to forwarg{) and umklapp g;) scat-
t, (u), which describes the propagation in the transverse di'genng.
rection, is periodict, (u)=t, (u+2). It can be expanded
in Fourier series as

M=l 3 [ @08 (0 () 1)

’
a,0,0

t, (u)=—2t, cogu)—2t,, cog2u) g
3 —iadkex 3t vty 5
_2t3b COiSU)_2t4b COS4U). . e (22) +? az,o f d’re e (ﬂ;g(r)m(r)wa;(r)lﬁao’(r);

If we retain only the first harmonictf), we obtain a Fermi (2.6

surface with perfect nesting at K2,7/b). The other har- — — ) ) )
monics tyy, ,tap, . . . <t, generate deviations from perfect Where a=—a and o=—o. For repulsive interaction
nesting. They have been introduced in order to keep a reaf2,93=0. We shall assume that umklapp scattering is
istic description of the Fermi surface despite the linearizationWeak™: g3<g,. We do not consider backward scattering
around= ke . In the following, we shall retain only;,, t,,,  (91) Since it does not play an important role in the following.
and t,,. ts, does not play an important role and can pe The interaction strength is best parametrized by dimension-
discarded* We do not consider the electron dispersion inless coupling constants=g,N(0) andgs=gsN(0), where
the z direction, because it is not important in the following N(0)=1/mvgb is the density of states per spin.
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In a mean-field theory, the cutof, is of the order of the of the Zeeman term, the magnetization is perpendicular to
bandwidtht,. It is well known, however, that mean-field the magnetic field axis, so that the only spin-wave mode
theory completely neglects fluctuations and cannot be dieorresponds to rotation around thexis. In zero magnetic
rectly applied to quasi-1D systems where the physics, at lea$ield, a different approach should be used in order to main-
at high temperature, is expected to be one dimensional. THain the full SU2) spin symmetry(see Ref. 2
general wisdom is that there is at low temperature a dimen-
sional crossover from a 1D to a 2@r 3D) regime?’?8 In
Bechgaard saltgat ambient pressure this dimensional
crossover occurs via coherent single-particle interchain hop-
ping. Although the experimental assignment of the crossover [N this section we look for a mean-field solution corre-
temperature is still under debatgee, for instance, Refs. 29— sponding to a phase with two sinusoideé., linearly polar-
31), the success of the QNM in explaining the phase diagranz€d SDW's:
of the compounds (TMTSEPF; and (TMTSF}CIO, pro-
vides clear evidence of the relevance of the Fermi surface at
low temperature. In the 3D regime, a mean-field theory is
justified provided that the parameters of the theory are un-
derstood as effective parametefsenormalized by 1D
fluctuation$.?” E, is then smaller than the bare bandwidth
(~t5) and corresponds to the renormalized transverse band-
width. For the same reason, the interaction amplituges
andg; can be different from their bare values. The Hamil-

Ill. MEAN-FIELD THEORY

(S(1)= 2, Mpn C0 ¢pn)cOS Qi1+ p).

(S(1)= 2, Mo SIN($pn)COLQon- T+ ),

(S,(r)=0, (3.0

tonian[Egs. (2.3) and(2.6)] should therefore be understood whereS,(r)=3 .,/ dr (L

as an effective low-energy Hamiltonian.

" e (r) is the spin-density
operator andr” (v=x,y,z) the Pauli matrices. Because of

Since collective modes are best studied within a functhe Zeeman coupling with the magnetic field, the SDW'’s are
tional integral formalism, we write the partition function as polarized in the X,y) plane. The variablep,y determines

Z=[Dy* Dye” >~ Snt where *) is an anticommuting
Grassmann variable. The actio8g and S, are given by

Sozde{aE;)_ dzrl/j;a'(riT)é’Twa(T(rlT)_FHo[l)b*11#] ’

=5 E fd2rdro* (1, 7) e (1O (1, 7),
aa o (27)

where the imaginary time varies between 0 ang=1/T.
We have introduced the composite field

Ouo(1, ) = A1, 7) (1, 7) (2.9
and the matrix
92 gae' e
g(r)= ( gee e g, (2.9

Introducing a complex auxiliary field ,,(r,7), we de-

the polarization axis, whiled,y gives the position of the
SDW'’s with respect to the underlying crystal lattice.

We assume that the external parametenagnetic field,
pressure, etg.are such that the system is in the Ribault
phase, characterized by a negative QHE and the coexistence
of two SDW'’s with comparable amplitudes. We choose the
sign of N such thatN refers to the SDW with the largest
amplitude My=My). (N is even and negative in the Rib-
ault phase.

The mean-field solution corresponds to a saddle-point ap-
proximation with a static auxiliary fiefd

A, (r (3.2

)=(Ouo(r, 1)) =2, AP Vel e,
P

The relation between ., and(O,,) results from the sta-
tionarity condition of the saddle-point actijsee Eq.(3.4)
below]. Because of the constraiff (r)=A,,(r), the order
parameters satistyPV* =AY Among the eight complex
order parameters, only four are therefore independent and
sufficient to characterize the SDW phase. The order param-

eters APN =| AP |ei¢5” are related to the spin-density

coupleS;,; by means of a Hubbard-Stratonovich transforma—modmat,on(g 1) by

tion. This leads to the action
s=sO+f d?rd 7AT(r,7)g(N)A(r,7)

- fdzrdm;(r,r)@(r)oo(r,r). (2.10

We use the spinor notatioh,=(A,,,A_,)" and O,
=(0,,,0_,)". SinceA,, couples to the field,,,(r,7)

=O*—(r 7), it satisfies the constraint . (r, T)_A*_(I’ 7).

|A(pN)|_M_

aog 4 1
=2 (‘P(pN)

don=—3(PN+ PV,

Since by conventioMy=My, we have|AMV|=[aM)|.

Note that the conditionA ®V*=A®Y imposes oY=

oY),

(3.3

Note that the actio2.10 maintains spin-rotation invariance — (P(pN) .
around the magnetic field axis. In the FISDW phase, because The mean-field action is given by
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SM,:=,8J der%r(r)f;(r)AT(r)—g szrdrj dzr’dr’(sz(r,r),ﬁl(r,T))

G r,mr 1)
X

s(r—r)a(r—1)KE () Gy N(rmr)

S(r—r")8(1—1")A 4 (r) (%T(r,,T,))
: (3.4)

oy (r',7")

Here Gﬁ?ﬁ(r,r;r’,r’) is the Green’s function in the absence +anG [Eq. (3.7)]. This reflects the fact that, is not the

of interaction g,=g3;=0). The effective potentiall ,,(r)
acting on the electrons is defined by

Zao’(r):gZAaU(r)+93eia4kFxAEa(r)r (35)

ie., ZU(r)=§1(r)Ao(r). Rewriting the action in the basis of

the eigenstated, of H, [Eq. (2.4)], we obtain
SMF=/3J d?r AT(r)g(r)A(r)

- 2 (Whke), v (K e)

a,k k' w
Selio—en (k)1 A, (kk")
| Azi(kk) Sewlio— ez (ko]

k',
x( Yanl w)). 3.6

lﬂ@("’#’)

We denote byw=27T(n+1/2) (n intege) fermionic Mat-
subara frequencies. We emphasize that keardk’ refer to
the quantum numbers of the eigenstatg'sof H,. We have
introduced theparticle-holg pairing amplitudes

Zw<k.k'>=f 0r ¢ (1) 2 (1)K (1)
= 5k}’, ,ky—w/b% (90N + gsA%UN))

o0
i an(kyb— /2
X E I el antkyb )5k;,kx—aQ§PN>+anG,

n=—w=

(3.7
wherel ,.=1,(q,= 7/b). The coefficientd ,(q,), defined by

2rdu . .
| — inu+(i/o) [T, (u+qyb/2)+ T, (u—qyb/2)]
n(qy) Jl) 2779 y Y )

(3.9

are well known in the QNM. They depend on the transverse
dispersion lawt, (k,b) and measure the degree of perfect
nesting of the Fermi surface. For a perfect nesting at wave X

vector (Xg,m/b), one would have,(7/b) =6, , while in
the generic situatiotiimperfect nesting|l,(q,)|<1.3* The
convention My=My implies |Iy|<|ly|. Note thatk, is
coupled not only tok,—aQPY but also tok,—aQ{PN

momentum in the gauga=(0,Hx,0).

From now on, we shall use the quantum limit approxima-
tion (QLA) (also known as the single-gap approximation
This approximation, which is valid whea. is much larger
than the temperature and the SDW gap, consists in retaining
only the most singulafparticle-holg pairing channels. In the
metallic phase, these channels present the logarithmic singu-
larity ~In(Ey/T) (which is characteristic of a SDW system
with perfect nesting This singularity results from pairing
between electron and hole states of the same energy and is
responsible for the opening of a gap at the Fermi level.
While the QLA strongly underestimates the transition tem-
perature and the value of the gap at low temperature, and
also neglects gaps opening above and below the Fermi level,
it is an excellent approximation when calculating the collec-
tive modes(we shall come back to this pojf®

Thus, in the QLA, A, (k,k') is not zero only if
€qao(ky) = — €55(K;), which requiresk,=k,— a2kg. Only
the term withn=pN survives in Eq{3.7), which yields

Zcw'(k!k’): 5k’,k*aQOZa0(ky)1

ZW( ky)= 2 Z(QPUN)eiapN(kyb—w/Z), 3.9
p

where Qo= (2kg ,m/b). We have introduced the new order
parametera PV related toA PN by

X PN), _ % (pN
APV =1pn(g2A 00 + gaA%f, )= A%)* ,

— % < (PN
gzleAEypaN)_galeA%U)
(95— 99 Inln

In the QLA, the mean-field action therefore reduces to a 2
X 2 matrix (as in BCS theory

APN —

aog

(3.10

SMF=ﬁf d2rAT(ng(rnA;(r)

= 2 (ko). g (k= aQp,w)

iw_EaT(kx) ZaT(ky)

A% (ky) i+ €41 (Ky)
Yar(K,0) )
X(tﬂa(k—aQo,w) ’ 340
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using €, (ky— a2kg)=—€,(ky). It is remarkable that From Egs.(3.3 and(3.16, we then deduce

within the QLA the mean-field action can still be written as

a 2x2 matrix. The presence of a second SDW changes the dN=DN,  On=— O (3.19
expression of the pairing amplitudevhich becomes, de-
pendeny, but not the fact that the statk,(—) couples only to
(k+Qg,+). This is not true in zero magnetic field where the
presence of a second SDW leads to complicated mean-fie
equations?®

In the mean-field ground state, the two SDW's have the same
polarization axis ¢n= ¢y). The conditionfy= — 6y means
fhat the two SDW's can be displaced in opposite directions
without changing the energy of the system. They can there-
fore be centered either on the lattice sites or on the bonds.
For 6y= 64=0, both SDW's are centered on the sites, while
for 6y=—60y=ml/2, they are centered on the bonds. The
The mean-field action being Gaussian, we can integrateondition 6+ =0 is related to the pinning that would

out the fermion fields to obtain the ground-state condensasccur for a commensurate SDW. Indeed, for a single SDW
tion energy(per unit are}g AE=—(T In 2)/L,L,—Ey, where  with wave vector (Rg,#/b), it becomes 2=0 whered is

A. Ground-state energy

T—0 andEy=— N(O)E0 is the normal state energy: the phase of the SDW

This degeneracy of the ground state results from rota-

A(pN)*Af,"TN) (0) ,.(N) tional invariance around theaxis in spin spac&’ and trans-
AE:; z lon + AG | lational invariance in real space. The latter holds in the
P FISDW states, since the SDW's are incommensurate with

2E respect to the crystal lattic8.According to the mean-field
2 |A(pN) +In—+ NO H (3.12 analysis, and in agreement with general symmetry consider-

|A2T)| ations, we therefore expect twgapless Goldstone modes: a

spin-wave mode corresponding to a uniform rotation around
(N 1% (N) N) ) the z axis of the common polarization axis, and a sliding
the facts thatd,;|=[A,,| and[A,,|=|AL7]. The latter  oqe corresponding to a displacement of the two SDW's in
inequality foIIows fromMN My, wh|Ie the former is de- opposite directions.

rived below Eq. (3.19. Using the gap equation  \wjthout loss of generality, we can choose the phases
JAE/GAPY* =0, we can rewrite the condensation energy,(PN) and PN equal to 0 orr. The order parametessPN)

as andAP™) are then realpositive or negativenumbers. Fur-
thermore, since the constraints obtained by minimizing the

2 [ALM)2, (313  free energy relate() (o) only to o (), we can

o o _ _ also imposep (¥ =¢ ) Jande() =g, (N) . With such a choice,
a form which is reminiscent of the BCS-like expression of a

SDW system with perfect nestirjig\ E=—N(0)|A|?/2 with
A the SDW gap. As stated above, the QLA amounts to

taking into account only the “perfect nesting component” of o real(positive or negativenumbers independent of and

the parucle—_hole painng. - . ) o. Opn=0 and¢py= ¢y=0 or 7. The SDW's are polarized
The requirement that E is minimal with respect to varia- along thex axis. Introducing the notations

tion of the order parameters leads to constraints on the

To obtain Eq.(3.12), we have explicitly taken into account

APY=A,y, APV=4,y (318

phases of the complex order parametera ("N g3 IN
_|Z(pN)| I(P(PN) r=—, gz_,
=|Al 92 In
0 if Iylg>0 ~
~(N)y_~(N)_ NN AN -~ N
€al ™% T 1 if <0 (314 =i T (3.19
AN AN
For ty,=0, Iy=(—1)M2. Whent,, is finite but small, .
sgn( ) =(—1)V2. Using Eqs.(3.10 and(3.14, we then  (With [y|=Myg/My), we deduce from Eq3.10
obtain
ORI Py AL _rd (3.20
A IBEVERN =i/ ey VT :

AN I15/1 |_r|A(iV)/A(N)| (3.19 ~ _
al NTIN af Note thaty and ¢ have the same sigsee Eq.(3.14)], and

_ ~ . ~ 21
Equation(3.15), together witH A™/AMN| = My/M =<1 and [7LIylr.[¢|<1. In the Ribault phase|y|=|y|.” Both
a (3.19, tog = HAg, | N SDW's have the same amplitude whgii=1. In that case

B L (N N

[In/INl<1, implies RN/AM|<1. It also shows that y=¢ andy=1.

A(N)/A(N) is a real number, so that the phage¥’ and (p(N)

are Identlcal modular: B. Mean-field propagators

(N) ) The normal and anomalous Green’s functions are defined
Cat =@4  L7] 316  py
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FIG. 3. Quasiparticle excitation gap®, (k)| in the phase
—2 for|y|=1/3.

N

Gaa(r’r,'w): _<¢w(f1w)¢zg(r',w)>

=2 Gk, , @) () dir(r"),

k,k'

Fw(r,r’,w)=—<¢pw(r,w)¢’;7(r’,w)>

=S Fag(kk @) (1) S ().

k,k’
(3.21)
From Eq.(3.11), we deduce that
Ga(r(kikllw):5k,k’Ga(r(k1w)1
Fmr(kvk,lw):5k',k—aQ0Fa(r(kvw)v (323
with
— 10— €4yl(ky)
Guo(k,w)=—— —,
w +Eau'(k)()+|AllU'(ky)|
Ak
Foo(k,w)= as(ky) (3.23

02+ €4, (ko) + A 4ok |

The excitation energies are given ByE ,(k), where

E oo (K)= V2o (k) + |8 o (ky)|2 (3.24

Writing AN = |ZggN>|ei?02"a“), we obtain(for N even
[Baolky) 2= 20 [Bpnl*+2/BNA

X cog2aNkb+ M -0 (325

The quasiparticle excitation gaﬁ&w(kyﬂ depends on the
transverse momentutk, (Fig. 3). When both SDW's have

the same amplitudéA | =|Ax], the spectrum becomes gap-

less sinceﬁw(ky) vanishes at some points on the Fermi
surface.
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We have shown in Ref. 21 that the occurrence of helicoi-
dal phases prevents the spectrum from becoming gapless.
Indeed, the stability of the sinusoidal phase requires

minky|zw(ky)| 1_|’;’|
_ =

max |3, (k)| 1+[¥]

0.32, (3.2

i.e.,|y|=0.52. Equation(3.26 is deduced from a Ginzburg-
Landau expansion of the free ener@glid only close to the
transition ling and may be slightly changed at low tempera-
ture.

In the helicoidal phase, there is no dispersion of the gap
with respect tk, (see Sec. IX Since the spectrum becomes

gapless for|y|=1, it is natural that the system, above a

certain value of|'y|, prefers to form helicoidal SDW’s in
order to lower the free energy by opening a large gap on the
whole Fermi surface.

C. Mean-field susceptibilities

The results reported in this section are derived in detail in
Appendix A. We study the mean-field susceptibilitiagich
will be useful in Sec. IV

Xao.aro (LT, 7)=(040(r,1)O%, (r',7'))

—(Oaolr, 1IN0}, o (1", 7)),
(3.27

where the mean valué- - -) is taken with the mean-field
actionSye [Eq. (3.11)]. Since the latter is Gaussian, we im-
mediately deduce the only two nonvanishing components:

Xao.ao(L 0 7)==Gop(r, i1, 7 )G o1, 731, 7),

Xao.aa 1m0 7)== F o1, i1, 7 )F 01,731, 7).

(3.28

At T=0 and forg,=0, the Fourier-transformed suscepti-
bilities are given by(Appendix A

;+T,+T(q+QpN !q+QpN vwv)

|

;—%—T,-%—T(q—’_QpN 0+ Qpn @)

1 2Eo wi+vEas
N—

[An

1

| 2 8(1-7A3

2

~N(0)
MO

2

NO) ettt
4 NINY 3(1_;’2)’5% )
X+1,-1(0+ Qon. 0= Qo ,)
NO) , -~ 02+ 022
:—5 _|2 1_ 2 1_ 7 ,
p.+ 4 N( Y )( 6(1——')/2)A,2\‘
= N(0) -
X*Tﬁl(q'*'QpN’q_QEN,wy):—TlNlﬁ'y,

(3.29
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where w,=27Tv (v intege) is a bosonic Matsubara fre- \here the susceptibility is defined by Eq(A13). There is
quency. Equation$3.29 are valid in the low-energy limit no linear term since we expand around the saddle point. Con-
v2g?,w?<A%(1—7%). We have used the QLAsee Appen- sidering phase fluctuations only,
dix A), whose validity is discussed in detail in Ref. 25. Al-
though_the QLALdoes not pre_dl.ct accurately the value_ of the A(r T)ZE ApNei“QpN'”"PEﬁr)(r 7 43
mean-field gapa ,y andAy, it is an excellent approxima-
tion of the low-energy propertiegsuch as the long- we have
wavelength collective modg®once the values oApN and
A, are known. Since the absolute value of the latter do not Qo t - (PN)
play an important role for our purpose, the QLA turns out to Nao(T:7) '2 Apne PN T (T, T) (4.4
be a perfect mean to compute the collective modes.

to lowest order in thérea) phase fieldp?N(r, 7). Note that

IV. LOW-ENERGY EFFECTIVE ACTION the property A* (r,7)=A,(r,7) imposes (p(p )(r,r)z

_ (PN
In this section we derive the low-energy effective action _ ¥ac (r,;]-). Usmg this !atter cohndltlrc]m we deduce from
determining the sliding and spin-wave modes. We do nofd: (4.2) the effective action for the phase:
consider amplitude modes, which are gapped and do not

couple to “phase” fluctuations in the long-wavelength limit. S¢]= 2 ApnA i E PNV~ (@)

We consider only longitudinal fluctuationsg(=0) (i.e., a,a'q

those with the wave vector parallel to the chainEhese

fluctuations are of particular interest since they couple to an X [9280,0 p.pr + G300, Spp + AL (@)1,
electric field applied along the chairf@hich is a common (4.5

experimental situation see Sec. VI on the optical conduc-
tivity. Including a finite g, would allow one to obtain the Whereq (dy,w,), and
effective mass of the collect|ve modes in the transverse di- 5 N
rection. Such a calculation is, however, much more involved A';’;,(q)= ~Xat,a'1 (A0 aQpn.q+ @' Qpry,0,)
and will not be attempted here. 5

The low-energy effective action is derived by studying + Xeot 2 (Q+ @Qpn,d—a'Qpn,w,).
fluctuations of the auxiliary field ,,(r,7) around its saddle- (4.6
point value A_.(r). We write A_.(r,7)=A,,(r) '
+7,,(r,7) and calculate the effective action to quadraticIn Eq. (4.6) q=(ax,q,=0). Using Eq.(A15), and introduc-
order in the fluctuating field;. The fermionic actio2.10  ing charge and spin variables as in the mean-field thisey
can be rewritten as Eqg. (3.3)],

Oon(r, ) =3[P (r, 1) = PN(r, 7],

don(r, ) =—3[ePV(r, )+ PN, 7], (4.7

+f d?rd7{ n}r(r,r)ﬁ(r)m(r,r) we obtain a decoupling of the sliding and spin-wave modes,
which are determined by the actions

St =Sl 1= 3 [ drd el 0, 01.7)

+[9](r, A (r)+c.cl}. (4.2)

On(Q)
Integrating out the fermions, we obtain to quadratic order in 8[0]— E(GN( ), 08— q))Dch(q)( NN ,
7 the effective action on(Q)
(4.8
1
S[n*,n]zzf d2rd7'f d’r'dr’ Z /n’;a(r,T) 1 ()
So1=5 2 (én(—0),bi(~@)D5(@) st
X[ 8500800 —1") (7= 7') G (1) ! " a9
_;(aa',a’o’(r!T;r’!T,)]na’a’(r,ﬂ-,)! (42) with
|
D13 = 4g,A2 1-c,.—r?c__+2rc,_ —yr(l—ci.—c__)—y(1+r?c,_ 4.1
e (=220 yr(1—c, . —c )= y(1trc, . yA1-c 1%, )+29%rc, ’ '
_ 1-c,.—r%c__—2rc,_ yr(l—c,,—c__)—y(1+r?c, _
-1 _ 2
Dsp(‘*)_“g’zA“(vr(l—c++—c)—y(1+r2)<:+ Pl-c._—r%..)~27rc. (410
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w/2|Ap| ®W=Ug0y, (5.3

2 _ 2.2 2
w = vpq, + W

/ HN(qX!w):_gﬁ(quw)' (54)

As expected from the mean-field analysiSec. ll), the

1+ 4] 4 Goldstone mode corresponds to an out-of-phase oscillation

1- 54 of the two S_DW's. We do not find any renormalization of the
mode velocity because we have not taken into account long-

wavelength charge fluctuations. The latter couple to the slid-

ing modes and renormalize the velocity tog[1l

+9,N(0)]*2, whereg, is the forward scattering strength.

In order to obtain this velocity renormalization, it would

W=V have been necessary to include forward scattering in the in-
teraction Hamiltonian and to introduce an auxiliary field for
Iz the long-wavelength charge fluctuations.
FIG. 4. Dispersion laws of the two sliding modes in the Ribault
phase. The gapped mode is generally expected to lie above the B. Gapped mode
quasiparticle _excitation gap. The latter varies betwe¢fy¥1 The second mode obtained from E§.2) corresponds to
—|7) and ZAn[(1+]y]) (Fig. 3. a gapped mode with dispersion la®ig. 4)
_ ~ . . . 2 .22 2
The coefficientsc,,=c,,/(q) are linear combinations of 0 =VEq,t+ g, (5.5
the mean-field susceptibilitieg and are defined in Appendix o
A , 12 1 3+572| KAy

. The effective action§Eqgs.(4.8) and(4.9)] have been ob- @o= : (5.6

. : -8) and(4.9)] Ga1-r2 32 | 1y]
tained by expanding the auxiliary field with respect to the
phase fluctuations M (r, 7) [Eq. (4.4)]. While this proce-  The oscillations of this mode satisfy
dure turns out to be correct at zero temperature, an alterna-
tive and more rigorous approach consists in performing a g r7—7% r(3+ 52+ 450)2+ (1-1)24.9(3+52)
chiral rotation of the fermion fields, which allows one to —=—= = = .
directly expand with respect tod,¢"N(r,7) and On Ty=¢ (3+y"+4ryd)

V ¢PN(r 7).236 The drawback of this approach is that one

(5.7)

has to calculate the nontrivial Jacobian of the chiral transforif we consider the case where the two SDW'’s have the same

mation (the so-called chiral anomaly amplitude(which is not physical because of the appearance
of the helicoidal phasewhich occurs whery=¢= =1, we
V. SLIDING MODES obtain the simple resulty= 0y

. . - . . Using the physical parameters of the Bechgaard salts, we
The dispersion of the sliding modes is obtained froMg. yhat , is generally larger than the order parameters

detl)chl(q)=0. From Eq.(4.10, we deduce |Z:N|1 so that the gapped sliding mode appears above the
~ quasiparticle excitation gafin general, within the first Lan-
detDg,'(q) = 16g53A3yA(1—r3)[(1—c ) (1—c__) dau subband above the Fermi levelve therefore expect
this mode to be strongly damped due to the coupling with the
guasiparticle excitations. Note that E(.6) giving wq is

(5.0 correct only if wg<|Ay|(1—7?)Y2 since it was obtained
using expressions of the susceptibilities, valid in the
limit ©2,0202<A%(1—77).
9 It is worth pointing out that the two sliding modes bear
some similarities with phase modes occurring in two-Band
or bilayett? superconductord.This also holds for the spin-
- wave modegSec. VI and the collective modes of the heli-
re ry coidal phaseSec. 1X.] g3/g, plays the same role as the
OC, . =+toC__——2réc, _ . . . :
Yy ratio between the interban@dr interlayey and intrabandor
intralayey coupling constants. There are also analogies with
—(1-r?)(dc,. . bc__— 5cz+,)=0. (5.2 phase modes id+id’ superconductors, and, to some extent,
with plasmon modes occurring in conducting bilayer
systems:* While the corresponding phase modes in a super-
conducting systems have not yet been observed, plasmon
Equation (5.2) admits the solutionw?+v2q2=0. After modes in a semiconductor double-well structure have been
analytical continuation to real frequencigso(— w+i0"), observed recently via inelastic-light-scattering
we obtain a mode with a linear dispersion l&Rig. 4), experiments’

—r2c, c__+2rc,_—(1-r?c%_].

The gap equation(A12) shows that deb'(q=0)=0,
which indicates that there is a gapless mode with vanishin
energy in the limit of long wavelengthq(—0). Equation
(5.1) simplifies into

A. Goldstone mode
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VI. OPTICAL CONDUCTIVITY

AY y*, ZszrdTA r, 7T > AT P, 7).
At T=0 there are no thermally excited carriers above the i ol )azo Vaoll: 7 el 7)
SDW gap. The response to a low-frequency electric field is (6.1

then entirely due to fluctuations of the SDW condensatesy . charge operator is then obtained from the action by

Since the electric field does not couple to the amplitude, tigna differentiation with respect to the external field
modes, we only have to consider the phase fluctuations stugk )

ied in the preceding sections. In the next section, we deter-

mine the charge (pyw) and current py,) fluctuations in- 5S
duced by phase fluctuations of the condensate. In Sec. VI B, p(r,7)= mh(ﬁo- (6.2
we calculate the current-current correlation function o
(jpwipw) Which determines the conductivity. Following Sec. Il, we introduce the auxiliary fiell,(r,7)

and integrate out the fermions. This leads to the action
A. Charge and current operators
In this section we calculate explicitly the charge induced SA* ,A-Ao]:f d?rd rAT(r,7)g(r)A(r,7)
by phase fluctuations of the condensate. The current is then
obtained from the continuity equation.

We consider a source fieldy(r,7) which couples to the _g Trin(—=G,'+Ag), (6.3
(long-wavelength charge density fluctuations. This adds to
the fermionic action the contribution where
|
. G ) S(r=r")8(r—= )B4 (1,7)
ga (ryT;r 17,): ~ (0)-1 ’ ’ 1 (64)
S(r—r")o(r—7")A%(r,7) G, “(r,mr',7")
|
Ag(r, 7t 7)=8(r—r1")8(7— 7 )Ag(r,m1. (6.5 S rmr 7 )==8(r—r")é(r—1")
~ . . . . 0 7701]("17)
We denote by lthe 2X2 unit matrix. Expanding the action x| _ ., (6.10
with respect toA,, we obtain 7a(r,7) 0

whereGMF is the mean-field propagator. The charge operator
SA*,A A =A%, AT+ X TI[G,Aql+O(A)), is given by
(6.6)
p(r, )=, trGMF(r,7r,7)
whereS§[A*,A] is the action without the source field. Here ¢
Tr denotes the trace with respect to time, space, and matrix ME ME ~
indices. From Eq(6.2), we then obtain the following expres- +§ tr[Ga 220G, 1(r,7ir,7)+0(79).
sion of the charge operator:
(6.11)

The first term in the right-hand side of E¢6.11) is the
uniform charge density, in the mean-field state. The other
terms correspond to charge fluctuatignsy induced by the
where tr denotes the trace with respect to the matrix indice§ondensate fluctuations. To lowest order in phase fluctua-
only [i.e., TrO=[d?rd rtr O(r,7;r,7) for any operato®].  1ONS, we obtain

To calculatep, we write

p(r,7)=2 trG, (r,7;r,7), (6.7)

PDW(rﬂT):E tr[QZ”FEQQEfF](r,T;r,T). (6.12
A (r,7)=A,(r)+7,(r,7), «
Considering only phase fluctuatiofsq. (4.4)], we obtain
(1, 7)=0(1) 7,(1,7). 6.8 (Appendix B
Then we have

1 -
pDW(r’T):%aXHN(r!T)v (613

G l=g¥t-3,, (6.9  where
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D(r, ) =[N M, 6.1 using the continuity equatioh. In conclusion, Eqs(§.13)
N7 =2l ir ) el 619 and(6.17 express the fact that the largest gap remains tied to
(oN) (oN) the Fermi level.
~(pN)  92Apneey (1 7)+058pne,, (T, T) Finally, we can express the charge and current fluctua-
Pao (17)= 92A pnt 93A tions directly in terms o#y and fy:
6.19 1 0,00(, 1)~ 1y, bK(1,7)
Note thatppw(r,7) depends only oﬁéN(r,:-), i.e., on the pow(r, 7= T+ry ’
largest component of the effective potentdg), (r, 7).
Using the continuity equatiofin imaginary tim . ie d.0n(r,7) =T yd.ON(r,7)
g y equatiofi ginary time ow(r,)=—— T . (6.20
. . m ry
ied ppw(r, )+ dxjpw(r,7) =0, (6.19
we obtain the current fluctuations induced by the phase fluc- B. Current-current correlation function
tuations: In this section we calculate the correlation function
ie - . .
ij(r,T)z__bareN(r,’T). (617) H(wV)Z<JDW(wV)JDW(_wV)>' (621)
aa

where jpw(w,)=jpw(q=0,0,) is the Fourier transform of
Note that the currentpyy is parallel to the chains. Conden- the current operator given by E¢6.17. We have
sate fluctuations do not induce current fluctuations in the
transverse direction. — €242
This simple resulfEqgs.(6.13 and(6.17] can be under- Il(w,)= 22—”2
stood as follows. For a system with a single SDW, the charge T D1+ 1)

fluctuationppyw = dy 0/ b is obtained by requiring the SDW <D+ +r242D —oryDE
gap to remain tied to the Fermi level. Let us briefly recall this [Den (@) Y Den (@) YDen (@,)]
argument. A fluctuating SDW potentialA (X, ) (6.22

=AaUei a2k,:x+i(pmr(x,r):Aau_eiaZKFXJrixﬁxzpau.(x,T) COUpIeS the
state Ky,|) to (Ky+2ke+dy@.(X,7),T), and ky,T) to

(kyt+2ke—dxe_1(X,7),1). (For simplicity, we neglect the
transverse direction.The resulting gap will open at the
Fermi level only if the system modifies its density in such a

Whererh (w,)=(bpn(w,) Opn(— ®,)) [see Eq(4.8)].

The conductivity is defined by o(w)=—-i/(w
+i0")I1"™(w) where the retarded correlation function
[1™(w) is obtained fromll(w,) by analytical continuation
to real frequencyiw,— w+i0". Using the expression of

way that ¢ _ =iyt
Cpp' (Appendix A), we obtain the dissipative part of the con-
OKp 11 (X,7) + OKe— | (X, 7) = 3y (X, T), ductivity,
2 ~2 ~
3(1-
B (6,7 + ke (7=~ oy (7). (618 o Tp( 5y :yz) st og—2_),
Here we denote by[ kg + kg, (X,7)] the Fermi wave vec- 3+5y 3+ 57(6 23

tor on the @o) branch of the spectrum. This Fermi wave
vector is time and space dependent because of the densifjhere wp:w/SeZUF/b is the plasma frequency. Equation

fluctuations. Equations(6.18 imply the charge-density (6.23 satisfies the conductivity sum rule

variation
2

f do Re[(r(w)]——p (6.24)
Sp(x,7)= E [SKe 1 (X, 7)+ SKg_ (X, 7)] -

Thus all the spectral weight is exhausted by the collective

1 sliding modes. Quasiparticle excitations above the mean-
= m&x[‘PH(X”)_ ¢-1(x,7)] field gap do not contribute to théongitudina) optical con-
ductivity, a result well known in SDW systemisBecause
both modes contribute to the conductivity, the low-energy
(Goldstong mode carries only a fraction of the total spectral
weight. We obtain Dirac peaks at w, because we have
Let us now go back to the case of interest. We should CONMneglected the coupling of the gapped mode with quasiparti-
sider the effective potential ,,(r,7), since it isA ., (r,7) cle excitations. Also, in a real systefwith impurities, the
[and notA ,,(r,7)] that couples to the electrons. In the pres-Goldstone mode would broaden and appear at a finite fre-
ence of two SDW'’s, it is not possible to satisfy £§.18 for  quency(below the quasiparticle excitation gague to pin-
the two componentsN and —N) of the effective potential. ning by impurities. In the clean limit, which is appropriate in
Nevertheless, it is natural to assume that the largest gap réTMTSF),X salts, the presence of impurities does not re-
mains tied to the Fermi level. This immediately yields Eg.store any significant spectral weight to quasiparticle excita-
(6.13, and, from the continuity equation, E¢6.17. (The tions above the mean-field gaprherefore, the fraction of
latter can also be obtained by a similar argument withouspectral weight carried by the two modes is correctly given

1
Z%&XG(X,T). (619)
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FIG. 5. Fraction of the total optical spectral Weigb@/4 carrigd FIG. 6. || (dashed lingand low-energy optical spectral weight
by the low-energy collective modes. In the sinusoidal phdse ( (solid line) as a function ofr=g3/g, in the phaseN=—-2 (H
|<}C~o_4), the low-energy sliding mode carries the fraction 3(1 =10 T). The transition from the sinusoidal to the helicoidal phase

~5%)/(3+5%%) of the total spectral weight. In the helicoidal occurs forr~0.06.

phase, there is no spectral weight at low engigpe Sec. IX
A. Goldstone mode

by Eq. (6.23. By measuring the optical conductivity(w), From Eq.(7.1) we deduce the existence of a mode with a

we can therefore obtain the ratig|=|y| of the amplitudes linear dispersion law
of the two SDW's.

We have shown in Ref. 21 that the sinusoidal phase be-
comes unstable against the formation of a helicoidal phase dn(dx, ) = PNy, o). (7.3

when || reaches a critical valug.. By comparing the The spin-wave Goldstone mode corresponds to in-phase os-
mean-field condensation energies of the sinusol@&. cillations of the two SDW's, in agreement with the conclu-
(3.12] and helicoidal[Eq. (9.5 in Sec. IX below phases, sion of the mean-field analysiSec. Il). We do not find any

we find}c~0_4, which is in good agreement with the result renormalization of its velocity because we have not taken
}C~0.52 obtained from the Ginzburg-Landau expansion oiimo ac_count the coupling with the long-wavelength spin
the free energy close to the transition lftte. fluctuations:

Since || varies between 0 and 0.4 in the sinusoidal
phase, the Goldstone mode can carry betwed®0% and
~50% of the total spectral weigliFig. 5. When this frac- The other solution of Eq(7.1) corresponds to a gapped
tion is reduced below~50% (i.e., when|y|=0.4), a first mode with the dispersion law
order transition to the helicoidal phase takes place. In the 2_ 242, 2
helicoidal phase, there is only one Goldstone ma® Sec.
IX). This mode is a pure spin-wave mode and does not con-

0=vgdy, (7.2

B. Gapped mode

tribute to the optical spectral weight. wi== 2 =32 — (7.9
Experimentally, the helicoidal phase can be stabilized by 9, 1-12 % [ 1y

decreasing pressure, which increases the ratigs/d, (Fig.  The oscillations of this mode satisfy

2).2! Figure 6 showsﬁ/| and the low-energy spectral weight B

as a function of for H=10 T. In the helicoidal phase; is NG @) = =Ty PN( G ). 7.9

defined by Eq(9.8). In the gapped mode, the oscillations of the two SDW's are

out of phasé® As expected, the larger SDW has the smaller

oscillations. Like the gapped sliding mode, this mode is
VII. SPIN-WAVE MODES found to lie in general above the quasiparticle excitation gap,
and is therefore expected to be strongly damped due to cou-
pling with quasiparticle excitations. Thus, the spin-wave

For the spin-wave modes, the condition B (0)=0  modes are similar to the sliding modes as shown in Fig. 4.

yields
VIIl. SPIN-SPIN CORRELATION FUNCTION
re ry In this section we calculate the transverse spin-spin cor-
6C,, =+doc__ ? +2réc, _ relation function. For real order parametﬂlﬁ’g“‘) , the mean-
Y field magnetizationS(r)) is parallel to thex axis. Trans-
—(1-r?)(sc, , 6c. — 5017):0_ (7.1) verse(to the magnetizationspin fluctuations correspond to

fluctuations of the operator
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i sliding mode and the gapless spin-wave mode, whenever
S(rn)=3 ;f 00 ,44(1, 7). (81 poth SDW's have the same amplitudg=£=+1).
The g:orrelatiop fqnction(yy=<sysy) can be _expressed as a IX. HELICOIDAL PHASE
functional derivative of the free energy with respect to an
external field that couples to the spin operapr This stan- The analysis of the helicoidal phase turns out to be much
dard procedure allows us to rewritg, as simpler than that of the sinusoidal phase. In the helicoidal
phase, the mean-field gap does not depend on the transverse
e , * ., momentumk, , which significantly simplifies the computa-
Xyy(1 71"\ 7 )_Z E R (Aaa(r, DAL (r, 7)) tion of the collective modes. In this section, we shall de-
Ganne scribe the properties of the helicoidal phase, but skipping
1 ~A_q most of the technical details of the derivation.
—Eﬁ(r—r’)é(r—r’)E, g..(r), (8.2
. o _ _ A. Mean-field theory
where the mean valuge - - ) is taken with the effective action o . ]
S[A*,A]. In the following, we drop the last term, which The helicoidal phase is characterized by the order

does not contribute to the spectral function ¥{fj. To first parametef
order in phase fluctuations, A,m(r)=<Ow(r,T)):Aa,,ei“Qr)(w)N'r, ©.1)

ny(ryT;r,,T,):4E APNAP/NCOiQpN'r) W|th
p.p’

, p(+,D=p(=, )=+, p(+,D)=p(=,1)=—.
Xcog Qpin-r")DEY (1, 751", 7"), 9.2
(8.3 In the notations of the preceding sections, this corresponds to

/ (N) = —A* (N = —A* (N) — A (N) —
where DE(1,7ir", ™) =($pn(r, ) dpn(r', 7). Taking S RTATL A=A AT Srf=A 170, and

the Fourier transform. we obtain AM=AM=0. The fact that some order parameters vanish
in the helicoidal phase makes the computation of the collec-
ny(q+anNyq+a,Qp’N1wy):ApNAp’NDgg,(a)' tive modles much simpler. The spin-density modulation is
(8.4  given by
where.qz(qx,qy=0).' Becausg of_ the presence pf SDW'’s, (Sdr))y=2|A [cog—Qn-T— ¢4 1)
the spin-spin correlation function is not diagonal in momen- B
tum space. In Eq8.4), q corresponds to the momentum and +2]A y[cod Qnr—¢-y),
energy of the spin-wave mode and tends to zero for long- .
wavelength fluctuations. We therefore consider the spectral (Sy(r)=2|A4|sin(—=Qn-T =@ +)
. t . .
function Im Tryxyy, where Ty is a partial trace correspond- +2|A_|siQrr—¢_ 1),
ing to a given spin-wave mode momentu (qy,d,=0):
(S,(r))=0, 9.3
TquW:;p Xyy(QF aQpn, A+ aQpy, @) which corresponds to two helicoidal SDW’s with opposite
~ ~ chiralities. The mean-field action is still given by E&.6),
=2A§[Ds+p+(q)+ ¥*Dgy ()]. (8.5  but the pairing amplitudes are given kip the QLA)
Using the expression af,, (Appendix A), we obtain X, (kk)= 5k’,k—aQOZao(ky)i
277 ZNZN
ImTr.y®el=—— w X _x iap(a,o)N(kyb—m/2)
aXyy g%N(O) INI—N Aaa’(ky) Aaa'e Y )
5((1)_U|:qx) ( —4r 1+ r2 ;2+ gz) Zom': I p(a,a)N(QZAan+gSA;0)- (94)
X + =
Urx (1-r3)% (1-r%)? [y The ground-state energy reads
S(w—wy) 3(1+r?) 1-772 1
+ = (8.6) AE= A% Z
w1 2(1-r1%)2? |y ; Lpgnn ! “l
for w,q,>0 andq,=0. Both spin-wave modes contribute to N(0) |Z 2 oE
the spectral function. The spectral weight carried by the - 2 o +|Za1|2|”~ 0
Goldstone mode diverges agjl/ as expected for a quantum 2 2 2 |A o1l
antiferromagnet® 1
Equations(6.23 and (8.6) predict that all the spectral ——NO)S |2 9
. . . . . ( ) | aT| ’ ( 5)
weight is carried by the in-phase modes, i.e., the gapped 4 a
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1 _ ~ ~ + (a)
S[¢]=§Z (qoﬁ(—q),cm(—q))Dl(q)(@ n )
q

e_1(q)
(9.11)
DH(Q)=2g,A%,
ks 1-c, . —r2c__ yr(l—c,,—c__)
yr(l—cyy—C_) '}’2(1_C_r20++)).
(9.12

The dispersion of the collective modes is obtained from
FIG. 7. Quasiparticle excitation spectrum in the helicoidal det? ~*(q)=0. We find a Goldstone mode satisfying
phase. The soliddasheglline corresponds to ufdown) spins. For
clarity, we have not shown the Zeeman splitting. O=UVEly, @i1=@_;. (9.13
where the last line is obtained using the gap equatiomrhis mode corresponds to a uniform spin rotation. Equiva-
dAE/9A},=0. From the latter, we also dedudevriting lently, it can also be seen as a translation of the two SDW’s

’Aw:|zw|ei$w) in opposite direction8 Thus it combines characteristics of
the two Goldstone modes of the sinusoidal phase.
- - 0 if IyIg>0 There is also a gapped mode with dispersion la#
I P N T 9.6 =vZgi+ w3, where
and -~
16 r |A A
wi== ——|——1 (9.14)
P =P—1- (9.7 g2 1-r InIN
Without loss of generality, we can choose the order paramyhe oscillations satisfy
eters real, and introduce
A - &, Qo _ V(A2 2ry(y+ )2+ 2ry(1+yr)?
y= A+T’ Y= _Z . (98) [ 72(1_r2)2_2(7+r)2_2r2(1+,yr)Z
1 (9.195

y and’y satisfy Eqs.(3.20).

The mean-field propagators are then When the two SDW's have the same amplitude=(1),

¢+1le_1=—1. As for the sinusoidal phase, the gapped
mode is found to lie above the quasiparticle excitation gap.

G (K, w)=—— 2 ew(kj) , The similarities with phase modes in two-band or bilayer
“ w?+ €2 (k) + A 4ol superconductors are more pronounced in the helicoidal phase
than in the sinusoidal phase. In fact, £9.14) gives exactly
R gla@p(a,0)N(kb—m/2) the gap of the phase modes in these superconducting sys-
Foo(kw)=—2 (9.9  tems. In the helicoidal phase, the order paraméte(r)

2, 2 < 2 e
@0+ €5,5(Ke) T[4 4o [Eq. (9.1)] and the effective potential ,,(r)=gpA ,x(r)

o ~ la4keXA— (r) have only one componente'“paon' T
The excitation ener K)=[€2 (k)+]|A,|2]¥2 does 1 93€ ao’) y poner "
not depend ork TP?éEggfac)trur[neCEg(s)ﬁ)owln ?r;T'F:!g 7 Note Thus, the helicoidal phase is more BCS-like than the sinu-
v . 7.

that all the branches are gapped, due to the presence of tV%)idal phase. This explains why the quasiparticle excitation
SDW'’s. In contrast, in the presence of a single helicoidaEpGCtrurn does not depend kp, and also the absence of a

SDW, some branches would remain gapless. y-dependent factor in the energy of the gapped midete
As in the sinusoidal phase, we can compute the mear9-14]. We have shown in Sec. VI that in the sinusoidal
field susceptibilities. They are given in Appendix C. phase only the largest gap remains tied to the Fermi level in

the presence of condensate fluctuations. This yields a modi-
fication of the condensation energy, which is at the origin of

B. Collective modes ~ . .
the y-dependent factors in the expressionswgfand w;.

Considering phase fluctuations only, we have

Do T)=A € N THi¢ao(h) A (1 1) C. Spectral functions

=iA (N u(r,7) (9.10 n the helicoidal phase, it is not _clear wht_ather the collec-
tive modes should be seen as sliding or spin-wave m&tes.
to lowest order in phase fluctuations. Following Sec. 1V, weln this section, we compute the spectral functionfRe) |
then obtain the effective action and Im Tg)(ret to answer this question.
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1. Optical conductivity

. T ™ Z+T37T’ O(w—vEdy)
The charge and current operators are given by aX pp 29§N(0) Il ‘ U EQy
(1,7)= 5B (=5 (17)], (9.1 L i
r,r)= Qi(r,7)—@_(r,7)], . - + =
Pow 2m7b XL+ 1 (1_r2)2 (1_r2)2 ,yg
e +5(w—w2) 4r 1412 Y2+
Jow(r, 7)== 50 L@ (1) =@y (r,7)], 9.1 w5 (1-12)2 (1-r%)2 y¢
(9.22
where

for w,q,>0 andqg,— 0. Both modes contribute to the spec-
tral function. Although the Goldstone mode is a pure spin-
~ 92840 Pao(1T) T 93A 5 @u(r, 7) wave mode, the gapped mode has characteristics of both a
Paoll,7)= UoA .+ gaA (9.18 spin wave and a sliding mode, as can be seen from the spec-
“ “ tral function.

is the fluctuating phase of the effective potenfig), . From
Eqg. (9.17 we can calculate the current-current correlation

function, which yields the conductivity X. CONCLUSION

We have studied the long-wavelength collective modes in
a); the FISDW phases of quasi-1D conductors, focusing on
Rdff(w)]=g5(wi w3). (919 phases that exhibit a sign reversal of the QKibault
anomaly. We have recently proposed that two SDW'’s, with

The Goldstone mode does not contribute to the conductivity'2Ve€ vectorsQy=(2ke +NG,Qy) and Qy=(2ke=NG,

and is therefore a pure spin-wave mddethe limit g—0). —Qy), 'COEXISI in the R|bau'lt phase, as a result of umklapp

This result could have been anticipated since the conditioffcatterng. When the Iat_ter Is strong enougrj, the two SDW's
S~ ~ - become circularly polarize¢helicoidal SDW’S. The pres-

¢ 1=¢_; implies ¢, =¢_; and the vanishing of the cur-

Co ence of two SDW'’s gives rise to a rich structure of collective
rent(9.17). Thus all the spectral weight is pushed up abov odes, which strongly depends on the polarizatiavear or

the quasiparticle excitation gap at frequencies of the order o irculan of the SDW's.

w,. This implies that th_ere is no_low—energy collective mc_)de Regarding the sliding modes, we find that the out-of-
corresponding to a uniform sliding of the condensate. SinCepaqe oscillations are gapless in the long-wavelength limit.
nonlinear conduction in SDW systems results from the deTpg act that this Goldstone mode corresponds to out-of-
pinning of such a modgfrom the impurity potentialabove & — yhaqeand not in-phaseoscillations is related to the pinning
threshold el_egtrlt_: field, we C(_)nclude that there is no nonlm-by the lattice(due to umklapp processethat would occur
ear conductivity in the helicoidal phase. = _for a single commensurate SDW. The other sliding mode is

In Ref. 21, we have shown that the helicoidal phase iyanned and corresponds to in-phase oscillations. In Bech-
characterized by a vanishing QHE,(,=0) and a kinetic  g45:q salts, this mode is expected to lie above the quasipar-
magnetoelectric effect. By studying the collective modes, wgjcje excitation gap and should therefore be strongly damped
have found a third possibility for the experimental detectionye g the coupling with the quasiparticle excitations. In the
of the helicoidal phase, namely, the absence of nonlinegigjicoidal phase, there is no low-energy sliding mode, since
conduction. the Goldstone mode is a pure spin-wave ma@er a heli-

S ) _ coidal SDW, one cannot distinguish between a uniform spin
2. Spin-spin correlation function rotation and a global translation, so that we cannot classify

We consider the spin-spin correlation function the modes into sliding and spin-wave modes.

The dissipative part of the conductivity, Rg )], ex-
hibits two peaks: a low-energy peak corresponding to the
Goldstone mode, and (@roadey peak at high energy due to
) . the incoherent gapped mode. The low-energy spectral weight
As in Sec. VIIl, we shall compute the partial rac&¥L,, s directly related to the ratio of the amplitudes of the two
Wher_e the momenturg of the collective mode is held fixed. gp\ws that coexist in the Ribault phase. When the umklapp
[Again, we drop the last term of E¢8.2).] We find scattering strengthgg) increasesexperimentally this corre-

sponds to a pressure decreaspectral weight is transferred
1 ) ~ from the low-energy peak to high energies. Above a critical
Tquuu:§ 2;« A% Daa(), value ofgs, the sinusoidal phase becomes unstable with re-
spect to the formation of a helicoidal phase. At the transition,
the low-energy spectral weight suddenly drops to Z&ig.
Traxxy=0. (9.2)  5), since there is no low-energy optical spectral weight in the
helicoidal phase. Thus, the formation of the helicoidal phase
This yields the spectral function can be detected by measuring the low-energy optical spectral

X070’ 7" )=(S,(r,7)S,(r',7")). (9.20
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weight. We also note that the absence of a low-energy slidumklapp scattering As for phonon modes in a crystal with
ing mode means that there is no infinite "Riioh  two molecules per unit cell, we expect an acou$Gold-
conductivity*! in this helicoidal phase, which is therefore a stong mode and an optical mode.
true insulating phase even in an ideal syst@m, one with
no impuritie. In a real systenqwith impurities, this implies
the absence of nonlinear dc conductivity. ACKNOWLEDGMENTS

The spin-wave modes exhibit a similar structure. The in-
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mode, but the gapped mode contributes both to the conduc-
tivity and to the transverse spin-spin correlation function.

As _discussed i_n the Introduction, these conclusions rely  AppeNDIX A: MEAN-FIELD SUSCEPTIBILITIES
on a simple Fermi surfadé-ig. 1(a)], which does not neces- — ~

. . . : . X AND x
sarily provide a good approximation to the actual Fermi sur-
face of the Bechgaard salts. They should therefore be taken Using the expressio(8.21) of the mean-field propagators
with caution regarding their relevance to the organic conducG andF, we obtain
tors of the Bechgaard salts family. However, we have de-
rived a number of experimental consequences that should

) ) - X, +a 0 +aQ,n,
allows tests of our theory. In the sinusoidal phase, we predict Xaoaol 0+ @Qpn.d Qornr )

a possible reentrance of the phaée 0 within the cascadé& T

The low-energy peak in the optical conductivity [R€¢w)] =S N > 2 Gk
carries only a fraction of the total spectral weigkﬁ/4. This y Ko n==e

fraction should decrease with pressure. At low pressure, the XGok—aQp—q+anGuw—w,)
sinusoidal phase may become helicoidal. The helicoidal

phase is characterized by a vanishing Q¥ kinetic mag- Xlpntn(7/D+ay)lpinen(7/b+qy)
netoelectric effect! and the absence of low-energy spectral —ia(p—p"IN(kyb—qubl2— 7/2)

weight in the optical conductivity as well as the absence of xe Y ' (A1)
nonlinear dc conductivity. In the alternative scenario pro-

posed by Zanchi and Montambatithe Ribault phase does Xao.ao A+ aQpn,0' —aQpiy, ®,)

not exhibit any special features compared to the positive .

phases, apart from the unusual behavior of the magnetoroton T

modes?® but these modes have not been observed yet. == Oqa L, % n;x Fao(K, @)

We expect our conclusions regarding the structure of the

collective modes and the associated spectral functions to XF4o(k=q+anG,0—w,)l pnin(7/b+0y)
hold for generic two-SDW systems and not only for the . ,

FISDW phases that exhibit the Ribault anomaly. It is clear Xl prn—n( /b +qy)e *(PTPONyD=ayb2=m2)
that the existence of four long-wavelength collective modes (A2)

(two spin-wave and two sliding mode®sults from the pres-

ence of a second SDW, which doubles the number of degreasere we have assumed tHag|,|q,] <G, which is the case

of freedom. Two of these modes should be gapless as ex¥f interest when studying the low-energy fluctuations around
pected from the Goldstone theorem in a system where twghe mean-field solution.

continuous symmetries are spontaneously broken: the trans- |n the QLA, we retain only the term=0 in the above
lation symmetry in real space and the rotation symmetry irequations, since the other terms are strongly suppressed

spin space. when wc>T|A n| in the limit of long-wavelength

This belief is supported by the striking analogy with col- Jluctuatlon525 Restrlctlng ourselves tg,=0, we then obtain
lective modes in other systems like two-band, bilayer, an y

d+id’ superconductorsi~*3and, to a lesser extent, plasmon _

modes in semiconductor double-well structuféswhile Xao,ae{@F @Qpn,q+ aQpry, @)

phase modes are in general difficult to observe in supercon-

ductors, since they do not directly couple to external probes =— wo(K,0)Go(k—aQp—q,0— w,)

(see, however, Ref. 13collective modes in SDW systems Lyly

directly show up in response functions like, for instance, the —ia(p—p")N(kyb—/2)

dc and optical conductivities. Xlpnlprne Y '
Finally, we point out that we expect a similar structure of

collective modes in the FISDW phases of the compound Xao.as(A+ aQpn,q— aQpy,@,)

(TMTSF),CIO,. Due to anion ordering, the unit cell con-

tains two sites, which leads to two electronic bands at the B

Fermi level. This doubles the number of degrees of freedom LyLy

and therefore the number of collective modesthout con- ‘ )

sidering the possible formation of a second SDW due to X1 ol prye (P HPON(kyb=ml2) (A4)

(A3)

ao’(k!w)Fao(k_Q!w_wv)
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Performing the sum ovekt,, we obtain aff=0 and in the
limit |Uqu|1|wv|<|Aao(ky)|

;aa,aa(q—‘r anN g+ an’N !wv)

N(0) . ,
=1l E e*la(p*p)N(kyb*ﬂ'/Z)
pN!'p’N
ZNL ky
o 20 1 witvigg
A uk)l 2 68, (k|2
(A5)
;aa,g(q-i_anN!q_an’N!wv)
N(0) . )
AN 2 @ ia(p+p")N(kjb—/2)
pN'p’N
2NL ky
1 02 24 w2
x| - 24 ZERTOy | (AB)
2 124,,(ky|?

Equations(A5) and (A6) are obtained by expanding to first

order inw?/|A,,(k,)|* andvZai/|A ., (k,)|? This calcula-

tion is standard when evaluating the long-wavelength collec-
tive modes of a SDW system and can be found, for instance,
in Ref. 25. Equation$3.29 are then obtained by summing

overky.
It is useful to introduce the notations
Copr =92l X +1,+1(d+Qpn,d+ Qprny@,)
_X+T,—i(q+QpN!q_Qp’N iwv)]

:Cpp/+ 5Cpp/ y (A?)

wherecpp,=cpp,|q=wy=0 and écp,,y are deduced from Eqgs.

(3.29.
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Ay rAy  c..Ay
1-r)ly  (1-rdIy In
AN rA c__Ay
N _ N N (A10)
(1-r)Iy (A=)l Iy
From Eg.(A10), we deduce the relations
_ 1 — Y
Cr STy STy (A1D)
which give, by eliminatingy,
(1-c,)(1-c__)—r%c,,c._=0. (Al2)

Equation(A12) is nothing but the gap equation rewritten in

terms of the static mean-field susceptibilities
In the study of the collective modes, the natural quantity

to consider is no? but the susceptibilityy defined by

}a(r,a’u”(r!T;r,!T,):<6aa(r17—)62/0/(r,17—,)>

—(Oulr, O, (r', 1),

(A13)
whereO,(r,7)=g(r)O,(r,7). x is related toy by
Xao,a'o' (0,4, @,)

= 05X aoar o (0,0, 0,)
+ 03X aaror (0~ adke Q' —a'4ke , 0,)
+0205[ Xa o o' o (A~ adke Q' 0,)
+ Xaoaro (0,0 — @' 4ke ,0,)] (A14)

The gap equation can be written as a function of the static

(0,=0) susceptibilitiesy (or c). From A ,,(r)={(O,,(r))
=T, Fau(r.r,w), we deduce
e~ i(p—=p"IN(kyb—/2)

Ay

N ~ N

PPLLy (op w2+ €2 (k) +IR L (k)2 P
(A8)

ApNZI

and satisfies

}aT,a’T(q—’— anN!qJ’_alQp’N iwv)
_;(aT,Z'l(Q"‘ aQpn,d—a’'Qpry,w,)

- 20— — (o —
=0204,a'(Cppr +T1°Cppr) 930, 2 (Cppr +Cppr) -

This can be rewritten in terms of the mean-field propagators:

T

Aon=—lonp— 2 e (PP INGb-m2
X

Y k,o,p’

X[G-%—T(krw)G—l(k_QO’w)_|F+T(k!w)|2]zp’N
1 —

:2 _[X+T,+T(QpNva’Nawyzo)

p’ lprn

—X+1.- 1(Qons = Qpin s @,=0) 1A 1y (A9)

Using the relation betweef,\ andeN, we obtain

(A15)
Equation(A15) is used in Sec. IV.
APPENDIX B: CHARGE OPERATOR ppw
Using
Gui(r,mr’, 7y F(r,mr' 7))
M (= S ;o
Fa(r,mr’,m)  Gy(r,mr’,7")
(B1)

where G and F are the mean-field propagatofsee Sec.
Il B), we rewrite Eq.(6.12 as
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we have

pow(r, 1) =—2 szr'dr'

- - AN -
X[Gay(rumir ', 7 ) 7y (1 7 )R (1,751, 7) Mol 1,7)=1 2 T O 0N (7). (BY)
P 'pN
+F o (r,mr 7)) gk (1, 7) Gy (1,751, 7)
The relation betwee "N and oM is given by Eq.(6.15
to lowest order in phase fluctuations.
From Egs.(B2) and(B5), we deduce

+F L (07t T ) e (1, 7)) G (1,751, 7)

+ G (1,70 7 ) gk (1 T )F (1 751, 7).

(B2) T A
D= —i —pN ~ (PN (G
If we consider phase fluctuations only,, is given by pow(9) : L,Ly % Lon % Par (A7)
Eq. (4.4), which gives[using Eq.(6.8)] ’
~ . dezrdfj d?r'dr e i@ -, Fi@ 1~
Dao(1,7) =1 2 €N g8 e V(1 7)
P < '
_ X{e* NG, (1,71, 7 )Fg (1,751, 7)
— (pN)
T O38N¢,, (17)]. (B3) +Fo (7 )G (7, 7)]
.. . SdPN) H - . ’
F)eleng the fluctuating phasqé,w of the effective poten _e-iaQpyt [F oy (r it 7) Gy (1,731, 7)
tial A, by
~ +Gy (r,mr' 7 )F 4 (r', 7", 1) 1], (B6)
- Apn =N
A, (r,7)= —PRaiaQpnr+igy, (r.n), (B4) ~ _
( % lon whereq=(qy,q,=0) andgq=(qy,,). Using
J dzrdTJ d2r’dq-’e“(q"“*’ﬂ)“(q"f'—w'ﬁ')“anN"'GaT(r,T;r’,T’)F@(r’,r’;r,r)
=Sgylpn s Gar(K,0)Fg (k—aQo—0,0—w,)e NP, (B7)
k,w
f dzrde d?r'dr e i@ Fia ' me, ) HeQun B (v i 7)) G (1, 75, 7)
= Sl pn Fa(K,0)Gg (k=00 w,)e PNy 12), (B8)
k,w
f dzrde d2r’dr’e’i(q‘r""ﬂ)“(q"r"“’;T')’i“QPN'r’FaT(r,r;r’,r')GM(r’,T’;r,T)
=8yl v Far(K,0)Gyy(k—0,0—w,)e 1aPNib=m2) (B9)
k,w
J dzrdTJ dzr’dr’e_i(q"_“’vT)“(q/'r'“";T')‘i“QpN"/GZL(r,T;r’,T’)FaT(r’,T’;r,T)
= Salon Gay(K,0)F 4 (k+aQo—q,0— w,)e PNy, (B10)
kK,
we obtain

~ ~ o~ ~ T .
pow(@) =12 B (@) i 2 (PN ™G (k)P (k= aQo= Q= w,) + Fi (k@) Gqj (k= G, 0=w,)]
a, xX=y Ko

—e 1PN =TE (K,0)G,(k—q,0—w,)+ G5 (K,0)F . (k+aQy—q,0—,)]}. (B11)

To lowest order inveqy andw,, we have(for g,=0)
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.
5L 2 Caolk,@)Fos(k—aQo-g,0-,)
X Ky, @

Aki(ky)
=—N(O)W(va+aqux), (B12
al\ By
.
> Farlk,0)Gagk—0,0—w,)
bL, &,
A% (ky)
al\ ™My .
=—N(0)—="—"—(—iw,+ avedy).
8|2, (k,)|2 o
(B13)
This leads to
-~ iN(0) - ‘ -
PDW(Q):—4NL p;ky A e pq,e! *PNkyp—712)
BE (K)o oy~
xm[¢ggN><q>—¢gN><q>]. (B14)
all Ry

Performing the sum ovek,, we finally obtain

~ . Oy ~ ~  ~ ~
pow(@=i5 [P @-¢"P(@], (B9
which yields Eq.(6.13.

APPENDIX C: MEAN-FIELD SUSCEPTIBILITIES
IN THE HELICOIDAL PHASE

In the helicoidal phase, the mean-field susceptibilities arevhere Cyi= 1/(1+ yr)

given by

COLLECTIVE MODES IN A SYSTEM WITH TWO SPIN. ..

12 907

Xao’,ao’(q+ an(a,o’)N g+ an(a,o’)N 1wv)

_2 NO Pon_g_wiﬂéqi
PN 2 TR, 2 eRZ, |
(CY
;ao',;(q—i_ an(a,a’)N a— an(a,o’)N !wv)
N(O)| 1 w3+v2q?
_2 N+ @y T VR
- I p(a,U)N 2 2 + lﬁig 1 (CZ)

for g,=0 and|w,|,ve| 0y <|A,,|. Introducing the notations

C++292[;+T,+T(q+QN ,q+Qn,w,)

X114+ Qn.q—Qu,,)],

¢ =0olx_1-1(a—Qn,9— QN ®,)

~X-1,+(0-Qn.0+Qn.®,)],  (C3

the gap equation reads
(1-cyy)(1—c__)—r?c,,c__=0, (Ca
and c__=9y/(y+r) (cpp

=Cpplg=0)-
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