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We present an approximation scheme of the nonperturbative renormalization group that preserves the
momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement
of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to
arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective
potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost
(as compared, e.g., to the Blaizot–Mendéz-Galain–Wschebor approximation scheme). As an application we
consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point
correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for
an investigation of the “Higgs” amplitude mode) and the conductivity. In particular, we show how, using Padé
approximants to perform the analytic continuation iωn → ω + i0+ of imaginary frequency correlation functions
χ (iωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the
real-frequency domain.
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I. INTRODUCTION

The nonperturbative renormalization-group (NPRG) pro-
vides us with a general formalism to study classical and
quantum many-body systems [1–3]. It has been applied to a
variety of physical systems ranging from particle-physics to
statistical mechanics and condensed matter (see, e.g., Ref. [1]).

The NPRG is based on an exact flow equation for the
effective action (or Gibbs free energy), a functional of the
order parameter [4–6]. In general, this equation cannot be
solved but offers the possibility of approximation schemes
qualitatively different from perturbation theory, allowing, in
particular, to tackle nonperturbative problems. So far two main
approximations have been proposed. The first one relies on a
derivative expansion (DE) of the effective action [7–11]. A
nice feature of this approach is the possibility to implement
the various symmetries of the problem rather easily. One of its
main drawbacks is that it gives access to correlation functions
only at vanishing momenta. It can also break down due to
some vertices being singular in the infrared limit. In that case,
even the zero-momentum value of correlation functions is
out of reach. The second one, the Blaizot–Méndez-Galain–
Wschebor (BMW) approximation scheme [12–14], is based on
a truncation of the infinite hierarchy of equations satisfied by
correlation functions. Its main advantage over DE is to preserve
the full momentum dependence of (low-order) correlation
functions. Its limitations are twofold. First, it leads to flow
equations which, in some cases, can be solved only at a high nu-
merical cost. Second, symmetries can be difficult to implement.

In this paper we consider another approximation scheme,
dubbed LPA′′ for reasons that will become clear below (LPA
stands for local potential approximation). The LPA′′ was origi-
nally introduced in Ref. [15] to compute the critical exponents
and momentum-dependent correlation functions in the O(N )

model. By contrast with the DE, the LPA′′ relies on an ansatz
for the effective action parameterized by nonlocal potentials,
an idea that has been recently discussed both in the context of
statistical physics [16] and quantum field theory [17]. It was
used in Ref. [18] for the calculation of the conductivity of the
two-dimensional quantum O(N ) model in order to circumvent
the failure of BMW and DE approximation schemes.1

Our aim is to benchmark the LPA′′ considering as a test-bed
the two-dimensional quantum O(N � 2) model at zero temper-
ature. In addition to the critical exponents of the quantum phase
transition due to the spontaneous breaking of O(N ) symmetry,
the excitation gap in the disordered phase and the stiffness in
the ordered phase, we compute the momentum dependence of
the two-point correlation function, the scalar O(N ) invariant
susceptibility (which allows for an investigation of the “Higgs”
amplitude mode [19]) and the conductivity. Since at zero
temperature the two-dimensional quantum model is equivalent
to the three-dimensional classical model, we shall in a first step
consider the latter and compute the momentum dependence of
the various correlation functions χ (p) of interest. To obtain the
retarded correlation functions and the spectral functions in the
two-dimensional quantum model we then perform an analytic
continuation |p| → −iω + 0+ using Padé approximants [20].

The outline of the paper is as follows. The general for-
malism is introduced in Sec. II. After a presentation of the
quantum O(N ) model (Sec. II A) and the NPRG approach to
the computation of the two-point correlation function, scalar
susceptibility and conductivity (Sec. II B), we describe the
LPA′′ (Sec. II C). Results for universal quantities near the

1Momentum- and frequency-dependent correlation functions have
also been studied in the context of QCD: see, e.g., Refs. [54–60].
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quantum critical point (QCP), critical exponents and universal
scaling functions, are discussed in Sec. III. Whenever possible
comparison is made with DE and BMW results as well as
Monte Carlo simulations or conformal bootstrap. Technical
details can be found in Appendix.

II. NPRG APPROACH

A. Quantum O(N) model

The two-dimensional quantum O(N ) model is defined by
the Euclidean action

S =
∫

x

{
1

2

∑
μ=x,y,τ

(∂μϕ)2 + r0

2
ϕ2 + u0

4!N
(ϕ2)

2

}
, (1)

where we use the notation x = (r,τ ) and
∫

x = ∫ β

0 dτ
∫

d2r .
ϕ(x) is an N -component real field, r a two-dimensional
coordinate, τ ∈ [0,β] an imaginary time, and β = 1/T the
inverse temperature (we set h̄ = kB = 1). r0 and u0 are
temperature-independent coupling constants and the (bare)
velocity of the ϕ field has been set to unity. The model is
regularized by an ultraviolet cutoff �. Assuming u0 fixed,
there is a quantum phase transition between a disordered phase
(r0 > r0c) and an ordered phase (r0 < r0c) where the O(N )
symmetry is spontaneously broken. The QCP at r0 = r0c is
in the universality class of the three-dimensional classical
O(N ) model and the phase transition is governed by the
three-dimensional Wilson–Fisher fixed point.

At zero temperature, the two-dimensional quantum model
is equivalent to the three-dimensional classical model. We thus
identify τ with a third spatial dimension so that x = (r,τ ) ≡
(x,y,z). A correlation function χ (px,py,pz) computed in the
classical model then corresponds to the correlation function
χ (px,py,iωn) of the quantum model, with ωn ≡ pz a bosonic
Matsubara frequency,2 and yields the retarded dynamical
correlation function χR(px,py,ω) after analytic continuation
iωn → ω + i0+. Having in mind the two-dimensional quan-
tum O(N ) model, we shall refer to the critical point of the
three-dimensional classical model as the QCP.

1. Scalar susceptibility

To compute the scalar, O(N ) invariant, susceptibility

χs(x,x′) = 〈ϕ(x)2ϕ(x′)2〉 − 〈ϕ(x)2〉〈ϕ(x′)2〉, (2)

we introduce an external source term h which couples to ϕ2,

S[ϕ,h] = S[ϕ] −
∫

x
hϕ2. (3)

The scalar susceptibility can then be computed as the functional
derivative

χs(x,x′) = δ2 lnZ[h]

δh(x)δh(x′)

∣∣∣∣
h=0

(4)

of the partition function Z[h] = ∫
D[ϕ] exp(−S[ϕ,h]) in the

presence of the source h.

2At zero temperature, the bosonic Matsubara frequency ωn = 2nπT

(n integer) becomes a continuous variable.

2. Conductivity

The O(N ) symmetry of the action (1) implies the conser-
vation of the total angular momentum and the existence of a
conserved current. To compute the associated conductivity, we
include in the model an external non-Abelian gauge field Aμ =
Aa

μT a (with an implicit sum over repeated discrete indices),
where {T a} denotes a set of SO(N ) generators [made of
N (N − 1)/2 linearly independent skew-symmetric matrices].
This amounts to replacing the derivative ∂μ in Eq. (1) by
the covariant derivative Dμ = ∂μ − qAμ (we set the charge
q equal to unity in the following and restore it, as well as h̄,
whenever necessary),

S[ϕ,A] =
∫

x

{
1

2

∑
μ=x,y,z

(Dμϕ)2 + r0

2
ϕ2 + u0

4!N
(ϕ2)

2

}
. (5)

This makes the action invariant in the local gauge transfor-
mation ϕ′ = Oϕ and A′

μ = OAμOT + (∂μO)OT where O

is a space-dependent SO(N ) rotation. The current density
J a

μ(x) = −δS/δAa
μ(x) is then expressed as [21]

J a
μ = ja

μ − Aμϕ · T aϕ, j a
μ = ∂μϕ · T aϕ, (6)

where ja
μ denotes the “paramagnetic” part.

In the two-dimensional quantum model, the real-frequency
conductivity is defined by [21]

σab
μν (ω) = σab

μν (iωn → ω + i0+) = 1

i(ω + i0+)
Kab

μν
R(ω),

(7)

where Kab
μν

R(ω) = Kab
μν(iωn → ω + i0+) denotes the retarded

part of Kab
μν(iωn) ≡ Kab

μν(px = 0,py = 0,pz = ωn). Kab
μν(p) is

the correlation function of the three-dimensional classical
O(N ) model defined by

Kab
μν(x − x′) = �ab

μν(x − x′) − δμνδ(x − x′)〈T aϕ · T bϕ〉, (8)

with

�ab
μν(x − x′) = 〈

ja
μ(x)jb

ν (x′)
〉

(9)

the paramagnetic current-current correlation function.

B. NPRG formalism

Let us briefly recall the main steps of the NPRG imple-
mentation (we refer to Ref. [21] for more detail). We add to
the action a regulator term Sk[ϕ], which depends on a cutoff
function Rk(q), where k a momentum scale which varies from
the microscopic scale � down to 0 [1–3]. In practice, we take
the exponential cutoff function

Rk(q) = Zkq2r

(
q2

k2

)
, r(y) = α

ey − 1
, (10)

where α is a constant of order one and Zk a field-
renormalization factor. [In the LPA′′ discussed below, Zk ≡
Zk(p = 0).]

The partition function Zk[J], computed in the presence of
an external source J linearly coupled to the field, is now k

dependent and so is the order parameter φk[x; J] = 〈ϕ(x)〉.
The scale-dependent effective action �k[φ], defined as a
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(slightly modified) Legendre transform of − lnZk[J], satisfies
Wetterich’s equation [4]

∂k�k[φ] = 1
2 Tr

{
∂kRk

(
�

(2)
k [φ] + Rk

)−1}
, (11)

with initial condition ��[φ] = S[φ]. At k = 0 the regula-
tor vanishes and �k=0[φ] = �[φ]. Here, �

(2)
k [φ] denotes the

second-order functional derivative with respect to φ of �k[φ]
and the trace runs over both space and internal O(N ) variables.

All information about the thermodynamics of the system
can be deduced from the effective potential Uk(ρ) = V −1�k[φ]
obtained from the effective action in a uniform field configu-
ration (V denotes the volume of the system). For symmetry
reasons, Uk is function of the O(N ) invariant ρ = φ2/2.
We denote by ρ0,k the value of ρ at the minimum of the
effective potential. Spontaneous symmetry breaking of the
O(N ) symmetry is characterized by a nonvanishing expectation
value of the field ϕ, i.e., limk→0 ρ0,k = ρ0 > 0.

On the other hand correlation functions can be related to the
one-particle irreducible (1PI) vertices �

(n)
k defined as the func-

tional derivatives of �k . In particular, the two-point correlation
function (propagator) Gk = (�(2)

k + Rk)−1 is simply related to
the two-point vertex �

(2)
k . The latter can be written as

�
(2)
k,ij (p,φ) = δij�A,k(p,ρ) + φiφj�B,k(p,ρ), (12)

where �A,k and �B,k are functions of ρ and |p|. Impor-
tant information can be obtained from the longitudinal and
transverse susceptibilities, χα(p) ≡ Gk=0,α(p,ρ0) (α = L,T),
where G−1

k,α(p,ρ) = �
(2)
α,k(p,ρ) + Rk(p) with

�
(2)
L,k(p,ρ) = �A,k(p,ρ) + 2ρ�B,k(p,ρ),

�
(2)
T,k(p,ρ) = �A,k(p,ρ). (13)

In the disordered phase (ρ0 = 0), χL(p) = χT(p) ≡ χL,T(p)
and the correlation length ξ (i.e., the inverse of the excitation
gap  of the quantum model3) is finite. In the ordered phase,
the stiffness ρs is defined by [22,23]

χT(p) = 2ρ0

ρsp2
for p → 0. (14)

For two systems located symmetrically wrt the QCP (i.e.,
corresponding to the same value of |r0 − r0c|), one in the
ordered phase (with stiffness ρs) and the other in the disordered
phase (with correlation length ξ = 1/), the ratio ρs/ = ρsξ

is a universal number which depends only on N . This allows us
to use as the characteristic energy scale in both the disordered
and ordered phases (in the latter case,  is defined as the
excitation gap at the point located symmetrically wrt the QCP)
[24].  and ρs vanish as |r0 − r0c|ν as we approach the QCP.

Although in principle the knowledge of the propagator
Gk and the four-point vertex �

(4)
k is sufficient to obtain the

scalar susceptibility χs and the conductivity σ , this approach
is in practice difficult as it requires to know the momentum
dependence of �

(4)
k (p1,p2,p3,p4) for all momentum scales. It is

much easier to compute χs and σ directly from flow equations

3Lorentz invariance of the quantum model ensures that the velocity
is not renormalized and equal to one in our units.

by introducing appropriate external sources as described in
Secs. II A 1 and II A 2.

1. Scalar susceptibility

To compute the scalar susceptibility one considers the
partition function Zk[J,h] in the presence of both the linear
source J and the bilinear source h [25,26]. The order parameter
φk[x; J,h] is now a functional of both J and h. The scale-
dependent effective action is defined as a Legendre transform
with respect to (wrt) the source J (but not h) and satisfies the
flow equation

∂k�k[φ,h] = 1
2 Tr

{
∂kRk

(
�

(2,0)
k [φ,h] + Rk

)−1}
(15)

with the initial condition ��[φ,h] = S[φ] − ∫
x hφ2.

�
(2,0)
k [φ,h] denotes the second-order functional derivative of

�k[φ,h] wrt φ. Using (4) one can relate the scalar susceptibility

χs(p) = −�(0,2)(p,φ̄) + �
(1,1)
i (p,φ̄)�(2,0)−1

ij (p,φ̄)�(1,1)
j (p,φ̄)

(16)

to the k = 0 1PI vertices�(n,m) defined as functional derivatives
wrt to φ and h (e.g., �(1,1) = δ2�[φ,h]/δφδh) evaluated
in a uniform field configuration [26]. In Eq. (16), φ̄ de-
notes the (uniform) order parameter for J = h = 0 and we
use the notation �(n,m)(p) ≡ �(n,m)(p, − p) for vertices with
n + m = 2.

Using �
(1,1)
i (p,φ) = φif (p,ρ) and �(0,2)(p,φ) = γ (p,ρ),

where f and γ are functions of |p| and ρ [21], we obtain

χs(p) = −γ (p,ρ0) + 2ρ0f (p,ρ0)2GL(p,ρ0). (17)

To determine the scalar susceptibility in the NPRG approach
we must therefore consider the k-dependent vertices �

(0,2)
k and

�
(1,1)
k,i or, equivalently, the k-dependent functions fk(p,ρ) and

γk(p,ρ), in addition to the effective potential Uk(ρ) and the
vertices �A,k(p,ρ) and �B,k(p,ρ) determining the propagator.

2. Conductivity

The conductivity can be calculated in a similar way [21].
However, to respect local gauge invariance, one must use
the gauge-invariant regulator term Sk[ϕ,A] obtained from
Sk[ϕ] by replacing the derivative ∂μ by the covariant deriva-
tive Dμ. The scale-dependent effective action is defined as a
Legendre transform wrt the source J (but not A) and satisfies
the flow equation

∂k�k[φ,A] = 1
2 Tr

{
∂kRk[A]

(
�

(2,0)
k [φ,A] + Rk[A]

)−1}
, (18)

where �
(2,0)
k [φ,A] and Rk[A] denote the second-order func-

tional derivative with respect to φ of �k[φ,A] and Sk[φ,A],
respectively.

One can relate the linear response

Kab
μν(p) = −�(0,2)ab

μν (p,φ̄)

+�
(1,1)a
iμ (−p,φ̄)�(2,0)−1

ij (p,φ̄)�(1,1)b
jν (p,φ̄) (19)

to the k = 0 1PI vertices�(n,m) defined as functional derivatives
wrt φ and Aμ (e.g., �

(1,1)a
jμ = δ2�/δφjδA

a
μ) computed in a

uniform field φ and for A = 0 [21]. In Eq. (19), φ̄ is the
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(uniform) order parameter in the absence of the gauge field.
The O(N ) symmetry implies that

�
(1,1)a
jμ (p,φ) = ipμ(T aφ)j�A,

�(0,2)ab
μν (p,φ) = pμpν[δab�B + (T aφ) · (T bφ)�C]

+ δμν[δab�̄B + (T aφ) · (T bφ)�̄C], (20)

where �A, �B, �C, �̄B, and �̄C are functions of ρ and |p|.
These functions are not independent but are related by Ward
identities [21].

To obtain the frequency-dependent conductivity in the
quantum model, one sets p = (0,0,ωn) and μ,ν ∈ {x,y} so that
pμ = pν = 0 and Kab

μν(iωn) = −�(0,2)ab
μν (iωn,φ̄) is fully deter-

mined by �B(iωn) and �C(iωn). In the disordered phase (ρ0 =
φ̄

2
/2 = 0), the conductivity tensor σab

μν (iωn) = δμνδabσ (iωn)
is diagonal with

σ (iωn) = −ωn�B(iωn,ρ0). (21)

In the ordered phase, when N � 3, the conductivity tensor
is defined by two independent components [19] σA(iωn) and
σB(iωn) such that

σab
μν (iωn) = δμν

{
(T aφ) · (T bφ)

2ρ
[σA(iωn) − σB(iωn)]

+ δabσB(iωn)

}
(22)

with

σA(iωn) = 2ρ0

ωn

�A(iωn,ρ0)

−ωn[�B(iωn,ρ0) + 2ρ0�C(iωn,ρ0)],

σB(iωn) = −ωn�B(iωn,ρ0). (23)

For N = 2, there is only one SO(N ) generator and σ reduces
to σA.

C. LPA′′

The flow equations (11), (15), and (18) cannot be solved
exactly and one has to resort to approximations. In this section,
we discuss the LPA′′, first for the calculation of the two-
point correlation function (A = h = 0) and then for the scalar
susceptibility and the conductivity.

1. Two-point correlation function

The LPA′′ can be seen as an improvement of the LPA, where
the ansatz for the effective action

�LPA
k [φ] =

∫
x

{
1

2
∂μφ · ∂μφ + Uk(ρ)

}
(24)

depends only on the effective potential Uk(ρ). In the LPA′, the
ansatz

�LPA′
k [φ] =

∫
x

{
1

2
(∂μφ) · Zk(∂μφ)

+ 1

4
(∂μρ)Yk(∂μρ) + Uk(ρ)

}
(25)

includes a field-renormalization factor Zk and (sometimes) a
derivative quartic term Yk . The standard improvement of the

LPA′ is the derivative expansion to second order where Zk

and Yk become functions of ρ [1]. Here we follow a different
route and improve over the LPA′ by promoting Zk and Yk to
functions of the derivative −∂2 ≡ −∂2

μ, which yields

�LPA′′
k [φ] =

∫
x

{
1

2
(∂μφ) · Zk(−∂2)(∂μφ)

+ 1

4
(∂μρ)Yk(−∂2)(∂μρ) + Uk(ρ)

}
(26)

with initial conditions Z�(p) = 1, Y�(p) = 0 and U�(ρ) =
r0ρ + (u0/6N )ρ2. In the LPA′′ the effective action is thus
defined by the effective potential Uk(ρ) and two functions of
p2, Zk(p2) and Yk(p2), which we simply denote by Zk(p) and
Yk(p) in the following. The transverse and longitudinal parts
of the two-point vertex (12) in a uniform field φ are obtained
from

�A,k(p,ρ) = Zk(p)p2 + U ′
k(ρ),

�B,k(p,ρ) = Yk(p)

2
p2 + U ′′

k (ρ). (27)

Thus the main improvement of the LPA′′ over the LPA′ is that
the full momentum dependence of the propagator Gk(p,φ) is
preserved by virtue of the momentum dependence of Zk(p)
and Yk(p). In the LPA′, where the momentum dependence
of Zk(p) ≡ Zk and Yk(p) ≡ Yk is neglected, we obtain a p2

variation of the two-point vertex. This p2 dependence is valid
for |p| � k (which corresponds to the domain of validity of
DE and LPA′) and is due to the regulator term Sk which
ensures that all vertices are regular functions of p2/k2 in the
limit p/k → 0. The anomalous dimension η can be computed
since Zk diverges as k−η at the critical point but the LPA′ does
not allow us to obtain the full momentum dependence of the
propagator (stricto sensu the LPA′ is valid only for p → 0 in
the limit k → 0). In the LPA′′, we expect

Gk=0(p,φ = 0) ∼ |p|−2+η, i.e., Zk=0(p) ∼ |p|−η, (28)

at the QCP.4 This result should be valid for |p| smaller than
the Ginzburg momentum scale pG ∼ u0/24π [27]. Thus the
anomalous dimension η can be retrieved from the momentum
dependence of Zk(p).

When N � 2 the excitation gap in the disordered phase
turns out to be very well approximated by [28]

 = ξ−1 = lim
k→0

√
U ′

k(ρ = 0)

Zk(p = 0)
, (29)

which follows from the expansion to O(p2) of �
(2)
k,T(p) =

�A,k(p) [Eq. (27)]. In Sec. III A, we shall see that in the
disordered phase the spectral function χ ′′

L,T(ω) exhibits a sharp
peak at the energy  defined by (29). On the other hand, the
stiffness, defined by (14), is obtained from

ρs = 2Zk(p = 0)ρ0. (30)

4The regulator termSk ensures that the two-point vertex is a regular
function of p for |p| � k, i.e., �

(2)
k (p,φ = 0) ∼ k−ηp2 at the critical

point.
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The RG equations for Zk(p) and Yk(p) can be obtained by using

Zk(p)= �
(2)
k,T(p,ρ0,k) − �

(2)
k,T(p = 0,ρ0,k)

p2
,

Zk(p)+ρ0,kYk(p)= �
(2)
k,L(p,ρ0,k)−�

(2)
k,L(p=0,ρ0,k)

p2
, (31)

and the RG equation satisfied by �
(2)
k (p,φ) (see Appendix). In

the usual way, we define Zk(p) and Yk(p) from the two-point
vertex evaluated at the minimum ρ0,k of the effective potential
Uk(ρ) [1].

2. Scalar susceptibility

In the presence of a nonzero external source h, we consider
the following ansatz for the effective action:

�LPA′′
k [φ,h] = �LPA′′

k [φ] + 1

2

∫
x
h(x)fk(−∂2)φ(x)2

+ 1

2

∫
x
h(x)γk(−∂2)h(x), (32)

with initial conditions f�(p) = −2 and γ�(p) = 0. In addition
to the effective potential, the effective action includes four
functions of momentum: Zk(p), Yk(p), fk(p), and γk(p).
Equation (32) yields

�
(1,1)
i,k (p,ρ) = φifk(p), �

(0,2)
k (p,ρ) = γk(p), (33)

in agreement with the general form of �(1,1) and �(0,2)

(Sec. II B 1). The functions fk and γk do not depend on ρ in
the LPA′′. Their flow equations can be deduced from ∂k�

(1,1)
i,k

and ∂k�
(0,2)
k (see Appendix).

3. Conductivity

In the presence of a nonzero gauge field A, we make the
effective action (26) gauge invariant by replacing the derivative
∂μ by the covariant derivative Dμ. �k[φ,A] may also include
terms depending on the field strength

Fμν = −[Dμ,Dν] = ∂μAν − ∂νAμ − [Aμ,Aν]. (34)

From Fμν , one can construct two invariant terms, namely
tr(F 2

μν) and (Fμνφ)2 [21]. We therefore consider the effective
action

�LPA′′
k [φ,A] =

∫
x

{
1

2
(Dμφ) · Zk(−D2)(Dμφ)

+ 1

4
(∂μρ)Yk(−∂2)(∂μρ) + 1

4
Fa

μνX1,k(−D2)Fa
μν

+ 1

4
Fa

μνT
aφ · X2,k(−D2)Fb

μνT
bφ + Uk(ρ)

}
(35)

with initial conditions X1,� = X2,� = 0. Since the covariant
derivative of a scalar is equal to its regular derivative, Yk is a
function of −∂2. The commutator [Aμ,Aν] in (34) contributes
to the effective action to order O(A3

μ) and can be neglected
when calculating the conductivity. In addition to the effective
potential, the effective action now includes four functions of

momentum: Zk(p), Yk(p), X1,k(p), and X2,k(p). In an LPA′-
like approximation, one would simply neglect the momentum
dependence of these functions. In the DE to second order,
they would be functions of ρ rather than p. As discussed
in detail in Ref. [21], the DE runs into difficulties due to
X1,k(p) and X2,k(p) being singular when p,k → 0 and k/p →
0; for instance it does not enable to compute the universal
conductivity at the QCP.

The functions X1,k(p) and X2,k(p) fully determine the
vertices �

(1,1)a
jμ and �(0,2)ab

μν (p,φ):

�
(1,1)a
jμ (p,φ) = ipμ(T aφ)jZk(p) (36)

and

�(0,2)ab
μν (p,φ) = pμpν{−δabX1,k(p) − (T aφ) · (T bφ)X2,k(p)}

+ δμν{δabp2X1,k(p) + (T aφ) · (T bφ)

× [Zk(p) + p2X2,k(p)]}. (37)

Comparing with (20), we find

Zk(p) = �A,k(p), X1,k(p) = −�B,k(p),

X2,k(p) = −�C,k(p), p2X1,k(p) = �̄B,k(p),

Zk(p) + p2X2,k(p) = �̄C,k(p)

(38)

in agreement with the Ward identities [21]. The various
functions � and �̄ do not depend on ρ in the LPA′′. RG
equations for X1,k(p) and X2,k(p) can therefore be derived from
∂k�

(0,2)ab
μν (p,φ) (see Appendix).

Using (37), we finally obtain

K(iωn) = −δμν

{
δabω

2
nX1,k(iωn) + (T aφ̄) · (T bφ̄)

× [
Zk(iωn) + ω2

nX2,k(iωn)
]}

(39)

in the quantum model. This yields

σk(iωn) = 2πσQωnX1,k(iωn) (40)

in the disordered phase, and

σA,k(iωn) = 2πσQ

{
2ρ0,k

ωn

Zk(iωn)

+ωn[X1,k(iωn) + 2ρ0,kX2,k(iωn)]

}
,

σB,k(iωn) = 2πσQωnX1,k(iωn) (41)

in the broken-symmetry phase, where σQ = q2/h is the quan-
tum of conductance and we have restored h̄.

D. Large-N limit

Both DE [1] and BMW [12,26] approximation schemes
are exact in the large-N limit. A crucial ingredient in the
derivation of this result is that the vertices, e.g., �A,k(p,ρ) and
�B,k(p,ρ), are field dependent. Since Zk(p), Yk(p), etc., are
field independent in the LPA′′, we do not expect the latter to
be exact in the large-N limit. However, it is possible to show
that (i) the potential U (ρ) as well as the two-point correlation
functions χL,T(p) [Eq. (13)] are correctly determined in the
large-N limit and (ii) the LPA′′ is exact in the large-N limit in
the ordered phase, including the QCP.
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To prove the above claims, we examine the flow equations
(provided in Appendix) in the large-N limit. The proof follows
closely what is done in Refs. [12,26] to solve the (similar)
BMW equations in the large-N limit. As the action �k[φ] and
the field φ, respectively, scale like N and

√
N , one deduces

that Wk(ρ) = U ′
k(ρ), Zk(p) and the propagators GL,T,k(p,ρ)

are O(1) while Yk(p) is O(1/N). Thus

∂kZk(p) = O(1/N ) (42)

and Zk(p) = 1 + O(1/N ). The large-N transverse propagator
reads

G−1
k,T(q,ρ) = q2 + Wk(ρ) + Rk(q) + O

(
1

N

)
(43)

and the flow equation of Wk(ρ) reduces to

∂kWk(ρ) = N

2
W ′

k(ρ)∂̃k

∫
q
Gk,T(q,ρ) + O

(
1

N

)
, (44)

where ∂̃k = (∂kRk)∂Rk
acts only on the k dependence of the

cutoff function Rk . Equation (44) can be integrated using the
change of variables (k,ρ) → (k,W ) to yield the correct large-N
potential [12]. This also proves that the transverse propagator
is exactly determined.

We now turn to Yk(p), or equivalently to �B,k(p) =
�B,k(p,ρ0,k) [Eq. (12)]. One has

∂k�B,k(p) = −N

2
�B,k(p)2∂̃k

∫
q
Gk,T(q,ρ0,k)

×Gk,T(p + q,ρ0,k) + O
(

1

N2

)
. (45)

This agrees with the BMW equation in the case where �B,k

does not depend on ρ [26]. Because of this lack of ρ depen-
dence, the change of variables (k,ρ) → (k,W ) performed in
the BMW equations is not possible. That difference is crucial:
numerical integration of the flow equations shows that in the
disordered phase �B,k(p) differs from its exact value. However,
in the ordered phase and at the critical point, one remarks that
since Wk(ρ0,k) = 0 for all k, ∂̃kGk,T(q,ρ0,k) = ∂kGk,T(q,ρ0,k)
and the right-hand side (rhs) of (45) becomes a total derivative.
Integrating (45) then yields the exact result. Since Yk(p) only
contributes to the longitudinal propagator in the ordered phase
this means that χL is exactly determined in the whole phase
diagram, as evidenced in Fig. 1 (top) where we compare χ ′′

L(ω)
to the exact result in the limit N → ∞.

A similar analysis can be performed for the two functions
fk(p) and γk(p) intervening in the scalar susceptibility. In the
ordered phase the exact solution is recovered while in the
disordered phase the LPA′′ does not yield the exact result. This
is illustrated in Fig. 1 (bottom) where we show the spectral
function χ ′′

s (ω) for N = 1000 as well as the exact result in the
limit N → ∞.

In the disordered phase, the solution of the RG flow for
the conductivity differs from the exact solution [18]. In the
ordered phase, to leading order in 1/N , σA(ω) is determined
by ρ0,k and Zk(p), which reproduce the exact solution in the
large-N limit. No simple analytic form has been found for the
next-to-leading order contribution to σA(ω) which depends on
X1,k and X2,k . σB(ω) is determined by the function X1,k(p). For
p = 0, it is possible to integrate the flow equation of X1,k(p =

FIG. 1. (Top) Spectral function χ ′′
L (ω) in the ordered and dis-

ordered phases for N = 1000 (solid line), compared to the exact
large-N solution (symbols). In the disordered phase, the exact solution
for χ ′′

L (ω) = χ ′′
T (ω) ∼ δ(ω − ) is not shown. (Bottom) Same as top

panel but for the spectral function χ ′′
s (ω).

0), following what is done in Ref. [21] to integrate the flow of
X1,k(ρ) within DE, which yields the exact solution. At finite
momentum, no analytic way to integrate the flow equation of
X1,k(p) has been found but the numerical integration of the
flow equations shows an agreement with the exact solution up
to numerical error.

III. SPECTRAL FUNCTIONS

The flow equations are given in Appendix. They can be
solved in the usual way (see, e.g., Ref. [21]). Since the QCP
manifests itself as a fixed point of the RG equations if we use
dimensionless variables, we express all quantities in unit of the
running scale k (see Appendix). The flow equations are solved
numerically for several sets of initial conditions (r0,u0). For
a given value of u0, the QCP can be reached by fine tuning
r0 to its critical value r0c. We use u0 ∼ 50 and � = 1. The
universal regime near the QCP can then be studied by tuning
r0 slightly away from rc0. Universality of the results can be
checked by changing the value of u0 and the various correlation
functions can be written in terms of universal scaling functions.
Below, we first discuss the two-point correlation function
before turning to the scalar susceptibility and conductivity. We
consider only the cases N = 2 and 3. When considering the
two-point correlation function and scalar susceptibility we take
the freedom to adjust the (nonuniversal) scale of correlation
functions and spectral functions.

A. Two-point correlation function

In the universal regime near the QCP, the two-point correla-
tion function χα=L,T [Eq. (13)] and its spectral function satisfy
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TABLE I. Critical exponent ν for the three-dimensional classical O(N ) universality class obtained in the NPRG approach, from DE,
LPA′′, and BMW approximations (results from the authors), compared to Monte Carlo (MC) simulations, (perturbative) field theories (FT) and
conformal bootstrap (CB). The exponent has been determined before within NPRG for most values of N , see, e.g., Ref. [9] for DE, [15] for
LPA′′, and [13,14] for BMW approximation. For coherence, we give our own results, which are in agreement with the above references. For
the BMW scheme, we used the exponential regulator (10) with a parameter value α = 2.25 while for DE and LPA′′, the values are obtained by
applying the “principle of minimum sensitivity,” i.e., by finding a value of α that extremizes ν (in practice α is close to 2).

N DE LPA′′ BMW MC FT CB

1 0.638 0.631 0.632 0.63002(10) [29] 0.6306(5)[30] 0.629971(4) [31]
2 0.668 0.679 0.673 0.6717(1) [32] 0.6700(6) [30] 0.67191(12) [31]
3 0.706 0.725 0.714 0.7112(5) [33] 0.7060(7) [30] 0.7121(28) [31]
4 0.741 0.765 0.754 0.749(2) [34] 0.741(6) [35]
5 0.774 0.799 0.787 0.766 [36]
6 0.803 0.836 0.816 0.790 [36]
8 0.848 0.866 0.860 0.830 [36]
10 0.879 0.892 0.893 0.859 [36]
100 0.989 0.990 0.990 0.989 [37]
1000 0.999 0.999 0.999 0.999 [37]

the scaling forms [38]

χα(p) = Zα,±η−2�̃α,±

( |p|


)
,

χ ′′
α (ω) = Im

[
χR

α (ω)
] = Zα,±η−2�α,±

(
ω



)
, (46)

where η is the anomalous dimension of the ϕ field at the
QCP. Recall that χR(ω) = χ (|p| → −iω + 0+) is the retarded
susceptibility. �̃α,± and �α,± are universal scaling functions
and Zα,± a nonuniversal constant with dimension of (length)η.
The index +/− refers to the disordered and ordered phases,
respectively.  is a characteristic energy scale given by the
excitation gap in the disordered phase. In the ordered phase,
we take  to be the excitation gap in the disordered phase at the
point located symmetrically wrt the QCP (i.e., corresponding
to the same value of |r0 − r0c|). Since  vanishes at the QCP,
Eqs. (46) imply χα(p) ∼ |p|η−2 and χ ′′

α (ω) ∼ |ω|η−2 when
r0 = r0c. Since χ ′′

L(ω) and χ ′′
T(ω) are odd in ω we shall only

consider the case ω � 0 in the following.

1. QCP

At the QCP the anomalous dimension η is given by the value
of the running anomalous dimension ηk = −k∂k ln Zk(p = 0)

reached when k → 0. The correlation-length-exponent ν can
be obtained from the runaway flow from the fixed point when
the system is not exactly at criticality (which, in practice, is
always the case), e.g., ρ̃0,k � ρ̃∗

0 + const × (�/k)1/ν (ρ̃0 is
the dimensionless field variable, see Appendix, and ρ̃∗

0 its
fixed-point value). Results obtained for various values of N

are shown in Tables I and II where we compare the LPA′′ to
other methods. The LPA′′ provides us with satisfying values for
the critical exponent ν (within 2% of the conformal bootstrap
results for N = 1, 2, and 3) but is less accurate, and signifi-
cantly less reliable than the DE and BMW approximations, for
the anomalous dimension.

We thus conclude that, when improving the approximation
scheme starting from the LPA′, it is more efficient to include
the full field dependence (as in DE) than the full momentum
dependence (as in LPA′′) of Zk and Yk . Naive power counting
near four dimensions shows that indeed the field dependence
is more important than the momentum dependence so that,
at least near four dimensions, the superiority of DE over
LPA′′ in estimating the anomalous dimension should not come
as a surprise. We note, however, that any field truncation
in DE is likely to strongly deteriorate the estimate of η

below the accuracy of LPA′′ [39]. It is therefore natural to
ascribe the lack of accuracy of the LPA′′ to the neglect of
diagrams involving the momentum dependence of �(3) or

TABLE II. Same as I but for the anomalous dimension η.

N DE LPA′′ BMW MC FT CB

1 0.0443 0.0506 0.0411 0.03627(10) [29] 0.0318(3) [30] 0.036298(2) [31]
2 0.0467 0.0491 0.0423 0.0381(2) [32] 0.0334(2) [30] 0.03852(64) [31]
3 0.0463 0.0459 0.0411 0.0375(5) [33] 0.0333(3) [30] 0.0385(11) [31]
4 0.0443 0.0420 0.0386 0.0365(10) [34] 0.0350(45) [35]
5 0.0413 0.0382 0.0354 0.034 [36]
6 0.0381 0.0346 0.0321 0.031 [36]
8 0.0319 0.0287 0.0264 0.027 [36]
10 0.0270 0.0243 0.0220 0.024 [36]
100 0.00296 0.00289 0.00233 0.0027 [37]
1000 0.000296 0.000293 0.000233 0.00027 [37]
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FIG. 2. Two-point correlation function χL,T(p)/|p|−2+η at the
QCP for N = 2 and 3. The normalization is chosen to have a ratio
equal to one for p → 0.

�(4).5 In any case, the anomalous dimension is small for
the three-dimensional O(N ) model and an accurate estimate
is not crucial when focusing on the full momentum depen-
dence (which is not dominated by η on a typical scale fixed
by ).

The momentum dependence of χL,T(p) at criticality is
shown in Fig. 2. At small momentum, below the Ginzburg
momentum scale pG ∼ u0/24π ∼ �/2, χL,T(p) ∼ |p|−2+η in
agreement with the expected result (28). The value of the
exponent η is the same as that obtained from the running
anomalous dimension ηk .

2. Disordered phase

The two-point correlation function χL,T(p) in the disordered
phase is shown in Fig. 3 for N = 2 and 3. [More precisely,
we show the universal scaling function �̃α,+(|p|/).] The
spectral function χ ′′

L,T(ω), obtained from a numerical analytic
continuation using Padé approximants, consists of a narrow
peak at an energy which is very well approximated by (29).
The results are in very good agreement with the BMW results
from Ref. [26]. Recall that when comparing LPA′′ and BMW
we take the freedom to adjust the (nonuniversal) relative scale.

3. Ordered phase

The ordered phase is characterized by the stiffness ρs

[Eq. (30)]. The ratio ρs/N, where  is the excitation gap
in the disordered phase at the point located symmetrically wrt
the QCP (i.e. corresponding to the same value of |r0 − r0c|) is
a universal number equal to 1/4π in the large-N limit. When
2 � N � 4, the LPA′′ value of this ratio is between the results
obtained from DE and BMW approximation, and in reasonable
agreement with Monte Carlo simulations for N = 2 and 3
(Table III). For N > 4, the LPA′′ starts to deviate from DE
and BMW but is nevertheless exact in the large-N limit.

The longitudinal correlation function χL(p) in the ordered
phase is shown in Fig. 4 for N = 2 and 3. Again, there is a
very good agreement with the BMW result from Ref. [26].

5Indeed, the neglect of these diagrams appears as the main difference
between LPA′′ and BMW, the latter giving a much better estimate of
the anomalous dimension. See, e.g., Ref. [61] for a discussion of these
diagrams.

FIG. 3. χL,T(p) and χ ′′
L,T(ω) in the disordered phase for N = 2

and 3.

The spectral function χ ′′
L(ω) is also very similar in the two

approaches: it shows a 1/ω divergence at low energies due
to the coupling of longitudinal fluctuations to transverse ones
[42–45] (Fig. 5) and a broad peak around ω =  for N = 2
(for N = 3, the peak has disappeared but a faint structure can
still be seen), presumably due the Higgs mode [26].

B. Scalar susceptibility

In the universal regime near the QCP [24],

χs(p) = B± + A±3−2/ν�̃s,±

( |p|


)
,

χ ′′
s (ω) = Im

[
χR

s (ω)
] = A±3−2/ν�s,±

(
ω



)
, (47)

where �̃s,± and �s,± are universal scaling functions and
A±,B± nonuniversal constants. At the QCP ( = 0), χs(p) −

TABLE III. Universal ratio ρs/N obtained in the NPRG ap-
proach from DE, LPA′′, and BMW (results from the authors) com-
pared to Monte Carlo (MC) simulations and exact diagonalization
(ED). The exact result in the large-N limit is 1/4π � 0.0796.

N DE LPA′′ BMW MC ED

2 0.207 0.195 0.193 0.220 [40] 0.17(2) [41]
3 0.147 0.140 0.137 0.114 [40]
4 0.118 0.115 0.111
6 0.0935 0.0947 0.0903
8 0.0846 0.0876 0.0829
10 0.0810 0.0844 0.0803
1000 0.0795 0.0798 0.0796
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FIG. 4. χL(p) and χ ′′
L (ω) in the ordered phase for N = 2

and N = 3.

χs(0) ∼ |p|3−2/ν and χ ′′
s (ω) ∼ |ω|3−2/ν . Since χ ′′

s (ω) is an odd
function of ω, we shall only consider the case ω > 0 in the
following.

1. QCP

The scalar susceptibility χs(p) − χs(0) ∼ |p|3−2/ν at criti-
cality is shown in Fig. 6. The momentum dependence provides
us with an alternative computation of the critical exponent ν

(Table IV). The results are significantly less accurate than those
obtained from ρ0,k (Sec. III A) but improve over the results of
Ref. [25].

2. Disordered phase

Figure 7 shows that the scalar susceptibility χs(p) obtained
in the LPA′′ is in nearly perfect agreement with the BMW result
[26]. Yet the spectral functions χ ′′

s (ω) differ, the energy gap 2

FIG. 5. Log-log scale plot of χ ′′
L (ω) in the ordered phase for

N = 2 and 3, showing the asymptotic behavior χ ′′
L (ω) ∼ 1/ω at low

energies.

FIG. 6. |χs(p) − χs(0)|/|p|3−2/ν at the QCP for N = 2 and 3. The
normalization is chosen to have a ratio equal to one for p → 0.

being not as sharply defined in the LPA′′. The difference reflects
the difficulty to obtain a gapped spectral function χ ′′(ω) ∝
�(ω − 2) with Padé approximants.

3. Ordered phase

In the ordered phase, although the agreement between
LPA′′ and BMW for χs(p) is not perfect, the LPA′′ spectral
function χ ′′

s (ω) compares fairly well with the BMW one
(Fig. 8). In particular, for N = 2, we clearly observe a Higgs
resonance at ωH � 1.95, to be compared with ωH � 2.2 in
the BMW approach [26]. For N = 3, a broadened resonance
around ωH � 2.2 (ωH � 2.7 with BMW) is still visible
(the resonance is suppressed for higher values of N ). At low
frequencies, our results are compatible with the expected ω3

behavior (Fig. 9).

C. Conductivity

In the critical regime, the conductivity tensor satisfies the
scaling form [46,47]

σ (ω) = σQ�+

(
ω



)
,

σA,B(ω) = σQ�
A,B
−

(
ω



)
, (48)

where �± is a universal scaling function and σQ the quantum
of conductance. As the conductivity is dimensionless in two

TABLE IV. Critical exponent ν for the three-dimensional classical
O(N ) universality class obtained in the LPA′′, from either ρ0,k

(Sec. III A 1) or χs (Sec. III B 1), compared to conformal bootstrap
(CB).

N from ρ0,k from χs CB [31]

2 0.679 0.639 0.67191(12)
3 0.725 0.682 0.7121(28)
4 0.765 0.722
5 0.799 0.756
6 0.836 0.784
8 0.866 0.827
10 0.892 0.856
100 0.990 0.984
1000 0.999 0.998
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FIG. 7. χs(p) and χ ′′
s (ω) in the disordered phase for N = 2 and 3.

space dimensions there is no nonuniversal prefactor, unlike
χL,T and χs .

1. QCP

At the QCP, the universal scaling functions reach a nonzero
limit �±(∞) and the ratio σ (ω = 0)/σQ = σ ∗/σQ = �±(∞)
is universal [46], equal to π/8 in the large-N limit [38]. The

FIG. 8. χs(p) and χ ′′
s (ω) in the ordered phase for N = 2 and 3.

FIG. 9. Log-log scale plot of χ ′′
s (ω) in the ordered phase for N =

2 and 3, showing the asymptotic behavior χ ′′
s (ω) ∼ ω3 at low energies.

LPA′′ recovers the exact result in the large-N limit. For N = 2,
it gives a value in reasonable agreement with (although 10%
smaller than) results from QMC [40,48–51] and conformal
bootstrap [52] (Table V).

2. Disordered phase

The conductivity σ (ω) in the disordered phase is shown in
Fig. 10 (top panel). The system is insulating and the real part
of σ (ω) vanishes below an energy gap 2. The imaginary
part varies linearly for ω � , i.e., σ (ω) � −iCdisω; the
system behaves as a perfect capacitor at low energies with
capacitance (per unit area) Cdis = 2πh̄σQX1,k=0(ωn = 0). The
ratio h̄σQ/2πCdis is universal. The LPA′′ value is in good
agreement with the results of DE [21], Monte Carlo simulations
[51], and exact diagonalization [41].

For large N , there is a discrepancy between the exact solu-
tion and our computation which has been noted in Sec. II D for
the two-point correlation function and the scalar susceptibility
in the disordered phase. Furthermore the analytic continuation
is made difficult by the singularity at ω = 2 so that the
frequency dependence of σ (ω) above 2 should be taken with
caution.

3. Ordered phase

In the ordered phase, the conductivity tensor is defined by
two independent elements, σA(ω) and σB(ω) [Eqs. (41)]. The
large-N limit is exact. At low energies, the system behaves as
a superfluid or a perfect inductor, σA(ω) � i/Lord(ω + i0+),
with inductance Lord = h̄/2πσQρs . The ratio Cdis/NLordσ

2
Q

is universal (Table VI).

TABLE V. Universal conductivity σ ∗/σQ at the QCP, obtained
with a regulator parameter value α = 2.25 [Eq. (10)], compared to
results obtained from quantum Monte Carlo simulations [40,48–51]
(QMC) and conformal bootstrap [52] (CB). The exact value for
N → ∞ is π/8 � 0.3927.

N NPRG QMC CB

2 0.3218 0.355–0.361 0.3554(6)
3 0.3285
4 0.3350
10 0.3599
1000 0.3927
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FIG. 10. Conductivity σ (ω) in the disordered and ordered phases
forN = 2 and 3. The real and imaginary parts are, respectively, plotted
on the left and right. (Top) σ (ω) in the disordered phase. Middle:
σA(ω) in the ordered phase with the superfluid contribution subtracted.
(Bottom) σB(ω) in the ordered phase. For N = 2, σB(ω) is not defined
(see Sec. II B 2).

σA(ω), with the superfluid contribution i/Lord(ω + i0+)
subtracted, is shown in Fig. 10 (middle panel). Our results seem
to indicate the absence of a constant O(ω0

n) term in agreement
with the predictions of perturbation theory [19]. Furthermore

TABLE VI. Ratios h̄σQ/2πCdis and Cdis/NLordσ
2
Q obtained

from the NPRG approach, compared to Monte Carlo (MC) simu-
lations and exact diagonalization (ED). The exact results for N → ∞
are 6/π � 1.90986 and 1/24 � 0.041667, respectively.

h̄σQ/2πCdis Cdis/NLordσ
2
Q

N DE LPA′′ MC ED DE LPA′′

2 1.98 2.00 2.1(1) [51] 2.0(4) [41] 0.105 0.0975
3 1.98 1.98 0.0742 0.0706
4 1.98 1.96 0.0598 0.0587
5 1.97 1.94 0.0520 0.0526
6 1.97 1.92 0.0475 0.0493
8 1.96 1.90 0.0431 0.0461
10 1.96 1.88 0.0415 0.0448
100 1.92 1.80 0.0413 0.0443
1000 1.91 1.79 0.0416 0.0446

we see a marked difference in the low-frequency behavior of
the real part of the conductivity between the cases N = 2 and
N �= 2, but our numerical results are not precise enough to
resolve the low-frequency power laws (predicted [19] to be
ω and ω5 for N �= 2 and N = 2, respectively). On the other
hand, we find that σB(ω) reaches a nonzero universal value
σ ∗

B in the limit ω → 0 (Fig. 10, bottom panel). Contrary to
σ ∗, σ ∗

B turns out to be N independent: the relative change in
σ ∗

B is less than 10−6 when N varies. Noting that the obtained
value σ ∗

B/σQ � 0.3927 is equal to the large-N result [21,53]
π/8 within numerical precision, we have conjectured that
σ ∗

B/σQ = π/8 for all values of N [18].

IV. CONCLUSION

We have presented an approximation scheme of the NPRG
flow equations, the LPA′′, that preserves the momentum
dependence of correlation functions. As a testbed, we have
considered the two-dimensional quantum O(N ) model. In the
zero-temperature limit considered in the paper, this model
is equivalent to the classical three-dimensional O(N ) model.
Spectral functions of the two-dimensional quantum model can
be obtained from an analytic continuation |p| → −iω + 0+
using Padé approximants. The LPA′′ requires to solve coupled
equations for the effective potential Uk(ρ) and the momentum-
dependent functions Zk(p) and Yk(p) that define the two-point
vertex. To obtain the scalar susceptibility χs or the conductivity
σ , additional equations for fk(p) and γk(p) (for χs), or X1,k(p)
and X2,k(p) (for σ ), must be considered. The fact that these
functions depend only on momentum (and not also the field
variable ρ) makes the approach relatively easy to implement
numerically.

We have made a detailed comparison of the results obtained
within the LPA′′ to those obtained from the DE or BMW
approximation schemes. Overall the LPA′′ remains relatively
precise given its simplicity. The value of the critical exponent
ν is nearly as accurate (at least for N � 3) as with DE or
BMW but the anomalous dimension is less precise. As for
the universal ratio ρs/ between stiffness and excitation gap,
the LPA′′ result is very close to the BMW one. The universal
scaling functions of various correlation functions (two-point
correlation function, scalar susceptibility and conductivity)
also compare satisfactorily with the BMW results thus showing
the ability of the LPA′′ to reliably compute the momentum
dependence. Indeed, LPA′′ and BMW show good qualitative
agreement with some quantitative discrepancy. For instance in
the LPA′′ the Higgs resonance energy ωH/ is equal to 1.95
and 2.2 for N = 2 and 3, respectively, whereas BMW gives
2.2 and 2.7. A weakness of the LPA′′ though is its inability to
reproduce the large-N limit in the disordered phase (i.e. when
there is a gap in the spectrum).

The LPA′′ is particularly successful in computing the zero-
temperature conductivity. In the presence of an external non-
Abelian gauge field Aμ, it is not clear how to implement the
BMW scheme in a gauge-invariant way. On the other hand
DE breaks down at low energies due to some vertices being
singular functions of momentum. In contrast the LPA′′ allows
us to obtain the full frequency dependence of the conductivity
at the QCP and in the disordered and ordered phases. The value
of the universal conductivity σ (ω → 0) = σ ∗ at the QCP is

174514-11



F. ROSE AND N. DUPUIS PHYSICAL REVIEW B 97, 174514 (2018)

within 10% of the conformal bootstrap result. An important
result obtained by the LPA′′ is the superuniversality of one of
the elements of the conductivity tensor, σ ∗

B/σQ = π/8, in the
ordered phase [18].

Finally, we would like to point out that the LPA′′ might offer
the possibility to avoid the analytic continuation of numerical
data using Padé approximants (or alternative methods). Indeed,
by approximating the propagators in the internal loops of
the flow equations by their LPA′ expressions, it becomes
possible to perform exactly both Matsubara-frequency sums
and analytic continuation to real frequencies [54–60], which
would allow to obtain the frequency dependence of correlation
functions in the hydrodynamic regime |ω| � T .

APPENDIX: RG EQUATIONS IN THE LPA′′

In this appendix, we provide some technical details regard-
ing the LPA′′. Flow equations for the vertices are obtained

by taking functional derivatives of Eqs. (11), (15), and (18).
Replacing the vertices by their LPA′′ expressions, we derive
equations for the various functions of interest: Wk(ρ) = U ′

k(ρ),
Zk(p), Yk(p), fk(p), γk(p), X1,k(p), and X2,k(p). To alleviate
the notations in the following we do not write explicitly the k

index and ρ dependence of the functions.

1. Vertices

In this section, we list all vertices that enter the flow
equations (besides those already considered in the text). We do
not write the Kronecker symbol expressing the conservation of
total momentum and set the volume equal to unity. All vertices
are evaluated in a uniform field configuration and we use the
notationW ′ = ∂ρW , etc., perm(1, . . . ,n) denotes all (different)
terms obtained by permutation of (p1,i1; · · · ; pn,in).

a. Two-point correlation function

The vertices entering the flow equation ∂k�
(2) are

�
(3,0)
i1i2i3

(p1,p2,p3) = 1
2Y (p1)p2

1δi2i3φi1 + W ′δi1i2φi3 + W ′′φi1φi2φi3 + perm(1,2,3), (A1)

�
(4,0)
i1i2i3i4

(p1,p2,p3,p4) = 1
2Y (p1 + p2)(p1 + p2)2δi1i2δi3i4 + W ′δi1i2δi3i4 + W ′′φi1φi2δi3i4 + W ′′′φi1φi2φi3φi4 + perm(1,2,3,4).

(A2)

b. Scalar susceptibility

In the calculation of the scalar susceptibility,

�
(2,1)
i1i2

(p1,p2,p3) = δi1i2f (p3), (A3)

�
(3,1)
i1i2i3

(p1,p2,p3,p4) = �
(2,2)
i1i2

(p1,p2,p3,p4) = 0. (A4)

c. Conductivity

In the calculation of the conductivity,

�
(2,1)a
i1i2,μ

(p1,p2,p3) = i[p1,μZ(p1) − p2,μZ(p2) − (p1,μ − p2,μ)p1 · p2D1[Z](p1,p2)]T a
i1i2

, (A5)

�
(3,1)a
i1i2i3,μ

(p1,p2,p3,p4) = 0, (A6)

�
(2,2)ab
i1i2,μν (p1,p2,p3,p4) = [

(T aT b)i1i2X2(p1 + p3) + (T aT b)i2i1X2(p1 + p4)
]
(p3 · p4δμν − p3,νp4,μ) − δμν

[
(T aT b)i1i2Z(p1 + p3)

+ (T bT a)i1i2Z(p1 + p4) − {T a,T b}i1i2D1[Z](p1,p2)
] − (2p1,μ + p3,μ)p1,ν(T aT b)i1i2D1[Z](p1,p1 + p3)

+ perm((1,2) or (3,4)) − 1

2
p1 · p2(2p1,μ + p3,μ)(2p2,ν + p4,ν)(T aT b)i1i2D2[Z](p1,p2,p1 + p3)

+ perm(3,4). (A7)

In Eqs. (A5) and (A7), we have introduced “discrete derivatives” defined by

D1[f ](p1,p2) = f (p1) − f (p2)

p2
1 − p2

2

, (A8)

D2[f ](p1,p2,p3) = 2
f (p1)

(
p2

2 − p2
3

) + f (p2)
(
p2

3 − p2
1

) + f (p3)
(
p2

1 − p2
2

)
(
p2

2 − p2
1

)(
p2

3 − p2
2

)(
p2

1 − p2
3

) , (A9)
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and verifying

D1[f ](p,p) = ∂p2f (p), (A10)

D2[f ](p,p,p′) = 2
f (p) − f (p′) − (p2 − p′2)∂p2f (p)

(p2 − p′2)2
, (A11)

D2[f ](p,p,p) = ∂2
p2f (p). (A12)

2. Flow equations

a. Two-point correlation function

Restoring the ρ dependence of the functions, one has

∂kW (ρ) = ∂̃k

1

2

∫
q
{GL(q,ρ)[q2Y (q2) + 2ρW ′′(ρ) + 3W ′(ρ)] + (N − 1)W ′(ρ)GT(q,ρ)}, (A13)

where ∂̃k = (∂kRk)∂Rk
acts only on the k dependence of the cutoff function Rk . Through the remainder of this Appendix all

ρ-dependent quantities (the propagators, the potential and its derivatives and ρ itself) are evaluated at the running minimum of
the potential ρ0,k ,

∂kZ(p) = ∂̃k

1

4

∫
q
{GT(q)[2ρGL(q)(q2Y (q) + 2W ′)2 − ρGL(ξ 2)(2W ′ + ξ 2Y (ξ ))2 − 2q2Y (q) + 2ξ 2Y (ξ )]

− ρGL(q)GT(ξ )(q2Y (q) + 2W ′)2}, (A14)

∂kY (p) = ∂̃k

1

4ρp2

∫
q
{ρ[4W ′(3GL(q)[4ρW ′′GL(q) − GL(ξ )(p2Y (p) + 4ρW ′′)] − (N − 1)p2Y (p)GT(q)GT(ξ ))

+ 4(W ′)2[GT(q)(GL(ξ ) + (N − 1)[GT(q) − GT(ξ )]) + GL(q)[−9GL(ξ ) − 2GT(q) + GT(ξ )] + 9GL(q)2]

+GL(q)[16ρ2(W ′′)2GL(q) − GL(ξ )(p2Y (p) + 4ρW ′′)2] − (N − 1)p4Y (p)2GT(q)GT(ξ )]

− 2q2Y (q)(GL(q)[ρ(GL(ξ )[p2Y (p) + 4ρW ′′ + ξ 2Y (ξ )] − 2W ′[−3GL(ξ ) + 6GL(q) − 2GT(q) + GT(ξ )]

− 8ρW ′′GL(q)) + 1] − GT(q)) + 2ξ 2Y (ξ )[GL(q)(1 − ρGL(ξ )[p2Y (p) + 4ρW ′′ + 6W ′])

+GT(q)[2ρW ′GL(ξ ) − 1]] + ξ 4ρY (ξ )2GL(ξ )[GT(q) − GL(q)] + ρq4Y (q)2GL(q)

× [−GL(ξ ) + 4GL(q) − 2GT(q) + GT(ξ )]}, (A15)

where for the sake of concision we have defined ξ = p + q and for all vectors q4 = |q|4.

b. Scalar susceptibility

∂kf (p) = ∂̃k

1

4
f (p)

∫
q
{−GL(ξ )GL(q)[p2Y (p) + q2Y (q) + 4ρW ′′ + 6W ′ + ξ 2Y (ξ )] − (N − 1)GT(q)GT(ξ )(p2Y (p) + 2W ′)},

(A16)

∂kγ (p) = − ∂̃k

1

2
f (p)2

∫
q
{GL(ξ )GL(q) + (N − 1)GT(q)GT(ξ )}. (A17)

c. Conductivity

∂kX1(p) = 1

(D − 1)p4
∂̃k

∫
q
{GT(q)(p2[2q2((D − 1)D1[Z](q,q) + 2[2D1[Z](q,ξ ) + D2[R](q,q,ξ )]) + 2(D − 1)D1[R](q,q)

+ (D − 1)p2X2(ξ ) + (D − 1)Z(ξ )] − (ξ 2 − p2 − q2)2[2D1[Z](q,ξ ) + D2[R](q,q,ξ )]

+ 4q2[p2q2 − (ξ 2 − p2 − q2)2/4]D2[Z](q,q,ξ )) + GT(ξ )(GT(q)[(ξ 2 − p2 − q2)2/4 − p2q2][2([(ξ 2 − p2 − q2)/2

+ q2]D1[Z](q,ξ ) + D1[R](q,ξ )) + Z(q) + Z(ξ )]2 + (D − 1)p2[p2X2(q) + Z(q)])}, (A18)

∂kX2(p) = −1

4(D − 1)p4ρ
∂̃k

∫
q
{−(D − 1)(D1[Z]2(q,ξ )GL(ξ )GT(q)q4 − D2[Z](q,q,ξ )GL(q)q2

+D2[Z](q,q,ξ )GT(q)q2 + (−p2 − q2 + ξ 2)D1[Z]2(q,ξ )GL(ξ )GT(q)q2

+ 2Z(ξ )D1[Z](q,ξ )GL(ξ )GT(q)q2 + 2D1[R](q,ξ )D1[Z](q,ξ )GL(ξ )GT(q)q2
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+X2(q)GL(ξ ) + X2(ξ )[GL(q) − GT(q)] + Z(ξ )2GL(ξ )GT(q) + D1[R]2(q,ξ )GL(ξ )GT(q)

+ [(−p2 − q2 + ξ 2)2/4]D1[Z]2(q,ξ )GL(ξ )GT(q) + 2Z(ξ )D1[R](q,ξ )GL(ξ )GT(q)

+ (−p2 − q2 + ξ 2)Z(ξ )D1[Z](q,ξ )GL(ξ )GT(q) + D2[R](q,q,ξ )[GT(q) − GL(q)]

+ (−p2 − q2 + ξ 2)D1[R](q,ξ )D1[Z](q,ξ )GL(ξ )GT(q) + [(Z(ξ ) + D1[R](q,ξ )

+ [q2 + (−p2 − q2 + ξ 2)/2]D1[Z](q,ξ ))2[GL(q) − 2GT(q)] − X2(q)]GT(ξ ))p4

+ [−(D − 1)D1[Z]2(q,ξ )(GL(ξ )GT(q) + [GL(q) − 2GT(q)]GT(ξ ))(−p2 − q2 + ξ 2)3/2

−D1[Z](q,ξ )(2(2D − 3)D1[Z](q,ξ )q2 + (D − 1)[Z(q) + 3Z(ξ ) + 4D1[R](q,ξ )])(GL(ξ )GT(q) + [GL(q)

− 2GT(q)]GT(ξ ))(−p2 − q2 + ξ 2)2/2 − (2(D − 3)D1[Z]2(q,ξ )(GL(ξ )GT(q) + [GL(q) − 2GT(q)]GT(ξ ))q4

+D1[Z](q,ξ )[GT(q)([(D − 3)Z(q) + (3D − 5)Z(ξ ) + 4(D − 2)D1[R](q,ξ )][GL(ξ ) − 2GT(ξ )]q2

+ 2(D − 1)) + GL(q)([(D − 3)Z(q) + (3D − 5)Z(ξ ) + 4(D − 2)D1[R](q,ξ )]GT(ξ )q2 − 2D + 2)]

− (D − 1)[2D2[Z](q,q,ξ )[GL(q) − GT(q)]q2 + 2D2[R](q,q,ξ )[GL(q) − GT(q)]

− [Z(ξ ) + D1[R](q,ξ )][Z(q) + Z(ξ ) + 2D1[R](q,ξ )](GL(ξ )GT(q) + [GL(q) − 2GT(q)]GT(ξ ))])(−p2 − q2 + ξ 2)

+ q2(4D1[Z]2(q,ξ )(GL(ξ )GT(q) + [GL(q) − 2GT(q)]GT(ξ ))q4 − 4D2[Z](q,q,ξ )GL(q)q2

+ 4D2[Z](q,q,ξ )GT(q)q2 + Z(q)2GL(ξ )GT(q) + Z(ξ )2GL(ξ )GT(q) + 4D1[R]2(q,ξ )GL(ξ )GT(q)

+ 2Z(q)Z(ξ )GL(ξ )GT(q) + 4Z(q)D1[R](q,ξ )GL(ξ )GT(q) + 4Z(ξ )D1[R](q,ξ )GL(ξ )GT(q)

+ 4D2[R](q,q,ξ )[GT(q) − GL(q)] + [Z(q) + Z(ξ ) + 2D1[R](q,ξ )]2[GL(q) − 2GT(q)]GT(ξ )

+ 4D1[Z](q,ξ )[[Z(q) + Z(ξ ) + 2D1[R](q,ξ )][GL(q) − 2GT(q)]GT(ξ )q2 − 2GL(q)

+ ([Z(q) + Z(ξ ) + 2D1[R](q,ξ )]GL(ξ )q2 + 2)GT(q)])]p2 − (D/4)(−p2 − q2 + ξ 2)2(−4D2[Z](q,q,ξ )GL(q)q2

+ 4D2[Z](q,q,ξ )GT(q)q2 + Z(q)2GL(ξ )GT(q) + Z(ξ )2GL(ξ )GT(q) + 4D1[R]2(q,ξ )GL(ξ )GT(q)

+ 2Z(q)Z(ξ )GL(ξ )GT(q) + 4Z(q)D1[R](q,ξ )GL(ξ )GT(q) + 4Z(ξ )D1[R](q,ξ )GL(ξ )GT(q)

+ 4D2[R](q,q,ξ )[GT(q) − GL(q)] + [Z(q) + Z(ξ ) + 2D1[R](q,ξ )]2[GL(q) − 2GT(q)]GT(ξ )

+ [2q2 + (−p2 − q2 + ξ 2)]2D1[Z]2(q,ξ )(GL(ξ )GT(q) + [GL(q) − 2GT(q)]GT(ξ ))

+ 4D1[Z](q,ξ )[−2GL(q) + ([q2 + (−p2 − q2 + ξ 2)/2][Z(q) + Z(ξ ) + 2D1[R](q,ξ )]GL(ξ ) + 2)GT(q)

+ [q2 + (−p2 − q2 + ξ 2)/2][Z(q) + Z(ξ ) + 2D1[R](q,ξ )][GL(q) − 2GT(q)]GT(ξ )])}, (A19)

where D = d + 1 = 3.

3. Dimensionless variables

The flow equations are solved using the dimensionless variables,

p̃ = k−1p, ρ̃ = v−1
D Zkk

2−Dρ, h̃ = Z−1
k k−2h, Ãμ = k−1Aμ, F̃μν = k−2Fμν (A20)

and functions

W̃k(ρ̃) = Z−1
k k−2Wk(ρ), Z̃k(p̃) = Z−1

k Zk(p), Ỹk(p̃) = vDZ−2
k kD−2Yk(p),

f̃k(p̃) = fk(p), γ̃k(p̃) = v−1
D Z2

k k
4−Dγk(p), X̃1,k(p̃) = v−1

D k4−DX1,k(p), X̃2,k(p̃) = Z−1
k k2X2,k(p), (A21)

where D = d + 1 = 3, vD = 1/2D+1πD/2�(D/2) a numerical factor introduced for convenience and Zk ≡ Zk(p = 0).
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