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We investigate the massive Schwinger model in d ¼ 1þ 1 dimensions using bosonization and the
nonperturbative functional renormalization group. In agreement with previous studies we find that the
phase transition, driven by a change of the ratio m=e between the mass and the charge of the fermions,
belongs to the two-dimensional Ising universality class. The temperature and vacuum angle dependence of
various physical quantities (chiral density, electric field, entropy density) are also determined and agree
with results obtained from density matrix renormalization group studies. Screening of fractional charges
and deconfinement occur only at infinite temperature. Our results exemplify the possibility to obtain
virtually all physical properties of an interacting system from the functional renormalization group.
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I. INTRODUCTION

Historically the renormalization-group approach has
been used primarily for the study of universal properties
of systems near a second-order phase transition [1–4]. The
nonperturbative functional renormalization group (FRG),
which is the modern implementation of Wilson’s RG
[5–10], has been quite successful in this respect since it
yields accurate values of the critical exponents associated
with the Wilson-Fisher fixed point of OðNÞmodels [11,12],
comparable with the best estimates from field-theoretical
perturbative RG [13,14], Monte Carlo simulations [15–20]
or conformal bootstrap [21–24].
However the FRG is not restricted to the study of

universal properties. When the microscopic theory is
known or with the help of additional input (e.g., the
knowledge of some physical quantities of the microscopic
theory), one can compute the expectation value of observ-
ables even when the system is far away from a critical point.
The FRG has been used in many models of quantum and
statistical field theory ranging from statistical physics and
condensed matter to high-energy physics and quantum
gravity [10]. Besides the interest in models where pertur-
bative approaches or numerical methods are difficult for
various reasons, there is an ongoing effort to characterize

and quantify the efficiency of the FRG by considering well-
known models of field theory.
In this paper, to exemplify the predictive power of the

FRG formalism, we determine both universal and nonuni-
versal properties of the Schwinger model, at zero and finite
temperature. Our analysis is based on a previous study of
the sine-Gordon model [25] and goes beyond previous
FRG applications to the Schwinger model [26,27]. The
results compare well with numerical studies except for
the finite-temperature phase diagram where, contrary to the
expectation, we find a region with spontaneous symmetry
breaking (SSB) at T > 0. This observation is likely an
artifact of the FRG calculation using a truncated derivative
expansion, as we will discuss.
After briefly reviewing the Schwingermodel in Sec. II, we

start our discussion in Sec. III bymaking the identification of
the parameters between the fermionic and the bosonic theory
precise. We then briefly review the FRG using a derivative
expansion (DE) at finite temperature in Sec. IV. In Sec. V we
investigate the phase transition of the Schwinger model and
determine the critical ratio ðm=eÞc and the critical exponents.
Wediscuss the observationof a nonconvexeffective potential
in the SSBphase in Sec.VI and then, still at zero temperature,
determine the θ dependence of nonuniversal observables in
Sec. VII. This calculation is extended to finite temperature in
Sec. VIII where we also consider the issue of SSB at finite
temperature. Finally we conclude the paper in Sec. IX.

II. THE SCHWINGER MODEL

The Schwinger model [28] describes quantum electro-
dynamics (QED) in d ¼ 1þ 1 space-time dimensions.
It was originally introduced to show that a gauge field,
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for which an explicit mass term is forbidden by gauge
invariance, can acquire a mass dynamically through the
chiral anomaly. With both massless and massive fermions,
it demonstrates confinement [29,30] and thus serves as an
important toy model for real confining theories such as
quantum chromodynamics (QCD) in 3þ 1 dimensions.
The microscopic action of the Schwinger model in

Euclidean space is given by [31]

S½ψ̄ ;ψ ; A� ¼
Z
x

�
−ψ̄γμð∂μ þ iAμÞψ −m ψ̄ψ

þ 1

4e2
FμνFμν þ i

θ

4π
ϵμνFμν

�
; ð1Þ

where Aμ is the usual Uð1Þ gauge field and Fμν ¼ ∂μAν −
∂νAμ the corresponding field strength. Moreover, ψ and its
conjugate ψ̄ are two-component Dirac spinor Grassmann
fields describing the charged fermions. The Dirac matrices
and the real antisymmetric tensor ϵμν are taken in Euclidean
space such that 1

2
fγμ; γνg ¼ gμν ¼ diagð1; 1Þ and ϵ10 ¼

−ϵ01 ¼ ϵ10. The two free parameters of this theory are
the fermion mass m and the electric charge e (the latter has
dimension of mass in d ¼ 1þ 1). Contrary to 3þ 1-
dimensional QED, the Schwinger model permits a topo-
logical term linear in the field strength, that gives rise to an
additional free parameter, the vacuum angle θ. As the
model is a super-renormalizable theory (positive mass
dimension of the coupling constant e), it can be defined
without an explicit ultraviolet (UV) cutoff (Λ → ∞).
At low energies, the Schwinger model can be mapped

onto the massive sine-Gordon model [32] defined by the
action

S½ϕ� ¼
Z
x

�
1

2
∂μϕ∂μϕ − u cosðβϕþ θÞ þ 1

2
M2ϕ2

�
; ð2Þ

with β ¼ 2
ffiffiffi
π

p
, the Schwinger mass M ¼ e=

ffiffiffi
π

p
and the

parameter u, linearly related to the fermion mass m. The
bosonic action in Eq. (2) is also written in Euclidean space.
Contrary to the fermionic action, it is only well defined
with a UV regularization and the relation between m and u
depends on the implementation of this cutoff. The exact
relation between these two parameters is not well docu-
mented for the path integral formalism in the literature, as
the equivalence is most commonly proven in the operator
formalism [29,30] or in mass perturbation theory [33]
which both, at least implicitly, rely on a normal ordering
choice [34]. This freedom is of course absent in the path
integral formalism and we shall discuss the exact relation in
Sec. III. The equivalence between the theories in Eqs. (1)
and (2) has also been proven at finite temperature [35].
From the form of the bosonic action, Coleman first con-

jectured a continuous phase transition between a sym-
metric phase and a phase in which the charge conjugation

symmetry ϕ → −ϕ at θ ¼ π is spontaneously broken [32].
In the SSB phase “half-asymptotic” fermions can exist as
widely separated kink-antikink pairs, as long as they are
ordered in the right way. In the symmetric phase, no kink
solutions exist. Fermions can only exist in bound meson
states, so there is confinement in the weak sense. The
byname weak refers to the fact that the fermion-antifermion
pair in the bound state can still be separated at finite
energy cost, through the creation of a new pair of particles
from the vacuum. The newly created particles form new
bound states with the original particles to screen their
electric field. Fractionally charged external particles cannot
be screened by pair creation [36,37] at nonzero fermion
mass and therefore experience confinement in the strong
sense, i.e., they can only be separated for infinite energy
cost. In the massless model, arbitrary charges can be
screened though.
Numerically the existence of a phase transition when θ ¼

π was shown using various approaches [38–41]. In recent
years density matrix renormalization group (DMRG) tech-
niques have become quite popular and provide the most
accurate result for the critical value ðm=eÞc ¼ 0.3335ð2Þ
[40]. Furthermore, estimates for the critical exponents were
calculated [40,42], showing that the phase transition
belongs to the universality class of the two-dimensional
Ising model.
The DMRG method also allowed the precise calcula-

tion of infrared (IR) observables, both at zero [41] and finite
temperature [43–45]. By the findings of Ref. [45] we
expect that at finite temperature there is no phase transi-
tion and the Schwinger model has a unique ground state,
see Fig. 1.

FIG. 1. Schematic phase diagram of the Schwinger model
depending on the vacuum angle θ, ratio e=m and temperature T.
The green line marks the phase with SSB and the red ball
the critical point. Everywhere else the model has a unique
ground state.
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III. MAPPING OF PARAMETERS

To deduce the parameters of the low-energy theory (2)
from the microscopic model (1) one has to compare
renormalized parameters or expectation values in the IR
obtained in the two approaches. The Schwinger model
offers two limits which we know how to solve exactly
and can be used to relate u, M and Λ to m and e. One is
the weak coupling limit e=m → 0þ or, in the bosonic
formulation, MΛ=u → 0þ where the Schwinger model is
equivalent to the sine-Gordon model at K ¼ β2=8π ¼ 1=2
(origin of Fig. 1). In the strong coupling limitm=e → 0þ or
u=MΛ → 0þ (infinitely far into the radial direction of
Fig. 1), i.e., for massless fermions, the bosonic action is that
of a free field. In the following two subsections, we show
that both limits yield the same relation between the
fermionic and bosonic parameters.

A. Weak coupling limit

In the sine-Gordon model the soliton mass, i.e., the mass
of the fermion, is known exactly [46],

m ¼ bΛ
2Γð K

2−2KÞffiffiffi
π

p
Γð 1

2−2KÞ
�
Γð1 − KÞ
ΓðKÞ

πu
2ðbΛÞ2

�
1=ð2−2KÞ

; ð3Þ

where b is a nonuniversal scale factor that depends on the
implementation of the UV cutoff [25]. For the special case
K ¼ 1=2, which corresponds to the Schwinger model, this
reduces to

m ¼ πu
bΛ

: ð4Þ

We assume a hard momentum cutoff at p2 ¼ Λ2, for which

b ¼ eγ

2
; ð5Þ

with the Euler-Mascheroni constant γ ≃ 0.5772. A discus-
sion of more general cutoff functions can be found in the
supplemental material of Ref. [25]. The relation betweenm
and u is then given by

u ¼ eγ

2π
Λm: ð6Þ

B. Strong coupling limit

Even though in the strong coupling limit there is
neither a mass term in the fermionic model nor a cosine
term in the bosonic model, we can still compare the rela-
tion between u and m through the expectation value of the
chiral density. In the massless Schwinger model the
expectation value for the chiral density at θ ¼ 0 is given
by [47,48]

hψ̄ψi ¼ eγ

2π

effiffiffi
π

p : ð7Þ

In the bosonic theory, this expectation value is obtained
from the expectation value of the exponential operator

hψ̄ψi ¼ u
m
hei

ffiffiffiffi
4π

p
ϕi

¼ u
m
e−2πΔð0Þ; ð8Þ

where the average on the right-hand side is taken with
the (Gaussian) action of the field ϕ. The propagator
ΔðxÞ ¼ hϕðxÞϕð0Þi,

ΔðxÞ ¼ 1

ð2πÞ2
Z

d2p
p2 þM2

eipx; ð9Þ

must be calculated in the presence of the same cutoff that
was used in the calculation in the weak coupling limit, i.e.,
a hard cutoff,

Δð0Þ ¼ 1

4π
ln

�
M2 þ Λ2

M2

�
¼ 1

2π
ln

�
Λ
M

�
þOðΛ−2Þ: ð10Þ

We deduce that

u ¼ hψ̄ψi
hei

ffiffiffiffi
4π

p
ϕi

m ¼ eγ

2π
Λm; ð11Þ

which agrees with the result obtained from the weak
coupling limit in Eq. (6).
In the fermionic theory, there is no UV cutoff, so it is

evident that one of the parameters e and m sets the overall
mass scale of the theory, while physics and especially the
critical point of the phase transition may only depend on the
ratio m=e. In the bosonic theory, this translates into the fact
that, provided Λ ≫ e, m, the expectation values and the
critical point only depend on the ratio

m
e
¼ 2

ffiffiffi
π

p
eγ

u
ΛM

; ð12Þ

and not, as one might naively expect, also on the dimen-
sionless ratio u=M2 [49].

IV. FUNCTIONAL RENORMALIZATION
GROUP APPROACH

We apply the FRG approach to the bosonic form of the
Schwinger model (2) in Euclidean space where the imagi-
nary-time dimension has a finite length given by the inverse
temperature,

Z
x
¼
Z

∞

−∞
dr
Z 1

T

0

dτ; ð13Þ
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with x ¼ ðr; τÞ. Wilson’s idea of the renormalization group
(RG) is realized by including a scale dependent IR
regulator ΔSk½ϕ� in the partition function

Z k½J� ¼
Z

Dϕe−S½ϕ�−ΔSk½ϕ�þ
R
x
Jϕ: ð14Þ

The flowing effective action

Γk½ϕ� ¼ − lnZ k½J� þ
Z
x
Jϕ − ΔSk½ϕ�; ð15Þ

which is defined as the modified Legendre transform
of Z k½J�, then smoothly interpolates between the micro-
scopic action Γkin ½ϕ� ¼ S½ϕ� for kin ≫ Λ and the macro-
scopic quantum effective action Γk¼0½ϕ� ¼ Γ½ϕ�. To
ensure this property ΔSk½ϕ� must behave as a masslike
term of order k for small momenta p and Matsubara
frequencies ωn, i.e., for y ¼ ðp2 þ ω2

n=c2kÞ=k2 ≪ 1, and
become negligible for high energy modes y ≫ k2. Here
ck is a flowing velocity that encodes the difference in
scaling between momenta and frequency and will be
defined below.
We realize this requirement by choosing

ΔSk½ϕ� ¼
1

2

Z
q
ϕð−qÞRkðqÞϕðqÞ; ð16Þ

with q ¼ ðp;ωn ¼ 2πTnÞ and the cutoff function

RkðqÞ ¼ Zkk2yrðyÞ ¼ Zkk2y
α

ey − 1
: ð17Þ

We further define the combined momentum integral and
Matsubara sum

Z
q
¼ T

X∞
n¼−∞

Z
∞

−∞

dp
2π

: ð18Þ

At T ¼ 0 the frequency sum turns into an integral. The
prefactor Zk appearing in the cutoff function is defined
below. With the free parameter α we can probe the
dependence of the final results on the precise form of
the regulator.
The idea behind the FRG approach is to integrate

Wetterich’s exact flow equation [5–7],

∂kΓk½ϕ� ¼
1

2
Trf∂kRkðΓð2Þ

k ½ϕ� þ RkÞ−1g; ð19Þ

from the microscopic initial conditions Γkin to the effective

action Γk¼0. On the right hand side of equation (19), Γ
ð2Þ
k is

the second-order functional derivative of Γk.
This functional partial differential equation can usually

not be solved exactly so we employ the derivative

expansion which is a commonly used, systematic approxi-
mation scheme [8,11,12,50]. At second order it relies on the
following ansatz for the flowing effective action

Γk½ϕ� ¼
Z
x

�
1

2
ZkðϕÞð∂xϕÞ2 þ

1

2
XkðϕÞð∂τϕÞ2 þ UkðϕÞ

�
;

ð20Þ

which is defined by three k-dependent functions of ϕ:
ZkðϕÞ, XkðϕÞ and UkðϕÞ. At finite temperature the Oð2Þ
Euclidean symmetry is broken, such that we have to
admit different renormalization functions for the spatial
and temporal derivatives: ZkðϕÞ ≠ XkðϕÞ. The initial con-
ditions for these functions are fixed by the microscopic
action (2),

ZkinðϕÞ ¼ 1; XkinðϕÞ ¼ 1; ð21Þ

UkinðϕÞ ¼
1

2
M2ϕ2 − u cosð

ffiffiffiffiffiffi
4π

p
ϕþ θÞ: ð22Þ

One can split the effective potential into the mass term
and a periodic contribution: UkðϕÞ ¼ 1

2
M2

kϕ
2 þ VkðϕÞ.

Since Eq. (19) only depends on the second derivative of
Γk, which is periodic in the field, the periodicity of ZkðϕÞ,
XkðϕÞ and VkðϕÞ is preserved during the RG flow and the
mass term does not renormalize: Mk ¼ M.
As in the study of the sine-Gordon model [25], it is

convenient to use the dimensionless functions

Z̃kðϕÞ ¼
ZkðϕÞ
Zk

; X̃kðϕÞ ¼
XkðϕÞ
Xk

; ŨkðϕÞ ¼
ZkðϕÞ
Zkk2

;

ð23Þ

where

Zk ¼ hZkðϕÞiϕ; Xk ¼ hXkðϕÞiϕ ð24Þ

and h� � �iϕ denotes the average over ½−π=β; π=β�. We also
define

ηk ¼ −∂t logZk; ξk ¼ −∂t logXk: ð25Þ

One can also introduce dimensionless spacetime
coordinates

r̃ ¼ kr; τ̃ ¼ ckkτ; ð26Þ

where ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk=Zk

p
is a running velocity. The latter is

however not the actual, physical, velocity

c2k;phys ¼
Xkðϕ0;kÞ
Zkðϕ0;kÞ

¼ c2k
X̃kðϕ0;kÞ
Z̃kðϕ0;kÞ

; ð27Þ
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which is defined from the minimum of the potential:
U0

kðϕ0;kÞ ¼ 0. In practice, the difference between ck and
ck;phys is small. Note that we do not rescale the field. This
agrees with the fact that ϕ is an angular variable in the sine-
Gordon and massive Schwinger models and has therefore a
vanishing scaling dimension (as evident from the fact that ϕ
appears inside a cosine).
These dimensionless functions however do not allow us

to find a fixed point associated with a transition that
belongs to the universality class of the two-dimensional
Ising model. For example, it is well known that the field has
scaling dimension 1=4 at this transition, which seems to be
incompatible with the angular character of ϕ in the massive
Schwinger model. Thus, to obtain a fixed-point solution
with nonvanishing scaling dimension of the field, one has
to allow for a rescaling of the field, at least for fields near
the origin, which is the important field range to understand
a second-order transition. At the critical point (anticipating
parts of the discussion in Sec. V), we indeed find that the
minimum of the potential vanishes as ϕ0;k ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Zkð0Þ

p
∼

kη=2 with η ¼ limk→0 ηk, so that the rescaled variable ϕ̃0;k ¼ffiffiffiffiffiffiffiffiffiffiffiffi
Zkð0Þ

p
ϕ0;k reaches a fixed-point value ϕ̃�

0. This clearly
shows that Zkðϕ0;kÞ has the usual meaning of a field
renormalization factor near the transition and η can be
identified with the anomalous dimension. In practice, we
define the rescaled field ϕ̃ by

ϕðϕ̃Þ ¼ ϕ̃þ
 ffiffiffiffiffiffiffiffi

Zkin

Zk

s
− 1

!
sinðβϕ̃Þ

β
ð28Þ

and redefine Zk and Xk as

Zk ¼ Zkð0Þ; Xk ¼ Xkð0Þ: ð29Þ

The change of variable (28) preserves the periodicity of the
flow equations whereas ϕ ∼ ϕ̃=

ffiffiffiffiffi
Zk

p
for ϕ → 0. The redefi-

nition (29) is necessary to identify η ¼ limk→0 ηk with the
anomalous dimension. From a practical point of view, the
rescaled field allows us to zoom in on the small-field region
even using an equally spaced grid in ϕ̃, which is necessary
to study the vicinity of the critical point where ϕ0;k becomes
extremely small. The change in the definition of Zk
effectively only changes the regulator’s amplitude, i.e.,
α, to which the RG flow is insensitive far from the critical
point. Near the critical point α needs to be optimized
anyway (see Sec. Vand Appendix A) and the change in the
definition of Zk only affects the optimal value of α. We
emphasize that the nonlinear transformation (28) is only
employed when looking at the phase transition. All expect-
ation values in Secs. VII and VIII are obtained using a
regular grid in ϕ.
The flow equations for the functions Uk, Zk and Xk can

be obtained from Eq. (19). They differ from those of the

sine-Gordon model [25] only in the initial conditions. For
the determination of the function Xk a discrete derivative,
using the smallest Matsubara frequency, is used. The
numerical results confirm that this choice performs better
than a continuous derivative. We display concrete expres-
sions for the flow equations in Appendix B.

V. PHASE TRANSITION

We study the continuous phase transition at zero temper-
ature, i.e., on the T ¼ 0 plane of Fig. 1. By choosing θ ¼ π,
we further restrict ourselves to the axis of the phase
diagram where only the parameter u=MΛ needs to be
fine-tuned to arrive at the critical point (red dot of Fig. 1).
This point is defined by an infinite correlation length, i.e.,
limk→0 U00

kð0Þ=Zkð0Þ ¼ 0. Using Eq. (12) we find the
critical ratio

�
e
m

�
c
¼ 0.318ð13Þ; ð30Þ

which is in good agreement with the most accurate result
found in the literature ðe=mÞc ¼ 0.3335ð2Þ [40].
We also determine the critical exponents η and ν. The

anomalous dimension η has been defined in the previous
section. The exponent ν characterizes the divergence of the
correlation length and can be obtained from the flow of
Ũkðϕ̃Þ near the critical point and for ϕ̃ ∼ ϕ̃0:

∂tŨkðϕ̃Þ ≃ Aðϕ̃Þe−t
ν ð31Þ

at long RG time jtj (t ¼ lnðk=ΛÞ). The exponents were
optimized using the principle of minimal sensitivity (PMS)
on the parameter α. More details can be found in
Appendix A.
Our results agree with the theoretical values of the

Ising model in two dimensions, see Table I, to an
accuracy that is typical of a second-order DE calculation
within the FRG [10,12]. We conclude, in accordance with
previous studies [40,42], that the critical point of the
Schwinger model belongs to the two-dimensional Ising
universality class.

TABLE I. Critical exponents η and ν in the massive Schwinger
model obtained from the FRG approach and compared to those of
the two-dimensional Ising model. The error due to the DE2
truncation is not included.

η ν

Schwinger model (FRG-DE2) 0.289(4) 0.949(12)
2D Ising (FRG-DE2) 0.289(4) 0.946(11)
2D Ising (exact) [51] 1=4 1
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VI. CONVEXITY IN THE ORDERED PHASE

In the following, we want to determine nonuniversal
expectation values in the IR, where the effective action
should have converged to a convex functional. However
as can be seen in Fig. 2, the effective potential does not
become convex in the ordered phase. This is caused by ηk
tending towards 2 (from below) on the concave part of the
potential. As a consequence ZkðϕÞ is unbounded in this
region, while on the convex part ηk reaches zero and thus
ZkðϕÞ a finite value, leading to nonanalyticity in Z̃k near the
potential minima.
More importantly, unless ηk converges to 2 extremely

slowly, i.e., limk→0ð2 − ηkÞ ln k → −∞, which is not real-
ized in practice, the regulator function Rk will approach
a finite value in the IR, Rk ¼ Zkk2yrðyÞ ∼ k0yrðyÞ for
fixed y and k → 0. This violates our initial requirement,
Rk¼0ðqÞ ¼ 0, that ensured the convergence of Γk to the
quantum effective action of the Schwinger model, and
allows the effective potential to remain concave. On the
other hand, it is not possible to choose a point of
renormalization Zk ¼ ZkðϕrÞ with ϕr on the convex part
of the potential. Since ZkðϕÞ is unbounded, the regulator
cannot ensure the positivity of the propagator and a pole
is hit at finite RG time. Note that, except in a few cases
[52–54], the DE does not in general guarantee the con-
vexity of the effective action Γk¼0 and nonconvex potentials
have been obtained in other models [55]. So far it is unclear
whether a regulator can be chosen such that both these
problems can be avoided.
However, the concavity is only conceptually problem-

atic. In practice, the mass M effectively stops the flow of
physical observables at a finite scale where the lack of
convexity and the pathological small-k behavior of Rk are
irrelevant. Many IR observables can therefore be accurately
predicted as shown below.

VII. DEPENDENCE OF OBSERVABLES ON
VACUUM ANGLE θ

In this section, we present our results for various
observables at T ¼ 0 as a function of the vacuum angle
θ. Our discussion thus extends to the entire bottom plane of
Fig. 1. We compare with the DMRG results of Ref. [41].
The string tension σQ, which characterizes confinement,

is defined as the change of energy per unit length when two
probe charges�Q are introduced in the system. In the limit
where the two charges are infinitely separated, they gen-
erate an additional background electric field that can be
taken into account by a redefinition of the vacuum angle:
θ → θ þ δ where δ ¼ 2πQ=e. The string tension can thus
be obtained by comparing two ground-state energies at
different θ. Since the energy per unit length is nothing but
the effective potential in the FRG formalism, one obtains

σQ ¼ Uθþδðϕ0;θþδÞ −Uθðϕ0;θÞ; ð32Þ

where the notation emphasizes that the k ¼ 0 effective
potentialUθ depends on the vacuum angle. Here, ϕ0;θ is the
value of the field at the minimum of Uθ. The string tension
is a periodic function of θ. In the following we restrict
ourselves to θ ¼ 0 and consider (with the relabeling δ → θ)

σθ ¼ Uθðϕ0;θÞ − U0ðϕ0;0Þ: ð33Þ

As the order parameter, the electric field E ¼ − e
2π ϕ0;θ is

also an interesting observable.
The chiral density, which serves as an order parameter

for chiral symmetry breaking, is of particular interest in the
massless Schwinger model since it is nonvanishing due
to the chiral anomaly. In the massive model, the chiral
symmetry is broken explicitly. Nevertheless, the anomaly
still leaves an imprint on the chiral condensate. It can be
obtained by taking a derivative of the partition function
with respect to u or, equivalently, the fermion mass. In
terms of the effective potential this yields

hψ̄ψi ¼ −
∂Uθðϕ0;θÞ

∂m ¼ eγ

2π
Λhcosð

ffiffiffiffiffiffi
4π

p
ϕþ θÞi: ð34Þ

This derivative can be obtained either by taking the finite
difference after integrating the flow equations or, as we
discuss in Appendix C, by integrating the flow equation for
∂mUk but the results are less accurate.
Finally, we are interested in the particle spectrum. This

was discussed originally by Coleman [32], who counted
the number of stable particles in all phases. Unfortunately
only the first excitation is available in the derivative
expansion approximation. Its mass is given by the pole
of the propagator,

FIG. 2. Effective potential UkðϕÞ (up to a constant) and the
function Z̃kðϕÞ for k → 0 in the symmetric and ordered phase as
well as near the critical point. Note that in the ordered phase the
potential has not become convex and Z̃k develops a nonanalytic
structure. Z̃k is normalized according to Eq. (29) near criticality
and according to Eq. (24) otherwise.
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M2
1 ¼ lim

k→0

U00
θ;kðϕÞ

Zθ;kðϕÞ
				
ϕ¼ϕ0;θ

: ð35Þ

These four observables are shown as a function of θ
in Fig. 3 where they are compared with the DMRG
results of Buyens et al. [41]. The string tension and the
electric field show an excellent agreement. From this, we
can conclude that the effective potential has very well
converged on its convex part, even though part of it
remains concave.
The mass gap is also very well reproduced in the

symmetric phase. In the broken phase, there is a significant
difference, especially for θ near its critical value θc ¼ π.
Since the convex part of the effective potential seems to
have converged to its infrared value, it seems that the
problem must come from ZkðϕÞ. Indeed we see in Fig. 2
that in the SSB phase ZkðϕÞ approaches a nonanalytic
function. While it remains regular for any finite k, its exact
structure exhibits pronounced peaks, which are hard to
resolve numerically. This is less of an issue in the sine-
Gordon model; the minimum being always at ϕ ¼ 0, it is
maximally far away from the difficult region. The error on
the mass, which is about 10% in the sine-Gordon model for
K ¼ 1

2
[25], gets amplified to more than 50% at θ ¼ π by

the mass term of the Schwinger model, which pushes the
minima of UkðϕÞ towards the peaks of ZkðϕÞ.

Numeric results for the string tension, electric field, and
chiral density using matrix product states were also
reported in Ref. [56]. They are compatible with ours but
concern only the symmetric phase.
Our results are robust against a change of the

regulator amplitude α. Note that α must be chosen
greater than 2 to ensure that the propagator remains
positive definite [54].
As we expect, the electric field, as the order parameter of

the phase transition, is discontinuous in the ordered phase
for θ ¼ π. The string tension exhibits a cusp at this point. A
larger fermion mass allows for a larger electric field and
also stronger confinement. The larger string tension is easy
to interpret as heavier fermions imply a higher threshold for
pair production, responsible for a partial screening of
fractional charges. The same is true for the electric field,
as the quark-antiquark pairs try to screen the background
electric field. Both quantities lose their θ dependency in the
limit m → 0 as is expected from the massless Schwinger
model. This also holds for the mass gap M1, which
approaches the Schwinger mass M in this limit. Near the
phase transition, the theory becomes almost massless at
θ ¼ π. For the chiral density, the opposite is true. In the
zero-mass limit, it is strongly dependent on the vacuum
angle due to the chiral anomaly. At finite mass, the chiral
symmetry is explicitly broken, but in the weak coupling
limitm=e ≫ 1, the theory becomes a free fermionic theory,
where the gauge field and therefore also the vacuum angle
become unimportant.

VIII. TEMPERATURE DEPENDENCE OF
OBSERVABLES

Finally we extend the discussion to finite temperatures,
i.e., the vertical dimension of Fig. 1.
In Fig. 4 we benchmark our finite temperature imple-

mentation by comparing our result for the chiral density at
m ¼ 0 with the exact analytic expression by Sachs and
Wipf [48],

FIG. 3. The infrared expectation values of the string tension,
electric field, chiral density and the mass of the first excitation as
a function of the vacuum angle θ (lines). The results are compared
with the DMRG results of Buyens et al. [41] (crosses).

FIG. 4. Result of our numerical calculation for the chiral
condensate at finite temperature and m ¼ 0, using both the flow
equation and the finite difference method, compared with the
analytic result (36) of Sachs and Wipf [48].
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hψ̄ψi ¼ M
2π

eγe2IðMT Þ; IðxÞ ¼
Z

∞

0

dt
1 − ex cosh t

: ð36Þ

Our result agrees both in the zero-temperature limit, where
it approaches the value mentioned in Eq. (7), and in the
high-temperature limit, where the chiral density decays
exponentially,

hψ̄ψi⟶T→∞
2Te−

πT
M : ð37Þ

At a value of about T=e ∼ 6 machine precision is reached,
so the finite difference method used to compute the
derivative in (34) breaks down at this point. When
using the calculation based on the flow equation (see
Appendix C), the lack of numerical precision manifests
itself as a constant offset of the function ∂mUθðϕÞ which
can be easily removed and the calculation therefore
continued beyond this limit.
We now consider nonzero values of m where the

string tension and the electric field are nonvanishing.
Additionally, we will also calculate the entropy density,
which is related to the string tension by

Sθ − S0 ¼ −
∂
∂T σθ; ð38Þ

using the finite difference method with ΔT ¼ 10−7Λ to
compute the temperature derivative. We first consider
the limit θ → 0. To allow for nontrivial electric field,
we consider a small, but nonvanishing, value α ¼ θ=
2π ¼ 0.05. Our results in this limit are shown in Figs. 5
and 6. They compare rather well with the finite-temperature
DMRG study by Buyens et al. [45]. In the low-temperature
regime, the agreement is better for higher values of m=e.
However, we believe that the FRG results are more reliable
than the DMRG ones for all values ofm=e in this limit; our
small, finite temperature results converge to our zero-
temperature result, which are in accurate agreement also
with Buyens’ more recent zero-temperature study [41], as
we have shown in Fig. 3.
In the high-temperature limit, our results agree very well

with Ref. [45] for the smaller values of m=e, but for higher
values the amplitude is no longer accurately reproduced.
Nevertheless the correct exponential decay is exhibited for
all values ofm=e (Fig. 6). As compared to Ref. [45] we can
continue our results to higher temperatures, but eventually
fail at the threshold of numerical precision as discussed
before for the case m ¼ 0. The difference with the results
of Ref. [45] is more pronounced in the crossover region
between the low- and high-temperature regimes, especially
for the chiral condensate. For the three higher values of
m=e, our results for the peaks are systematically higher,
even though the zero temperature limits agree.
Now turning to the case θ ¼ π we observe a major

qualitative difference with the DMRG [45] result: For

FIG. 5. Dependence of string tension, electric field, chiral density
and entropy density on inverse temperature for α ¼ θ=2π ¼ 0.05
(continuous) comparedwith theDMRGresults ofBuyens et al. [45]
(dotted lines). Both the chiral and entropy density are calculated
using a finite difference with respect to mass and temperature,
respectively.

FIG. 6. The same quantities as in Fig. 5 are shown but plotted
logarithmically over temperature, such that the exponential decay
with T becomes apparent. For clarity the results are only plotted
until T=e ∼ 2.5, where Buyens’ results (dotted lines) start to lose
accuracy [45].
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values m=e > ðm=eÞc we find that thermal fluctuations are
no longer able to restore the symmetry of the effective
potential below a critical temperature Tcðm=eÞ. The
dependence of the critical temperature on the ratio m=e
is shown in Fig. 7 along with the nonvanishing order
parameter. This is unexpected since at the scale k ¼ 2πT
the model becomes effectively one dimensional as the
nonzero Matsubara frequencies become heavily sup-
pressed. Although, as discussed in Ref. [45], neither the
Mermin-Wagner theorem nor the Peierls argument apply to
the Schwinger model, a one-dimensional field theory at
T > 0 corresponds to a quantum-mechanical one-particle
problem, where SSB is usually assumed to be absent. Also,
in Ref. [45] numerical evidence was found for the restora-
tion of symmetry.
At finite temperature, the flow is eventually dominated

by the vanishing Matsubara frequency ωn¼0 ¼ 0 (quantum-
classical crossover). One can then approximate the
Matsubara sum by T

P
ωn

fðωnÞ ≃ Tfð0Þ. The flow equa-
tions become one dimensional and the prefactor 1=

ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p
of the loop term in the flow equations (see Appendix B) is
then replaced by

T̃ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p ¼ T
Zkk

∼ kηk−1 ð39Þ

and is suppressed when ηk > 1 (T̃ ¼ T=ckk is the dimen-
sionless temperature). This will occur whenever in the
quantum part of the flow the system is attracted by the
T ¼ 0 fixed point of the ordered phase characterized by
limk→0 ηk ¼ 2. In that case the T ¼ 0 fixed point
remains attractive and the symmetry is not restored. This
phenomenon is thus strongly related to the problem of
convexity discussed in Sec. VI. As noted in Ref. [57], a
similar difficulty occurs in the FRG approach to the one-
dimensional sine-Gordon model. The instantons, which
are responsible for the restoration of the symmetry in the

one-dimensional sine-Gordon model [58], are therefore
not properly taken into account in the derivative
expansion although they are accurately described in the
two-dimensional case [25].
Interestingly, recent studies have shown using symmetry

arguments that some specific quantum mechanical systems,
like a particle on a ring with magnetic flux going through
the ring, can indeed have a degenerate ground state [59,60].
The authors were able to map the free Schwinger model on
a torus with no coupled fermions, corresponding to the
limit m=e → ∞, to this particular quantum-mechanical
model. Using Lorentz symmetry, this result is then also
applicable to finite temperature via a Wick rotation,
showing that the free Schwinger model has a degenerate
ground state at T > 0. This was shown to hold also for the
gauge field coupled to a matter particle [60]. However a
requirement of their discussion is that the matter particle
must have a charge greater than the fundamental charge,
e.g., q ¼ 2e. Since the model discussed in our present work
has the fundamental charge, these arguments are not
applicable. We are therefore convinced that the lack of
symmetry restoration in the Schwinger model at finite
temperature is an artifact of our approach.

IX. CONCLUSION

The nonperturbative functional renormalization group
approach has proven to be an efficient method to study
the sine-Gordon model. In particular, it gives an accurate
estimate of the mass of the soliton and soliton–antisoliton
bound state (breather) in the massive phase, which is
exactly known thanks to the integrability of the model.
It also allows us to quantify the amplitude of quantum fluc-
tuations in agreement with the Lukyanov-Zamolodchikov
conjecture [25]. In this paper, we have shown that the FRG
approach is also a very powerful method, notably at zero
temperature, to determine the physical properties of the
massive sine-Gordon model, which is the bosonized
version of the massive Schwinger model. More generally,
the FRG is very useful to study quantum systems in d ¼
1þ 1 dimensions where solitonlike excitations may play a
crucial role [61].
By computing the critical exponents, we confirm that the

phase transition occurring in the massive Schwinger model
for a value θ ¼ π of the vacuum angle belongs to the two-
dimensional Ising universality class, as had been shown in
several previous studies [40,42]. Though the precision of
the critical exponents is typical of a second-order derivative
expansion (DE), more accurate results could be obtained
by pushing the expansion to higher orders [11,12]. On the
other hand, we find that the phase transition occurs for a
critical ratio ðm=eÞc ¼ 0.318ð13Þ between the mass and the
charge of the fermions, which is in agreement with the
highest precision results available in the literature [40].
We have also computed the temperature and vacuum

angle dependence of various physical quantities: string

FIG. 7. For θ ¼ π, we observe that the symmetry of the
effective potential is not restored below a critical temperature
Tcðm=eÞ. The left plot shows the temperature dependence of the
electric field for different values of m=e, suggesting a discon-
tinuous phase transition, and the right plot shows the dependence
of Tc on the ratio m=e.
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tension, electric field, chiral density, mass gap of the
lowest-lying excitation and entropy density. At zero tem-
perature, our results are in excellent agreement with DMRG
lattice calculations [41]. The finite temperature results near
θ ¼ 0 are also in good agreement with the lattice calcu-
lations [45], though less accurate. At θ ¼ π and for
m=e > ðm=eÞc, we do not observe the restoration of the
symmetry as expected for a quantum system in one space
dimension at finite temperature. We ascribe this failure to
the inability of our limited truncation to properly account
for all the effects of instantons in the one-dimensional
Schwinger and sine-Gordon models [57].
Whether or not topological excitations, in particular

when they are responsible for symmetry restoration, can
be captured by truncations like the DE is a very interesting
issue in many models. There is no doubt that the DE, which
yields very accurate estimates of the critical exponents
[11,12], captures the topological excitations of the three-
dimensional O(3) model in which the hedgehog singular-
ities are known to be essential [62,63]. The situation is less
clear in lower dimensions. Nevertheless, the kinks of the
one-dimensional φ4 theory [64] and the vortex excitations
(responsible for the Berezinskii-Kosterlitz-Thouless tran-
sition) in the two-dimensional O(2) model [65] are, at least
partially, captured. In the two-dimensional sine-Gordon
model solitons and antisolitons, as well as their lowest-
lying bound state (breather), are well described [25]. The
possibility to accurately describe the topological excitations
and their consequences for the one-dimensional sine-
Gordon model, and therefore the finite-temperature
Schwinger model (in d ¼ 1þ 1), remains currently an
open issue.
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APPENDIX A: REGULATOR DEPENDENCE

The critical exponents were calculated using the princi-
ple of minimal sensitivity and three different regulators,

rðyÞ ¼

8>><
>>:

α
ey−1 ;

α ð1−yÞ2
y Θð1 − yÞ;

α e−y
y ;

ðA1Þ

which all have the same limit rðyÞ → α=y for y → 0 (Θ
denotes the step function). The result is shown in Fig. 8.

The first regulator, also defined in Eq. (17), shows the least
sensitivity of the three regulators and was thus chosen
with α ¼ 2.

APPENDIX B: FLOW EQUATIONS

Defining the length of the system L via ð2πÞ2δð0Þ ¼
L=T, the flow equations for Uk, Zk and Xk can be deduced
from Eq. (19) using the following identities

UkðϕÞ ¼
T
L
Γk½ϕ�; ðB1Þ

ZkðϕÞ ¼
T
2L

∂2
p

δ2

δϕð−p; 0Þδϕðp; 0ÞΓ
ð2Þ
k ½ϕ�; ðB2Þ

XkðϕÞ ¼
T
2L

Δ2
ω

δ2

δϕð0;−ωÞδϕð0;ωÞΓ
ð2Þ
k ½ϕ�; ðB3Þ

where Δω denotes the finite difference operator

ΔωfðωÞ ¼
1

2πT
ðfðωþ 2πTÞ − fðωÞÞ ðB4Þ

and the right hand sides are to be evaluated at constant field
and vanishing frequency and momentum. As discussed in
the main text, we find that the projection for XkðϕÞ using a
finite difference leads to better results than a continuous
derivative.
The flow equations for the dimensionless functions are

then given by

∂tŨk ¼ ðηk − 2ÞŨk þ
1

2
ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p l0;01;0;0; ðB5Þ

FIG. 8. Critical exponents η and ν vs α for the three regulators
defined in (A1).
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∂tZ̃k ¼ ηkZ̃k þ
1ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p
�
l2;02;0;1Ũ

000
k X̃

0
k þ ð2l0;03;0;0 þ 2l0;12;1;0 þ l0;22;0;1ÞŨ000

k Z̃
0
k −

1

2
l0;02;0;0Z̃

00
k þ

1

2
l4;02;0;1X̃

02
k

þ
�
3l0;23;0;0 þ 2l0;32;1;0 þ

1

2
l0;42;0;1

�
Z̃02
k þ ð2l2;03;0;0 þ 2l2;12;1;0 þ l2;22;0;1ÞX̃0

kZ̃
0
k þ

1

2
l0;02;0;1Ũ

0002
k

�
ðB6Þ

and

∂tX̃k ¼ ξkX̃k þ
1ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p
�
t0;2;02;0;1Ũ

000
k Z̃

0
k þ ð2t0;0;03;0;0 þ 2t1;0;02;1;0 þ t2;0;02;0;1 þ t0;0;22;0;1ÞŨ000

k X̃
0
k −

1

2
t0;0;02;0;0X̃

00
k þ

1

2
t0;4;02;0;1Z̃

02
k

þ
�
3t2;0;03;0;0 þ 2t3;0;02;1;0 þ

1

2
t4;0;02;0;1 þ

1

2
t0;0;42;0;1 þ t0;0;23;0;0 þ 2t1;0;22;1;0 þ

3

2
t2;0;22;0;1

�
X̃02
k

þ ð2t0;2;03;0;0 þ 2t1;2;02;1;0 þ t2;2;02;0;1 þ t0;2;22;0;1ÞX̃0
kZ̃

0
k þ

1

2
t0;0;02;0;1Ũ

0002
k

�
ðB7Þ

with t ¼ lnðk=ΛÞ. The threshold functions lν;μa;b;c ¼ lν;μa;b;cðŨ00
k; Z̃k; X̃k; ηk; ξkÞ are defined as

lν;μa;b;c ¼
Z
p̃;ω̃

ω̃νp̃μG̃að∂p̃G̃Þbð∂2
p̃G̃Þc

_Rk

Zkk2
ðB8Þ

and, analogously, tν;μ;fa;b;c ¼ tν;μ;fa;b;cðŨ00
k; Z̃k; X̃k; ηk; ξkÞ with

tν;μ;fa;b;c ¼ ð2πT̃Þf
Z
p̃;ω̃

ω̃νp̃μG̃aðΔω̃G̃ÞbðΔ2
ω̃G̃Þc

_Rk

Zkk2
; ðB9Þ

where p̃ ¼ p=k and ω̃ ¼ ω=ckk. The dimensionless propagator and its derivatives read

G̃ ¼ 1

Z̃kp̃2 þ X̃kω̃
2 þ Ũ00

k þ yr
; ðB10Þ

∂p̃G̃ ¼ −G̃2ðZ̃k þ rþ yr0Þ; ∂2
p̃G̃ ¼ 2G̃3ðZ̃k þ rþ yr0Þ2 − G̃2ð2r0 þ yr00Þ; ðB11Þ

where y ¼ p̃2 þ ω̃2. In the zero temperature limit T → 0, the finite difference operator becomes continuous Δω → ∂ω and
the threshold functions reduce to tn;m;0

a;b;c → ln;ma;b;c. The Euclidean SOð2Þ symmetry is then restored, XkðϕÞ ¼ ZkðϕÞ, so that
the two flow equations for Z̃k and X̃k become identical,

∂tZ̃k ¼ ηkZ̃k þ
1

Zk

�
ð2l0;03;0;0 þ 2l0;12;1;0 þ l0;22;0;1 þ l2;02;0;1ÞŨ000

k Z̃
0
k −

1

2
l0;02;0;0Z̃

00
k þ

1

2
l0;02;0;1Ũ

0002
k

þ
�
3l0;23;0;0 þ 2l0;32;1;0 þ

1

2
l0;42;0;1 þ 2l2;03;0;0 þ 2l2;12;1;0 þ l2;22;0;1 þ

1

2
l4;02;0;1

�
Z̃02
k

�
; ðB12Þ

and agree with the equation found in [25] after a partial integration.

APPENDIX C: FLOW EQUATIONS FOR THE CHIRAL CONDENSATE

The chiral condensate can be obtained by integrating the flow equations for the derivatives of the functions Ũk, Z̃k, and
X̃k with respect to the fermion mass m. These flow equations can be obtained from the flow equations of the effective
potential and the wave function renormalizations,

∂t∂mŨk ¼ ðηk − 2Þ∂mŨk þ
1

2
ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p ∂ml
0;0
1;0;0; ðC1Þ
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∂t∂mZ̃k ¼ ηk∂mZ̃k þ
1ffiffiffiffiffiffiffiffiffiffiffi
ZkXk

p
�
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and

∂t∂mX̃k ¼ ξk∂mX̃k þ
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ZkXk
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k þ t0;0;02;0;1ð∂mŨ000
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02
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k

�
: ðC3Þ

At zero temperature the equations for the derivatives of the wave function renormalizations reduce to

∂t∂mZ̃k ¼ ηkZ̃k þ
1

Zk

�
1

2
ð∂ml
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2;0;1ÞŨ0002
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k Z̃
0
k

þ ð2l0;03;0;0 þ 2l0;12;1;0 þ l0;22;0;1 þ l2;02;0;1Þðð∂mŨ000
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The derivatives of the threshold functions are

∂ml
ν;μ
a;b;c ¼

Z
p̃;ω̃

ω̃νp̃μG̃að∂p̃G̃Þbð∂2
p̃G̃Þc

_Rk

Zkk2
ðaG̃−1∂mG̃þ bð∂p̃G̃Þ−1∂p̃∂mG̃þ cð∂2

p̃G̃Þ−1∂2
p̃∂mG̃Þ ðC5Þ

and

∂mt
ν;μ;f
a;b;c ¼ ð2πT̃Þf

Z
p̃;ω̃

ω̃νp̃μG̃a−1ðΔω̃G̃ÞbðΔ2
ω̃G̃Þc

_Rk

Zkk2
ðaG̃−1∂mG̃þ bðΔω̃G̃Þ−1Δω̃∂mG̃þ cðΔ2

ω̃G̃Þ−1Δ2
ω̃∂mG̃Þ; ðC6Þ
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where the derivative of the propagator is given as

∂mG̃ ¼ −G̃2ð∂mZ̃kp̃2 þ ∂mX̃kω̃
2 þ ∂mŨ00

kÞ: ðC7Þ

The initial conditions for the various functions are

∂mZkinðϕÞ ¼ 0; ∂mXkinðϕÞ ¼ 0;

∂mUkinðϕÞ ¼ −
eγ

2π
Λ cosð

ffiffiffiffiffiffi
4π

p
ϕþ θÞ: ðC8Þ

The expectation value of the chiral condensate is then
obtained by using Eq. (34). The results are compared with
those obtained through a discrete derivative in Fig. 9.
Contrary to the discrete-derivative method the flow-
equation approach works only for small values of e=m.
The reason is probably similar to the one invoked in
Sec. VII for the explanation of the deviation of the mass
gap from the DMRG results.

APPENDIX D: NUMERICAL IMPLEMENTATION

The hard UV cutoff is implemented by limiting the
integration or summation boundary by y<minðΛ2=k2;25Þ
where y ¼ ðp2 þ ω2

n=c2kÞ=k2. The additional cutoff at
ymax ¼ 25 at which the integral is already suppressed by a
factor of e−25 is considered for numerical reasons. If the
number of Matsubara frequencies falling into this interval is
greater thanNmax ¼ 30, the flow is approximated by the zero
temperature equations.Nmax ¼ 30was determined by requir-
ing that the error of the quantity ηk − ξk due to this
approximation is indistinguishable from numeric noise.
This quantity is vanishing at zero temperature and therefore
an indicator of the importance of thermal fluctuations. The
integrals are implemented using the GNU Scientific Library
(GSL). The derivatives of the functions ŨkðϕÞ, Z̃kðϕÞ, X̃kðϕÞ
and their derivatives with respect to m are evaluated in
Fourier space, exploiting their periodicity. This is imple-
mented with the GSL fast Fourier transform. The variable ϕ
was discretized and a grid size N ¼ 128 for the various
functions was found to be sufficient. Finally, the flow equa-
tions are integrated using a 4th order Runge-Kutta algorithm.
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