
PHYSICAL REVIEW E 101, 042139 (2020)
Editors’ Suggestion

Bose-glass phase of a one-dimensional disordered Bose fluid: Metastable states,
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We study a one-dimensional disordered Bose fluid using bosonization, the replica method, and a nonper-
turbative functional renormalization-group approach. We find that the Bose-glass phase is described by a fully
attractive strong-disorder fixed point characterized by a singular disorder correlator whose functional dependence
assumes a cuspy form that is related to the existence of metastable states. At nonzero momentum scale k, quantum
tunneling between the ground state and low-lying metastable states leads to a rounding of the cusp singularity into
a quantum boundary layer (QBL). The width of the QBL depends on an effective Luttinger parameter Kk ∼ kθ

that vanishes with an exponent θ = z − 1 related to the dynamical critical exponent z. The QBL encodes the
existence of rare “superfluid” regions, controls the low-energy dynamics, and yields a (dissipative) conductivity
vanishing as ω2 in the low-frequency limit. These results reveal the glassy properties (pinning, “shocks,” or
static avalanches) of the Bose-glass phase and can be understood within the “droplet” picture put forward for the
description of glassy (classical) systems.
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I. INTRODUCTION

In quantum many-body systems, disorder may lead to
a localization transition. In the absence of interaction, this
is due to the Anderson localization of single-particle wave
functions [1,2], a phenomenon that is now well understood
and has been observed in various experiments ranging from
microwaves to cold atoms [3]. The situation is considerably
more complex when disorder competes with collective effects
due to interactions between particles.

In interacting disordered boson systems, one expects
a competition between superfluidity and localization. This
question was first addressed in one dimension by Gia-
marchi and Schulz (GS), who showed, using a perturbative
renormalization-group (RG) approach, that the system under-
goes a transition between a superfluid and a localized phase
[4,5]. Scaling arguments have led to the conclusion that the lo-
calized phase, dubbed Bose glass, also exists in higher dimen-
sions and is generically characterized by a nonzero compress-
ibility, the absence of a gap in the excitation spectrum and
an infinite superfluid susceptibility [6]. Experimentally, the
superfluid–Bose-glass transition has regained a considerable
interest thanks to the observation of a localization transition
in cold atomic gases [7–9] as well as in magnetic insulators
[10–12]. The Bose-glass phase is also relevant for the physics
of one-dimensional Fermi fluids [13], charge-density waves in
metals [14], and superinductors [15].

Most previous studies of one-dimensional disordered
bosons have focused on the determination of the phase dia-
gram and the nature of the superfluid–Bose-glass transition
(one exception being the Gaussian variational method of
Ref. [16] that we briefly comment in Sec. IV B1). The original
GS approach, which is valid in the limit of weak disorder, is
based on the replica formalism, bosonization, and a one-loop

RG calculation [4,5]. It suggests the phase diagram shown in
Fig. 1 (possibly with an additional transition line that would
lead to the existence of two distinct Bose-glass phases) and
shows that for weak disorder (i.e., large U/D in Fig. 1),
the transition is in the Berezinskii-Kosterlitz-Thouless (BKT)
universality class with a universal critical Luttinger parameter
Kc = 3/2. This scenario has been confirmed by a two-loop
calculation [17,18]. To study the strong-disorder limit (small
U/D in Fig. 1), different approaches (including numerical
simulations) have been used [19–26]. In this regime, the
physics of rare weak links plays a crucial role. Nevertheless,
the transition is still believed to be of BKT type but with a
nonuniversal critical Luttinger parameter Kc > 3/2.

In this paper, we consider the weak-disorder limit where
the bosonization approach [4,5] is a valid starting point.
By using a nonperturbative functional renormalization-group
(FRG) approach, we can go beyond the perturbative RG of
GS and follow the RG flow in the strong-disorder regime.
This allows us to determine the physical properties of the
Bose-glass phase. Perturbative implementations of the FRG
in disordered (classical) systems have a long history [27–34].
The nonperturbative version [35–37] has been used more
recently to study the random-field Ising model [38–42] and
random elastic manifold models [43]. Here we report the first
application to a quantum system [44].

An essential feature of the FRG approach is that the renor-
malized disorder correlator may assume a cuspy functional
form whose origin lies in the existence of many different mi-
croscopic, locally stable, configurations [45]. This metastabil-
ity leads in turn to a host of effects specific to disordered sys-
tems: nonergodicity, pinning and “shocks” (static avalanches),
depinning transition and avalanches, chaotic behavior, slow
dynamics and aging, etc. In this paper, we describe in detail
the FRG approach to one-dimensional disordered bosons and

2470-0045/2020/101(4)/042139(19) 042139-1 ©2020 American Physical Society

https://orcid.org/0000-0001-7710-4084
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.101.042139&domain=pdf&date_stamp=2020-04-00
https://doi.org/10.1103/PhysRevE.101.042139


NICOLAS DUPUIS AND ROMAIN DAVIET PHYSICAL REVIEW E 101, 042139 (2020)

D

U

FIG. 1. Schematic phase diagram of a disordered
one-dimensional Bose fluid as a function of boson repulsion
U and disorder strength D.

show that it gives a fairly complete picture of the Bose-glass
phase while emphasizing the importance of metastable states.

The outline of the paper is as follows. In Sec. II we present
the bosonization approach and the replica formalism. We
introduce the scale-dependent effective action �k , the main
quantity of interest in the FRG approach, and its exact flow
equation. We then discuss the truncation of �k used to obtain
an approximate solution of the flow equation. In Sec. III
we consider the superfluid–Bose-glass transition and recover
the standard BKT flow equations in agreement with GS. In
Sec. IV we show that the Bose-glass phase is described by a
strong-disorder fixed point where the renormalized Luttinger
parameter vanishes and the disorder correlator assumes a
cuspy functional form. At finite momentum scale k, the cusp
singularity is rounded into a QBL whose size depends on an
effective Luttinger parameter Kk ∼ kθ that vanishes with an
exponent θ = 1 − z, where z is the dynamical critical expo-
nent. This rounding is explained by the quantum tunneling
between the ground state and low-lying metastable states,
which is expected to give rise to (rare) “superfluid” regions
with significant density fluctuations and therefore reduced
fluctuations (i.e., a nonzero rigidity) of the phase of the boson
field. Furthermore, we find that the QBL is responsible for
the low-frequency equilibrium dynamics and in particular the
vanishing of the conductivity as ω2. Finally, we show that
our results can be understood within the “droplet picture” of
glassy systems [46].

We set h̄ = kB = 1 throughout the paper.

II. FRG APPROACH

A. Model and replica formalism

We consider a one-dimensional Bose fluid described by
the Hamiltonian Ĥ0 + Ĥdis. In the absence of disorder, at low
energies Ĥ0 can be approximated by the Tomonaga-Luttinger
Hamiltonian [13,47,48],

Ĥ0 =
∫

dx
v

2π

[
1

K
(∂xϕ̂)2 + K (∂x θ̂ )2

]
, (1)

where θ̂ is the phase of the boson operator ψ̂ (x) =
eiθ̂ (x)ρ̂(x)1/2 and ϕ̂ is related to the density operator via

ρ̂(x) = ρ0 − 1

π
∂xϕ̂(x) + 2ρ2 cos[2πρ0x − 2ϕ̂(x)], (2)

where ρ0 is the average density and ρ2 a nonuniversal param-
eter that depends on microscopic details. ϕ̂ and θ̂ satisfy the
commutation relations [θ̂ (x), ∂yϕ̂(y)] = iπδ(x − y). v denotes
the sound-mode velocity and the dimensionless parameter K ,

which encodes the strength of boson-boson interactions, is the
Luttinger parameter. The constant ρ2 depends on microscopic
details of the system. The ground state of Ĥ0 is a Luttinger
liquid, i.e., a superfluid state with superfluid stiffness ρs =
vK/π and compressibility κ = dρ0/dμ = K/πv [13].

The disorder contributes to the Hamiltonian a term [4,5]

Ĥdis =
∫

dx

{
− 1

π
η∂xϕ̂ + ρ2[ξ ∗e2iϕ̂ + H.c.]

}
, (3)

where η(x) (real) and ξ (x) (complex) denote random poten-
tials with Fourier components near 0 and ±2πρ0, respectively.
η can be eliminated by a shift of ϕ̂,

ϕ̂(x) → ϕ̂(x) + α(x), ∂xα = K

v
η, (4)

and is not considered in the following.
In the functional-integral formalism, after integrating out

the field θ , one obtains the Euclidean (imaginary-time) action

S[ϕ; ξ ] =
∫

x,τ

{
v

2πK
[(∂xϕ)2 + v−2(∂τϕ)2]

+ ρ2[ξ ∗e2iϕ + c.c.]

}
, (5)

where we use the notation
∫

x,τ = ∫ β

0 dτ
∫

dx and ϕ(x, τ ) is
a bosonic field with τ ∈ [0, β]. The model is regularized by
a UV cutoff � acting both on momenta and frequencies. We
shall only consider the zero-temperature limit β = 1/T → ∞
but β will be kept finite at intermediate stages of calculations.
Equation (5) shows that the Luttinger parameter controls the
quantum fluctuations of the boson density (K → 0 corre-
sponds to the classical limit).

The partition function

Z[J; ξ ] ≡ eW [J;ξ ] =
∫

D[ϕ] e−S[ϕ;ξ ]+∫x,τ Jϕ (6)

is a functional of both the external source J and the random
potential ξ . The thermodynamics depends on the average
free energy W [J; ξ ] (the overbar denotes the average over
disorder) but full information on the system requires also
knowledge of higher moments of W [J; ξ ]. The latter can be
obtained by considering n copies (or replicas) of the system.
Quite differently from the standard but controversial use of
the replica trick, in which the analytic continuation n → 0
opens the possibility of a spontaneous breaking of the replica
symmetry (a signature of glassy properties) [49], in the FRG
approach one usually explicitly breaks the replica symmetry
by introducing n external sources acting on each replica
independently [38]. Thus we consider

Z[{Ja}] =
n∏

a=1

Z[Ja; ξ ]. (7)

Assuming a zero-mean Gaussian random potential ξ with
variance

ξ ∗(x)ξ (x′) = Dbδ(x − x′), (8)

we can explicitly perform the disorder average. This leads to

Z[{Ja}] =
∫

D[{ϕa}] e−S[{ϕa}]+
∑

a

∫
x,τ Jaϕa (9)
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with the replicated action [4,5]

S[{ϕa}] =
∑

a

∫
x,τ

v

2πK

{
(∂xϕa)2 + (∂τϕa)2

v2

}

−D
∑
a,b

∫
x,τ,τ ′

cos[2ϕa(x, τ ) − 2ϕb(x, τ ′)], (10)

where D = ρ2
2 Db and a, b = 1 · · · n are replica indices. Note

that the disorder part of the action is nonlocal in imaginary
time. If we interpret y = vτ as a space coordinate, then the
action (10) also describes (two-dimensional) elastic manifolds
in a (three-dimensional) disordered medium [32,50–54] yet
with a periodic structure and a perfectly correlated disorder
in the y direction [16,30,55]. The Luttinger parameter, which
controls quantum fluctuations in the Bose fluid, defines the
temperature of the classical model [16].

Introducing the functional W [{Ja}] = lnZ[{Ja}] defined by

exp (W [{Ja}]) = exp

(∑
a

W [Ja; ξ ]

)
, (11)

one easily obtains

W [{Ja}] =
∑

a

W1[Ja] + 1

2

∑
a,b

W2[Ja, Jb]

+ 1

3!

∑
a,b,c

W3[Ja, Jb, Jc] + · · · , (12)

where

W1[Ja] = W [Ja; ξ ],

W2[Ja, Jb] = W [Ja; ξ ]W [Jb; ξ ] − W [Ja; ξ ] W [Jb; ξ ], (13)

etc., are the cumulants of the random functional W [J; ξ ].
Equation (12) expresses W [J] as an expansion in increasing
number of free replica sums.

B. Scale-dependent effective action

The strategy of the nonperturbative RG approach is to build
a family of models indexed by a momentum scale k such that
fluctuations are smoothly taken into account as k is lowered
from the UV scale � down to 0 [35–37]. This is achieved by
adding to the action (10) the infrared regulator term

�Sk[{ϕa}] = 1

2

∑
a,q,ω

ϕa(−q,−iω)Rk (q, iω)ϕa(q, iω), (14)

where ω ≡ ωn = 2πn/β (n integer) is a Matsubara frequency.
The cutoff function Rk (q, iω) is chosen so that fluctuation
modes satisfying |q|, |ω|/vk 	 k are suppressed while those
with |q| 
 k or |ω|/vk 
 k are left unaffected (vk denotes the
k-dependent sound-mode velocity); its precise form will be
given below (the possibility to choose a nondiagonal function
Rk,ab is discussed in Appendix A).

The partition function

Zk[{Ja}] =
∫

D[{ϕa}] e−S[{ϕa}]−�Sk [{ϕa}]+
∑

a

∫
x,τ Jaϕa (15)

thus becomes k dependent. The expectation value of the field
reads

φa,k[x, τ ; {Jf }] = δ lnZk[{Jf }]
δJa(x, τ )

= 〈ϕa(x, τ )〉 (16)

(to avoid confusion in the indices we denote by {Jf } the n
external sources). The scale-dependent effective action

�k[{φa}] = − lnZk[{Ja}] +
∑

a

∫
x,τ

Jaφa − �Sk[{φa}] (17)

is defined as a modified Legendre transform which in-
cludes the subtraction of �Sk[{φa}]. Assuming that for k =
� the fluctuations are completely frozen by the �S� term,
��[{φa}] = S[{φa}] as in mean-field theory. On the other
hand, the effective action of the original model (10) is given by
�k=0 provided that Rk=0 vanishes. The nonperturbative FRG
approach aims at determining �k=0 from �� using Wetterich’s
equation [56–58],

∂t�k[{φa}] = 1
2 Tr
{
∂t Rk

(
�

(2)
k [{φa}] + Rk

)−1}
, (18)

where �
(2)
k is the second-order functional derivative of �k

and t = ln(k/�) a (negative) RG “time.” The trace in (18)
involves a sum over momenta and frequencies as well as the
replica index.

A difficulty with the replica formalism is that one must
invert the n × n matrix �

(2)
k [{φa}] + Rk for arbitrary values of

the fields φa (which are a priori all different since the sources
Ja are). To circumvent this difficulty we expand the effective
action

�k[{φa}] =
∑

a

�1,k[φa] − 1

2

∑
a,b

�2,k[φa, φb]

+ 1

3!

∑
a,b,c

�3,k[φa, φb, φc] + · · · (19)

in increasing number of free replica sums [38]. The minus
sign in Eq. (19) is chosen for later convenience. In Appendix
B we show how the free replica sum expansion allows one to
systemically obtain the inverse of the matrix �

(2)
k + Rk (or any

other matrix).
Since �[{φa}] is the Legendre transform of W [{Ja}], we can

relate the �i’s to the cumulants Wi using

�[{φa}] =
∑

a

∫
x,τ

Jaφa −
∑

a

W1[Ja] − 1

2

∑
a,b

W2[Ja, Jb]

− 1

3!

∑
a,b,c

W3[Ja, Jb, Jc] − · · · , (20)

where the source Ja is a functional of {φ f } defined by

Ja[x, τ ; {φ f }] = δ�[{φ f }]
δφa(x, τ )

= δ�1[φa]

δφa(x, τ )
−
∑

b

δ�2[φa, φb]

δφa(x, τ )
+ · · · . (21)

For simplicity we consider the case k = 0 [it is, however, easy
to generalize the discussion to the case k > 0 by subtracting
the regulator term �Sk[{φa}] in the right-hand side of (20)].
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From (20) and (21), by considering the one-replica term, one
obtains

�1[φa] = −W1[Ja] +
∫

x,τ
Ja[x, τ ; φa]φa(x, τ ), (22)

where

Ja[x, τ ; φa] = δ�1[φa]

δφa(x, τ )
(23)

is a functional of the field φa. We conclude that �1[φa] is the
Legendre transform of the first cumulant W1[Ja] = W [Ja; ξ ]
and thus determines the thermodynamics of the system. Con-
sidering now the two-replica term, one easily finds [38]

�2[φa, φb] = W2[Ja[φa], Jb[φb]], (24)

where Ja[φa] is the source defined in Eq. (23). Thus �2[φa, φb]
is directly the second cumulant of W [J; ξ ] (with the proper
choice of sources). We shall see that it encodes the existence
of metastable states and “shocks” (static avalanches). To
higher orders, the relation between the �i’s and the Wi’s is
more complicated [38], but will be of no use in the following.
By an abuse of language the �i’s will be referred to as
the cumulants of the renormalized disorder although this is
correct stricto sensu only for i � 2.

Another quantity of interest is the disorder-averaged two-
point correlation function. From the definition of W1[Ja] and
the fact that its Legendre transform is �1[φa], one obtains the
connected propagator

Gc(Q) = W (2)
1 (Q,−Q) = �

(2)−1
1 (Q,−Q, φ)

= 〈ϕ(Q)ϕ(−Q)〉 − 〈ϕ(Q)〉〈ϕ(−Q)〉, (25)

where

W (2)
1 (Q,−Q) = δ2W1[Ja]

δJa(−Q)δJa(Q)

∣∣∣∣
Ja=0

(26)

and Q = (q, iω). The two-point vertex �
(2)
1 is computed in a

constant (i.e., uniform and time-independent) field configu-
ration φ corresponding to a vanishing source, i.e., Ja[φ] = 0
with Ja[φ] defined by (23). Similarly, from the definition of
W2[Ja, Jb] one obtains the disconnected propagator

Gd (Q) = W (11)
2 (Q; −Q)

= 〈ϕ(Q)〉〈ϕ(−Q)〉 − 〈ϕ(Q)〉 〈ϕ(−Q)〉, (27)

with the notation

W (11)
2 (Q; −Q) = δ2W2[Ja, Jb]

δJa(−Q)δJb(Q)

∣∣∣∣
Ja=Jb=0

. (28)

The relation (24) between W2 and �2 then yields

Gd (Q) = Gc(Q)�(11)
2 (Q, φ; −Q, φ)Gc(Q). (29)

A more general discussion of Green functions can be found
in Appendix C.

C. RG equations for the disorder cumulants

RG equations for the cumulants �i,k[φa1 , . . . , φai ] are ob-
tained by inserting the free replica sum expansion (19) into
the exact flow equation (18). The propagator Gk[{φa}] =
(�(2)

k [{φa}] + Rk )−1 can be written as a free replica sum

∂tΓ2,k = −1
2

∂tΓ1,k = 1
2 + 1

2

− 1
2

− 1
4

FIG. 2. Diagrammatic representation of the RG equations (30)
and (31) satisfied by �1,k[φa] and �2,k[φa, φb]. The solid line stands
for the propagator Pk , the cross for ∂t Rk , and two black dots attached
to n and m propagators, respectively, and connected by dashed lines
for �

(n,m)
2,k . (Symmetric diagrams, obtained by moving the cross to a

different propagator line or exchanging the replica indices a and b,
are not shown.)

expansion and related to �
(2)
k [{φa}]. Ignoring the cumulants

�i,k with i � 3, one finds (see Appendix B) [38],

∂t�1,k[φa] = 1
2 Tr{∂t RkPk[φa]}

− 1
2 ∂̃t Tr

{
Pk[φa]�(11)

2,k [φa, φa]
}

(30)

and

∂t�2,k[φa, φb] = 1
2 ∂̃t Tr

{
Pk[φa]

[
�

(20)
2,k [φa, φb]

+�
(20)
2,k [φa, φb]Pk[φa]�(11)

2,k [φa, φa]

+ 1
2�

(11)
2,k [φa, φb]Pk[φb]�(11)

2,k [φb, φa]

+ perm(a, b)
]}

, (31)

where

Pk[φa] = (�(2)
1,k[φa] + Rk

)−1
(32)

and perm(a, b) denotes all terms obtained by exchanging the
replica indices a and b. We have introduced the operator ∂̃t =
(∂t Rk )∂Rk acting only on the time dependence of Rk and used
∂̃t Pk[φa] = −Pk[φa](∂t Rk )Pk[φa]. Equations (30) and (31) are
represented diagrammatically in Fig. 2.

D. Truncation scheme

The exact flow equation (18) cannot be solved exactly
and one has to resort to approximations. In the following we
consider an ansatz for the effective action which includes only
�1,k and �2,k:

�1,k[φa] =
∫

x,τ

{
Zx

2
(∂xφa)2 + 1

2
φa�k (−∂τ )φa

}
,

�2,k[φa, φb] =
∫

x,τ τ ′
Vk[φa(x, τ ) − φb(x, τ ′)]. (33)

A similar truncation of the effective action has been used with
success in the study of the random-field Ising model [38,39]
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as well as in the perturbative FRG approach to classical
disordered systems where it becomes controlled, within an
epsilon expansion, near the upper critical dimension. In most
disordered systems studied so far, it is the minimum truncation
that captures the physics of metastable states [42].

The initial condition ��[{φa}] = S[{φa}] implies
��(iω) = ω2/πvK and V�(u) = 2D cos(2u). The π -periodic
function Vk (u) directly gives the renormalized second
cumulant of the disorder. The form of �1,k and �2,k are
strongly constrained by the statistical tilt symmetry [59] (STS)
discussed in Appendix A. In particular Zx = v/πK remains
equal to its initial value and no higher-order space derivatives
are allowed. As for the part involving time derivatives, we
assume a quadratic form with an unknown “self-energy”
�k (iω) satisfying �k (iω = 0) = 0 as required by the STS
[60]. The infrared regulator ensures that the self-energy
�k (iω) is a regular function of ω near ω = 0 and can therefore
be written as �k (iω) = Zxω

2/v2
k + O(ω4). In addition to

the running velocity vk one may define a k-dependent
Luttinger parameter by Zx = vk/πKk . The popular derivative
expansion, which amounts to approximating �k (iω) = ω2/v2

k
by a quadratic function, is questionable in the present case
(as will be discussed in more detail in Sec. IV B 1). The
STS also ensures that the two-replica potential Vk (φa, φb) is a
function of φa − φb only. Note that in random elastic manifold
(classical) models with short-range correlated disorder, the
STS implies that �1,k is not renormalized [43]. In the quantum
model, because the disorder part of the replicated action (10)
is nonlocal in imaginary time, the dynamic part of �1,k is not
constrained.

As for the cutoff function we take

Rk (q, iω) = [Zxq2 + �k (iω)]r

[
Zxq2 + �k (iω)

Zxk2

]
, (34)

where r(x) = α/(ex − 1) with α a free parameter of order
unity. Thus the regulator term �Sk[ϕ] suppresses fluctuations
such that q2 	 k2 and �k (iω) 	 Zxk2 but leaves unaffected
those with q2 
 k2 or �k (iω) 
 Zxk2, i.e., with |q| 
 k or
|ω| 
 vkk.

1. Propagators

From Eqs. (25) and (27) and the ansatz (33) one obtains the
propagators

Gc,k (Q) = 1

Zxq2 + �k (iω) + Rk (Q)
, (35)

Gd,k (Q) = −βδω,0
V ′′

k (0)

[Zxq2 + Rk (q, 0)]2
(36)

(see Appendix D 3).

2. RG equations

By inserting the ansatz (33) into the flow equation (18) we
obtain coupled RG equations for �k (iω) and Vk (u). In practice
it is convenient to define dimensionless variables q̃ = q/k,
ω̃ = ω/vkk, and introduce the dimensionless functions

δk (u) = −K2

v2

V ′′
k (u)

k3
, (37)

�̃k (iω̃) = �(iω)

Zxk2
. (38)

The flow equations then read

∂tδk (u) = − 3δk (u) − Kkl1δ
′′
k (u)

+ π l̄2{δ′′
k (u)[δk (u) − δk (0)] + δ′

k (u)2}, (39)

∂t�̃k (iω̃) = − 2�̃k (iω̃) + zkω̃∂ω̃�̃k (iω̃)

− πδ′′
k (0)[l̄1(iω̃) − l̄1(0)], (40)

∂t Kk = θkKk, ∂t (Kk/vk ) = 0, (41)

where zk = 1 + θk is the running dynamical critical exponent
and

θk = π

2
δ′′

k (0)m̄τ . (42)

The derivation of Eqs. (39)–(42) is detailed in Appendix D
and the “threshold” functions l1, l̄2, l̄1(iω̃), m̄τ are defined in
Appendix D 4. Except for l̄2, the threshold functions depend
on k.

To numerically solve Eqs. (39)–(42), we expand δk (u) in
circular harmonics,

δk (u) =
pmax∑
p=1

δp,k cos(2pu), (43)

with typically pmax in the range [300,400]. Note that the
zeroth-order harmonics δ0,k always vanishes. To compute the
dimensionless self-energy �̃k (iω̃) we use a ω̃ grid of 100
points with ω̃ ∈ [0, 4]. For �k (iω), the ω grid contains 5000
points with ω ∈ [0,�]. The flow equations are integrated
using fourth-order Runge-Kutta method with adaptative step
size.

III. SUPERFLUID–BOSE-GLASS TRANSITION

In the absence of disorder (D� = 0) the system is a one-
dimensional superfluid with a sound-mode velocity v and a
Luttinger parameter K . To study the stability of this phase
and the transition to the Bose-glass phase it is sufficient
to approximate �k (iω) = Zxω

2/v2
k and Vk (u) = 2Dk cos(2u),

i.e., δk (u) = δ1,k cos(2u) with δ1,k = 8K2Dk/v
2k3. This gives

∂tδ1,k = (−3 + 4Kkl1)δ1,k + 4π l̄2δ
2
1,k,

θk = −2πm̄τ δ1,k .
(44)

For θk = 0, Kk = K , vk = v, and �k (iω) = ω2/πvK (i.e.,
�̃k (iω̃) = ω̃2), one has l1 = 1/2 regardless of the cutoff func-
tion Rk (see Appendix D 4). We conclude that the superfluid
phase is destabilized by an infinitesimal disorder when K <

3/2. This conclusion may be drawn more directly from the
scaling dimension [D] = 3 − 2K of the disorder strength in
the superfluid phase [61].

In the vicinity of (Kk = 3/2, δ1,k = 0), to leading order
Eqs. (44) yield

∂tδ1,k = 2δ1,k (Kk − 3/2),

∂t Kk = −3πm̄τ δ1,k, (45)
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FIG. 3. Flow diagram projected onto the plane (Kk, δ1,k ), where
Kk is the running Luttinger parameter and δ1,k is the first harmonic
of the dimensionless potential δk (u) defined by (37) and (43). The
thick solid line (Kk � 3/2, δ1,k = 0) shows the attractive line of fixed
points corresponding to the superfluid phase and the black dot (K∗ =
0, δ∗

1  0.159) the attractive fixed point corresponding to the Bose-
glass phase. The dashed line shows the critical trajectory (46) (with
C = 0) obtained from perturbative RG.

where m̄τ ≡ m̄τ |θk=0 < 0. These equations are similar to those
obtained in Refs. [4,5,17,18]. They imply that the flow trajec-
tories are parabolic,

δ1,k = − 1

3πm̄τ

(
Kk − 3

2

)2

+ C, (46)

where the constant C, which depends on the initial values
K� = K and δ1,�, vanishes for the critical trajectory pass-
ing through the critical point (Kk = 3/2, δ1,k = 0). Taking
(Kk,

√
δ1,k) as variables, Eqs. (45) and (46) reproduce the flow

equations of the BKT transition [62].
For all trajectories that do not end up in the superfluid

phase, the disorder strength δ1,k rapidly diverges. The pertur-
bative RG becomes uncontrolled once δ1,k ∼ 1 and is of little
use to understand the physical properties of the Bose-glass
phase.

IV. BOSE-GLASS PHASE

The nonperturbative FRG approach allows us to follow
the flow into the strong-disorder regime. All trajectories that
do not end up in the superfluid phase [limk→0 Kk > 3/2 and
limk→0 δk (u) = 0] are attracted by a fixed point characterized
by a vanishing Luttinger parameter K∗ = 0 and a two-replica
potential δ∗(u) (Fig. 3). The vanishing of Kk ∼ kθ is con-
trolled by an exponent θ = limk→0 θk = z − 1 which is related
to the dynamical critical exponent z of the Bose-glass phase.

The vanishing of the Luttinger parameter Kk has important
consequences. First, it implies that the renormalized super-
fluid stiffness

ρs,k = vkKk

π
= v

πK
K2

k ∼ k2θ (47)

and the charge stiffness (or Drude weight, i.e., the weight
of the zero-frequency delta peak in the conductivity, see

0 5 100

0.1

0.2

0.3

0.4

0.5

ln(Λ/k)

Kk

θk

FIG. 4. Kk and θk vs k in the Bose-glass phase (K = 0.4). The
value θ = limk→0 θk = 1/2 is obtained from a fine-tuning of the
coefficient α in the definition (34) of the cutoff function Rk (see text).

Sec. IV B 3)

Dk = vkKk = v

K
K2

k ∼ k2θ (48)

vanish for k → 0, whereas the compressibility,

κ = Kk

πvk
= K

πv
= 1

π2Zx
, (49)

is unaffected by disorder. The fact that ρs,k and Dk are nonzero
at any finite scale k > 0 can be related to the infinite superfluid
susceptibility [6]. Second, it shows that quantum fluctuations
are suppressed at low energies. We thus expect the phase field
ϕ(x, τ ) to have weak temporal (quantum) fluctuations and to
adjust its value in space so as to minimize the energy due to the
random potential, a hallmark of pinning (this point is further
discussed in Sec. IV C).

It is difficult to predict precisely the values of z and θ ,
which turn out to be sensitive to the RG procedure (see
Sec. IV B 3). Figure 4 is obtained for θ = 1/2, i.e., z = 3/2
[this value is obtained by a fine-tuning of the coefficient α in
the definition (34) of the cutoff function Rk].

A. Disorder correlator: Cusp and QBL

1. Numerical determination of the QBL

The fixed-point potential δ∗(u) is defined by ∂tδ
∗(u) = 0,

i.e.,

−3δ∗(u) + π l̄2{δ∗′′(u)[δ∗(u) − δ∗(0)] + δ∗′(u)2} = 0 (50)

since K∗ = 0. Equation (50) admits a nontrivial π -periodic
solution,

δ∗(u) = 1

2π l̄2

[(
u − π

2

)2

− π2

12

]
, u ∈ [0, π ], (51)

which exhibits cusps at u = nπ (n integer).
To study the stability of the fixed-point solution (51) we

write

δk (u) = δ∗(u) + g(u)eλt (52)
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FIG. 5. Left: Potential δk (u) = −(K2/v2k3)V ′′
k (u) for various

values of k (K = 0.4 and δ1,� = 0.005). The green curve shows the
initial condition δ�(u) = δ1,� cos(2u) and the red one the fixed-point
solution (51). Right: δk (u) for u near 0 showing the formation of
the QBL (k/�  0.050/0.030/0.018/0.011/0.007/0 from bottom
to top).

with g(u) a k-independent π -periodic function and linearize
the flow equation ∂tδk (u) (with Kk = 0) about δ∗(u),

λg(u) = −g(0) − 2g(u) + 1
2 u(u − π )g′′(u) + (2u − π )g′(u).

(53)
We then expand g(u) =∑pmax

p=1 gp cos(2pu) in circular har-
monics up to a given order pmax so that Eq. (53) becomes
a matrix equation λgp =∑p′ Mpp′gp′ . It is easily seen that
the zeroth-order component g0 is not generated by the flow
equation. Diagonalizing numerically the matrix M we find
that all eigenvalues λ are positive: All perturbations are there-
fore irrelevant since an infinitesimal K also flows to zero
when k → 0 [recall that the RG “time” t is negative and the
infrared fixed point corresponds to t = ln(k/�) → −∞]. The
smallest eigenvalue seems to converge to 3 for pmax → ∞.

For any nonzero momentum scale k, the cusp singularity is
rounded into a QBL as shown in Fig. 5: For u near 0, δk (u) −
δk (0) ∝ −|u| except in a boundary layer of size |u| ∼ Kk; as
a result the curvature δ′′

k (0)  −C/Kk ∼ 1/Kk ∼ k−θ diverges
when k → 0 (Fig. 6).

2. Analytic expression of the QBL

An analytic expression of the QBL can be obtained if
we compute the threshold function l1 with the propagator P̃k

[Eq. (D12)] where the self-energy �̃k (iω̃) is approximated
by its low-energy limit ω̃2. This derivative-expansion (DE)
approximation is justified when �̃k (iω̃)  ω̃2 in the fre-
quency range (typically [0,4]) selected by the cutoff function
Rk (q, iω). In the present problem, �̃k (iω̃)  ω̃2 holds only
for |ω̃| � 1 in the small-k limit (see Fig. 7 below), but the
DE is nevertheless a good approximation to compute δk (u),
Kk , and θk . To obtain accurately the frequency-dependent
self-energies �̃k (iω̃) and �k (iω), it is necessary to use the
full self-energy �̃(iω̃) in the propagator P̃k .

The DE approximation makes l1 independent of k (l̄2 being
always k independent), provided that we also approximate
zk by its fixed-point value z = limk→0 zk , which considerably

0 5 10
-150

-100

-50

0

ln(Λ/k)

δk(0)

0 4 8-1.5

-1

-0.5

0

δk(0)Kk

FIG. 6. δ′′
k (0) vs k for K = 0.4. The inset shows that δ′′

k (0) 
−C/Kk (with C > 0) when k → 0.

simplifies the flow equation of δk (u). In the small-k limit
where Kk → 0, we look for a solution in the form

δk (u) = δk (0) + Kk f

(
u

Kk

)
(54)

near u = 0 but with an arbitrary value of the ratio u/Kk . The
k-independent even function f (x) satisfies f (0) = f ′(0) = 0
and f ′′(0) < 0. From (39) we obtain

∂tδk (0)  −3δk (0) − l1 f ′′ + π l̄2( f ′′ f + f ′2) (55)

using Kk → 0. The right-hand side must be independent
of x = u/Kk and equal to −3δk (0) − l1 f ′′(0) since f (0) =
f ′(0) = 0, i.e.,

−l1 f ′′ + π l̄2( f ′′ f + f ′2) = −l1 f ′′(0). (56)

This yields

f (x) = l1
π l̄2

{
1 −

[
1 − π l̄2

l1
f ′′(0)x2

]1/2
}

. (57)

For |u| 	 Kk , δk (u) − δk (0) = O(u2) while

δk (u) = δk (0) −
[

l1
π l̄2

| f ′′(0)|
]1/2

|u| for |u| 
 Kk (58)

in agreement with the cusp formation obtained from the nu-
merical solution of the flow equation (Fig. 5). An expression
of the (thermal) boundary layer similar to (54) and (57) has
been obtained in the random-field Ising model [39].

3. Classical limit and Larkin length

In the classical limit, defined by K → 0 with DK2 fixed,
δ′′

k (u) satisfies the equation

∂tδ
′′
k (u) = − 3δ′′

k (u) + π l̄2
{
δ

(4)
k (u)[δk (u) − δk (0)]

+ 4δ
(3)
k (u)δ′

k (u) + 3δ′′
k (u)2}. (59)

As long as δk (u) is a regular (even) function of u, δ′
k (0) =

δ
(3)
k (0) = 0 and

∂tδ
′′
k (0) = −3δ′′

k (0) + 3π l̄2δ
′′
k (0)2, (60)
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with the initial condition δ′′
�(0) = −32DK2/v2�3. Equation

(60) admits the solution

δ′′
k (0) = δ′′

�(0)

k̄3 − (k̄3 − 1)π l̄2δ′′
�(0)

, (61)

where k̄ = k/�. Similarly to what has been observed in
zero-temperature classical disordered systems [27,32,39], the
curvature at u = 0 diverges at a finite momentum scale kc =
1/Lc corresponding to the so-called Larkin length [63,64],

Lc =
(

v2

32π l̄2DK2

)1/3

(62)

(we have assumed DK2/v2�3 	 1) [65,66]. Perturbation
theory is valid only at length scales L 	 Lc. Beyond the
Larkin length, the physics is dominated by the existence of
metastable states [32]. When K is nonzero, the cusp singular-
ity appears only for k = 0 but the metastable states show up in
the QBL that forms at finite k as we discuss in the following
sections.

4. Physical meaning of the cusp and the QBL

The physics of the cusp and the QBL can be in part
understood from the analogy, pointed out in Sec. II A, between
a disordered one-dimensional Bose fluid and a random elastic
manifold (classical) system with correlated disorder in one
direction, the temperature T in the latter corresponding to the
Luttinger parameter K in the former.

In many classical disordered systems, e.g., charge-density
waves, elastic manifolds or the random-field Ising model
[28,30,32,39,67], disorder leads to a zero-temperature fixed
point with a cuspy two-replica potential δ∗(u). The cusp is
known to be related to the existence of many metastable
states leading to “shock” singularities (or static avalanches)
[39,45,68]: When the system is subjected to an external force,
the ground state varies discontinuously whenever it becomes
degenerate with a metastable state (which then becomes the
new ground state). At finite temperatures, the system has
a non-negligible probability to be in two distinct (nearly
degenerate) configurations and the discontinuity is smeared on
a scale given by T . This explains why the cusp in the disorder
correlator δk (u) is rounded into a thermal boundary layer at
nonzero scales k > 0 where the (renormalized) temperature
Tk is nonzero.

A similar interpretation holds in the Bose-glass phase. To
understand this point, let us first consider the system in the
absence of external source (J = 0). Since the disorder strength
grows under renormalization, whereas K decreases, a semi-
classical approach is justified when looking at low-energy
properties. For a given configuration of disorder, there are
infinitely many classical ground states defined by ϕ(x, τ ) =
ϕ0(x) + pπ (p integer). The quantum tunneling between two
of these states, e.g., ϕ(x, τ ) = ϕ0(x) and ϕ(x, τ ) = ϕ0(x) +
π , can be taken into account by instantons involving the
creation of a soliton-antisoliton (i.e., a kink-antikink) pair.
Typical instantons play an important role in the nonlinear dc
transport [69,70] but yield an exponentially small contribution
to the low-frequency conductivity σ (ω) [71]. However, in
sufficiently large systems, it is possible to find a soliton and
an antisoliton at a distance L apart with exceptionally low

excitation energy [71,72]. This implies the existence of low-
lying metastable states obtained from a particular classical
ground state by shifting ϕ by ±π in the region between
the soliton and the antisoliton. Spontaneous formation of
instantons, describing quantum tunneling between the ground
states and these rare metastable states, is important and must
be taken into account [71]. In Refs. [71,73], it was shown that
these rare instantons, which describe the hopping of a soliton
over the distance L (i.e., in the particle language, the hopping
of a boson), are responsible for the Mott-Halperin conduc-
tivity Re[σ (ω)] ∼ ω2 ln2(ω) of free fermions or hard-core
bosons (corresponding to K = 1) [13,74], a result that will be
reproduced in Sec. IV B 3. In the presence of an arbitrary ex-
ternal source J , the invariance of the action under ϕ(x, τ ) →
ϕ(x, τ ) + pπ is lost and the classical ground state is in general
unique. When considering the evolution of the system under
a change of the applied source, one expects abrupt switches
at a set of discrete, sample-dependent, values of the source,
where the classical ground state becomes degenerate with a
metastable state (which then becomes the new ground state).
A nonzero value of K leads to quantum tunneling between
the ground state and the low-lying metastable states (via the
spontaneous formation of instantons discussed above), which
smears the discontinuous change of ground state on a scale
given by K . Thus quantum fluctuations are responsible for the
rounding of the cusp in δk (u) into a QBL at nonzero scales
k > 0, where the renormalized Luttinger parameter Kk > 0.

It is interesting to rephrase this discussion in a fully
quantum picture. Quantum fluctuations between the classical
ground state and the low-lying metastable states give rise to a
(renormalized) ground state and low-energy quantum states
that can be viewed as consisting of quantum soliton and
antisoliton at a distance L apart. The energy of the various
quantum states, and in particular the ground state, depends on
the external source J . If the source Hamiltonian commutes
with the system Hamiltonian, there will be discontinuous
changes in the ground state, i.e., first-order quantum phase
transitions due to level crossings, when the source is varied.
It is, however, clear that in a disordered macroscopic system
and for a generic external perturbation the source and system
Hamiltonians do not commute. In that case, as the source is
varied there will be avoided level crossings suppressing the
cuspy behavior of the ground-state energy.

Let us finally mention that, given the quantum tunnel-
ing between the metastable classical states, one expects the
existence of “superfluid” domains with significant density
fluctuations and therefore reduced fluctuations (i.e., a finite
rigidity) of the phase θ̂ of the boson operator ψ̂ = eiθ̂√ρ̂.
These superfluid regions, which exist at all length scales,
provide us with a natural explanation of the fact that the
superfluid stiffness ρs,k and the Drude weight Dk vanish for
k → 0, as expected for a localized phase, but are nonzero for
any finite scale k [see Eqs. (47) and (48)].

B. Dynamics

The disordered Bose fluid differs from its classical coun-
terparts with regard to the dynamics. In classical systems the
study of the dynamics requires to consider an equation of
motion, e.g., a Langevin equation, in addition to the Hamil-

042139-8



BOSE-GLASS PHASE OF A ONE-DIMENSIONAL … PHYSICAL REVIEW E 101, 042139 (2020)

0 1 2 3 40

4

8

12

16

Δ̃Λ(iω̃)

Δ̃k(iω̃)

ω̃

FIG. 7. Dimensionless self-energy �̃k (iω̃) for k/� 
1/0.223/0.135/0.082/0.050/0.030/0.011 (from bottom to top) in
the case where z = 1 + θ = 3/2 (K = 0.4 and δ1,� = 0.005). The
green dashed-dotted line shows the initial condition �̃�(iω̃) = ω̃2.

tonian. In quantum systems the equilibrium dynamics can
be retrieved from the Euclidean action after a Wick rotation
from imaginary to real time. The presence of δ′′

k (0), which
diverges for k → 0, in the flow equation (40) of the self-
energy suggests that the QBL plays an essential role in the
dynamics.

1. Self-energy

Figure 7 shows the dimensionless self-energy �̃k (iω̃) for
various values of k obtained from the numerical solution of
(40). In the small-frequency limit |ω̃| 	 1, �̃k (iω̃) = ω̃2 +
O(ω̃4). This is a consequence of the regulator term (14), which
ensures that all vertices are regular functions of q̃2 and ω̃2

in the low-energy limit, and the definition of the dynamical
critical exponent zk which implies ∂ω̃2�̃k (iω̃)|ω̃=0 = 1 (Ap-
pendix D2). In standard applications of the FRG approach, the
dimensionless two-point vertex significantly differs from q̃2 or
ω̃2 only when q̃2 
 1 or ω̃2 
 1, i.e., for a momentum or fre-
quency range where the threshold functions are exponentially
suppressed by the cutoff function (34). This is not the case in
the Bose-glass phase: For sufficiently small k the self-energy
�̃k (iω̃) strongly deviates from ω̃2 even for |ω̃| = O(1). This
implies that the approximation �̃k (iω̃) = ω̃2 in the calculation
of the threshold functions is not fully justified (contrary to
the usual case) although its gives correct results for δk (u),
Kk , and θk . For the frequency dependence of the self-energy
�k (iω) (Fig. 8), and in particular to determine the localization
(or pinning) length, it is much more accurate to compute the
threshold functions with the full frequency-dependent �̃k (iω̃).

Let us consider the self-energy �k (iω) for a fixed, small,
value of ω. As long as |ω| � vkk, i.e., k � kc(ω), �k (iω) is
well approximated by Zxω

2/v2
k ; this follows from �̃k (iω̃) 

ω̃2 for |ω̃| � 1. The crossover scale kc(ω) ∼ |ω/a|1/z is ob-
tained by approximating vk  akz−1, with z = limk→0 zk =
1 + θ , which is justified if |ω| is sufficiently small. Thus
�kc (ω)(iω)  Zx(ω/a)2/z. When k � kc(ω), i.e., |ω̃| � 1, the
threshold function l̄1(iω̃) can be neglected in Eq. (40) and we

obtain

∂t�k (iω)  Zxk2π l̄1(0)δ′′
k (0)

 −Zxπ l̄1(0)C
vk2−θ

Ka
, (63)

where we have approximated δ′′
k (0) by −C/Kk (see Sec. IV A)

and used Kk = (K/v)vk = (K/v)akθ . Note that l̄1(0) is inde-
pendent of k. Integration of (63) between kc(ω) and k yields

�k (iω) = Zx|ω/a|2/z

+ Zxπ l̄1(0)Cv

(2 − θ )Ka
[|ω/a|(2−θ )/z − k2−θ ]. (64)

For k → 0 the self-energy is of the form A′|ω|2/z + B′ω(2−θ )/z.
The term |ω|2/z obtained by naive scaling is subleading with
respet to |ω|(2−θ )/z when θ > 0. This is due to that the fact
that the threshold function l̄1(0) is independent of ω̃ and
nonzero so that the flow of the self-energy is not exponentially
suppressed when |ω̃| 
 1.

The exponent θ can be expressed entirely in terms of the
cutoff function Rk . Since the threshold function m̄τ ≡ m̄τ (θk )
is a linear function of θk (Appendix D 4), Eq. (42) gives

θk = π

2

δ′′
k (0)m̄τ (0)

1 − π
2 δ′′

k (0)[m̄τ (1) − m̄τ (0)]
(65)

and

θ = lim
k→0

θk = m̄τ (0)

m̄τ (0) − m̄τ (1)
(66)

using limk→0 δ′′
k (0) = −∞. With the cutoff function (34) and

r(x) = α/(ex − 1) one finds that θ decreases from 0.76 to
0.26 when α increases from 2 to 3; there is no principle of
minimum sensitivity which would allows one to determine
the optimal value of α. This strong dependence on the cutoff
function is an unavoidable consequence of (66) and is in sharp
contrast with usual second-order phase transitions where the
critical exponents depend on both the threshold functions and
the values of the coupling constants at the fixed point. In the
latter case one observes that the dependence of the coupling
constants on Rk largely compensates that of the threshold
functions to make the critical exponents eventually weakly
dependent on the cutoff function. It would be interesting to
consider a more involved truncation of the effective action,
e.g., including the third cumulant �3,k , and see whether this
would lead to a more precise estimate of the dynamical critical
exponent in the Bose-glass phase.

Equation (64) is confirmed by the numerical solutions of
the flow equations. We observe that at higher frequencies, up
to the pinning frequency ωp = v/Lc determined by the Larkin
length, �k=0(iω)  A + B|ω| with a coefficient B which is in-
dependent of θ (see Figs. 8 and 9). We shall see in Sec. IV B 3
that the Mott-Halperin law for the conductivity when K = 1
requires the form �k (iω)  A + B|ω| to extend down to zero
frequency. We therefore expect that the self-energy converges
nonuniformly toward a singular solution:

lim
k→0

�k (iω) =
{

0 if ω = 0
A + B|ω| if ω �= 0 , (67)

even though the truncation (33) does not allow to confirm this
behavior at very low frequencies. The singular expression (67)
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FIG. 8. Low-frequency behavior of the self-energy �k (iω) for
k/�  e−10 and θ = 1/0.5/0.1 (from top to bottom). The dash-
dotted line shows the initial condition ��(iω) = ω2/πvK , the cir-
cles correspond to B′|ω|(2−θ )/z and the dashed lines to �k (iω) =
A + B|ω|.

appears to be necessary to obtain both a finite compressibility
and a conductivity σ (ω) vanishing as ω2 (Secs. IV B 2 and
IV B 3).

The self-energy (67) has also been obtained from the Gaus-
sian variational method (GVM) [16]. In this approach, the
Bose-glass phase is described by a replica-symmetry-broken
(RSB) solution confined to the ω = 0 mode. It is known
that a cuspy disorder correlator in the FRG approach goes
hand in hand with a RSB solution in the GVM [75–77].
Note, however, that the GVM takes into account only small
fluctuations of the phase field ϕ about its equilibrium position
and ignores solitonlike excitations. By contrast both types of
excitations are included in the FRG approach as shown in a
recent study of the sine-Gordon model [78].

With the self-energy (67) the connected propagator Gc ≡
Gc,k=0 [Eq. (35)] takes the form

Gc(q, iω) =
{

1
Zxq2 if ω = 0

1
B(Dq2+1/τc+|ω|) if ω �= 0 , (68)

FIG. 9. Same as Fig. 8 but for θ = 0.5 and three different values
of the disorder: δ1,� = 5 × 10−3/10−3/10−4 (from top to bottom).
The vertical dotted lines show the pinning frequency ωp = v/Lc

determined by the Larking length (62).

at low energies, where

ξ =
√
Dτc, τc = B

A
, D = Zx

B
, (69)

defines the localization (or pinning) length ξ ; τc is the as-
sociated timescale and D a diffusion coefficient. Equation
(68) implies a x ∼ τ 1/2 scaling for timescales smaller than
τc [see Eq. (72) below]. This defines a “dynamical critical
exponent” z = 2, which should however not be confused with
the exponent z = 1 + θ associated with the ω = 0 sector and
controlling the RG flow toward the scale invariant disorder
correlator δ∗(u).

2. Density-density response function

The density-density correlation function is given by
χρρ (q, iω) = (q/π )2Gc(q, iω) in the small-q limit. For iω =
0 we obtain the compressibility

κ = lim
q→0

χρρ (q, iω = 0) = 1

π2Zx
= K

πv
(70)

since �k=0(iω = 0) = 0. On the other hand, the retarded
density-density correlation function is obtained from the an-
alytic continuation iω → ω + i0+ (with a positive Matsubara
frequency) [79], i.e.,

χR
ρρ (q, ω) = q2

π2B(Dq2 + 1/τc − iω)
(71)

in the small-(q, ω) limit, where ω is a now a real frequency.
This gives

χR
ρρ (x, t ) =

∫ ∞

−∞

dq

2π

∫ ∞

−∞

dω

2π
ei(qx−ωt )χR

ρρ (q, ω)

= �(t )
2Dt − x2

8B(πDt )5/2
e− x2

4Dt − t
τc , (72)

where �(t ) is the step function. The dynamics is diffusive for
timescales smaller than τc.

3. Conductivity

Let us first consider the k-dependent conductivity σk (iω).
Particle number conservation implies that σk (iω) is related to
the density-density correlation function [80],

σk (iω) = lim
q→0

ω

q2
χρρ,k (q, iω) = ω

π2�k (iω)
. (73)

In the small-frequency limit, we can use �k (iω)  Zxω
2/v2

k ,
so that

σk (iω) = Kkvk

πω
for |ω| 	 vkk. (74)

After analytic continuation iω → ω + i0+ this gives

σk (ω) = i

π

Dk

ω + i0+ = Dk

[
δ(ω) + i

π
P 1

ω

]
, (75)

where Dk = vkKk = (v/K )K2
k is a scale-dependent Drude

weight (or charge stiffness) and P denotes the principal part.
Thus Dk ∼ k2θ vanishes in the limit k → 0 but is nonzero at
any finite scale k.
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Consider now the limit k → 0 with |ω| 
 vkk. From (73)
and (67), one deduces

σ (ω) ≡ σk=0(ω) = ξ 2κ (−iω + ω2τc) + O(ω3). (76)

Equation (76) agrees, up to logarithmic corrections, with
the Mott-Halperin law Re[σ (ω)] ∼ ω2 ln2 |ω| when K = 1
(corresponding to hard-core bosons or free fermions). Note
that this is a consequence of the linear behavior (67) of the
self-energy at low energies.

It is also possible to determine analytically the large-
frequency limit of the conductivity. In Appendix E, we show
that Re[σ (ω)] ∼ 1/|ω|4−2K in agreement with Ref. [13].

In principle one can obtain the full frequency depen-
dence of the conductivity by performing the analytic con-
tinuation from the numerically known �k=0(iω) by means
of the resonances-via-Padé method [81–83]. This procedure
has been successfully used in many works using the FRG
formalism [84–90], but turns out to be rather unstable in the
present case.

C. Droplet phenomenology

The knowledge of the propagator allows us to compute the
correlation function

C(x, τ ) = 〈[ϕ(x, τ ) − ϕ(0, 0)]2〉

= 2

βL

∑
q,ω

G (2)
aa,k=0(q, iω)[1 − cos(qx − ωτ )], (77)

where 〈· · · 〉 stands for an average with the action S[ϕ; ξ ].
G (2)

aa = Gc + Gd is defined in Appendix C. To obtain
Gd,k=0(Q) we use Eq. (36) with V ′′

k (0) = −(v2k3/K2)δ∗(0)
and identify k with |q|. The leading contribution to C(x, 0) in
the large distance limit comes from Gd ,

C(x, 0)  2πδ∗(0) ln |x|. (78)

On the other hand it is easily seen that C(0, τ ) remains
finite when τ → ∞. In agreement with the vanishing of Kk

in the limit k → 0, quantum fluctuations remain small and
one can view the field ϕ(x, τ ) as a (quasi)classical field with
weak temporal fluctuations. It is therefore not surprising that
Eq. (78) agrees with the result obtained for random periodic
elastic manifold (classical) systems (such as charge-density
waves or vortex lattices) where the roughness exponent ζ ,
which defines the scaling dimension of the field, vanishes.
(For nonzero ζ , one has C(x) ∼ |x|2ζ .)

In classical disordered systems in which the long-distance
physics is controlled by a zero-temperature fixed point, the
low-energy properties are usually explained in the framework
of the droplet picture [46]. The latter supposes the existence,
at each length scale L, of a small number of excitations δϕ ∼
Lζ above the ground state, drawn from an energy distribution
PL(E ) of width �E ∼ Lθ with a constant weight ∼L−θ near
E = 0. The number of thermally active excitations is therefore
∼T/Lθ , i.e., the system has a probability ∼T/Lθ to be in
two nearly degenerate configurations. Thermal fluctuations
are dominated by these rare droplet excitations and one has

[〈ϕ2〉 − 〈ϕ〉2]p ∼ T

Lθ
L2pζ (79)

at length scale L. From a theoretical point of view, the core
of the connection between the FRG formalism and droplet
phenomenology is the existence of a thermal boundary layer
in the disorder correlator [54,91].

Given the analogy, pointed out in Sec. II A (see also
Sec. IV A 4), between a disordered one-dimensional Bose
fluid and a random elastic manifold (classical) system, we
expect the droplet phenomenology to apply also to the Bose-
glass phase of a one-dimensional Bose gas with the Luttinger
parameter playing the role of the temperature. The droplets
are naturally identified with the metastable states, discussed
in Sec. IV A 4, obtained by creating a soliton-antisoliton pair.
They are two-dimensional since the action of the field ϕ(x, τ )
is defined in a (1+1)-dimensional spacetime. For a droplet of
spatial size L, the extension Lτ ∼ Lz in the imaginary-time
direction can be interpreted as a quantum coherence time.

To support the droplet picture, let us consider

χ1 = 〈ϕ(x, τ )2〉 − 〈ϕ(x, τ )〉2

= 1

βL

∑
Q

Gc,k (Q) =
∫

Q
Gc,k (Q), (80)

where
∫

Q = ∫ dq
2π

∫
dω
2π

. We have assumed L, β → ∞ and
used the fact that in that limit the mode ω = 0 does not
contribute to the Matsubara frequency sum in Eq. (80). To
probe the behavior of the system at length scale L we simply
set k ∼ 1/L. In the large-L limit, the L-dependent part of
χ1 comes from the low-energy limit of Gc,k (Q) where the
self-energy �k (iω) can be approximated by Zx(ω/vk )2 and
Rk (Q) by Zxk2. This gives

χ1 
∫

Q

1

Zx
(
q2 + ω2/v2

k + k2
)

 − vk

2πZx
ln k

∼ K

Lθ
ln L, (81)

in agreement with (79) when ζ = 0. In Appendix F, we show
that

χ2 = [〈ϕ(x, τ )2〉 − 〈ϕ(x, τ )〉2]2 − χ2
1 ∼ K

Lθ
, (82)

again in agreement with (79) [we expect a more refined analy-
sis to yield a logarithmic factor ln L as in Eq. (81)]. Similarly,
we can probe the behavior of the system at timescale Lτ

by setting k ∼ 1/L1/z
τ when computing χ1 and χ2. One then

obtains (81) and (82) with L replaced by L1/z
τ .

The droplet picture can also explain the low-frequency
conductivity. When the system is subjected to an electric field
E (ω) at frequency ω, the power absorbed per unit length is
σ (ω)|E (ω)|2. The contribution of low-energy droplets with
size L can be expressed as ∼ωPL(ω)/L, where ω is the energy
of the absorbed photon, PL(ω) ∼ 1/Lθ the probability for the
droplets to have an excitation energy ω and the factor 1/L
comes from the density [92] of droplets. Since an external
field at frequency ω probes the system at length scale L ∼
ω1/z, we finally obtain σ (ω) ∼ ω2. Interestingly this result is
independent of θ in agreement with the numerical solution of
the flow equations discussed in Sec. IV B [93].
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Finally, we stress that although our FRG approach is jus-
tified only in the limit of weak disorder (where bosonization
is a valid starting point) [4,5], the low-energy physics of the
Bose-glass phase is expected to be independent of the disorder
strength [24] so that the droplet scenario should hold in the
entire localized phase [94].

D. The need of a nonperturbative RG approach

The free replica sum expansion allows us to invert the
matrix �

(2)
k + Rk in replica space and obtain the propagator Gk

(Appendix B) but makes the resulting RG equation for δk (and
Vk) apparently perturbative to the extent that ∂tδk is of second
order in δk and its derivatives. The nonperturbative aspect
is then entirely due to the exponent θk (or, equivalently, the
dynamical critical exponent zk = 1 + θk) which is determined
by an equation of the type θk = Ak + Bkθk with Ak, Bk ∝
δ′′

k (0) [Eqs. (42) and (65)] and is therefore of infinite order in
δ′′

k (0). This is a crucial difference with the perturbative FRG
(PFRG) approach where the equation for δk is the same as in
the nonperturbative FRG (NPFRG) approach but the equation
for θk is simply θk = Ak ∝ δ′′

k (0) [the PFRG equations are
obtained from the nonperturbative ones by replacing m̄τ (ηk )
by m̄τ (0) in the right-hand side of (42)] [95], the cusp then
forms at a nonzero scale k > 0 [96]. The divergence of
δ′′

k (0) associated with the cusp formation, with a concomitant
divergence of the dynamical critical exponent zk , clearly calls
into question the validity of the perturbative approach.

The fact that θk (and more generally any anomalous
dimension) is determined nonperturbatively is an essential
feature of the NPFRG approach. It can be traced back to
the term ∂t Rk in the right-hand side of Wetterich’s equa-
tion (18). To understand this point in more detail, let us
consider the simpler case of the ϕ4 theory with action
S = ∫x{ 1

2 (∇ϕ)2 + r0ϕ
2 + u0ϕ

4} and infrared regulator term
�Sk = 1

2

∫
x,x′ ϕ(x)Rk (x − x′)ϕ(x′). The cutoff function must

be of the form Rk (q) = Zkq2r(q2/k2) with a prefactor Zk given
by the field renormalization factor Zk ; the latter enters the
propagator as G(q, φ) = [Zkq2 + U ′′

k (φ) + Rk (q)]−1, where
Uk (φ) is the effective potential and we neglect a possible
field dependence of Zk . This form is necessary to allow for
a scaling solution of the flow equation and therefore the
existence of a fixed-point solution when the system is critical
[97]. The equation determining the anomalous dimension
ηk = −∂t ln Zk , of the form ηk = Ak + Bkηk , then follows
from ∂t Rk = −Zkq2[ηkr + 2(q/k)2r′]. Omitting the prefactor
Zk in the cutoff function would violate scale invariance and in-
troduce an additional, unphysical, scale in the flow equations.
From a more technical point of view, a proper definition of Rk

is necessary to eliminate any reference to microscopic scales
and write the RG equations solely in terms of dimensionless
variables (i.e., variables expressed in units of k). It has been
shown that the prefactor Zk in Rk is necessary to recover
two-loop (and higher-order) contributions to η from the exact
flow equation (18) [98,99].

In the Bose-glass case, there are two anomalous dimen-
sions: ηx = −∂t ln Zx which vanishes due to the statistical tilt
symmetry and ητ,k = −∂t ln(Zx/v

2
k ) = 2θk . In the NPFRG ap-

proach, the nonperturbative equation θk = Ak + Bkθk allows

for a scale-invariant, cuspy, solution δ∗(u) that is reached only
for k = 0 with a finite dynamical critical exponent zk .

There are other examples where the nonperturbative as-
pect comes from a nontrivial equation for the anomalous
dimension while the beta functions ∂t gi,k = βi({g j,k}, ηk ) are
perturbative in the g j,k’s. For instance, in the flat phase of
polymerized phantom membranes, the NPFRG yields per-
turbative (second-order) beta functions for the two coupling
constants uk and vk but a nonpolynomial running anomalous
dimension ηk ≡ ηk (uk, vk ) [100]. The value of the anomalous
dimension η is in very good agreement with numerical results
[101].

V. CONCLUSION

We have reported the first application of the nonpertur-
bative FRG approach to a quantum disordered system. We
find strong similarities between the Bose-glass phase of a
one-dimensional Bose fluid and classical disordered systems
in which the long-distance physics is controlled by a zero-
temperature fixed point. This can be partially understood
from the analogy between the imaginary-time action of the
disordered boson system and that of elastic manifolds in a
disordered medium (with a random potential that is perfectly
correlated in one direction).

The main result of the manuscript is that the Bose-glass
phase is described by a strong-disorder fixed point with a
vanishing Luttinger parameter. A key feature is the cuspy
functional form of the disorder correlator which reveals the
existence of metastable states and the ensuing glassy prop-
erties (pinning and shocks). The QBL rounding the cusp at
nonzero momentum scale k, and encoding the quantum tun-
neling between the ground state and the low-lying metastable
states, is associated with the existence of (rare) superfluid
regions and is responsible for the ω2 behavior of the con-
ductivity at low frequencies. These results can be understood
within the droplet picture of glassy systems [46].

We believe that the success of the nonperturbative FRG
approach in describing the Bose glass phase comes from its
ability to take into account the metastable states consisting
of soliton-antisoliton pairs with exceptionally low excitation
energy, a feature which is reminiscent of its ability to describe
excited states (solitons and antisolitons as well as their bound
states, i.e., breathers) in the sine-Gordon model [78].

Our FRG approach opens up the possibility to study
other one-dimensional disordered systems. For instance one
could address the effects of long-range confining interactions
[102,103] or a periodic lattice potential [104,105] on the
Bose-glass phase. The study of disordered bosons in higher
dimensions, where bosonization is not possible, might also be
a promising avenue of research.

ACKNOWLEDGMENTS

N.D. is indebted to P. Azaria, A. Fedorenko, N. Lafloren-
cie, P. Le Doussal, G. Lemarié, D. Mouhanna, E. Orignac, A.
Rançon, B. Svistunov, G. Tarjus, M. Tissier, C. Wetterich, and
K. Wiese for discussions and/or correspondence.

042139-12



BOSE-GLASS PHASE OF A ONE-DIMENSIONAL … PHYSICAL REVIEW E 101, 042139 (2020)

APPENDIX A: STATISTICAL TILT SYMMETRY

Let us consider the replicated action (10). With the new
field ϕ′

a(x, τ ) = ϕa(x, τ ) + w(x), one has

S[{ϕa}] = S[{ϕ′
a}] + n

2
βZx

∫
x
(∂xw)2 + Zx

∫
x,τ

∑
a

ϕ′
a∂

2
x w

(A1)
with Zx = v/πK , since the disorder part of the action (10) in
invariant when the field is shifted by a time-independent (but
otherwise arbitrary) function w(x). This allows us to rewrite
the partition function (9) as

Z[{Ja}] = Z[{J ′
a}]e

n
2 βZx

∫
x (∂xw)2−∫x,τ

∑
a J ′

aw, (A2)

where

J ′
a(x, τ ) = Ja(x, τ ) − Zx∂

2
x w. (A3)

This leads to the effective action

�[{φa}] = − lnZ[{Ja}] +
∫

x,τ

∑
a

Jaφa

= − lnZ[{J ′
a}] +

∫
x,τ

∑
a

J ′
aφ

′
a − n

2
βZx

∫
x
(∂xw)2

+ Zx

∫
x,τ

∑
a

φa∂
2
x w, (A4)

where

φa(x, τ ) = δ lnZ[{Jf }]
δJa(x, τ )

= φ′
a(x, τ ) − w(x),

φ′
a(x, τ ) = δ lnZ[{J ′

f }]
δJ ′

a(x, τ )
. (A5)

From (A4) we then deduce

�[{φa}] = �[{φa + w}] − n

2
βZx

∫
x
(∂xw)2

− Zx

∫
x,τ

∑
a

(∂xw)(∂xφa). (A6)

Equation (A6) has important consequences. First, it shows
that �[{φa}] is invariant under a constant (i.e., time-
independent and uniform) shift of the field, φa(x, τ ) →
φa(x, τ ) + w. This implies that the self-energy �k (iω) in
Eq. (33) must vanish for ω = 0. Second �1[φa] must include
the term 1

2 Zx
∫

x,τ (∂xφa)2 and no higher-order space derivatives
are allowed. Third �i[φa1 , . . . , φai ] is invariant in the shift
φa(x, τ ) → φa(x, τ ) + w(x) when i � 2. This implies in par-
ticular that the second-order disorder cumulant,

�2,k[φa, φb] =
∫

x,τ,x′,τ ′
Vk (φa(x, τ ), φb(x′, τ ′)), (A7)

is necessarily of the form given in Eq. (33).

STS invariant regulator

The preceding conclusions hold for the scale-dependent
effective action �k[{φa}] only if the regulator term �Sk[{ϕa}]
is invariant in the transformation ϕ′

a(x, τ ) = ϕa(x, τ ) + w(x).
The most general form, quadratic in the field and consistent

with the invariance of the action under permutation of the
replica indices, reads

�Sk[{ϕa}] = 1

2

∑
q,ω

a,b

ϕa(−q,−iω)Rk,ab(q, iω)ϕb(q, iω),

(A8)
where

Rk,ab = δabR̂k + R̃k . (A9)

In the shift ϕa(q, iω) → ϕa(q, iω) + √
βδω,0w(q), the regula-

tor term varies by the amount

β

2

∑
a,q

[
w(−q)w(q) + 2√

β
ϕa(−q, 0)w(q)

]

× [R̂k (q, 0) + nR̃(q, 0)
]
, (A10)

where n is the number of replicas.
An STS invariant regulator must therefore satisfy

R̂k (q, 0) + nR̃k (q, 0) = 0, (A11)

which shows that R̃k is necessary nonzero [given that any
decent cutoff function R̂k (q, 0) depends on q]. The simplest
choice is to take a time-independent cutoff function R̃k defined
by

R̃k (q, iω) = −1

n
δω,0R̂k (q, 0). (A12)

This cutoff function does not contribute in the zero-
temperature limit since a prefactor β is missing in front
of the Kronecker delta δω,0. This can be explicitly seen by
noting that the sole effect of R̃k is to replace �

(11)
k [φa, φb] by

�
(11)
k [φa, φb] − R̃k [see Eq. (B5)]. With the ansatz (33), this

means that R̃k (q, iω) is always involved in the combination

βδω,0

[
V (11)(φa, φb) − 1

β
R̃k (q, 0)

]
(A13)

and therefore does not play any role in the limit β → ∞
where βδω,0 → 2πδ(ω).

APPENDIX B: MATRIX INVERSION
IN THE REPLICA FORMALISM

In this section we briefly review how to invert a matrix us-
ing the free replica sum expansion and consider the particular
case of �

(2)
k,ab[{φ f }] + Rk,ab [38].

1. Matrix inversion

Any matrix Aab[{φ f }] can be written in the general form

Aab[{φ f }] = δabÂa[{φ f }] + Ãab[{φ f }], (B1)

with

Âa[{φ f }] = Â[0][φa] +
∑

c

Â[1][φa|φc] + · · ·

Ãab[{φ f }] = Ã[0][φa, φb] +
∑

c

Ã[1][φa, φb|φc] + · · · (B2)

where the superscripts in square brackets denote the order in
the free replica sum expansion. A similar expansion holds for
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the matrix B = A−1. The term-by-term identification of the
condition AB = 1 leads to

B̂[0][φa] = Â[0][φa]−1,

B̃[0][φa, φb] = −B̂[0][φa]Ã[0][φa, φb]B̂[0][φb] (B3)

and

B̂[1][φa|φc] = − B̂[0][φa]Â[1][φa|φc]B̂[0][φa],

B̃[1][φa, φb|φc] = − B̂[0][φa]{Ã[1][φa, φb|φc]

− Â[1][φa|φc]B̂[0][φa]Ã[0][φa, φb]

− Ã[0][φa, φb]B̂[0][φb]Â[1][φb|φc]

− Ã[0][φa, φc]B̂[0][φc]Ã[0][φc, φb]}B̂[0][φb].
(B4)

2. Propagator and flow equations

For the matrix Aab[{φ f }] = �
(2)
k,ab[{φ f }] + Rk,ab, consider-

ing a cutoff function Rk,ab = δabR̂k + R̃k , one has

Â[0][φa] = �
(2)
1,k[φa] + R̂k,

Â[1][φa|φc] = −�
(20)
2,k [φa, φc],

Ã[0][φa, φb] = −�
(11)
2,k [φa, φb] + R̃k,

Ã[1][φa, φb|φc] = 0, (B5)

ignoring cumulants �i,k with i � 3 and considering only the
terms that are needed for the derivation of the flow equations
of �1,k and �2,k . The propagator Gk[{φa}] = (�(2)

k [{φa}] +
Rk )−1 is thus defined by

Ĝ[0]
k [φa] = Pk[φa]

Ĝ[1]
k [φa|φc] = Pk[φa]�(20)

2,k [φa, φc]Pk[φa], (B6)

and

G̃[0]
k [φa, φb] = Pk[φa]�(11)

2,k [φa, φb]Pk[φb]

G̃[1]
k [φa, φb|φc] = Pk[φa]

{
�

(20)
2,k [φa, φc]Pk[φa]�(11)

2,k [φa, φb]

+ �
(11)
2,k [φa, φb]Pk[φb]�(20)

2,k [φb, φc]

+ �
(11)
2,k [φa, φc]Pk[φc]�(11)

2,k [φc, φb]
}
Pk[φb],

(B7)

where Pk[φa] = (�(2)
1,k[φa] + R̂k )−1 is the propagator obtained

from �1,k[φa].
The exact flow equation (18) can now be written as

∂t�k[{φ f }] = 1

2
tr

⎧⎨
⎩
∑

a

(∂t (R̂k + R̃k )Ĝk,a[{φ f }]

+∂t R̂kG̃k,aa[{φ f }]) +
∑
a,b

∂t R̃kG̃k,ba[{φ f }]
⎫⎬
⎭, (B8)

where the trace is now over spacetime variables (x, τ ) or
(q, iω) only. From (B8) one deduces

∂t�1,k[φa] = 1
2 tr
{
∂t (R̂k + R̃k )Ĝ[0]

k [φa] + ∂t R̂kG̃[0]
k [φa, φa]

}
(B9)

and

∂t�2,k[φa, φb]

= − 1
2 tr
{
∂t (R̂k + R̃k )Ĝ[1]

k [φa|φb]

+∂t R̂kG̃[1]
k [φa, φa|φb] + ∂t R̃kG̃[0]

k [φa, φb]
}+ perm(a, b),

(B10)

perm(a, b) denotes all terms obtained by exchanging the
replica indices a and b. Equations (30) and (31) follow from
(B6)–(B7) and (B9)–(B10) when the cutoff function Rk,ab =
δabRk is diagonal in the replica indices (i.e., R̃k = 0).

APPENDIX C: GREEN FUNCTIONS

In Sec. II B the propagators Gc and Gd were defined
directly from the cumulants W1[Ja] and W2[Ja, Jb] of the ran-
dom functional W [J; ξ ]. Alternatively one can define Green
functions from the functional Z[{Ja}] [Eq. (9)],

G (p)
a1···ap

(X1 · · · Xp) = 1

Z[{Ja}]
δpZ[{Ja}]

δJa1 (X1) · · · δJap (Xp)

∣∣∣∣
Jai =0

,

(C1)
where X = (x, τ ). In the formal limit where the number of
replicas n → 0, one finds

G (1)
a (X ) = 〈ϕ(X )〉,

G (2)
ab (X, X ′) =

{
〈ϕ(X )ϕ(X ′)〉 if a = b

〈ϕ(X )〉〈ϕ(X ′)〉 if a �= b ,
(C2)

etc., where 〈· · · 〉 stands for an average with the action S[ϕ; ξ ].
It is also useful to introduce the connected Green functions

W (p)
a1···ap

(X1 · · · Xp) = δpW [{Ja}]
δJa1 (X1) · · · δJap (Xp)

∣∣∣∣
Jai =0

, (C3)

where W [{Ja}] = ln Z[{Ja}], i.e.,

W (1)
a (X ) = G (1)

a (X ),

W (2)
ab (X, X ′) = G (2)

ab (X, X ′) − G (1)
a (X )G (1)

b (X ′), (C4)

etc. The W (p)’s can be related to the vertices [106]

�(p)
a1···ap

(X1 · · · Xp) = δp�[{φa}]
δφa1 (X1) · · · δφap (Xp)

∣∣∣∣
φa (X )=φ

(C5)

calculated in a constant (arbitrary) field configuration. For
instance, one has W (2) = �(2)−1 (where the inverse must be
understood in a matrix sense). As for W (4), one finds

W (4)
abcd (Q1, Q2, Q3, Q4)

= −
∑

a′,b′,c′,d ′
W (2)

aa′ (Q1)W (2)
bb′ (Q2)

×W (2)
cc′ (Q3)W (2)

dd ′ (Q4)�(4)
a′b′c′d ′ (Q1, Q2, Q3, Q4), (C6)

since �(3) vanishes when Ja = 0.
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APPENDIX D: FLOW EQUATIONS

1. Two-replica potential

For uniform fields, φa(x, τ ) = φa, �2,k[φa, φb] =
β2LVk (φa − φb), where L is the length of the system. By
using the expression of the vertices given in Appendix D 3,
one finds

∂tVk,ab = 1

2β
∂̃t

∫
Q

{
Pk (Q)β

[
V (20)

k,ab + V (20)
k,ba

]
+ β2δω,0Pk (Q)2

[
V (20)

k,ab V (11)
k,aa + V (20)

k,ba V (11)
bb

+ V (11)
k,ab V (11)

k,ba

]}
, (D1)

where we use the notations Vk,ab = Vk (φa − φb) and V (nm)
k,ab =

∂n
φa

∂m
φb

Vk,ab. Introducing the dimensionless potential

Ṽk,ab = K2

v2k3
Vk,ab, (D2)

we obtain

∂tṼk,ab = − 3Ṽk,ab − Kk

2
l1
[
Ṽ (20)

k,ab + Ṽ (20)
k,ba

]
− π

2
l̄2
[
Ṽ (20)

k,ab Ṽ (11)
k,aa + Ṽ (20)

k,ba Ṽ (11)
bb + Ṽ (11)

k,ab Ṽ (11)
k,ba

]
,

(D3)

where the threshold functions l1 and l̄2 are defined in Ap-
pendix D 4. This equation can be rewritten as a flow equation
for δk (u) [Eq. (37)] using

δk (φa − φb) = Ṽ (11)
k,ab ,

δ′
k (φa − φb) = Ṽ (21)

k,ab = −Ṽ (12)
k,ab ,

δ′′
k (φa − φb) = −Ṽ (22)

k,ab = Ṽ (31)
k,ab = Ṽ (13)

k,ab ,

(D4)

which leads to Eq. (39).

2. Self-energy

From (30) and the fact that Pk is field independent with the
ansatz (33) we deduce the flow equation,

∂t�
(2)
1,k[X, X ′; φa]

= −1

2
∂̃t tr
{
Pk
(
�

(31)
2,k [X, X ′, φa; φa]

+�
(22)
2,k [X, φa; X ′, φa] + �

(22)
2,k [X ′, φa; X, φa]

+�
(13)
2,k [φa; X, X ′, φa]

)}
. (D5)

In constant fields, using the results of Appendix D 3, we obtain

∂t�
(2)
1,k (P) = −V (22)

k,aa ∂̃t

∫
q
[Pk (q, iω) − Pk (q, 0)], (D6)

where P = (p, iω). ∂t�
(2)
1,k (P) is independent of p, in agree-

ment with the STS. Equation (D6) is shown diagrammatically
in Fig. 10. The flow equation for the self-energy is simply
∂t�k (iω) = ∂t�

(2)
1,k (0, iω). In dimensionless variables we thus

obtain (40). The dynamical critical exponent zk is defined by
∂tvk = (zk − 1)vk and can be determined from the condition

∂tΓ
(2)
1,k = −

FIG. 10. Diagrammatic representation of the flow equation (D6)
satisfied by �

(2)
1,k . (See the caption of Fig. 2 for the meaning of the

various lines.)

�̃k (iω̃) = ω̃2 + O(ω̃4), i.e.,

∂t
∂2�̃k (iω̃)

∂ω̃2

∣∣∣∣
ω̃=0

= 0. (D7)

Expanding Eq. (40) about ω̃ = 0 then gives (42) where the
threshold function m̄τ is given in Appendix D 4.

3. Vertices in a uniform field

With the ansatz (33) the propagator

Pk (Q) ≡ Pk[Q, φa] = 1

�
(2)
1,k (Q,−Q) + Rk (Q)

= 1

Zxq2 + �k (iω) + Rk (Q)
(D8)

is field independent for any configuration of the field φa(x, τ ).
The other vertices, which are necessary for the flow equations
of �1,k and �2,k , are given by

�
(11)
2,k (Q, φa; −Q, φb) = βδω,0V

(11)
k,ab ,

�
(20)
2,k (Q,−Q, φa; φb) = βV (20)

ab ,

�
(21)
2,k (Q1, Q2, φa; Q3, φb) = δ∑

i Qi,0√
βL

βδω3,0V
(21)

k,ab ,

�
(31)
2,k (Q1, Q2, Q3, φa; Q4, φb) = δ∑

i Qi,0

βL
βδω4,0V

(31)
k,ab ,

�
(22)
2,k (Q1, Q2, φa; Q3, Q4, φb) = δ∑

i Qi,0

βL
βδω1+ω2,0V

(22)
k,ab ,

(D9)

for constant (i.e., uniform and time-independent) fields
φa(x, τ ) = φa. We use the notation

�
(11)
2,k (Q, φa; −Q, φb) = δ2�2,k[φa, φb]

δφa(−Q)δφb(Q)

∣∣∣∣
{φ f }=const

,

�
(20)
2,k (Q,−Q, φa; φb) = δ2�2,k[φa, φb]

δφa(−Q)δφa(Q)

∣∣∣∣
{φ f }=const

, (D10)

etc.

4. Threshold functions

The threshold functions are defined by

l1 =
∫ ∞

0
dq̃
∫ ∞

−∞

dω̃

2π

∂t Rk (q̃, iω̃)

Zxk2
P̃k (q̃, iω̃)2,

l̄1(iω̃) =
∫ ∞

0
dq̃

∂t Rk (q̃, iω̃)

Zxk2
P̃k (q̃, iω̃)2,

l̄2 = 2
∫ ∞

0
dq̃

∂t Rk (q̃, 0)

Zxk2
P̃k (q̃, 0)3,

m̄τ = ∂ω̃2 l̄1(iω̃)
∣∣
ω̃=0, (D11)
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where

P̃k (q̃, iω̃) = Zxk2Pk (q, iω) = 1

(q̃2 + �̃k )(1 + r)
, (D12)

is the dimensionless propagator and

∂t Rk (q̃, iω̃)

Zxk2

= 2�̃kr − 2q̃2(q̃2 + �̃k )r′

+ (∂t�̃k|ω̃ − zkω̃∂ω̃�̃k )[r + (q̃2 + �̃k )r′], (D13)

with r ≡ r(q̃2 + �̃k ) and �̃k ≡ �̃k (iω̃). For θk = 0 and
�̃k (iω̃) = ω̃2, the threshold function l1 = 1/2 is universal,
i.e., independent of the function r(x) provided that the latter
satisfies r(0) = ∞ and r(∞) = 0.

APPENDIX E: LARGE-FREQUENCY BEHAVIOR

The large-frequency behavior of the self-energy comes
from large values of the running momentum scale k such that
|ω| 	 vk. Values of k smaller than |ω|/v correspond to a large
ω̃, and therefore a negligible threshold function l̄1(iω̃), and
contribute only a subleading frequency-independent term. For
k 
 |ω|/v (and |ω| large) the flow is still in the perturbative
regime and it is possible to use the approximation defined by
Eqs. (45), i.e.,

∂t D̃k = (−3 + 2Kk )D̃k,

∂t Kk = −24πD̃km̄τ , (E1)

where D̃k = (K2/v2k3)Dk = δ1,k/8 and m̄τ ≡ m̄τ |θk=0 < 0.
In the limit of weak disorder, the renormalization of Kk is very
small in the initial stage of the flow, so that the first equation
gives

D̃k  D̃�

(
k

�

)−3+2K

, (E2)

The second one can be rewritten as ∂t Kk = ak−3+2K , i.e.,

Kk = K − b(k−3+2K − �−3+2K )

≡ KR
� − bk−3+2K , (E3)

with a and b = −a/(2K − 3) positive constants (in the Bose-
glass phase, i.e., for K < 3/2) and KR

� = K + b�−3+2K . This
yields the self-energy

�k (iω) = Zxω
2

v2
k

 ω2 K

πv
(
KR

�

)2
(

1 + 2b

KR
�

k2K−3

)
(E4)

to quadratic order in ω and for b ∝ D� → 0. Since this
expression is valid for k 
 |ω|/v while ∂t�k (iω)  0 for
k 	 |ω|/v, we can obtain the large-frequency behavior by

identifying k with |ω|/v, which gives

�k=0(iω)  ω2 K

πv
(
KR

�

)2
[

1 + 2b

KR
�

( |ω|
v

)2K−3
]

(E5)

and in turn

σk=0(iω) ∝ 1

ω

[
1 − 2b

KR
�

( |ω|
v

)2K−3
]
. (E6)

After analytic continuation iω → ω + i0+ the first term in
(E6) produces a Dirac peak ∼δ(ω) (which is outside the
domain of validity of the large-frequency perturbative expan-
sion) in the real part of the conductivity while the second one
gives a high-frequency tail ∝ 1/|ω|4−2K in agreement with
results from perturbative RG [13].

APPENDIX F: COMPUTATION OF χ2

From the definition (82) of χ2 and the Green functions
defined in Appendix C, one finds

χ2 = G (4)
abcd,k − 2G (4)

aabc,k + G (4)
aabb,k − χ2

1

= W (4)
abcd,k − 2W (4)

aabc,k + W (4)
aabb,k, (F1)

where G (4) and W (4) have all their arguments equal to X =
(x, τ ). Distinct replica indices mean distinct replicas (no sum-
mation over repeated indices is implied). W (4) can be obtained
from (C6) and the expression

�
(4)
abcd,k (Q1, Q2, Q3, Q4)

= δ∑
i Qi,0

L
δ′′

k (0)
v2k3

K2

[
δabδcdδω1+ω2,0 + δacδbdδω1+ω3,0

+ δadδbcδω1+ω4,0 − δabcδω4,0 − δabdδω3,0

− δacdδω2,0 − δbcdδω1,0
]

(F2)

obtained from the effective action (33). Here δabc = δabδbc.
Using W (2)

ab (Q) = δabGc(Q) + Gd (Q), one finds that the dis-
connected propagator Gd does not contribute to W (4),

W (4)
abcd,k (Q1, Q2, Q3, Q4)

= −Gc,k (Q1)Gc,k (Q2)Gc,k (Q3)Gc,k (Q4)�(4)
abcd,k

× (Q1, Q2, Q3, Q4). (F3)

From (F1), one then obtains

χ2 = − δ′′
k (0)

v2k3

K2

∫
q1,q2,q3

∫
ω1,ω3

Gc,k (q1, iω1)

× Gc,k (q2,−iω1)Gc,k (q3, iω3)Gc,k (q4,−iω3), (F4)

where q4 = −q1 − q2 − q3 and we use the notation
∫

q =∫ dq
2π

and
∫
ω

= ∫ dω
2π

. As in Sec. IV C we identify k with
1/L and approximate the self-energy �k (iω) by Zx(ω/vk )2.
The integral in (F4) gives ∼v2

k /Z4
x k3. Since vk = vKk/K and

δ′′
k (0) ∼ −1/Kk with Kk ∼ Kkθ , one finally obtains

χ2 ∼ Kkθ , (F5)

which leads to (82).
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