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Abstract. – We study antiferromagnetism and single-particle properties in the two-dimensional
half-filled Hubbard model at low temperature. Collective spin fluctuations are governed by a
non-linear sigma model that we derive from the Hubbard model for any value of the Coulomb
repulsion. As the Coulomb repulsion increases, the ground state progressively evolves from a
Slater to a Mott-Heisenberg antiferromagnet. At finite temperature, we find a metal-insulator
transition between a pseudogap phase at weak coupling and a Mott-Hubbard insulator at
strong coupling.

Introduction. – The Hubbard model [1] and its generalizations play a key role in the
description of strongly correlated fermion systems such as high-Tc superconductors, heavy
fermions systems, or organic conductors [2]. Despite its simplicity (the model is defined by
two parameters, the inter-site hopping amplitude t and the local Coulomb interaction U , and
the symmetry of the lattice), exact solutions or well-controlled approximations exist only in
a few special cases as in one-dimension (1D) or in the limit of infinite dimension [1].

It is now well established that the ground state of the 2D half-filled Hubbard model on a
square lattice has antiferromagnetic (AF) long-range order. The origin of antiferromagnetism
is believed to depend on the strength of the Coulomb repulsion. At weak coupling (U ≪ t),
a Fermi surface instability gives rise to an insulating spin-density-wave ground state as first
suggested by Slater [3]. In 2D, thermal (classical) fluctuations preclude a finite-temperature
transition (Mermin-Wagner theorem) and the phase transition occurs at TN = 0. Since the
fermion spectral function is gapped at T = 0, one expects, from a continuity argument, that
it will exhibit a pseudogap at finite temperature as a result of strong AF fluctuations [4]. At
strong coupling (U ≫ t), the system becomes a Mott-Hubbard insulator below a temperature
of the order of U . The resulting local moments develop AF short-range order at a much
smaller temperature (∼ J = 4t2/U), and AF long-range order sets in at TN = 0.

Although the Hartree-Fock (HF) theory gives a reasonable description of the AF ground
state, it fails in 2D since it predicts AF long-range order. Several alternative approaches,
which do satisfy the Mermin-Wagner theorem, have been proposed: Moriya’s self-consistent
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renormalized theory [5], the fluctuation exchange approximation (FLEX) [6], and the two-
particle self-consistent approach [4]. However, these approaches are restricted to the weak-
to-intermediate coupling regime (U ∼ 4t). The strong-coupling regime is usually understood
from the Heisenberg model for which various methods are available [7].

In this letter, we describe a theoretical approach which provides a unified view of an-
tiferromagnetism and single-particle properties in the 2D half-filled Hubbard model at low
temperature (including T = 0) and for any value of the Coulomb repulsion. It is based on
a non-linear sigma model (NLσM) description of spin fluctuations. Since it takes into ac-
count only directional fluctuations of the AF order parameter, it is valid below a crossover
temperature TX which marks the onset of AF short-range order.

Besides its validity both at weak and strong coupling, our approach differs from previous
weak-coupling theories [4–6] by the fact that it is a low-temperature expansion (0 ≤ T ≪
TX). In particular, the fermion spectral function is obtained from a spin-rotation-invariant
perturbative expansion around the (gapped) HF ordered state. This should be contrasted
with perturbative treatments applied to (gapless) free fermions interacting with soft collective
spin fluctuations where no small expansion parameter is available [8]. In ref. [9], one of the
present authors reported a calculation of the spectral function in the weak-coupling limit of
the Hubbard model using a NLσM description of spin fluctuations. However, the limitations
encountered by previous weak-coupling theories could not be fully overcome.

Non-linear sigma model. – The Hubbard model is defined by the Hamiltonian

H = −t
∑

〈r,r′〉,σ

(

c†rσcr′σ + h.c.
)

+ U
∑

r

nr↑nr↓. (1)

c†rσ (crσ) creates (annihilates) a fermion of spin σ at the lattice site r. nrσ = c†rσcrσ and 〈r, r′〉
denotes nearest-neighbor sites. We take the lattice spacing equal to unity and h̄ = kB = 1.

We express charge and spin fluctuations in terms of auxiliary fields. For this purpose, we
write the interaction term in (1) as nr↑nr↓ = [(c†rcr)

2 − (c†rσ · Ωrcr)
2]/4, where Ωr is an

arbitrary unit vector [10]. cr = (cr↑, cr↓)
T and σ = (σ1, σ2, σ3) denotes the Pauli matrices.

Spin-rotation invariance is made explicit by averaging the partition function over all directions
of Ωr. In a path-integral formalism, Ωr becomes a time-dependent field. Decoupling the
interaction term by means of two real auxiliary fields, ∆c and ∆s, the partition function is
then given by Z =

∫

D[c†, c]
∫

D[∆c,∆s,Ωr]e
−S with the action (β = 1/T )

S = S0 +

∫ β

0

dτ
∑

r

[

∆2
cr +∆2

sr

U
− c†r

(

i∆cr +∆srσ · Ωr

)

cr

]

, (2)

where cr, c
†
r are Grassmann variables. S0 is the action in the absence of interaction. Equa-

tion (2) defines an “amplitude-direction” representation, where the AF order parameter field
is given by ∆srΩr. In the following, charge fluctuations (∆c) are considered at the saddle-
point (i.e. HF) level: −i∆cr = (U/2)〈c†rcr〉 = U/2. Below the HF transition temperature
THF
N , the amplitude of the order parameter takes a well-defined value so that we can consider

∆sr within a saddle-point approximation, i.e. ∆sr = ∆0, where the fluctuations of ∆0 are

ignored. When T ≪ THF
N , ∆0 ∼ te−2π

√
t/U for U ≪ t and tends to U/2 for U ≫ t. Below the

crossover temperature TX (to be defined more precisely later) which marks the onset of AF
short-range order, the Ωr field can be parametrized by Ωr = (−1)rnr(1−L2

r)
1/2+Lr, where

the Néel field nr (|nr| = 1) is assumed to be slowly varying [11]. The small canting vector
Lr, orthogonal to nr, takes account of local ferromagnetic fluctuations. It turns out to be
convenient to introduce a pseudo-fermion φrσ whose spin is quantized along the (fluctuating)
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Fig. 1 – Spin-wave velocity c, bare spin stiffness ρ0

s
, and fraction n0 of condensed bosons at T = 0.

Néel field. φr = (φr↑, φr↓)
T is defined by cr = Rrφr, where Rr is a site- and time-dependent

SU(2)/U(1) matrix satisfying Rrσ3R
†
r = σ · nr. The action can then be written as

S=

∫ β

0

dτ
∑

r

φ†
r

{

∂τ −A0r−2t
∑

µ=x,y

cos
(

−i∂µ−Aµr

)

−∆0

[

(−1)rσ3
√

1−l2r+lr ·σ
]

}

φr, (3)

where we have introduced the SU(2) gauge field A0r = −R†
r∂τRr, Aµr = iR†

r∂µRr (µ = x, y),
and the rotated canting field lr = R−1

r Lr. Here Rr is the SO(3) element associated to Rr

which maps ẑ onto nr. In eq. (3), both l and Aµ are small, since the gauge field is of order
∂µn. The effective action of the Néel field is obtained by expanding (3) to second order in
these variables and integrating out the fermions and the canting field lr. Skipping technical
details, we obtain

SNLσM[n] =
ρ0s
2

∫ β

0

dτ

∫

d2r

[

(∂τnr)
2

c2
+ (∇nr)

2

]

, (4)

where we have taken the continuum limit in real space. The bare spin stiffness ρ0s and the spin-
wave velocity c are given by ρ0s = ǫc/8 and c2 = (ǫc/2)(χ

−1
⊥ − U/2), where ǫc is the absolute

value of the (negative) kinetic energy per site and χ⊥ the transverse spin susceptibility in
the HF ground state (fig. 1). In the weak-coupling limit, AF short-range order cannot be
defined at length scales smaller than ξ0 ∼ t/∆0, which corresponds to the size of bound
particle-hole pairs in the HF ground state. Thus eq. (4) should be supplemented with a cutoff
Λ ∼ min(1, ξ−1

0 ) in momentum space. The NLσM (4) was first obtained by Schulz [12]. In the
limit U ≫ t, it reproduces the result obtained from the Heisenberg model with an exchange
coupling J = 4t2/U [7].

Magnetic phase diagram. – We solve the NLσM within the CP 1 representation, where
the Néel field is expressed in terms of two Schwinger bosons: nr = z†rσzr (zr = (zr↑, zr↓)

T )
with z†rzr = 1. When the CP 1 representation is generalized to the CPN−1 representation by
introducing N bosons zrσ (σ = 1, . . . , N), the NLσM can be solved exactly by a saddle-point
approximation in the N → ∞ limit [7]. At zero temperature, there is a quantum critical point
at g = gc = 4π/Λ between a phase with AF long-range order and a (quantum) disordered
phase. g = c/ρ0s is the coupling constant of the NLσM. In the ordered phase (g < gc), a
fraction n0 = 1−g/gc (0 ≤ n0 ≤ 1) of the bosons condenses in the mode q = 0. n0 determines
the mean value of the Néel field: |〈nr〉| = n0. We find that there is AF long-range order for
any value of the Coulomb repulsion in the ground state of the 2D half-filled Hubbard model.

At weak coupling, 1 − n0 = g/gc ∼ e−2π
√

t/U is exponentially small. By an appropriate
choice of the cutoff Λ, we reproduce the result n0 ≃ 0.6 for U ≫ t as obtained from the
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2D Heisenberg model on a square lattice [13] (fig. 1). At finite temperature, the AF long-
range order is suppressed (n0 = 0). However, the AF correlation length remains exponentially
large: ξ ∼ (c/T )e2πρs/T , where ρs = ρ0s(1− g/gc) is the zero temperature spin stiffness. This
regime, which is dominated by classical (thermal) fluctuations (since c/ξ ≪ T ), is known as
the renormalized classical regime. The NLσM description is valid for T < TX when amplitude
fluctuations of the AF order parameter are frozen and the assumption of AF short-range order
holds (i.e. ξ ≫ Λ−1). At weak coupling TX ∼ THF

N , while TX ∼ J at strong coupling. The
phase diagram is shown in fig. 2. Above THF

N , spin fluctuations are not important and we
expect a Fermi-liquid (FL) behavior. Between THF

N and TX (a regime which exists only in the
strong-coupling limit), local moments form (ξ0 ∼ 1) but with no AF short-range order (Curie
spins: ξ ∼ 1). Below TX, the system enters a renormalized classical regime of spin fluctuations
where the AF correlation length becomes exponentially large. AF long-range order sets in at
TN = 0. Although there is a smooth evolution of the magnetic properties as a function of U ,
the physics is quite different for U ≪ t and U ≫ t. This is shown below by discussing the
fermion spectral function. The main conclusions are summarized in fig. 2.

Fermion spectral function. – Now we consider the effect of long-wavelength spin fluc-
tuations on the fermion spectral function. The fermion Green’s function G(r, τ ; r′, τ ′) =

−〈cr(τ)c
†
r′(τ ′)〉, written here as a 2 × 2 matrix in spin space, is computed using cr = Rrφr

with (Rr)↑↑ = (Rr)
∗
↓↓ = zr↑ and (Rr)↓↑ = −(Rr)

∗
↑↓ = zr↓. Integrating first the pseudo-

fermions and the canting field Lr, we can write the Green’s function as

G(1, 2) = 1

Z

∫

D[z]e−SNLσM[z]R1G(1, 2 | z)R†
2, (5)

where we use the shorthand notation i ≡ (ri, τi). G(1, 2 | z) is the pseudo-fermion propagator
calculated for a given configuration of the bosonic field z. The action (3), when expanded
in powers of Aµ and Lr, can be written as SHF[φ] + S′[z, φ,L]. It describes HF pseudo-
fermions interacting with spin fluctuations via the action S′. Since the HF pseudo-fermions
are gapped, we expect a perturbative expansion in S′ to be well behaved. To leading order
G(1, 2 | z) = GHF(1, 2) with GHF the HF Green’s function. From (5), we then obtain

Gσ(k,k
′, ω) = −2δk,k′

β

∑

ων

∫

q

GHF
σ (k − q,k − q, ω − ων)D(q, ων) + n0GHF

σ (k,k′, ω), (6)

GHF
σ (k,k′, ω) = −δk,k′

iω + ǫk

ω2 + E2
k

+ δk,k′+π

σ∆

ω2 + E2
k

, D̄(q, ων) = − gc/2

ω2
ν + ω2

q

, (7)

where
∫

q
≡

∫ π

−π
dqx

2π

∫ π

−π
dqy

2π , π = (π, π), and ω (ων) denotes a fermionic (bosonic) Matsubara

frequency. D̄(q, ων) is the Schwinger boson propagator (for q �= 0) obtained from the saddle-
point solution of the NLσM. Here ωq = c(q2 + ξ−2/4)1/2 and Ek = (ǫ2k + ∆2

0)
1/2, with

ǫk = −2t(cos kx + cos ky) the energy of the free fermions. At finite temperature, n0 vanishes
so that the fermion Green’s function is spin-rotation and translation invariant. From (6), we
obtain the spectral function A(k, ω) = −π−1 ImGσ(k,k, iω → ω + i0+):

A(k, ω)=Ainc(k, ω) + n0AHF(k, ω), (8)

Ainc(k, ω)=

∫

q

gc

2ωq

{

[

nB(ωq)+nF(−Ek−q)
][

u2k−qδ(ω−ωq−Ek−q)+v2k−qδ(ω+ωq+Ek−q)
]

+

+
[

nB(ωq)+nF(Ek−q)
][

u2k−qδ(ω+ωq−Ek−q)+v2k−qδ(ω−ωq+Ek−q)
]

}

, (9)

where nF(ω) and nB(ω) are the usual Fermi and Bose occupation numbers and AHF the
HF spectral function: AHF(k, ω) = u2kδ(ω − Ek) + v2kδ(ω + Ek), where u2k, v

2
k = 1

2 (1 ±
ǫk

Ek

).
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Fig. 2 – Phase diagram of the 2D half-filled Hubbard model. All lines, except TN = 0 (thick solid line),
are crossover lines. The NLσM description is valid below TX. FL: Fermi-liquid phase; PG: pseudogap
phase. The vertical dotted line indicates the finite-temperature metal-insulator transition obtained
from the criterion ρ(ω = 0) = 0.

The normalization of the spectral function,
∫

dωA(k, ω) = 1, follows from the saddle-point
equation of the NLσM.

The spectral function is shown in fig. 3. At weak coupling and zero temperature, our theory

describes a Slater antiferromagnet. The AF gap 2∆0 ∼ te−2π
√

t/U is exponentially small.
There are well-defined Bogoliubov quasiparticles (QPs) with energy ±Ek, as in the HF theory,
but their spectral weight is reduced by a factor n0 due to quantum spin fluctuations. The

remaining weight (1−n0 ∼ e−2π
√

t/U ≪ 1) is carried by an incoherent excitation background
at higher energy (|ω| > Ek). As U increases, the Slater antiferromagnet progressively evolves
into a Mott-Heisenberg antiferromagnet with a large AF gap and a significant fraction of
spectral weight transferred from the Bogoliubov QPs to the incoherent excitation background.
At strong coupling, the AF gap 2∆0 ≃ U and n0 ≃ 0.6.

At finite temperature, A(k, ω) exhibits two broadened peaks at the HF QP energy ±Ek.
In the vicinity of the peak at Ek, the spectral function is well approximated by A>

peak(k, ω) =

u2k
g

4πcnB(|ω − Ek|). The peak has a width of the order of the temperature and there-

Fig. 3 – Left: spectral function A(k, ω) in the weak-coupling limit U = t for T = 0 (Slater an-
tiferromagnet) and T = ∆0/5 (pseudogap phase). Right: spectral function in the strong-coupling
regime U = 12t for T = 0 (Mott-Heisenberg antiferromagnet) and T = J/5 (Mott-Hubbard insula-
tor). k = (π/2, π/2). For T = 0, the vertical lines represent Dirac peaks of weight n0/2. Note the
difference in the energy scale, which is fixed by ∆0, between the two figures.
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Fig. 4 – Density of states ρ(ω) at low energy. As the Coulomb repulsion U increases through a critical
value Uc ≃ 4.25t, the pseudogap becomes a Mott-Hubbard gap (see the vertical dotted line in fig. 2).

fore corresponds to incoherent excitations. We find that the spectral weight of the peak,
∫

dωA>
peak(k, ω), is temperature independent and equal to u2kn0, which is nothing else but the

Bogoliubov QP weight in the ground state. We conclude that the peak at Ek is an incoherent
precursor of the zero-temperature Bogoliubov QP peak. As the temperature decreases, it
retains its spectral weight but becomes sharper and sharper, and eventually becomes a Dirac
peak at T = 0. As expected, the weak-coupling pseudogap continuously evolves into the AF
gap when T → 0.

Equation (9) shows that the contribution to A(k, ω) at low energy involves the Bose
occupation number nB(ωq). This indicates that the low-energy fermion states (0 ≤ |ω| < Ek)
are due to thermal bosons, i.e. thermally excited spin fluctuations. A fermion added to
the system with momentum k and energy |ω| < Ek can propagate by absorbing a thermal
boson of energy ωq and emitting a pseudo-fermion with energy Ek−q = ω + ωq. The lowest
fermion energies are obtained by solving ω = Ek−q − ωq (or ω = −Ek+q + ωq). In the
weak-coupling limit (fig. 3), maxq(ωq) = cΛ ∼ 2∆0 and Ek−q ∼ Ek. Thus, there is spectral
weight at zero energy: the spectral function and the density of states exhibit a pseudogap.
Nevertheless, the density of states ρ(ω) =

∫

k
A(k, ω) remains exponentially small at low

energy: ρ(ω) ∼ e−∆0/T cosh(ω/T ), |ω| ≪ ∆0. This result differs from pseudogap theories
based on Gaussian spin fluctuations which find a much weaker suppression of the density of
states [8]. It bears some similarities with the result obtained by Bartosch and Kopietz for
fermions coupled to classical phase fluctuations in incommensurate Peierls chains [14]. In the
low-temperature regime dominated by directional fluctuations of the order parameter, the
suppression of the density of states at low energy is indeed expected to be exponential. In
the strong-coupling limit, since Ek ∼ U/2 and cΛ ∼ J ≪ U/2, there is a gap (of order U/2)
in the spectral function and the density of states. Thermally excited spin fluctuations reduce
the zero-temperature AF gap U/2 by a small amount of the order of J . The system is a
Mott-Hubbard insulator (fig. 2).

We therefore conclude that our approach predicts a finite-temperature metal-insulator
transition between a pseudogap phase and a Mott-Hubbard insulator as the strength of the
Coulomb interaction increases (fig. 2): at a critical value Uc, the density of states at zero
energy ρ(ω = 0) vanishes and the pseudogap becomes a Mott-Hubbard gap (fig. 4). Uc is
obtained by equating the minimum energy ∆0 of a HF fermion to the maximum energy of a
Schwinger boson

√
m2 + c2Λ2. For T → 0 the result is Uc ≃ 4.25t. However, being a low-

energy theory, the NLσM does not allow us to describe accurately the high-energy Schwinger
bosons (with |q| ∼ Λ) and in turn the low-energy fermion excitations. In particular, the
critical value of U calculated above and the precise form of the density of states near zero
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energy, plotted in fig. 4, depend on the cut-off procedure used in the NLσM. Note also that
we do not know at which temperature and how the metal-insulator transition ends.

Conclusion. – We have presented a low-temperature approach to the 2D half-filled Hub-
bard model which allows us to study both collective spin fluctuations and single-particle prop-
erties for any value of the Coulomb repulsion U . At zero temperature, it describes the evolu-
tion from a Slater to a Mott-Heisenberg antiferromagnet. At finite temperature, it predicts a
metal-insulator transition between a pseudogap phase at weak coupling and a Mott-Hubbard
insulator at strong coupling. Since the charge auxiliary field ∆c is considered at the HF level,
some aspects of the Mott-Hubbard localization are not taken into account. In particular, at
intermediate coupling U ∼ 8t, we expect both Bogoliubov QP bands (or precursors thereof at
finite temperature) and Mott-Hubbard bands in the spectral function [4]. The Mott-Hubbard
bands have a purely local origin, independent of the Fermi surface geometry, and should show
up at ω ∼ ±U/2 (with U/2 > ∆0) in the spectral function. Nevertheless, we believe that our
theory captures the main features of the physics of the 2D half-filled Hubbard model.

On the basis of a numerical calculation (dynamical cluster approximation), Moukouri and
Jarrell have called into question the existence of a Slater mechanism in the 2D Hubbard
model [15]. Using the criterion ρ(ω = 0) < 10−2/(2t) to identify the Mott insulating phase,
they concluded that the system is always insulating at low (but finite) temperature even in
the weak-coupling limit. From the same criterion (ρ(ω = 0) < 10−2/(2t)), we obtain a similar
line in the (U, T )-plane as Moukouri and Jarrell. This shows that the numerical results of
ref. [15] are not in contradiction with the existence of a Slater scenario at weak coupling, but
reflect the exponential suppression of the density of states due to the presence of a pseudogap.
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