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Using the nonperturbative functional renormalization group (FRG) within the Blaizot-Méndez-Galain-
Wschebor approximation, we compute the operator product expansion (OPE) coefficient c112 associated
with the operators O1 ∼ φ and O2 ∼ φ2 in the three-dimensional OðNÞ universality class and in the Ising
universality class (N ¼ 1) in dimensions 2 ≤ d ≤ 4. When available, exact results and estimates from the
conformal bootstrap and Monte Carlo simulations compare extremely well to our results, while the FRG is
able to provide values across the whole range of d and N considered.
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I. INTRODUCTION

The nonperturbative functional renormalization group
(FRG) provides us with a versatile technique to study
strongly correlated systems. It has been used in many
models of quantum and statistical field theory ranging from
statistical physics and condensed matter to high-energy
physics and quantum gravity [1–3]. Besides the interest
in models where perturbative approaches or numerical
methods are difficult for various reasons, there is an on-
going effort to characterize and quantify the efficiency and
the accuracy of the FRG approach by considering well-
known models of statistical physics. It is now proven that
the FRG yields very accurate values of the critical expo-
nents associated with the Wilson-Fisher fixed point of
OðNÞ models [4,5], comparable with the best estimates
from field-theoretical perturbative RG [6,7], Monte Carlo
simulations [8–13] or conformal bootstrap [14–17]. The
FRG also allows the computation of universal quantities
defined away from the critical point, such as universal
scaling functions [18–21] or universal amplitude ratios
[22], again in remarkable agreement with Monte Carlo
simulations when available.

On the other hand, the operator product expansion (OPE)
has received little attention in the framework of the FRG
until recently [23–29]. Wilson and Kadanoff suggested
independently that in a quantum field theory the product of
two operators in the short distance limit is equivalent to an
infinite sum of operators multiplied by possibly singular
functions when inserted in any correlation function [30–
33]. The validity of the OPE has been proven to all orders in
pertubation theory [34] and can be established in full
generality in the case of conformal field theories [35].
Indeed, the OPE has been fundamental in the study of
conformal field theories in two and higher dimensions
[36,37]. In this context, the conformal bootstrap program
[37–40] has lead to a large number of precise results. The
OPE has been instrumental as well in studies regarding
quantum chromodynamics [41] and condensed matter,
where it has been used to derive the thermodynamic
properties of quantum gases [42,43].
Despite the fact that both the FRG formalism and the

OPE offer nonperturbative approaches to quantum field
theory, it is not yet clear to what extent these two aspects
can be usefully combined to extract information regarding
the nonperturbative regime of a field theory.
From the perspective of perturbation theory, the FRG

provides a useful framework that allows one to prove the
existence of the OPE perturbatively [23–27]. Moreover, by
following the proposal of Cardy relating the OPE coef-
ficients to the second order terms in the expansion of the
beta functions around a fixed point [44], the standard
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perturbative renormalization group has been used to derive
certain OPE coefficients within the ϵ expansion [45]; we
refer to [46] for a FRG perspective on these issues based on
a geometric approach to theory space.
In principle, one may reconstruct from the FRG the full

operator product and express the latter as an OPE [28,29].
However, this may be rather cumbersome in practice. For a
conformally invariant fixed point theory [47], a further
possibility explored in [29] consists in extracting the OPE
coefficient from three-point functions. It has been shown
that within this approach it is possible to calculate the OPE
coefficients in the epsilon expansion.
The main quantities of interest in the FRG are the

effective action, defined as the Legendre transform of
the free energy, and the one-particle irreducible (1PI)
vertices. Taking the Wilson-Fisher fixed point of the
OðNÞ model as an example, we show how the OPE
coefficient c112 associated with the operators O1 ∼ φ and
O2 ∼ φ2 can be deduced from a small number of low-order
1PI vertices. One difficulty in the computation of OPE
coefficients is that the latter are determined by the full
momentum dependence of the vertices in the critical
regime. For this reason, one has to go beyond the derivative
expansion in order to accurately determine the OPE
coefficients. The latter can be computed in the so-called
Blaizot-Méndez-Galain-Wschebor (BMW) approximation
that enables the determination of the momentum depend-
ence of the correlation functions [53–55]. This approxi-
mation scheme has been used in the past to obtain the
spectral function of the “Higgs” amplitude mode in the
(2þ 1)-dimensional OðNÞ model [56] providing an esti-
mate of the Higgs mass that has been confirmed by sub-
sequent numerical simulations of lattice models [57–59].
The outline of the paper is as follows. In Sec. II we recall

the relation between the OPE coefficients and the two- and
three-point functions in momentum space, focusing on the
coefficient c112 in the d-dimensional OðNÞ model. We then
show how to relate c112 to the 1PI vertices. Finally, we
briefly describe the nonperturbative FRG formalism and
the BMW approximation. In Sec. III the results obtained
from a numerical solution of the flow equations are
discussed for the three-dimensional OðNÞ model and the
Ising university class (N ¼ 1) in dimensions 2 ≤ d ≤ 4,
and compared with exact values in some particular cases
and estimates from conformal bootstrap and Monte Carlo
as well as ϵ and large-N expansions.

II. OPE COEFFICIENTS IN THE EFFECTIVE
ACTION FORMALISM

A. Correlation functions in momentum space

We consider a critical, conformally invariant, theory. For
fields OaðxÞ (be them composite or not) with scaling
dimensions Δa, the two- and three-point correlation func-
tions are given by

hOaðxÞOaðyÞi ¼
1

jx − yj2Δa
ð1Þ

and

hOaðx1ÞObðx2ÞOcðx3Þi ¼
cabc

xΔaþΔb−Δc
12 xΔbþΔc−Δa

23 xΔaþΔc−Δb
13

ð2Þ

where x12 ¼ jx1 − x2j, etc. Equation (1) assumes a proper
normalization of the fields and the coefficient cabc in (2)
can be identified with the OPE coefficient [60]. Since in
practice we shall work in momentum space, it is convenient
to consider the Fourier transformed correlation functions.
For the two-point one,

hOaðpÞOað−pÞi ¼
Z
x

e−ipx

jxj2Δa
¼ AdðΔaÞ

jpjd−2Δa
; ð3Þ

where

AdðΔÞ ¼ 4d=2−Δπd=2
Γðd=2 − ΔÞ

ΓðΔÞ ð4Þ

with ΓðxÞ the gamma function and d the dimension. The
Fourier transform hOaðp1ÞObðp2ÞOcðp3Þi is given by a
complicated expression but it is sufficient to consider the
limit jp1j ≫ jp2j, where

hOaðp1ÞObðp2ÞOcð−p1 − p2Þi

≃
cabcAdððΔa − Δb þ ΔcÞ=2ÞAdðΔbÞ

jp1jd−ΔaþΔb−Δc jp2jd−2Δb
; ð5Þ

to extract the coefficient cabc [29]. Equation (5) entails that
the OPE coefficient cabc can be deduced from the three-
point function (5) once the fields have been properly
normalized in order to satisfy (3).

B. OðNÞ model and Wilson-Fisher fixed point

In the following we consider the OðNÞ model in d
dimensions defined by the action

S½φ� ¼
Z
x

�
1

2
ð∂μφÞ2 þ

r0
2
φ2 þ u0

4!N
ðφ2Þ2

�
ð6Þ

and regularized by a UV momentum cutoff Λ. φ ¼
ðφ1;…;φNÞ is a N-component field. The model can be
tuned to its critical point by varying r0. The correlation
functions are then scale and conformal invariant in the

momentum range jpj ≪ pG where pG ∼ u1=ðd−4Þ0 is the
Ginzburg scale. In the following we shall only be interested
in the critical point and the scaling limit jpj ≪ pG; we refer
to [61] for an overview of the various regimes of the
OðNÞ model.
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We focus on the operators

O1ðxÞ ¼ N 1φiðxÞ; O2ðxÞ ¼ N 2

φðxÞ2
2

ð7Þ

(the index i is arbitrary) and the OPE coefficient c112. Note
that the correlation functions hO1O1i and hO1O1O2i are
independent of i at criticality and in the whole disordered
phase. N 1 and N 2 are normalization constants that ensure
that hO1ðpÞO1ð−pÞi and hO2ðpÞO2ð−pÞi are given by (3)
in the scaling limit jpj ≪ pG. Even though O2 is not,
strictly speaking, a scaling operator, it can be expressed as a
linear combination of scaling operators, among which that
associated with Δ2. In the scaling limit, corrections due to
higher scaling dimension operators are suppressed and we
neglect them; a more detailed explanation regarding this
point is provided at the end of Sec. II D. The scaling
dimension

Δ1 ¼ ½φi� ¼
d − 2þ η

2
ð8Þ

is related to the anomalous dimension η while

Δ2 ¼ ½φ2� ¼ d −
1

ν
ð9Þ

where ν is the correlation-length exponent.
To deal with the composite field O2, in addition to the

linear source J we introduce in the partition function a
source h coupled to φ2,

Z½J; h� ¼
Z

D½φ�e−S½φ�þ
R
x
ðJφþhφ2Þ: ð10Þ

The correlation functions of interest, besides the propagator
Gðx − yÞ ¼ hφiðxÞφiðyÞic for h ¼ 0 (h� � �ic stands for the
connected correlation function), are the scalar susceptibility

χsðx − yÞ ¼ hφðxÞ2φðyÞ2ic ¼
δ2 lnZ½J; h�
δhðxÞδhðyÞ

����
J¼h¼0

ð11Þ

and the three-point function

χðx;y;zÞ¼ hφiðxÞφiðyÞφðzÞ2ic ¼
δ3 lnZ½J;h�

δJiðxÞδJiðyÞδhðzÞ
����
J¼h¼0

:

ð12Þ

Here and in the following, there is no implicit summation
over the index i. The computation of GðpÞ and χsðpÞ
allows us to determine the normalization constants N 1 and
N 2 since at criticality

GðpÞ ¼ 1

N 2
1

AdðΔ1Þ
jpjd−2Δ1

; χsðpÞ ¼
4

N 2
2

AdðΔ2Þ
jpjd−2Δ2

ð13Þ

for p → 0. The knowledge of χðp1; p2;−p1 − p2Þ then
yields the OPE coefficient c112 using (5).

C. Effective action

The effective action

Γ½ϕ; h� ¼ − lnZ½J; h� þ
Z
x

X
i

Jiϕi ð14Þ

is defined as the Legendre transform of the free energy [62].
The source J and the order parameter field ϕ are related by

ϕiðxÞ ¼
δ lnZ½J; h�
δJiðxÞ

or JiðxÞ ¼
δΓ½ϕ; h�
δϕiðxÞ

: ð15Þ

All correlation functions for h ¼ 0 can be obtained from
the one-particle irreducible (1PI) vertices

Γðn;mÞ
i1���inðx1 � � � xn; y1 � � � ymÞ

¼ δnþmΓ½ϕ; h�
δϕi1ðx1Þ � � � δϕinðxnÞδhðy1Þ � � � δhðymÞ

����
ϕ¼h¼0

ð16Þ

where, assuming the absence of spontaneously broken
symmetry, we have set ϕ ¼ 0. In particular, the propagator

GðpÞ ¼ ½Γð2;0Þ
ii ðpÞ�−1 ð17Þ

is related to the inverse of the two-point vertex computed
with a vanishing source h ¼ 0. The other two correlation
functions of interest are given by [56]

χsðpÞ ¼ −Γð0;2ÞðpÞ;
χðp1; p2Þ ¼ −Gðp1ÞΓð2;1Þ

ii ðp1; p2ÞGðp2Þ; ð18Þ

where we have used the fact that Γð1;1Þ
i vanishes when

evaluated for ϕ ¼ 0. To alleviate the notations we do not
write the last argument of the three-point vertices,

e.g., Γð2;1Þ
ii ðp1; p2Þ≡ Γð2;1Þ

ii ðp1; p2;−p1 − p2Þ.
We are now in a position to relate the OPE coefficient

c112 to the 1PI vertices at criticality. From Eqs. (13) we
obtain the normalization constants

N 2
1 ¼ AdðΔ1Þlim

p→0

Γð2;0Þ
ii ðpÞ
jpjd−2Δ1

; ð19Þ

N 2
2 ¼ −4AdðΔ2Þlim

p→0

jpj2Δ2−d

Γð0;2ÞðpÞ : ð20Þ

Considering (5) in the limit p2 ¼ 0 and p1 → 0, we finally
deduce
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c112 ¼ −
N 2

2N 2
1

AdðΔ1Þ
AdðΔ2=2Þ

lim
p→0

Γð2;1Þ
ii ðp; 0Þ
jpjΔ2−2Δ1

: ð21Þ

Equations (19) to (21) are the basic ingredients to deter-
mine the OPE coefficient c112 in the effective action
formalism. In the Appendixes A and B, we show that they
yield the known results

c112 ¼
ffiffiffiffi
2

N

r
ð22Þ

for the free theory (u0 ¼ 0), and

c112 ¼
ffiffiffiffi
2

N

r �
Γðd − 2Þ
ðd=2 − 2Þ

sinðπd=2Þ
π

�
1=2 1

Γðd=2 − 1Þ ð23Þ

in the large-N limit to the leading order and for d < 4, in
agreement with the literature [63,64].

D. FRG formalism and BMW approximation

The nonperturbative FRG allows one to compute the
effective action beyond standard perturbation theory [1–3].
Fluctuations are regularized by the infrared regulator term

ΔSk½φ� ¼
1

2

Z
q

X
i

φið−qÞRkðqÞφiðqÞ; ð24Þ

where the momentum scale k varies from the UV cutoff Λ
down to zero. A possible choice for the cutoff function Rk is

RkðqÞ ¼ Zkq2r

�
q2

k2

	
; ð25Þ

with the function rðyÞ taken to be for instance

rWðyÞ ¼
α

ey − 1
or rEðyÞ ¼ αe−y=y: ð26Þ

rWðyÞ and rEðyÞ define respectively the so-called Wetterich
and exponential regulators. In either case, α is a constant of
order one and Zk a field renormalization factor which varies
as k−η at criticality [65]. Thus the regulator suppresses
fluctuations with momenta jqj≲ k but leaves unaffected
those with jqj≳ k. The partition function

Zk½J; h� ¼
Z

D½φ�e−S½φ�−ΔSk½φ�þ
R
x
ðJφþhφ2Þ ð27Þ

is now k dependent. The scale-dependent effective action

Γk½ϕ; h� ¼ − lnZk½J; h� þ
Z
x

X
i

Jiϕi − ΔSk½ϕ� ð28Þ

is defined as a slightly modified Legendre transform
which includes the subtraction of ΔSk½ϕ�. Assuming that
for k ¼ Λ the fluctuations are completely frozen by the
regulator term,

ΓΛ½ϕ; h� ¼ S½ϕ� −
Z
x
hϕ2: ð29Þ

On the other hand, the effective action of the OðNÞ
model (6) is given by Γk¼0 since Rk¼0 vanishes. The
FRG approach aims at determining Γk¼0 from ΓΛ using
Wetterich’s equation [66–68]

∂kΓk½ϕ; h� ¼
1

2
Trf∂kRkðΓð2;0Þ

k ½ϕ; h� þ RkÞ−1g: ð30Þ

The infinite hierarchy of flow equations satisfied by the k-

dependent 1PI vertices Γðn;mÞ
k can be obtained from (30) by

taking functional derivatives with respect to ϕ and h. The
presence of the source h in addition to the field ϕ allows
one to follow the flow of composite fields, an approach
which proved to be useful in tackling a wide range of
issues [56,69–77].
In the BMW approximation [53–55], one considers the

flow equations of the 1PI vertices in a uniform field ϕ even
if one is eventually interested in the vanishing field
configuration. These equations are shown diagrammati-

cally in Fig. 1 for Γð2;0Þ
k , Γð0;2Þ

k and Γð1;1Þ
k . Since the regulator

∂kRk in Eq. (30) restricts the loop momentum to small
values jqj≲ k, whereas the regulator term ΔSk ensures that
the vertices are regular functions of p2

i =k
2, one can set

q ¼ 0 in the vertices Γðn;mÞ
k . Noting then that a vertex with a

vanishing momentum can be related to a lower-order
vertex, e.g.,

Γð3;0Þ
k;ijl ðp;−p; 0;ϕÞ ¼

∂Γð2;0Þ
k;ij ðp;ϕÞ
∂ϕl

;

Γð2;1Þ
k;ij ðp; 0;−p;ϕÞ ¼ ∂Γð1;1Þ

k;i ðp;ϕÞ
∂ϕj

; ð31Þ

FIG. 1. Diagrammatic representation of the RG equations of

Γð2;0Þ
k , Γð0;2Þ

k and Γð1;1Þ
k . Signs and symmetry factors are not shown.

The vertex Γðn;mÞ
k is represented by a black dot with n solid lines

andm wavy lines and the solid lines connecting vertices stand for

the propagator Gk ¼ ðΓð2;0Þ
k þ RkÞ−1. The cross stands for ∂kRk.
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we obtain a closed set of equations satisfied by Γð2;0Þ
k ðp;ϕÞ,

Γð0;2Þ
k ðp;ϕÞ and Γð1;1Þ

k ðp;ϕÞ; see Ref. [56] for the explicit
expressions. These equations, together with the expression

(31) of Γð2;1Þ
k ðp; 0;−p;ϕÞ are sufficient to obtain the

vertices necessary to determine the normalization constants
N 1, N 2 and the OPE coefficient c112.
The reader may wonder if the simple choice of bare

operators made in (7) is suitable to address our objectives.
Thus, let us expound on some fundamental properties of
composite operators within the FRG formalism. In the
FRG framework a composite operator can be defined by
differentiating the effective action Γk with respect to an
external source. For instance, the running composite
operator corresponding to O2 is defined as ½ϕ2�ðkÞ≡
− δΓk

δh ½ϕ; h�jh¼0. ½ϕ2�ðkÞ depends on the RG scale k and,
if evaluated at the UV cutoff scale, satisfies ½ϕ2�ðΛÞ ¼ ϕ2.
As soon as one lowers the scale k from Λ, the bare term
gets renormalized through its coupling to the 1PI vertices.
This implies that the flow of the composite operator
generates mixing with other operators in the sense that
½ϕ2�ðkÞ ¼ Z22;kϕ

2 þ Z24;kϕ
4 þ � � �.

It must be noted, however, that scaling operators are not
just mere composite operators. A scaling operator is a
particular combination of composite operators that diago-
nalize the flow linearized about the fixed point. As a
consequence, in the scaling regime, ½ϕ2�ðkÞ can be
expressed as a linear combination of scaling operators.
However, by lowering the RG scale k to 0 in such a linear
combination, the scaling operators of higher scaling dimen-
sion Δi are suppressed and only the lowest scaling operator
survives. Indeed, numerically solving the flow of e.g., Γð0;2Þ

k
within our approximation scheme, we have been able to
check that our procedure reproduces the expected behavior
of a scaling operator in the fixed point regime [78].
Let us conclude by noticing that the dependence of the

vertices Γð2;0Þ
k , Γð0;2Þ

k , and Γð1;1Þ
k on the background field ϕ

entails an infinite number of 1PI vertices (albeit in a
specific momentum configuration). This shows that our
ansatz includes nontrivial mixing among field monomials
ϕ2, ϕ4 and so on.

III. NUMERICAL RESULTS

The flow equations are integrated numerically, see e.g.
Refs. [55,56] for details. We work with dimensionless
variables, p̃ ¼ p=k and ρ̃ ¼ Zkk2−dρ. The field dependence
of the potential and the vertices is discretized on a finite and
evenly spaced grid ρ̃ ∈ ½0; ρ̃max� comprising Nρ points,
while the momentum dependence of the vertices is approxi-
mated by Chebyschev polynomials of order Np defined on
½0; p̃max�. The integration of the flow with respect to the RG
scale k is done with an adaptive step integration.
Convergence of the results with respect to the parameters
has been verified; their typical range are Nρ ¼ 40–80,
ρ̃max ¼ 4–8, p̃max ¼ 4–10 and Np ¼ 20–30 with the pre-
cise value depending on d and N.

For each universality class set by d and N and each
choice of the cutoff function (25) parametrized by α, the
critical point is found by tuning the initial condition of the
flow. This enables the computation of GðpÞ, χsðpÞ and
Γð2;1Þðp; 0Þ [Eqs. (13) and (31)] at criticality, from which
one fits the values of the critical exponents η and ν (or
equivalently Δ1;2) and normalization constantsN 1;2, yield-
ing c112 through Eq. (21).
A crucial question is that of the regulator dependence.

Indeed, while Eq. (30) is exact, any approximation scheme
such as BMW introduces a regulator dependence to the
results. In order to provide a meaningful prediction for a
physical quantity QðαÞ, a choice of the regulator must be
made. The usual rationale is the so-called principle of
minimum sensitivity (PMS), according to which the best
value of α is that for which the regulator dependence of
QðαÞ is minimal, i.e., for which ∂αQðαÞ ¼ 0, or failing that
for which j∂αQðαÞj is minimal.
However, the PMS for c112, shown for the 3d Ising

universality (N ¼ 1) class in Fig. 2, does not provide a

FIG. 2. Dependence of the critical exponent η (top) and the
OPE coefficient c112 (bottom) of the 3d Ising universality class
(N ¼ 1) on the coefficient α for the Wetterich (blue) and
exponential (orange) regulators. For reference, the conformal
bootstrap estimates ηCB ¼ 0.036308 and c112;CB ¼ 1.0518537
are shown as black dashed lines [14]. Applying the PMS yields
optimal parameters αE ¼ 1.6 and αW ¼ 2.4 for the exponential
and Wetterich regulators (respectively subscript E and W), shown
by gray vertical lines, with corresponding values ηE ¼ 0.0402,
c112;E ¼ 1.027, ηW ¼ 0.0394 and c112;W ¼ 1.039. The value we
retain for c112 is c112;W, given that it corresponds to the extremal
value of η across both families of regulators.
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satisfactory result. Indeed, for a given regulator, c112 is a
monotonous concave function of α, with no extremum or
inflection point, varying by about 3% over the range of
regulators considered. As a consequence, we choose the
regulator that fulfills the PMS for the anomalous dimension
η. The value thus obtained for c112 depends only weakly on
the family of regulators considered, with a variation of
about 1.15% between the Wetterich and exponential
regulators. The regulator dependency is slightly smaller
than the 1.2% difference with the conformal bootstrap
estimate.
As a side note, we point out a recent proposal for an

alternative way to fix the regulator dependence for con-
formally invariant theories, the principle of maximal con-
formality (PMC) [79]. Conformal invariance implies a set
of (modified) Ward identities associated with scale and
special conformal transformations (SCT). While scale
invariance is always fulfilled at the fixed point, invariance
under SCT is broken within the derivative expansion at
high order. PMC suggests to choose the regulator that
minimizes the symmetry breaking. While in the present
case it is not straightforward to implement the PMC for
BMW, because the Ward identities are either trivially
fulfilled or involve high-order vertices that cannot be
computed using the BMW approximation, its implementa-
tion for the derivative expansion shows that the PMS for η
and PMC yield very close results, providing a further
argument in favor of our regulator choice.

A. Ising university class in dimensions 2 ≤ d ≤ 4

We first consider the OPE coefficients of the Ising
university class (N ¼ 1) for dimensions d between the

lower and upper critical dimensions d ¼ 2 and 4, for which
the results are shown in Fig. 3 and Table I. The FRG results
can be compared to the exact values in d ¼ 2 and 4, the
conformal bootstrap [14] and Monte Carlo [80] estimates in
d ¼ 3 and the ϵ expansion up to fourth order [81–84],

c112 ¼
ffiffiffi
2

p �
1−

1

6
ϵ−

77

648
ϵ2þ 3726ζð3Þ− 1915

34992
ϵ3þA4ϵ

4

	

þOðϵ5Þ ð32Þ

where ζð3Þ is Apéry’s constant and A4 ¼ −0.158947… is
only known numerically [84].
Owing to its asymptotic nature, the ϵ expansion does not

converge; indeed, for d ¼ 3, its relative error to all
estimates (FRG, conformal bootstrap, Monte Carlo)
increases from 4% at order Oðϵ2Þ to 6% at order Oðϵ3Þ
and 16% at order Oðϵ4Þ. In order to make sense of the
results, a resummation procedure must be carried out, for
instance by approximating c112ðϵÞ by a Padé approximant
of order ðn;mÞ, i.e., a rational fraction of ϵ with numerator
and denominator of degree n and m, respectively.
Following Ref. [84], we pick an approximant of order
(3,2), whose coefficients are uniquely determined by
imposing the Oðϵ4Þ expansion around ϵ ¼ 0 and the exact
value c112ðϵ ¼ 2Þ ¼ 1=2. This gives c112 ¼ 1.0507 for
d ¼ 3, in very good agreement with the conformal boot-
strap, to be compared to the 0.8% error when the approx-
imant of order (3,1) is used and the exact result for d ¼ 2 is
not imposed. Let us mention that in this case different
choices of Padé approximants lead to somewhat different
results, which may be used to estimate an average value and
its uncertainty: c112 ¼ 1.048ð31Þ, see Table I.
Compared to the best results (exact in d ¼ 2 and 4,

conformal bootstrap and Monte Carlo in 2 < d < 4), the
FRG always has an error smaller than 3%, with less than

FIG. 3. OPE coefficient c112 of the Ising university class as a
function of the dimension d. The solid red crosses are obtained
from FRG, with the full line a guide to the eye. The black
symbols correspond to reference estimates from Monte Carlo
(square) [80] and conformal bootstrap (diamond) [14,85] and the
exact values in d ¼ 2 and 4. The gray lines are given by the ϵ
expansion [Eq. (32)] about d ¼ 4 to order OðϵÞ (dashed), Oðϵ2Þ
(dash-dotted) and the (3,2) resummation imposing the 2d result
(dotted) [84].

TABLE I. OPE coefficient c112 of the Ising universality class
for dimensions d ¼ 2, 3, 4. We compare the numerical FRG
results to: (i) various resummations of the ϵ expansion [Eq. (32)]
to order Oðϵ4Þ obtained by employing different Padé approxi-
mants and by possibly taking into account the exactly known 2d
value, (ii) conformal bootstrap and (iii) Monte Carlo estimates
and (iv) the exact values for the 2d and 4d Ising universality
classes.

d 2 3 4

FRG 0.484 1.039 1.413
ϵ exp (3,1) 0.4259 1.0432

ffiffiffi
2

p
≃ 1.414

ϵ exp (2,2) −0.0698 1.0200
ffiffiffi
2

p
≃ 1.414

ϵ exp (1,3) 0.7442 1.0805
ffiffiffi
2

p
≃ 1.414

ϵ exp þ2d (3,2) 1.0507
ffiffiffi
2

p
≃ 1.414

ϵ exp þ2d (2,3) 1.0464
ffiffiffi
2

p
≃ 1.414

MC [80] 1.07(3)
CB [14] 1.0518537(41)
Exact [60] 1=2 ¼ 0.5

ffiffiffi
2

p
≃ 1.414
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2% error in d ¼ 3. By contrast with the resummed ϵ
expansion, which requires additional input in the form of
the 2d data to provide accurate results, the FRG and
conformal bootstrap are able to interpolate smoothly
between dimensions d ¼ 2 and 4. As the dimension is
increased, c112 increases monotonously, with an almost
linear behavior between d ¼ 2 and d ¼ 3, which might
partly explain the remarkable agreement of the ϵ expansion
resummation (when supplemented with the exact 2d result)
with conformal bootstrap, Monte Carlo and FRG. However,
if the resummation is not supplemented with the 2d result
then the ϵ-expansion estimate of c112 is rather poor close to
and at d ¼ 2.
In d ¼ 4, the FRG within the BMW approximation

scheme gives the exact analytic value of c112. The small
difference (∼0.1%) between the numerical result and the
exact value seen in Table I arises from the fitting of the
critical exponents and the normalization constants. This
serves as an estimate of this numerical error: in lower
dimensions, it is much smaller than the difference to the
best estimates.

B. Three-dimensional OðNÞ model

We now focus on the three-dimensional OðNÞ model.
Given that the large-N result is [63,64,86]

c112 ¼
2

π

1ffiffiffiffi
N

p þ 24

π3
1

N3=2 þO
�

1

N5=2

	
; ð33Þ

we consider rather than c112 the rescaled OPE coefficientffiffiffiffi
N

p
c112 that has a well-defined large-N limit. FRG results

and estimates from the ϵ expansion [83], conformal

bootstrap [14,17,87] and Monte Carlo [80,88] are shown
in Fig. 4 and Table II. For N > 1, c112 is only known up to
order Oðϵ3Þ and we resum the ϵ expansion using a (2,1)
Padé approximant.
For N ¼ 1, 2, 3, FRG differs from conformal bootstrap

by respectively 1.2%, 3.0% and 2.6%. Furthermore FRG
accurately reproduces the large-N behavior: for N ¼ 1000,
the FRG estimate

ffiffiffiffi
N

p
c112 ¼ 0.638 differs from the exact

large-N result limN→∞
ffiffiffiffi
N

p
c112 ¼ 2=π ≃ 0.637 by 0.1%,

which is about the order of magnitude corresponding to
a 1=N correction. This is expected as it is known that the
relevant vertices are exact in the large-N limit [53,56]. By
contrast, the (2,1) resummation of the ϵ expansion gives
limN→∞

ffiffiffiffi
N

p
c112¼

ffiffiffi
2

p ð4ζð3Þþ1Þ=ð8ζð3Þþ4Þ≃0.603 with
a 5.3% error.
Moreover, numerically fitting the FRG data for N ≳ 5

by a law of the form c112 ¼ 2=π
ffiffiffiffi
N

p þ κ=N3=2 yields
κ ≃ 0.76, in very good agreement with the exact value
24=π3 ≃ 0.774.

IV. CONCLUSION

We have shown how to extract the OPE coefficients of a
conformal theory within the framework of FRG, by
determining three-point vertices in specific momentum
configurations. We have used our approach to determine
the c112 coefficient, corresponding to the simplest possible
OPE coefficient, in the OðNÞ universality class for various
d and N. This provides the first nonperturbative determi-
nation of the OPE coefficients based on field theory, aside
from the lattice computations in [80,88] and the concep-
tually different conformal bootstrap.
While the accuracy of FRG can be sometimes difficult to

gauge in the absence of a small expansion parameter, the
fact that the results compare extremely well with the values,
when available, obtained from Monte Carlo and conformal

FIG. 4. Rescaled OPE coefficient
ffiffiffiffi
N

p
c112 of the three-dimen-

sional OðNÞ model as a function of the inverse number of field
components 1=N. The solid red crosses are obtained from FRG.
The horizontal dashed green line shows the large-N result to
leading order. The gray lines are given by the order OðϵÞ
(dashed), Oðϵ2Þ (dashdotted) and the (2,1) resummation (dotted)
of the ϵ expansion [83]. The black symbols correspond to
estimates from Monte Carlo (square) [80,88] and conformal
bootstrap (diamond) [14,17,87].

TABLE II. Rescaled OPE coefficient
ffiffiffiffi
N

p
c112 of the three-

dimensional OðNÞ model for different numbers of field compo-
nents N. We compare the FRG results to the (2,1) resummation
of the ϵ expansion to order Oðϵ3Þ, conformal bootstrap
and Monte Carlo estimates. The exact large-N result is
limN→∞

ffiffiffiffi
N

p
c112 ¼ 2=π ≃ 0.637.

N FRG ϵ exp MC CB

1 1.039 1.075 [83] 1.07(3) [80] 1.0518537(41) [14]
2 0.943 1.002 [83] 0.9731(14) [88] 0.971743(38) [17]
3 0.884 0.943 [83] 0.908047(102) [87]
4 0.829 0.895 [83]
5 0.792 0.855 [83]
6 0.766 0.823 [83]
8 0.731 0.773 [83]
10 0.709 0.737 [83]
100 0.643 0.607 [83]
1000 0.638 0.603 [83]
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bootstrap increases confidence in the validity of the
method. It is a testament to the versatility of FRG that,
in this specific case, tuning such parameters as d or N
demands relatively little effort as they only enter the flow
equations through their explicit values.
Lastly, we note that the OPE can be used in settings very

different from the critical OðNÞ models investigated in this
work, for instance in theories away from a fixed point or at
a nonequilibrium fixed point. In these cases many methods
holding for equilibrium critical theories are not available.
Our work suggests that the FRG may constitute the right
framework to tackle these issues thanks to its aforemen-
tioned versatility and to the fact that the FRG equations can
be solved without invoking further requirements, such as
conformal symmetry.
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APPENDIX A: c112 IN THE FREE CASE

When u0 vanishes, the functional integral over the field φ
can be done exactly and yields the partition function

Z½J; h� ¼ e
N
2
Tr lnG½h�þ1

2

R
x;y

P
i
JiðxÞG½x;y;h�JiðyÞ; ðA1Þ

where G½h� denotes the propagator in the presence of an
arbitrary external source h:

G−1½x; y; h� ¼ ð−∇2
x þ 2hðxÞÞδðx − yÞ: ðA2Þ

The expectation value of the field is given by

ϕiðxÞ ¼
Z
y
G½x; y; h�JiðyÞ; ðA3Þ

and the effective action is simply

Γ½ϕ; h� ¼
Z
x

�
1

2
ð∂μϕÞ2 − hϕ2

�
−
N
2
Tr lnG½h�: ðA4Þ

We thus obtain

Γð2;0ÞðpÞ ¼ p2; ðA5Þ

Γð0;2ÞðpÞ ¼ −2N
Z
q

1

q2ðpþ qÞ2 ≃ −
2NBd

jpj4−d ; ðA6Þ

Γð2;1Þðp1; p2Þ ¼ −2; ðA7Þ

where

Bd ¼
1

ð4πÞd=2
Γð2 − d=2ÞΓðd=2 − 1Þ2

Γðd − 2Þ : ðA8Þ

The last expression for Γð0;2ÞðpÞ is obtained for p → 0 and
d < 4. From (A5) and (19) we deduce Δ1 ¼ d=2 − 1 (in
agreement with the vanishing anomalous dimension in the
free theory) and

N 2
1 ¼ Adðd=2 − 1Þ: ðA9Þ

On the other hand, comparing (A6) with (20) yields Δ2 ¼
d − 2 (in agreement with ν ¼ 1=2) and

1

N 2
2

¼ N
2

Bd

Adðd − 2Þ ¼
N

32πd
Γðd=2 − 1Þ2: ðA10Þ

From (21) and (A7) we finally obtain (22).

APPENDIX B: c112 IB THE LARGE-N LIMIT

Following the Appendix of Ref. [56], we introduce
the field ρ ¼ φ2 and a Lagrange multiplier λ to write
the partition function Z½h�≡ Z½J ¼ 0; h� of the OðNÞ
model as

Z½h� ¼
Z

D½φ; ρ; λ� exp
�
−
Z
x

�
1

2
ð∇φÞ2

þ
�
r0
2
− h

	
ρþ u0

4!N
ρ2 þ i

λ

2
ðφ2 − ρÞ

��

¼
Z

D½φ; λ� exp
�Z

x

�
3N
2u0

ð2hþ iλ − r0Þ2

−
1

2
½ð∇φÞ2 þ iλφ2�

�
: ðB1Þ

Then we split the field φ into a σ field and an (N − 1)-
component field π. Integrating over the π field, we obtain
the action

S½σ; λ; h� ¼
Z
x

�
−
3N
2u0

ð2hþ iλ − r0Þ2

þ 1

2
½ð∇σÞ2 þ iλσ2� þ N − 1

2
Tr ln g−1½λ�; ðB2Þ

where
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g−1½x; x0; λ� ¼ ½−∇2
x þ iλðxÞ�δðx − x0Þ ðB3Þ

is the inverse propagator of the field πi in the fluctuating λ
field. In the limit N → ∞, the action becomes proportional
to N (if one rescales the σ field, σ →

ffiffiffiffi
N

p
σ); the saddle

point approximation becomes exact for the partition func-
tion Z½h� and the Legendre transform of the free energy
coincides with the action S [89]. This implies that the
effective action is simply equal to S½σ; λ; h�:

Γ½σ; λ; h� ¼
Z
x

�
−
3N
2u0

ð2hþ iλ− r0Þ2 þ
1

2
½ð∇σÞ2 þ iλσ2�

�

þN
2
Tr ln g−1½λ� ðB4Þ

(we use N − 1 ≃ N for large N). We can eliminate the
Lagrange multiplier λ using

δΓ½σ; λ; h�
δλðxÞ

����
λ¼λ½σ;h�

¼ 0 ðB5Þ

to obtain the effective action Γ½σ; h�≡ Γ½σ; λ½σ; h�; h�,
which is the starting point to compute the vertices Γðn;mÞ
in the large-N limit.
In Ref. [56] it was shown that, at criticality,

Γð2;0ÞðpÞ ¼ p2;

Γð0;2ÞðpÞ ¼ −
12N
u0

þ
�
6N
u0

	
2

Γð2Þ
λλ ðpÞ−1; ðB6Þ

where

Γð2Þ
λλ ðpÞ ¼

3N
u0

þ N
2
ΠðpÞ;

ΠðqÞ ¼
Z
q

1

q2ðpþ qÞ2 ≃
Bd

jpj4−d ðB7Þ

for p → 0 and d < 4, where Bd is defined in (A8).
Calculating the three-point function along the same lines,
one finds

Γð2;1Þðp1; p2Þ ¼ −
6N
u0

Γð2Þ
λλ ðp1 þ p2Þ−1

≃ −
12jp1 þ p2j4−d

u0Bd
ðB8Þ

for p1 þ p2 → 0 and d < 4. From (19) and (20) one
then obtains Δ1 ¼ d=2 − 1 and Δ2 ¼ 2 (in agreement with
the large-N results η ¼ 0 and ν ¼ 1=ðd − 2Þ to leading
order) and

N 2
1 ¼ Adðd=2 − 1Þ; N 2

2 ¼ −
u20BdAdð2Þ

18N
: ðB9Þ

Equation (21) then gives

c112 ¼
�
−
2Adð2Þ
NBd

�
1=2 1

Adð1Þ
ðB10Þ

and in turn (23) using standard properties of the Gamma
function.
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