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We study the quantum sine-Gordon model within a nonperturbative functional renormalization-group
approach (FRG). This approach is benchmarked by comparing our findings for the soliton and lightest
breather (soliton-antisoliton bound state) masses to exact results. We then examine the validity of the
Lukyanov-Zamolodchikov conjecture for the expectation value heði=2Þnβφi of the exponential fields in the
massive phase (n is integer and 2π=β denotes the periodicity of the potential in the sine-Gordon model). We
find that the minimum of the relative and absolute disagreements between the FRG results and the
conjecture is smaller than 0.01.
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Introduction.—The quantum sine-Gordon model [1]
describes many physical systems. In condensed matter it
is widely used to understand the phase diagram and the
low-energy properties of one-dimensional quantum fluids
[2–4] and has applications that range from strongly
correlated electron systems to cold atoms. In high-energy
physics, it is related to the massive Thirring model
describing Dirac fermions with a self-interaction [5].
The sine-Gordon model can also be viewed as a two-
dimensional model of classical statistical mechanics. In
particular it describes the Berezinskii-Kosterlitz-Thouless
(BKT) transition that occurs in the XY spin model and
more generally in two-dimensional systems with a two-
component order parameter with an O(2) symmetry [6–8].
The Hamiltonian of the quantum sine-Gordon model is

defined by

Ĥ¼
Z

dx

�
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�
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−ucosðβφ̂Þ
�
; ð1Þ

where Π̂ and φ̂ satisfy canonical commutation relations,
½φ̂ðxÞ; Π̂ðx0Þ� ¼ iδðx − x0Þ. Regularization with a UV
momentum cutoff Λ is implied and u=Λ2, β > 0 are
dimensionless parameters. The phase diagram consists of
a gapless phase with massless (anti)soliton excitations for
β2 ≥ 8π (and u → 0) and a gapped phasewith massive (anti)
soliton excitations for β2 ≤ 8π. The soliton and the anti-
soliton carry the topological charge Q ¼ 1 and −1, respec-
tively [9]. They attract forβ2 ≤ 4π and can formbound states,
called breathers, with topological charge Q ¼ 0. The phase
transition between the two phases is of BKT type [6–8].
The sine-Gordon model is one of the most studied

integrable models; its spectrum, thermodynamics, and scat-
tering properties are well understood [10–14]. However not
everything is known and many quantities can be obtained
only from nonexact (e.g., perturbative) methods [2–4]. In
particular, in the massive phase, the amplitude of the
fluctuations about the mean value hφ̂i ¼ 0 is not known
exactly. It has been conjectured by Lukyanov and
Zamolodchikov that [15]
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where jℜðaÞj < 1=2
ffiffiffiffi
K

p
and K ¼ β2=8π is the “Luttinger

parameter” [4] (the massive phase corresponds to K < 1).
Equation (2) is exact for a ¼ ffiffiffiffi

K
p

, K ¼ 1=2, and in the
semiclassical limit K → 0 [16]. Additional arguments
supporting the conjecture were presented in Refs. [17,18].
From the equivalence between the sine-Gordon model and
the massive Thirring model, Eq. (2) was shown to be
correct to first order in u [19,20]. Further evidence of the

correctness of Eq. (2), in particular for not too large values
of a, was provided by a numerical study in a finite volume
[21] and variational perturbation theory [22].
In this Letter, we examine the validity of the Lukyanov-

Zamolodchikov conjecture using a nonperturbative func-
tional renormalization-group (FRG) approach [23,24]. We
go beyond previous FRG approaches [25–28] and, in order
to benchmark our approach, first compute the massMsol of
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the (anti)soliton as well as that (M1) of the lightest breather.
We then turn to the computation of the expectation value
heði=2Þnβφ̂i ¼ hein

ffiffiffiffiffiffiffi
2πK

p
φ̂i (n integer) of the exponential

fields. We confirm the Lukyanov-Zamolodchikov conjec-
ture with an accuracy, defined as the minimum of the
relative and absolute disagreements between the FRG
results and the conjecture, of 0.01.
FRG approach.—From now on we adopt the point of

view of classical statistical mechanics (or Euclidean field
theory) where the sine-Gordon model is defined by the
partition function

Z½J� ¼
Z

D½φ�e−
R

d2rfð1=2Þð∇φÞ2−u cosðβφÞ−Jφg; ð3Þ

with φðrÞ being a classical field and r being a two-
dimensional coordinate. J is an external source allowing
us to obtain the expectation value ϕðrÞ ¼ hφðrÞi ¼
δ lnZ½J�=δJðrÞ by functional derivation. Most physical
quantities can be obtained from the free energy− lnZ½J� or,
equivalently, the effective action (or Gibbs free energy)

Γ½ϕ� ¼ − lnZ½J� þ
Z

d2rJϕ; ð4Þ

defined as the Legendre transform of lnZ½J�.
We compute Γ½ϕ� using a Wilsonian nonperturbative

FRG approach where fluctuation modes are progressively
integrated out in the functional integral [Eq. (3)]. This
defines a scale-dependent effective action Γk½ϕ�, which
incorporates fluctuations with momenta between a (run-
ning) momentum scale k and the UV scale kin ≫ Λ. The
latter condition implies that the initial value Γkin ½ϕ� ¼ S½ϕ�
coincides, as in mean-field theory, with the microscopic
action defined by Eq. (3). The effective action of the sine-
Gordon model, Γk¼0½ϕ�, is obtained when all fluctuations
have been integrated out. The scale-dependent effective
action satisfies an exact flow equation that cannot be solved
exactly [29]. A common approximation scheme is the
derivative expansion where

Γk½ϕ� ¼
Z

d2r

�
1

2
ZkðϕÞð∇ϕÞ2 þ UkðϕÞ

�
ð5Þ

is truncated to second order in derivatives. This
leads to coupled flow equations for the functions ZkðϕÞ
and UkðϕÞ, with initial conditions ZkinðϕÞ ¼ 1 and
UkinðϕÞ ¼ −u cosðβϕÞ, which can be solved numerically.
We refer to the Supplemental Material for more detail about
the implementation of the FRG approach [30].
It is convenient to consider the dimensionless functions

Z̃kðϕÞ ¼
ZkðϕÞ
Zk

; ŨkðϕÞ ¼
UkðϕÞ
Zkk2

; ð6Þ

where Zk ¼ hZkðϕÞiϕ is obtained by averaging ZkðϕÞ on
½−β=π; β=π� [35]. The flow diagram, projected onto the
plane ðKk; ũ1;kÞ, is shown in Fig. 1. Here ũ1;k is the first
harmonic of the potential ŨkðϕÞ ¼ −

P∞
n¼0 ũn;k cosðnβϕÞ

andKk ¼ K=Zk can be interpreted as a “running” Luttinger
parameter. In the massive phase, the flow runs into fixed
points characterized by functions Z̃�ðϕÞ and Ũ�ðϕÞ, which
depend on the parameters u and K (Fig. 2). While Ũ�ðϕÞ
slightly deviates from the cosine form of the initial potential
ŨkinðϕÞ ¼ −ðu=k2inÞ cosðβϕÞ, we see that Z̃�ðϕÞ acquires a
strong dependence on ϕ. Zk diverges as k−2 and the running
Luttinger parameter Kk ∼ k2 vanishes for k → 0.
Benchmarking: soliton and breather masses.—The

smallest excitation gap M of the quantum sine-Gordon
model corresponds to the inverse correlation length of the
two-dimensional classical model [Eq. (3)],

M2 ¼ lim
k→0

U00
kð0Þ

Zkð0Þ
¼ lim

k→0
k2

Ũk
00ð0Þ

Z̃kð0Þ
: ð7Þ

FIG. 1. Flow diagram of the sine-Gordon model projected onto
the plane ðKk; ũ1;kÞ, where ũ1;k is the first harmonic of the
potential ŨkðϕÞ and Kk is the running Luttinger parameter. There
is an attractive line of fixed points for ũ1;k ¼ 0 and Kk > 1 that
terminates at the BKT point ðũ1;k ¼ 0; Kk ¼ 1).

FIG. 2. Z̃kðϕÞ and ŨkðϕÞ for various values of t ¼ lnðk=kinÞ.
ΔŨkðϕÞ is given by ŨkðϕÞ − Ũkð0Þ normalized so that
ΔŨkð�

ffiffiffiffiffiffiffiffiffiffiffi
π=8K

p Þ ¼ 1. In Figs. 2 and 3, Λ ¼ 1 and u=Λ2 ¼ 10−3.
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Since Ũ00
kð0Þ converges to a finite value (this property is

preserved even if one retains only the first harmonics of
ŨkðϕÞ) Z̃kð0Þ must vanish as k2 for M to take a nonzero
value in the massive phase. Z̃kðϕÞ being a normalized
function, hZ̃kðϕÞiϕ ¼ 1, this is possible only if Z̃kðϕÞ
strongly varies with ϕ. Thus only a functional approach
where the coefficient of ð∇ϕÞ2 in the effective action is a
function ZkðϕÞ, and not a mere ϕ-independent number, can
predict the mass of the lowest excitation. Numerically
we observe a rapid convergence of k2Ũk

00ð0Þ=Z̃kð0Þ when
k → 0 in agreement with a previous study [27].
Only excitations that are in the same topological sector

as the ground state, namely Q ¼ 0, contribute to the mass
M [1]. The lowest excitation in this sector is a soliton-
antisoliton pair with mass

2Msol ¼ bΛ
4Γð K

2−2KÞffiffiffi
π

p
Γð 1

2−2KÞ
�
Γð1 − KÞ
ΓðKÞ

πu
2ðbΛÞ2

�
1=ð2−2KÞ

; ð8Þ

when 1=2 ≤ K ≤ 1 [Msol is the mass of a single (anti)
soliton] and a breather with mass

M1 ¼ 2Msol sin
�
π

2

K
1 − K

�
; ð9Þ

when 0 ≤ K < 1=2 [36]. Here b is a scale parameter that
depends on the precise implementation of the UV cutoff Λ
in Eq. (1). Figure 3 shows the value of M obtained from
FRG (we refer to the Supplemental Material [30] for a
discussion of the implementation of the UV cutoff Λ and
the determination of the scale factor b). For 0 ≤ K ≤ 0.4
our result for the breather mass M≡M1 deviates from the
exact value by at most 2%. The agreement becomes nearly
perfect for K ≪ 0.4, which is due to the fact that the initial

value Γð2Þ
kin
ðq;ϕ ¼ 0Þ ¼ q2 þ 8πKu gives the exact breather

mass M1;cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8πKu

p
in the semiclassical limit K → 0

[30]. For 0.4 ≤ K ≤ 1 the agreement between M and the
exact value 2Msol is not as good and varies from ∼2% for
K ≃ 0.4 to more than 100% forK near 1. Note however that
M goes to zero when K → 1 and the absolute error remains
below 10−3 for all values of K (see the inset in Fig. 3). In
the immediate vicinity of K ¼ 1, the behavior of the mass
M differs from 2Msol [Eq. (8)] and one recovers the
standard BKT scaling characterized by an essential singu-
larity of the correlation length [8].
The Lukyanov-Zamolodchikov conjecture.—To obtain

the expectation value of the exponential fields, we consider
the partition function [Eq. (3)] in the presence of an external
source term

R
d2rðh�ei

ffiffiffiffi
8π

p
aφ þ c:c:Þ so that hei

ffiffiffiffi
8π

p
aφðrÞi can

be obtained from lnZk½J; h�; h� by functional differentia-
tion with respect to h�ðrÞ. To the second order of the
derivative expansion, the effective action now reads

Γk½ϕ; h�; h� ¼
Z

d2r
�
1

2
Zkðϕ; h�; hÞð∇ϕÞ2þUkðϕ; h�; hÞ

�

ð10Þ

and

hei
ffiffiffiffi
8π

p
aφðrÞi ¼ −

∂Ukðϕ ¼ 0; h�; hÞ
∂h�

				
h�¼h¼0

: ð11Þ

From the flow equation of Γk½ϕ; h�; h� we obtain two

coupled equations for Uð10Þ
k ðϕÞ≡ ∂h�Ukðϕ; h�; hÞjh�¼h¼0

and Zð10Þ
k ðϕÞ≡ ∂h�Zkðϕ; h�; hÞjh�¼h¼0 with initial condi-

tions Uð10Þ
kin

ðϕÞ ¼ −ei
ffiffiffiffi
8π

p
aϕ and Zð10Þ

kin
ðϕÞ ¼ 0 [30].

We have computed the expectation value of the expo-
nential fields ein

ffiffiffiffiffiffiffi
2πK

p
φ (n integer). These are the natural

fields to consider in the sine-Gordon model. For instance,
in one-dimensional quantum fluids, they arise from prod-
ucts of single-particle fields. The FRG results for 1 ≤ n ≤ 5
are shown in Fig. 4.
For n ¼ 1 we find an excellent agreement between the

FRG results and the conjecture, with a difference ϵabs well
below 0.01 for all values of K. The relative disagreement
ϵrel is small for K < 0.5 but increases for larger values of K
and becomes of order of 100% for K near 1. For these
values of K, however, the expectation value hei

ffiffiffiffiffiffiffi
2πK

p
φi is

very small and what matters is ϵabs.
Note that the Lukyanov-Zamolodchikov conjecture

breaks down in the vicinity of K ¼ 1=n since the expect-
ation value hein

ffiffiffiffiffiffiffi
2πK

p
φi given by Eq. (2) diverges when K →

1=n [37]. This explains the steep upturn near K ¼ 1=n of
the lines showing the conjecture in Fig. 4. Decreasing the
value of u=Λ2 confines the upturn more and more to the
vicinity of 1=n.
For n ≥ 2, ϵrel behaves similarly to the case n ¼ 1 but

ϵabs is also a monotonically increasing function of K (see

FIG. 3. Mass M of the lowest excitation as obtained from the
FRG approach. The solid and dashed lines show the exact values
of 2Msol and M1 (the latter being defined only for K ≤ 1=2)
[Eqs. (8) and (9)]. The inset shows the relative (crosses) and
absolute (dashed line) errors of the FRG result.

PHYSICAL REVIEW LETTERS 122, 155301 (2019)

155301-3



the inset in Fig. 4). ϵabs remains nevertheless below 0.01 up
to values of K very close to 1=n; for u=Λ2 ¼ 10−4 this is
the case for K ¼ 0.49 (and n ¼ 2), K ¼ 0.33 (n ¼ 3), and
K ¼ 0.248 (n ¼ 4). Moreover ϵrel decreases when u=Λ2 is
reduced (which extends the domain of validity of the
conjecture to higher values of K, i.e., to values of K closer
to 1=n). For instance, for n ¼ 2 and K ¼ 0.49, we find
ϵrel ¼ 78=72=66% (while ϵabs ¼ 0.097=0.0097=0.00098)
for u=Λ2 ¼ 10−3=10−4=10−5. We therefore ascribe the
apparent disagreement between the FRG results and the
conjecture near K ¼ 1=n to the breakdown of the latter
when K → 1=n. In fact the change of concavity in the
curves showing ϵabs in the inset of Fig. 4 suggests that the
conjecture might deviate from the correct result well before
K ¼ 1=n (e.g., K ∼ 0.4 for n ¼ 2 and u=Λ2 ¼ 10−4). A
conservative estimate is that the FRG reproduces Eq. (2), in
the domain of validity of the conjecture, to an accuracy
(defined as the minimum of ϵabs and ϵrel) better than 0.01.
Conclusion.—Contrary to the perturbative RG

[23,38,39], which correctly predicts the phase diagram
of the quantum sine-Gordon model but fails to describe the
massive phase, the nonperturbative FRG allows us to
continue the flow into the strong-coupling regime and thus
compute the low-energy properties of the massive phase.
The fact that FRG captures genuinely nonperturbative
topological excitations, namely (anti)solitons and breath-
ers, proves its efficiency and is reminiscent of its ability to
describe most universal properties of the BKT transition in
the linear O(2) model [40–42] for which it is widely
admitted that topological defects (vortices) play a cru-
cial role.
The FRG result for the expectation value hein

ffiffiffiffiffiffiffi
2πK

p
φi of

the exponential fields is in very good agreement with the
conjecture proposed by Lukyanov and Zamolodchikov
[15]. The minimum of the relative and absolute

disagreements is smaller than 0.01 for all values of n
except in the immediate vicinity of K ¼ 1=n where the
conjecture breaks down. This undoubtedly provides us with
a very strong support of the Lukyanov-Zamolodchikov
conjecture. We also stress that FRG allows one to obtain
hein

ffiffiffiffiffiffiffi
2πK

p
φi for all values of K whereas the conjecture is

limited to the range K < 1=n.
Finally we would like to point out that the nonperturba-

tive FRG approach presented in this Letter opens up the
possibility to study various nonintegrable extensions of
the quantum sine-Gordon model where both perturbative
RG and exacts methods are inoperative in the strong-
coupling phase.

We thank P. Azaria for enlightening discussions and a
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