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Chaos in the Bose-glass phase of a one-dimensional disordered Bose fluid
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We show that the Bose-glass phase of a one-dimensional disordered Bose fluid exhibits a chaotic behavior, i.e.,
an extreme sensitivity to external parameters. Using bosonization, the replica formalism and the nonperturbative
functional renormalization group, we find that the ground state is unstable to any modification of the disorder
configuration (“disorder” chaos) or variation of the Luttinger parameter (“quantum” chaos, analog to the
“temperature” chaos in classical disordered systems). This result is obtained by considering two copies of
the system, with slightly different disorder configurations or Luttinger parameters, and showing that intercopy
statistical correlations are suppressed at length scales larger than an overlap length ξov ∼ |ε|−1/α (|ε| � 1 is a
measure of the difference between the disorder distributions or Luttinger parameters of the two copies). The
chaos exponent α can be obtained by computing ξov or by studying the instability of the Bose-glass fixed point
for the two-copy system when ε �= 0. The renormalized, functional, intercopy disorder correlator departs from
its fixed-point value—characterized by “cuspy” singularities—via a chaos boundary layer, in the same way as
it approaches the Bose-glass fixed point when ε = 0 through a quantum boundary layer. Performing a linear
analysis of perturbations about the Bose-glass fixed point, we find α = 1.

DOI: 10.1103/PhysRevE.103.052136

I. INRODUCTION

In a Bose fluid with short-range interactions, disorder can
induce a quantum phase transition between a superfluid phase
and a localized phase dubbed Bose glass (BG) [1–3]. The
latter is characterized by nonzero compressibility, vanishing
dc conductivity, and the absence of gap in the optical conduc-
tivity. As its name indicates, the BG phase is expected to be
analogous to the Fermi-glass phase of interacting fermions in
a strong disorder potential and to exhibit some of the charac-
teristic properties of glassy systems [3].

In one dimension, the analogy of the BG phase with other
disordered systems exhibiting glassy properties is strongly
supported by the nonperturbative functional renormalization
group (FRG) [4–7]. In this approach, one finds that the BG
phase is described by an attractive fixed point analog to the
zero-temperature fixed point controlling the low-temperature
phase of many classical disordered systems. The role of tem-
perature is played by the Luttinger parameter K ∼ kθ which,
as the momentum scale k approaches zero, vanishes with an
exponent θ = z − 1 related to the dynamical critical exponent
z. Moreover, the renormalized disorder correlator assumes
a cuspy functional form associated with the existence of
metastable states [8]. At nonzero momentum scale, quantum
tunneling between the ground state and these metastable states
leads to a rounding of the cusp singularity into a quantum
boundary layer (QBL). The latter controls the low-energy
dynamics and is responsible for the ω2 behavior of the (dissi-
pative) conductivity. Thus, the FRG approach reveals some of
the glassy properties (pinning, “shocks” or static avalanches)
of the BG phase and, to some extent, can be understood within
the “droplet” picture [9] put forward for the description of
glassy (classical) systems [5].

One of the peculiar features of glassy systems is the ex-
treme sensitivity of the ground state with respect to small
changes in external parameters like the disorder configuration
or the temperature. In some cases, an infinitesimal perturba-
tion is sufficient to lead to a complete reorganization of the
ground state at large length scales. This situation is referred
to as chaos [10–16], e.g., disorder chaos or temperature chaos
according to the external parameter being considered. Chaos
is usually characterized by an overlap length ξov beyond which
the ground state completely changes as a result of the varia-
tion in the external parameter. The overlap length diverges as
ξov ∼ |ε|−1/α , where α is called the chaos exponent (|ε| � 1 is
a measure of the change in the external parameter). Although
chaos was originally predicted for spin glasses, it is also
characteristic of elastic manifolds pinned by disorder where
the long-distance physics is controlled by a zero-temperature
fixed point [14,17,18]. To our knowledge, the only quantum
disordered system where (disorder) chaos was studied is the
two-dimensional Anderson insulator [19].

In this paper, we study chaos in the BG phase of a one-
dimensional Bose fluid. In Sec. II, we briefly recall the FRG
formalism used in Refs. [4,5] to study the BG phase and
generalize it to include two copies of the system subjected
to slightly different disorder configurations [20]. In particular,
we introduce the main quantities of interest: the running Lut-
tinger parameter Kk and the intra- and intercopy renormalized
disorder correlators, δ11,k (u) = δ22,k (u) and δ12,k (u) respec-
tively. Here k is a running momentum scale and u ≡ φa − φb

stands for the difference between the fields in two different
replicas. The flow equations for Kk and δi j,k (u) are similar to
those obtained for pinned disordered periodic manifolds by
Duemmer and Le Doussal (DLD) in Refs. [17,18], with Kk

playing the role of the temperature.
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In Sec. III A, we first consider the approach to the BG fixed
point when the two copies are identical (i.e., experience the
same disorder potential: ε = 0). In that case, the π -periodic
functions δii,k (u) and δ12,k (u) approach a fixed-point function
δ∗(u) exhibiting cusps at u = pπ (p integer). At nonzero mo-
mentum scale, the cusp singularity at u = pπ is rounded into a
QBL. A linear analysis of the perturbations about δ∗(u) shows
that the less irrelevant eigenvalue λ = −θ is associated with
an eigenfunction which is increasingly peaked around u = pπ
as the number nmax of circular harmonics of δi j,k (u) (used
in the numerical solution of the linearized flow equations)
increases, whereas all other eigenfunctions remain extended
over the whole interval [0, π ].

In Sec. III B, we show that the BG fixed point is unsta-
ble for any nonzero ε since in that case δii,k (u) → δ∗(u) but
δ12,k (u) → 0 in the limit k → 0. Thus, the two copies become
statistically independent in the large-distance limit, which
corresponds to disorder chaos. From the numerical solution
of the flow equations, we find that δ12,k (0) satisfies a scaling
form with a characteristic length ξov ∼ |ε|−1/α but the chaos
exponent α seems to converge very slowly with nmax. The
instability of the BG fixed point occurs via a chaos bound-
ary layer [17,18] (CBL) reminiscent of the QBL observed
in the approach to the BG fixed point. The linear analysis
of the perturbations about the fixed-point solution δ∗(u) re-
veals a single positive eigenvalue λ ≡ 2α associated with a
function which is increasingly peaked around u = pπ as nmax

increases. The convergence of α with nmax is extremely slow
but in the limit nmax → ∞ the solution can be found analyt-
ically (and is essentially given by a Dirac comb) and yields
the chaos exponent α = 1. We are then able to show that the
convergence of α with nmax is logarithmic. The agreements
and differences between our results and those of DLD are
discussed in Sec. III B 4. Finally, in Sec. IV, we show that
chaos is also obtained when one considers a slight change in
the Luttinger parameter.

II. MODEL AND FRG FORMALISM

We consider a one-dimensional Bose fluid described by the
Hamiltonian Ĥ0. At low energies, Ĥ0 can be approximated by
the Tomonaga-Luttinger Hamiltonian [21–23]

Ĥ0 =
∫

dx
v

2π

{
1

K
(∂xϕ̂)2 + K (∂x θ̂ )2

}
, (1)

where θ̂ is the phase of the boson operator ψ̂ (x) =
eiθ̂ (x)ρ̂(x)1/2 and ϕ̂ is related to the density operator via

ρ̂(x) = ρ0 − 1

π
∂xϕ̂(x) + 2ρ2 cos (2πρ0x − 2ϕ̂(x)), (2)

where ρ0 is the average density and ρ2 is a nonuniversal
parameter that depends on microscopic details. ϕ̂ and θ̂ sat-
isfy the commutation relations [θ̂ (x), ∂yϕ̂(y)] = iπδ(x − y).
v denotes the sound-mode velocity and the dimensionless
parameter K , which encodes the strength of boson-boson
interactions, is the Luttinger parameter. The ground state of
Ĥ0 is a Luttinger liquid, i.e., a superfluid state with super-
fluid stiffness ρs = vK/π and compressibility κ = dρ0/dμ =
K/πv [21].

The disorder contributes to the Hamiltonian a term [1,2]

Ĥdis =
∫

dx

{
− 1

π
η∂xϕ̂ + ρ2[ξ ∗e2iϕ̂ + H.c.]

}
, (3)

where η(x) (real) and ξ (x) (complex) denote random poten-
tials with Fourier components near 0 and ±2πρ0, respectively.
η can be eliminated by a shift of ϕ̂ and is not considered in the
following [5].

In the functional-integral formalism, after integrating out
the field θ , one obtains the Euclidean (imaginary-time) action

S[ϕ; ξ ]

=
∫

X

{
v

2πK
[(∂xϕ)2 + v−2(∂τϕ)2] + ρ2[ξ ∗e2iϕ + c.c.]

}
,

(4)

where we use the notation X = (x, τ ),
∫

X = ∫ β

0 dτ
∫

dx, and
ϕ(X ) is a bosonic field with τ ∈ [0, β]. The model is reg-
ularized by a UV cutoff � acting both on momenta and
frequencies. We shall only consider the zero-temperature limit
β = 1/T → ∞ but β will be kept finite at intermediate stages
of calculations.

A. Introducing two copies and n replicas

To investigate the chaotic nature of the BG phase, we
consider two copies of the system with slightly different re-
alizations of the disorder,

ξ1(x) = ξ (x) + εζ (x), ξ2(x) = ξ (x) − εζ (x), (5)

where |ε| � 1. The random potentials ξ and ζ are uncor-
related and identically distributed, i.e., assuming Gaussian
distributions with zero mean,

ξ (x) = ζ (x) = 0, ξ ∗(x)ξ (x′) = ζ ∗(x)ζ (x′) = Dδ(x − x′)
(6)

(all other correlators, e.g., ξ (x)ξ (x′), vanish). We use an over-
line to denote disorder averaging. Equations (6) imply

ξ ∗
i (x)ξ j (x′) = Di jδ(x − x′), Dii = D(1 + ε2),

D12 = D21 = D(1 − ε2). (7)

The statistical correlations between the two systems are char-
acterized by the correlation functions

Ci j (X − X ′) = 〈[ϕi(X ) − ϕi(X ′)][ϕ j (X ) − ϕ j (X ′)]〉. (8)

Since the two copies are independent before disorder averag-
ing,

Cii(X − X ′) = 2[Gc,ii(0) + Gd,ii(0) − Gc,ii(X − X ′)

− Gd,ii(X − X ′)],

C12(X − X ′) = 2[Gd,12(0) − Gd,12(X − X ′)], (9)

where

Gc,i j (X − X ′) = 〈ϕi(X )ϕ j (X ′)〉 − 〈ϕi(X )〉〈ϕ j (X ′)〉,
Gd,i j (X − X ′) = 〈ϕi(X )〉〈ϕ j (X ′)〉 − 〈ϕi(X )〉 〈ϕ j (X ′)〉 (10)

are the connected and disconnected propagators, respectively.
The long-distance part of both Cii(X − X ′) and C12(X − X ′)
is determined by Gd,i j (X − X ′) [5].
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In the replica formalism, one considers n replicas of the
system and the disorder-averaged partition function

Z[{Jia}] =
n∏

a=1

2∏
i=1

Z[Jia; ξi], (11)

where the 2n external sources {Jia} act on each replica inde-
pendently and

Z[Jia; ξi] =
∫

D[ϕia] e−S[ϕia,ξi]+
∫

X Jia(X )ϕia (X ) (12)

is the partition function of the ath replica of the ith copy
before disorder averaging. Using (7) to perform the disorder
average, one obtains

Z[{Jia}] =
∫

D[{ϕia}] e−S[{ϕia}]+
∑

a,i

∫
X Jia(X )ϕia(X ), (13)

with the replicated action

S[{ϕia}] =
∑
i,a

∫
x,τ

v

2πK

{
(∂xϕia)2 + (∂τϕia)2

v2

}

−
∑

a,b,i, j

Di j

∫
x,τ,τ ′

cos[2ϕia(x, τ ) − 2ϕ jb(x, τ ′)],

(14)

where Di j = ρ2
2 Di j .

B. Effective action and FRG

To implement the nonperturbative FRG approach [24–27],
we add to the action (14) the infrared regulator term [5]

�Sk[{ϕia}] = 1

2

∑
i,a,q,ω

ϕia(−q,−iω)Rk (q, iω)ϕia(q, iω),

(15)
where k is a (running) momentum scale varying from the
UV scale � down to zero and ω ≡ ωn = 2πn/β (n integer)
is a Matsubara frequency. The cutoff function Rk (q, iω) is
chosen so that fluctuation modes satisfying |q|, |ω|/vk � k
are suppressed while those with |q|  k or |ω|/vk  k are
left unaffected (the k-dependent sound-mode velocity vk is
defined below). In practice, we choose

Rk (q, iω) = Zx

(
q2 + ω2

v2
k

)
r

(
q2 + ω2/v2

k

k2

)
, (16)

where r(y) = α/(ey − 1) with α a constant of order unity. Zx

is defined below.
The partition function

Zk[{Jia}] =
∫

D[{ϕia}] exp

{
−S[{ϕia}]

− �Sk[{ϕia}] +
∑
i,a

∫
X

Jiaϕia

}
(17)

thus becomes k dependent. The expectation value of the field
reads

φia(X ) = δ lnZk[{Jj f }]
δJia(X )

= 〈ϕia(X )〉 (18)

(to avoid confusion in the indices, we denote by {Jj f } the 2n
external sources).

The scale-dependent effective action

�k[{φia}] = − lnZk[{Jia}] +
∑
i,a

∫
X

Jiaφia − �Sk[{φia}]
(19)

is defined as a modified Legendre transform which includes
the subtraction of �Sk[{φia}]. Assuming that for k = �

the fluctuations are completely frozen by the term �S�,
��[{φia}] = S[{φia}]. On the other hand, the effective action
of the original model (14) is given by �k=0 since Rk=0 van-
ishes. The nonperturbative FRG approach aims at determining
�k=0 from �� using Wetterich’s equation [28–30]

∂t�k[{φia}] = 1
2 Tr

{
∂t Rk

(
�

(2)
k [{φia}] + Rk

)−1}
, (20)

where �
(2)
k is the second functional derivative of �k and t =

ln(k/�) is a (negative) RG “time.” The trace in (20) involves a
sum over momenta and frequencies as well as copy and replica
indices.

To solve (approximately) the flow equation (20), we con-
sider the following ansatz for the effective action [4,5],

�k[{φia}] =
∑

a

�1,k[φa] − 1

2

∑
a,b

�2,k[φa, φb], (21)

where φa = {φ1a, φ2a} and

�1,k[φa] =
∑

i

∫
X

Zx

2

{
(∂xφia)2 + (∂τφia)2

v2
k

}
,

�2,k[φa, φb] =
∑
i, j

∫
x,τ,τ ′

Vi j,k (φia(x, τ ) − φ jb(x, τ ′)), (22)

with initial conditions Zx = v/πK , v� = v, and V�,i j (u) =
2Di j cos(2u). The form of �1,k and �2,k is strongly con-
strained by the statistical tilt symmetry (STS) due to the
invariance of the disorder part of the action (14) in the time-
independent shift ϕia(X ) → ϕ′

ia(X ) = ϕia(X ) + w(x) with
w(x) an arbitrary function of x [5]. The STS yields

�k[{φ′
ia}] = �k[{φia}] + nβZx

∫
x
(∂xw)2

+ Zx

∑
i,a

∫
X

(∂xw)(∂xφia). (23)

This implies that Zx remains equal to its initial value and no
other space derivative terms are allowed; for instance, the term
(∂xφ1a)(∂xφ2a) is not possible. The term (∂τφ1a)(∂τφ2a) is a
priori not excluded by the STS but is not generated by the flow
equation. Since the two copies are equivalent (D11 = D22), the
velocity vk is copy independent. In addition to vk one may de-
fine a k-dependent Luttinger parameter by Zx = vk/πKk . The
STS also ensures that the two-replica potential Vi j,k (φia, φ jb)
is a function of φia − φ jb only.

Thus, the main quantities of interest are Kk , vk and the
two-replica potential Vi j,k (u). It is convenient to introduce the
dimensionless function

δi j,k (u) = −K2

v2

V ′′
i j,k (u)

k3
. (24)
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For a single copy, the BG fixed point is characterized by a
vanishing of Kk and vk: Kk, vk ∼ kθ for k → 0. The vanishing
of Kk implies that quantum fluctuations are suppressed at low
energies and therefore a pinning of the field ϕ(x, τ ) by the
random potential. On the other hand, the π -periodic function
δ∗(u) = limk→0 δk (u) exhibits cusps at u = pπ (p integer).
This cuspy nonanalytic form is related to the existence of
metastable states [8]. At nonzero momentum scale, quantum
tunneling between the ground state and these metastable states
leads to a rounding of the nonanalyticity into a QBL. The lat-
ter is responsible for the vanishing of the optical conductivity
σ (ω) ∼ ω2 in the low-frequency limit [4,5].

With the ansatzes (21) and (22), the disconnected propaga-
tor of the two-copy system is given by

Gd,i j,k (q, iω) = βδω,0
v2k3

K2

δi j,k (0)

[Zxq2 + Rk (q, 0)]2
. (25)

Stricto sensu, this expression is valid only for |q| � k since
the ansatzes (21) and (22) are based on a derivative expansion.
However, we expect q to act as an infrared cutoff in the flow so
that Gd,i j,k=0(q, 0) can be approximately obtained by setting
k ∼ |q|, i.e.,

Gd,i j,k=0(q, iω) ∼ βδω,0
π2δi j,|q|(0)

|q| . (26)

Since the intracopy correlation function Cii(X ) is not mod-
ified by the intercopy statistical correlations, we have
Cii(X ) � 2πδ∗(0) ln |x| [5]. The system exhibits chaos
if limx→∞ C12(X ) = 0 for any ε > 0, which requires
limk→0 δ12,k (0) = 0: The two copies are then statistically
independent at long distances regardless of the (nonzero)
difference in the random potentials ξ1(x) and ξ2(x). In the
following, we shall therefore consider the flow of

Fk = 1 + ε2

1 − ε2

δ12,k (0)
1
2 [δ11,k (0) + δ22,k (0)]

, (27)

with initial condition F� = 1.

C. Flow equations

A detailed derivation of the flow equations for a single copy
can be found in Ref. [5]. The generalization to two copies is
straightforward and gives

∂tδii,k (u) = −3δii,k (u) − l1Kkδ
′′
ii,k (u)

+ π l̄2{δ′′
ii,k (u)[δii,k (u) − δii,k (0)] + δ′

ii,k (u)2},
(28)

∂tδ12,k (u) = −3δ12,k (u) − l1Kkδ
′′
12,k (u)

+ π l̄2{δ′′
12,k (u)[δ12,k (u) − δii,k (0)] + δ′

12,k (u)2},
(29)

and

∂t Kk = θkKk, ∂t (Kk/vk ) = 0, (30)

where

θk = zk − 1 = π

2
δ′′

ii,k (0)m̄τ (31)

with zk being the running dynamical critical exponent. The
thresholds functions l1, l̄2, and m̄τ are defined in Ref. [5].

Note that the π periodicity of δi j,k (u), as well as the property∫ π

0 du δi j,k (u) = 0, are maintained by the flow equations.

III. DISORDER CHAOS

We consider only the case where the parameters of the
microscopic action (i.e., the initial conditions of the RG flow)
are such that the system is in the BG phase. The flow equations
are integrated numerically using the fourth-order Runge-Kutta
method with adaptative step size. The functions

δi j,k (u) =
nmax∑
n=1

δi j,n,k cos(2nu) (32)

are expanded in circular harmonics with nmax in the
range [100–800]. Note that δi j,0,k necessary vanishes since∫ π

0 du δi j,k (u) = 0.

A. Approach to the BG fixed point

As expected, the RG equations for δii,k (u), Kk , and vk

are identical to the one-copy case [5]. The function δii,k (u)
approaches the π -periodic fixed-point solution

δ∗(u) = 1

2π l̄2

[(
u − π

2

)2
− π2

12

]
, u ∈ [0, π ], (33)

which exhibits cusps at u = pπ (p integer). The BG fixed
point is a “critical,” scale-invariant, fixed point as far as
the disorder correlator δii,k (u) is concerned, i.e., in the
zero-frequency sector. The finite localization length, which
characterizes the BG phase, appears only in the nonzero-
frequency sector of the theory, a feature which is related to the
nonanalytic structure of the propagator at zero frequency [5].

1. Quantum boundary layer

For any nonzero momentum scale k, the cusp singularity
at u = pπ is rounded into a boundary layer. In the vicinity of
the BG fixed point, Kk → 0, the solution can be written in the
form

δii,k (u) = δii,k (0) + Kk f

(
u

Kk

)
(34)

near u = 0 and for an arbitrary value of the ratio u/Kk . The
k-independent even function satisfies f (0) = f ′(0) = 0 and
f ′′(0) < 0. From (28), we obtain

∂tδii,k (0) � −3δii,k (0) − l1 f ′′ + π l̄2( f ′′ f + f ′2) (35)

using Kk → 0 and ∂t Kk = θkKk → 0. The right-hand side
must be independent of x = u/Kk and equal to −3δii,k (0) −
l1 f ′′(0) since f (0) = f ′(0) = 0, i.e.,

−l1 f ′′ + π l̄2( f ′′ f + f ′2) = −l1 f ′′(0). (36)

This yields

f (x) = l1
π l̄2

{
1 −

[
1 − π l̄2

l1
f ′′(0)x2

]1/2
}

. (37)

Since the solution (34) must approach the fixed-point solution
δ∗(u) when Kk → 0, we deduce f ′′(0) = −π/4l1 l̄2.

From (35) and (36), we also obtain

∂tδii(0) = −3δk,ii(0) − l1 f ′′(0), (38)
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i.e.,

δii,k (0) = Ce−3t − l1
3

f ′′(0). (39)

Since δ11,k (0) approaches a finite value as t → −∞, the con-
stant C must necessarily vanish. From the flow equation (28),
it is easy to see that the relevant eigenvalue 3 is associated with
a constant solution δk (u) = const, which is not allowed as it
violates the condition

∫ π

0 du δii,k (u) = 0. We therefore obtain

δii,k (0) = − l1
3

f ′′(0) = π

12l̄2
= δ∗(0), (40)

which is the expected result in the limit k → 0. For k > 0, we
expect

δii,k (0) = δ∗(0) − l1
π l̄2

Kk (41)

to leading order in Kk [31], where the prefactor of Kk is
determined by requiring that δii,k (u) − δ∗(u) vanishes to order
Kk when |u|/Kk  1. The QBL defined by (34), (37), and (41)
is in very good agreement with the numerical solution of the
flow equations (see the discussion of the QBL and CBL in
Sec. III B 2 and Fig. 5).

The preceding results imply the deviation from the BG
fixed point

gk (u) = δii,k (u) − δ∗(u) �
{− l1

π l̄2
Kk + |u|

2l̄2
if |u| � Kk,

0 if |u|  Kk .

(42)

We conclude that when Kk → 0 (i.e., k → 0), the function
gk (u), which characterizes the approach to the BG fixed point
via the QBL, tends to ∼KkIII(K )

u,0 , where III(K )
u,0 is the π -periodic

Kronecker comb [32]. In the next section, we shall see how
this result can be reproduced from a linear analysis of the
perturbations about the fixed point.

2. Linear analysis

Let us consider a small perturbation about the BG fixed
point [K∗ = 0, δ∗(u)],

δii,k (u) = δ∗(u) + g(u)e−λt , Kk = K∗ + Ke−λt , (43)

where g(u) and K (not to be confused with the bare value K�

of the Luttinger parameter) are k independent. To first order
in g and K , we obtain the flow equations

λg(u) = 3g(u) + Kl1δ
∗′′(u) − π l̄2{g′′(u)[δ∗(u) − δ∗(0)]

+ δ∗′′(u)[g(u) − g(0)] + 2δ∗′(u)g′(u)} (44)

and

λK = −θK, (45)

with θ = limk→0 θk . We now expand the functions g(u) and
δ∗(u) in circular harmonics as in (32) with

δ∗
n = 1

2π l̄2n2
. (46)

Note that this expression implies that

δ∗′′(u) = 1

π l̄2
[1 − π III(u)], (47)

0.0 0.2 0.4 0.6 0.8 1.0

u/π

−0.5

0.0

0.5

1.0

g
(u

)

λ = −θ
λ = −3
λ = −12
λ = −25

FIG. 1. Solutions g(u) = ∑nmax
n=1 gn cos(2nu) deduced from the

numerical solution of Eqs. (48) with nmax = 400 and θ = 0.5, cor-
responding to the largest eigenvalues: λ = −θ = −0.5 (solid line)
and λ � −3.00/ − 12.00/ − 25.00 (dashed and dotted lines). The
functions are normalized by the condition g(0) = 1.

where III(u) the π -periodic Dirac comb [32] and differs from
the naive result δ∗′′(u) = 1/π l̄2 (which violates the condi-
tion

∫ π

0 du δ∗′′(u) = 0) obtained from (33). We thus rewrite
Eqs. (44) and (45) as

λgn =
nmax∑
n′=1

An,n′gn′ − 2l1
π l̄2

K, λK = −θK, (48)

with

An,n′ =
(

3 − π2

3
n2

)
δ

(K )
n,n′ − 2 + n2

[
1

(n + n′)2
+ 1 − δ

(K )
n,n′

(n − n′)2

]
,

(49)

where δ
(K )
n,n′ denotes the Kronecker delta.

The solution with eigenvalue λ = −θ , corresponding to a
vanishing of the Luttinger parameter Kk ∼ eθt , can be found
analytically in the limit nmax → ∞. Setting K = 1 and gn =
−l1/π l̄2nmax, and using

nmax∑
n′=1

(An,n′ + 2) = 2 + O
(

1

nmax

)
, (50)

one easily sees that the first equation in (48) is satisfied to
leading order in 1/nmax. Thus, for nmax → ∞, we obtain the
linear perturbation

K = 1, g(u) = − l1
π l̄2

III(K )
u,0 . (51)

The result g(u) ∝ III(K )
u,0 agrees with the QBL analysis of

Sec. III A 1.
This result is confirmed by the numerical solution of the

linear system (48). As nmax increases, we find a solution
g(u), associated with an eigenvalue λ � −θ , and which be-
comes increasingly localized about u = pπ (p integer) with
the ratio g(pπ )/K taking a nonzero limit, in agreement
with (51). There are also nmax eigenvectors with K = 0 and
a function g(u) which typically extends over the whole in-
terval [0, π ] (see Fig. 1). The largest eigenvalues converge
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θt + cst
−λmaxt + cst

FIG. 2. (top) δ11,k (0) = δ22,k (0) and δ12,k (0) vs ln(�/k) = −t
as obtained from the numerical solution of the flow equations
with nmax = 800 and ε � 3 × 10−8. When ε �= 0, δ12,k (0) first ap-
proaches the BG fixed-point value δ∗(0) but is eventually suppressed,
limk→0 δ12,k (0) = 0, thus showing that the two copies become statis-
tically uncorrelated at long distances. (bottom) The ln-ln plot shows
that the approach of δ12,k (0) to its fixed point value δ∗(0) is controlled
by the exponent −θ and the escape by λmax � 1.6. (All figures are
obtained for K = 0.1.)

to {−3,−12,−25,−42, . . . } when nmax → ∞. The conver-
gence is fast and, for the largest eigenvalues, already obtained
with a two-digit precision for nmax = 400. Although θ is not
precisely known [5], it satisfies θ < 3; −θ is therefore the
largest eigenvalue and controls the approach to the BG fixed
point.

If we set K ≡ K� = 0 in the flow equation (28), the cusp
in δii,k (u) arises for k > 0 [5]. This finite-scale singularity
is not accounted for in the linear analysis. Indeed, if we set
K = 0 in (44) and (45), we find that the function g(u)eλt goes
smoothly to zero and the fixed point δ∗(u) is recovered only
for k = 0. Thus, it seems that the boundary layer induced by a
nonzero Kk is a necessary condition for the linear analysis to
be valid.

B. Escape from the BG fixed point

1. Chaotic behavior and overlap length

When ε = 0 the two copies are identical, δ12,k (u) =
δii,k (u), and δ12,k (u) approaches δ∗(u) when k → 0. For small
but nonzero ε, implying δ12,�(u) �= δii,�(u), δk,12(u) is first
attracted to the BG fixed-point solution δ∗(u) but is eventually

10−7 10−6 10−5 10−4 10−3

ε

108

109

1010

1011

1012

ξ o
v
Λ

ξov ∝ |ε|−1/0.83

FIG. 3. ξov vs ε in a log-log plot as obtained from the criterion
Fk=1/ξov = 0.1. The blue line shows a linear fit corresponding to the
power-law behavior (55) with α � 0.83.

suppressed as shown in Fig. 2:

lim
k→0

δ12,k (u) = 0. (52)

Linearizing the equation ∂tδ12,k , we find

δ12,k (u) ∼ k−3+π2/3 cos(2u) for k → 0 (53)

(higher order harmonics decay faster), which gives
Gd,12,k=0(q, 0) ∼ |q|−4+π2/3, so that

C12(X ) ∼ 1

|x|−3+π2/3
(54)

decays with the exponent π2/3 − 3 � 0.2899. We conclude
that the BG phase exhibits chaos.

We can define a characteristic (overlap) length ξov ≡ ξov(ε)
associated with the instability of the BG fixed point when
ε �= 0 and signaling the loss of statistical correlations between
the two copies at large length scales. We use the criterion
Fk=1/ξov = γ where γ � 1 is an arbitrary number and Fk is de-
fined by (27). ξov diverges for ε → 0 as a power law (Fig. 3),

ξov ∝ |ε|−1/α, (55)

where α is the chaos exponent. If we plot Fk as a function of
kξov for various values of ε, we observe a data collapse, thus
showing that Fk satisfies the one-parameter scaling form

Fk = F (kξov), (56)

where F (x) is a universal scaling function, as expected for
a scale-invariant fixed point with a single relevant direction
(Fig. 4).

One can also obtain the chaos exponent directly from the
flow equations. For ε → 0, when δ12,k (0) is near its fixed point
value δ∗(0), one has

δ12,k (0) � δ∗(0) + Aeθt + Be−λmaxt , (57)

as shown in Fig. 2. The leading irrelevant eigenvalue −θ ,
as discussed in Sec. III A 2, controls the approach to the BG
fixed point. The relevant eigenvalue λmax controls the depar-
ture from the fixed point at very long RG time |t |. λmax also
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FIG. 4. (top) Fk vs k for various values of ε. Statistical correla-
tions between the two copies are lost when 1/k is larger than the
overlap ξov length defined by Fk=1/ξov = 0.1. (bottom) Fk vs kξov

showing the data collapse expected from the scaling form (56).

determines the divergence of the overlap length when ε → 0,

ξov ∼ |δ12,�(0) − δii,�(0)|1/λmax ∼ |ε|−2/λmax , (58)

so that α = λmax/2. The estimate of the chaos exponent
obtained from (57) is in very good agreement with the cal-
culation of ξov using the criterion Fk=1/ξov = γ . The results are
shown in Table I for various values of nmax.

2. Chaos boundary layer

The boundary layer analysis of Sec. III A 1 can be gener-
alized to the case where ε �= 0. Since the flow equation of
δii,k (u) and Kk are independent of ε, the intracopy disorder
correlator δii,k (u) is still given by (34) when |u|, Kk � 1. The

equation for δ12,k (u) can be written as

∂tδ12,k (u) = −3δ12,k (u) − l1

(
Kk + π l̄2

l1
K̂k

)
δ′′

12,k (u)

+ π l̄2{δ′′
12,k (u)[δ12,k (u) − δ12,k (0)] + δ′

12,k (u)2},
(59)

where

K̂k = δii,k (0) − δk,12(0). (60)

We assume that the system is near the BG fixed point, so that
both Kk, K̂k and their derivatives ∂t Kk, ∂t K̂k are small [33].
Near u = 0, but for an arbitrary ratio u/Ktot,k , the solution
of (59) and (60) can be written in the form

δ12,k (u) = δ12,k (0) + Ktot,k f

(
u

Ktot,k

)
, (61)

where

Ktot,k = Kk + π l̄2
l1

K̂k . (62)

Using the fact that Ktot,k and ∂t Ktot,k are small, Eq. (59) implies
that f (x) satisfies (36) and is therefore given by (37) with
f ′′(0) = −π/4l1 l̄2. This is expected since when ε = 0, one
has Ktot,k = Kk and δ12,k (u) = δii,k (u) is given by (34). Similar
to (41), we find

δ12,k (0) = δ∗(0) − l1
π l̄2

Ktot,k . (63)

When δ12,k (u) approaches the fixed point, i.e., when Ktot,k �
Kk , the decreasing width of the boundary layer is controlled by
quantum fluctuations as discussed in Sec. III A 1 [δ12,k (u) �
δii,k (u) in that case]. At latter RG times |t |, when Ktot,k �
(π l̄2/l1)K̂k , the width of the boundary layer increases as a
result of the loss of statistical correlations between the two
copies due to the chaotic behavior of the system. Equa-
tions (61) and (63) are in very good agreement with the
numerical solution of the flow equations as shown in Fig. 5.

3. Linear analysis

We now consider a linear analysis of the perturbations
about the BG fixed point in the case ε �= 0. Writing

δii,k (u) = δ∗(u) + gii(u)e−λt ,

δ12,k (u) = δ∗(u) + g12(u)e−λt , Kk = K∗ + Ke−λt (64)

(note that K̂k , introduced in the preceding section, is not an
independent variable), we obtain

λg12(u) = 3g12(u) + Kl1δ
∗′′(u) − π l̄2{g′′

12(u)[δ∗(u) − δ∗(0)]

+ δ∗′′(u)g12(u) + 2δ∗′(u)g′
12(u)} (65)

TABLE I. Chaos exponent α vs number nmax of harmonics used in the numerics obtained from ξov, δ12,k (0) − δ∗(0), or the linear analysis
[Eqs. (66)].

nmax 100 200 300 400 500 600 1000 10000 20000 30000 40000 50000 100000

From ξov 0.803 0.816 0.826 0.831 0.832
From δ12,k (0) − δ∗(0) 0.800 0.811 0.817 0.820 0.823
From linear analysis 0.717 0.748 0.764 0.773 0.781 0.786 0.800 0.847 0.857 0.862 0.865 0.868 0.876

052136-7



ROMAIN DAVIET AND NICOLAS DUPUIS PHYSICAL REVIEW E 103, 052136 (2021)

0.0 0.2 0.4 0.6 0.8

102u

0.186

0.187

0.188
δk0,12(u)
δk1,12(u)
δ∗(u)

FIG. 5. δ12,k (u) near u = 0 as obtained from the numerical solu-
tion of the flow equations (lines) and the analytic expression (61)
(symbols). δ12,k0=�e−4.5 shows the QBL that forms during the ap-
proach to the BG fixed point whereas δ12,k1=�e−18.5 shows the CBL
due to the escape of the fixed point. When using expression (61), the
value of Ktot,k is obtained from the numerical solution of the flow
equations.

to first order in g12 while gii and K satisfy (44) and (45).
Expanding both gi j (u) and δ∗(u) in circular harmonics yields
the linear system

λgii,n =
∞∑

n′=1

An,n′gii,n′ − 2l1
π l̄2

K,

λg12,n =
∞∑

n′=1

Bn,n′g12,n′ − 2l1
π l̄2

K, λK = −θK, (66)

where An,n′ is defined in (49) and

Bn,n′ = An,n′ + 2. (67)

Using

∞∑
n′=1

Bn,n′ = 2, (68)

which follows from (50), we see that K = 0 and g12,n = const,
i.e.,

g12(u) = π III(u) − 1, (69)

is solution with eigenvalue λ = 2 and satisfies
∫ π

0 du g12(u) =
0. It qualitatively reproduces the result obtained from the
boundary layer analysis in Sec. III B 2 although the latter gives
a Kronecker comb and not a Dirac comb (see the discussion
in Sec. III A 2). We do not expect the difference between
the Kronecker and Dirac combs to bear a particular physical
meaning. In both cases, the singular function g12(u) originates
from the boundary layer near u = pπ , be it a QBL or a CBL
[Eq. (61)]. Similarly we find that g12(u) defined by (69),
together with

K = π l̄2
l1

(θ + 2), (70)

is solution with eigenvalue λ = −θ .

Let us now look for the other eigenfunctions, with λ �=
2,−θ and therefore K = 0, in the form

g(u) = π III(u) − 1 + h(u), (71)

where h(u) is assumed to be free of Dirac peaks but its deriva-
tive may be discontinuous at u = pπ . From the equations
satisfied by g(u) and π III(u) − 1, we easily obtained

(λ − 2)[π III(u) − 1] + λh(u)

= 3h(u) − π l̄2{δ∗′′(u)h(u) + h′′(u)[δ∗(u) − δ∗(0)]

+ 2δ∗′(u)h′(u)}. (72)

Collecting all terms involving Dirac peaks [34], we obtain

(λ − 2)π III(u) = π III(u)h(u) = π III(u)h(0). (73)

This equation is satisfied if

h(0) = λ − 2. (74)

The terms free of Dirac peaks lead to the equation

0 = (4 − 2λ)(h − 1) + u(π − u)h′′ + 2(π − 2u)h′ (75)

for u ∈ [0, π ]. Setting h = 1 + f and introducing x = u/π ,
we finally obtain

0 = (4 − 2λ) f + x(1 − x) f ′′ + 2(1 − 2x) f ′, (76)

where the function f (x) must satisfy∫ 1

0
dx f (x) = −1. (77)

Equation (76) was studied by DLD [18]. The solutions that
are symmetric about x = 1/2 in the interval [0,1] (this con-
dition follows from h(u) being even and π periodic) can be
expressed in terms of hypergeometric functions. The condi-
tion (77) of integrability selects a discrete set of values of λ,
for which the hypergeometric function becomes a polynomial
function of finite order,

f (x) =
m0∑

m=0

cmxm. (78)

For f (x) to be solution of (76), we must require

cm+1 = cm
m(m + 3) − 4 + 2λ

(m + 1)(m + 2)
, (79)

whereas c0 is determined from (77). Imposing cm0+1 = 0 then
gives

λ = 2 − m0(m0 + 3)

2
. (80)

For m0 = 0, we obtain λ = 2 and f (x) = −1, i.e., h(u) = 0,
which reproduces the solution (69). The choice m0 = 1, and
more generally m0 odd, must be discarded since the corre-
sponding solutions do not satisfy f (0) = f (1). For m0 = 2,
one finds λ = −3 and

f (x) = −6(1 − 5x + 5x2). (81)

The condition (74), λ = 2 + h(0) = 3 + f (0), is satisfied.
The next solution (m0 = 4) corresponds to λ = −12 and

f (x) = −15(1 − 14x + 56x2 − 84x3 + 42x4), (82)
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FIG. 6. Functions g(u), corresponding to the four largest eigen-
values, obtained from the numerical solution of (66) with nmax =
1000 (lines). Away from the points u = 0 and u = π , these functions
are well approximated by the functions f (u) solutions of (76) asso-
ciated with the eigenvalues 2/ − 3/ − 12/ − 25, with an appropriate
normalization (symbols).

and satisfies (74). All other solutions can be obtained similarly
and are associated with eigenvalues that are more and more
irrelevant as m0 increases. The negative eigenvalue spectrum
{−3,−12,−25,−42,−63,−88, . . . } is the same as that ob-
tained numerically for the approach to the BG fixed point.

In Fig. 6, we show the solution g(u) obtained from a nu-
merical solution of (66) with a finite number nmax of circular
harmonics. We find that there is a single positive eigen-
value (in agreement with the analytic results), associated with
a function g(u) which, as nmax increases, is more strongly
peaked near u = pπ , with, however, a nonzero value away
from these two points to ensure that

∫ π

0 du g(u) = 0. This
behavior is in qualitative agreement with (69). The functions
g(u) associated with negative eigenvalues are also strongly
peaked near u = 0 and u = π , and their behavior away from
these two points is well approximated by the function f (u) =
g(u) − π III(u) found analytically above (Fig. 6). The conver-
gence with nmax of the eigenvalues to the spectrum (80) is,
however, extremely slow. Even for a relatively large value
nmax = 100 000, we find that λmax � 1.75 is still far from its
expected converged value λmax = 2. Our results agree with a
logarithmic convergence,

λmax(nmax) � a − b

c + ln(nmax)
(83)

with a � 2.03, b � 3.70, and c � 1.77, as shown in Fig. 7.
The various values of the chaos exponent obtained numeri-

cally from either ξov, δ12,k (0) − δ∗(0) or the linear analysis are
shown in Table I. Our analytic result λmax = 2 implies a chaos
exponent α = λmax/2 = 1.

The slow convergence of λmax with nmax implies that it is
necessary to probe the system at very long length scales to
observe the value α = 1 of the chaos exponent. Any finite
length L indeed introduces an effective upper cutoff nmax ∼
1/L on the number of circular harmonics in the Fourier series
expansion of the function δ12,k (u). In particular, this means
that the critical behavior ξov ∼ |ε|−1/α will be observed only
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FIG. 7. Largest eigenvalue λmax vs nmax obtained from the nu-
merical solution of (66). The continuous (orange) line shows the
logarithmic convergence (83) of λmax with nmax.

if ξov is sufficiently large (i.e., |ε| sufficiently small). Thus, to
determine the chaos exponent from the numerical solution of
the flow equations, one would need both a very small value
of ε and an extremely large nmax, which cannot be realized in
practice.

4. Comparison with Duemmer and Le Doussal’s work

Equations (28), (29), and (65) are identical to those
obtained by DLD in their study of periodic elastic mani-
folds pinned by disorder (with the temperature playing the
role of the Luttinger parameter) [18]. But our analysis of
the linearized equation (65) differs in a crucial way: DLD use
δ∗′′(u) = 1/π l̄2 which contradicts (47) and is not correct since
it violates the condition

∫ π

0 du δ∗′′(u) = 0. As a result, they
obtain Eq. (76) for the function g instead of f = g − π III [35].
Since none of the solutions of this equation have a vanishing
integral over the interval [0,1], they conclude that the linear
analysis of perturbations about the fixed point fails.

To circumvent this difficulty, DLD consider a two-
dimensional system where the temperature is marginal, θ = 0,
and therefore does not flow under RG. When ε = 0, one
obtains a line of fixed points indexed by T > 0. The function
δ∗(u) is analytic and exhibit a thermal boundary layer (TBL)
of width T instead of the cusp, which makes the linear analysis
about the fixed point free of the difficulties that arise when the
temperature flows toward zero. DLD find that outside the TBL
(i.e., for |u| � T ), the eigenfunction g(u) corresponding to the
largest eigenvalue λ must be chosen among the solutions f (u)
of (76), whereas [36]

g(u) = 1

6T

λ − 2[
1 + (

u
2T

)2] (84)

for |u| � T . The eigenvalue

λ � 2 − 3

ln(1/T )
(85)

converges logarithmically toward 2 when T → 0. We con-
clude that the T → 0 limit of DLD’s results in the marginal
case θ = 0 agree with the conclusions of Sec. III B 3 ob-
tained in the case where the temperature T (i.e., the Luttinger
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parameter in our notations) flows to zero (θ > 0). Our results
show that the T → 0 limit of the function g(u) inside the
TBL [Eq. (84)] is given by the singular function III(u). The
temperature dependence of the eigenvalue in (85) is similar to
the dependence of λ with respect to nmax in (83). These loga-
rithmic corrections are due to the finite length scale introduced
by the finite temperature in the marginal case (θ = 0) or the
finite number of circular harmonics in our study (θ > 0).

DLD also consider a system with dimensionality larger
than two where the temperature is irrelevant (θ > 0). In that
case, they find that the escape from the fixed point, i.e., the
growth of δ12,k (u) − δii,k (u), occurs with eigenvalue λ = 2 if
u is outside the CBL and 2 + θ if u is inside the CBL, which
gives the chaos exponent α = 2/(2 + θ ). This latter result
disagrees with our conclusions.

IV. QUANTUM CHAOS

In this section, we consider two copies of the system
subjected to the same disorder potential but with different
Luttinger parameters,

K1 = K + ε, K2 = K − ε. (86)

The replicated action is then given by

S[{ϕia}] =
∑
i,a

∫
x,τ

v

2πKi

{
(∂xϕia)2 + (∂τϕia)2

v2

}

−
∑

a,b,i, j

D
∫

x,τ,τ ′
cos[2ϕia(x, τ ) − 2ϕ jb(x, τ ′)].

(87)

In order to implement the FRG, we choose a cutoff function
which depends on the copy index,

Ri,k (q, iω) = Zix

(
q2 + ω2

v2
i,k

)
r

(
q2 + ω2/v2

i,k

k2

)
, (88)

where Zix = v/πKi and vi,k is the renormalized velocity of the
ith copy.

The ansatz for the effective action �k[{φia}] is given by (22)
with Zx and vk replaced by Zix and vi,k . The flow equations for
Ki,k , vi,k , and

δi j,k (u) = −KiKj

v2k3
V ′′

i j,k (u) (89)

are given by

∂t Ki,k = θi,kKi,k, ∂t (Ki,k/vi,k ) = 0, θi,k = π

2
δ′′

ii,k (0)m̄τ .

(90)

and

∂tδii,k (u) = −3δii,k (u) − l1Ki,kδ
′′
ii,k (u)

+ π l̄2{δ′′
ii,k (u)[δii,k (u) − δii,k (0)] + δ′

ii,k (u)2},
(91)

∂tδ12,k (u) = −3δ12,k (u) − l1
K1,k + K2,k

2
δ′′

12,k (u)

+ π l̄2{δ′′
12,k (u)[δ12,k (u) − δ12,k (0)] + δ′

12,k (u)2}

− π l̄2K̂kδ
′′
12(u), (92)

where

K̂k = δ11,k (0) + δ22,k (0)

2
− δ12,k (0). (93)

These equations are similar to those discussed in Secs. II
and III. Since K̂� = O(ε2), all conclusions reached in Sec. III
remain valid as can be explicitly verified by solving numeri-
cally the flow equations. The chaotic behavior now originates
in the difference in the quantum fluctuations of the two
copies of the system. Although they are suppressed in the
long-distance limit, Ki,k → 0 for k → 0, they select different
ground states in the two copies. This “quantum” chaos is ana-
log to the “temperature” chaos in classical disordered system,
as shown by the analogy between Eqs. (91) and (92) and the
equations derived in Ref. [17].

V. CONCLUSION

We have investigated the chaotic behavior of the BG phase
of a one-dimensional disordered Bose fluid. By solving nu-
merically the nonperturbative FRG equations, we find that two
copies of the system with slightly different disorder config-
urations become statistically uncorrelated at large distances.
The chaos exponent α can be obtained from the overlap
length ξov ∼ |ε|−1/α or the growth of δ12,k (0) − δ∗(0) ∼ e−2αt

at long RG time |t |, but the convergence with the number
nmax of circular harmonics used for the disorder correlators
δi j,k (u) turns out to be logarithmic and therefore extremely
slow. From the linear analysis of perturbations about the
BG fixed point, we are, however, able to show analytically
that α = 1.

Although the chaos exponent is related to the relevant
RG eigenvalue λmax = 2α of the linearized flow near the
BG fixed point, as for a standard critical point, the pecu-
liar nature of the fixed point makes the situation somewhat
unusual. The fixed-point disorder correlator δ∗(u) exhibits
cusps at u = pπ and δ12,k (u) approaches and departs from its
nonanalytic fixed-point form via a QBL and a CBL, respec-
tively. This has strong consequences for the linear analysis
of the perturbations about the fixed point. The eigenfunc-
tions g12,k (u) ≡ δ12,k (u) − δ∗(u) = π III(u) + f (u), solutions
of the linearized flow equations, are singular at u = pπ [ f (u)
is a regular function]. Although this could call into question
the linear analysis, the agreement with the results obtained
from the numerical analysis of the flow equations, where
the function δ12,k (u) remains analytic at all scales k � 0,
strongly supports its validity, even if this agreement is ob-
tained for a finite number nmax of circular harmonics for which
the chaos exponent significantly differs from its converged
value.

The chaotic behavior of the BG phase can also be induced
by a modification of quantum fluctuations due to a slight
variation of the Luttinger parameter.

Finally, we note that all these conclusions also apply to the
Mott-glass phase of a disordered Bose fluid induced by long-
range interactions [7].
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