
COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS1

ALIN BOSTAN∗2

Abstract. Classifying lattice walks in restricted lattices is an important problem in enumerative3
combinatorics. Recently, computer algebra has been used to explore and to solve a number of diffi-4
cult questions related to lattice walks. We give an overview of recent results on structural properties5
and explicit formulas for generating functions of walks in the quarter plane, with an emphasis on the6
algorithmic methodology.7
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This document is structured as follows. Section 1 gives an overview of recent re-13
sults obtained in lattice path combinatorics with the help of computer algebra, with14
a focus on the exact enumeration of walks confined to the quarter plane. Sections 215
and 3 then go into more details of two classes of fruitful algorithmic approaches:16
guess-and-prove and creative telescoping.17

1. General presentation.18

1.1. Prelude. Consider the following innocent-looking problem.19

A tandem-walk is a path in Z2 taking steps from {↑, ←, ↘} only.20
Show that, for any integer n ≥ 0, the following quantities are equal:21

(i) the number an of tandem-walks of length n (i.e., using n steps),22
confined to the upper half-plane Z×N, that start and end at (0, 0);23

(ii) the number bn of tandem-walks of length n confined to the quar-24
ter plane N2, that start at (0, 0) and finish on the diagonal x = y.25

For instance, for n = 3, this common value is a3 = b3 = 3, as shown below.26

(i)

(ii)

27

The problem establishes a rather surprising connection between tandem-walks28
in the lattice plane, submitted to two different kind of constraints: the evolution29
domain of the walk, and its ending point. The domain constraint is weaker for the30
first family of walks, while the ending constraint is relaxed for the second family.31

It appears that this problem is far from being trivial. Several solutions exist,32
but none of them is elementary. One of the main aims of the present text is to33
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2 ALIN BOSTAN

convince the reader that this problem (and many others with a similar flavor) can34
be solved with the help of a computer. More precisely, Computer Algebra tools,35
extensively described in the following sections, can be used to discover and to prove36
the following equalities37

(1) a3n = b3n =
(3n)!

n!2 · (n + 1)!
, and am = bm = 0 if 3 does not divide m.38

It goes without saying that such a simple and beautiful expression cannot be an39
element of chance. As it will turn out, closed forms are quite rare for this kind of40
enumeration problems. Nevertheless, even in absence of nice formulas, the struc-41
tural properties of the corresponding enumeration sequences reflect the symmetries42
of the step set and of the evolution domain. Equation (1) shows that the sequences43
(an) and (bn) are P-recursive, that is, they satisfy a linear recurrence with polyno-44
mial coefficients (in the index n). One of the messages that will emerge from the text45
is that this important property of the enumeration sequences is intimately related46
to the finiteness of a certain group, naturally attached to the step set {↑,←,↘}.47

1.2. General context: lattice paths confined to cones. Let us put the previous48
problem into a more general framework. Let d ≥ 1 be an integer (dimension), let S49
be a finite subset (called step set, or model) of vectors in Zd, and p0 ∈ Zd (starting50
point). A S-path (or S-walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn)51
of elements in the lattice Zd such that pi+1 − pi ∈ S for all 0 ≤ i < n. Let C be a52
cone of Rd, that is a subset of Rd such that r · v ∈ C for any v ∈ C and r > 0, assumed53
to contain p0. We will be interested in the (exact and asymptotic) enumeration of54
S-walks confined to the cone C, and potentially subject to additional constraints.55

Example 1. Consider the model S = {(1, 0), (−1, 0), (1,−1), (−1, 1)} (called the56
Gouyou-Beauchamps model) in dimension d = 2, with starting point p0 = (0, 0) and57
with cone C = R2

+ (the quarter plane). The picture below displays the step set of58
the model (on the left), and a S-walk of length n = 17 confined to C (on the right).59
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(i, j) = (5, 1)60

The main typical questions in this context are then the following:61
• What is the number an of n-step S-walks contained in C and starting at p0?62
• For fixed i ∈ C, what is the number an;i of such walks that end at i?63
• What is the nature of their generating functions64

A(t) = ∑
n

antn and A(t; x) = ∑
n,i

an;itnxi?65

As expected from the introductory example of tandem-walks, the answers to66
these questions are not simple, and heavily depend on the various parameters. The67
aim of this text is to provide a survey of recent results —notably classification results68
and closed form expressions— obtained using Computer Algebra.69
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1.3. Why count walks in cones?. Lattice paths are fundamental objects in com-70
binatorics. They have been studied at least since the second half of the 19th century,71
in connection with the ballot problem (see §1.4). Even earlier, embryonic occurrences72
(around 1650) are in Pascal’s and Huygens’ solutions of the so-called problem of di-73
vision of the stakes (or, problem of points), and of the gambler’s ruin problem, which74
motivated the beginnings of modern probability theory [169, 225, 156]. Despite75
these historically important examples, the enumeration of lattice walks has long re-76
mained part of what may be called recreational mathematics. It is only in the late77
1960s that their study really became an independent field of research, at the cross-78
roads of pure and applied mathematics. Since then, various approaches have been79
progressively involved, separately or in interaction, in the study of lattice walks.80
These methods arise from various fields of classical mathematics (algebra, combi-81
natorics, complex analysis, probability theory), and more recently from computer82
science. There are several reasons for the ubiquity of lattice walks, but the most83
solid one is that they encode several important classes of mathematical objects, in84
discrete mathematics (permutations, trees, words, urns, . . . ), in statistical physics85
(magnetism, polymers, . . . ), in probability theory (branching processes, games of86
chance, . . . ), in operations research (birth-death processes, queueing theory, . . . ).87
Therefore, many questions from all these various fields can be reduced to solving88
lattice path problems. For more motivations, the reader is referred to the introduc-89
tion of [26]. Nowadays, several books are entirely devoted to lattice paths and their90
applications [353, 310, 313, 159, 145, 382, 179, 386, 47, 282, 44], and an international91
conference titled Lattice path combinatorics and applications is entirely devoted to this92
field. We recommend Humphreys’ article [236] for a brief review of the history of93
lattice path enumeration and for a survey of the recent evolution of the field. Also,94
Krattenthaler’s recent survey [267] is an excellent overview of various results and95
methods in lattice path enumeration.96

1.4. The ballot problem and the reflection principle. As mentioned before,97
the enumeration of lattice walks is an old topic. We want to illustrate this using98
Bertrand’s ballot problem [36, 10]. The aim is not only to provide the flavor of a nice99
piece of combinatorial reasoning, but especially to introduce the so-called reflection100
principle, seemingly invented by Aebly and Mirimanoff [5, 304], which contains the101
roots of a systematic method for lattice walks, to be presented later, and based on102
the notion of group of a walk, see §1.18. Bertrand’s problem is the following:103

Suppose that two candidates A and B are running in an election.104
If a votes are cast for A and b votes are cast for B, where a > b, then105
what is the probability that A stays (strictly) ahead of B throughout106
the counting of the ballots?107

The problem admits an obvious lattice path reformulation. Let us call a Dyck108
path a walk in the lattice plane Z2, with step set S = {(1, 1), (1,−1)} = {↗,↘},109
that starts at the origin. Then, the problem asks for the number of Dyck paths110
consisting of a upsteps↗ and b downsteps↘ such that no step ends on the x-axis.111
Let us call these good paths. Clearly, any such good path starts with a step from112
(0, 0) to (1, 1), and finishes at the point T(a + b, a − b). Instead of counting good113
paths, it is actually easier to count bad paths: these are Dyck paths consisting of a114
upsteps ↗ and b downsteps ↘ that touch the x-axis at least once. Now enters the115
crucial observation, based on a reflection argument (see the picture).116
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To any bad path one may bijectively attach an unconstrained path in Z2 from117
(1,−1) to T by simply reflecting, with respect to the horizontal axis, the first portion118
of the walk, which lies strictly above the horizontal axis before touching it for the119
first time. Therefore, the number of good paths is exactly the difference between the120
unconstrained Dyck paths in Z2 from (1, 1) to T(a + b, a− b) and the unconstrained121
Dyck paths in Z2 from (1,−1) to T(a + b, a− b). Since unconstrained Dyck paths122
are simply counted by binomials, that number is:123 (

a + b− 1
a− 1

)
−
(

a + b− 1
b− 1

)
=

a− b
a + b

(
a + b

a

)
,124

from which one directly deduces the answer (a− b)/(a + b) to Bertrand’s problem.125
Observe that, when a = n + 1 and b = n, the number of good paths is the famous126
Catalan number127

Cn =
1

2n + 1

(
2n + 1
n + 1

)
=

1
n + 1

(
2n
n

)
,128

that counts a plethora of different combinatorial objects [115, 116, 356].129
There exists a second (non-strict) version of the problem, in which A has at least130

as many votes as B all along the counting. The reflection principle still applies, and131
the answer is 1− b/(a + 1). More information, and historical background, on the132
ballot problem is provided in the articles [28, 338].133

Last, but not least, let us mention that a higher dimensional version of the134
reflection principle [217, 389] can be used to solve the following generalization of the135
ballot problem: Assume there are d candidates in an election, say A1, . . . , Ad, with136
each Ai receiving ai votes. What is the probability that, throughout the counting of137
the ballots, Ai has at least as many votes as Ai+1 for all 1 ≤ i ≤ d− 1? This amounts138
to counting paths in Zd from the origin to (a1, . . . , ad) that use only unit positive139
steps (in the direction of some coordinate axis) and that are confined to the edge cone140
{x1 ≥ x2 ≥ · · · ≥ xd ≥ 0}. The natural setting for the most general version of the141
reflection principle is the one of reflection groups: it applies when the set of steps is142
left invariant by a Weyl group and the walks are confined to a corresponding Weyl143
chamber see [204, 210] and [267, §10.18].144

1.5. Pólya’s “promenade au hasard” / “Irrfahrt”. Another old and famous re-145
sult on lattice paths is Pólya’s theorem [326, 327]∗ about the so-called drunkard walk146
in the d-dimensional integer lattice Zd. By definition, such a walk is a random path147
in Zd for the so-called simple model, or Pólya’s model. After a busy night at the bar148
(some vertex of Zd), a drunkard wishes to get home (another vertex of Zd). Given149
his mental and physical state, he cannot do better than executing a random walk150
starting from the bar: at each tick of the clock he moves to one of the 2d neighbors151
of the current vertex, chosen uniformly at random. What is the probability that he152

∗References to Pólya’s work [8] will appear repeatedly and crucially in the three main parts of this
text. It is thus not an exaggeration to pretend that Pólya’s influence is our guiding thread.
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ever reaches his destination? The interesting fact is that the long-term behavior of153
the drunkard’s walk depends on the dimension d.154

Theorem 2 (Pólya, 1921). Consider the simple random walk on Zd. If d ∈ {1, 2},155
then the walk returns to its starting position with probability 1 (the simple walk is recurrent).156
If d ≥ 3, then with positive probability, the walk never returns to its starting position (the157
simple walk is transient).†158

Several proofs exist for this classical result. Probably the most direct one [184,159
§XIV.7] is based on the observation that the probability for the d-dimensional drunk-160
ard to be back at the origin after 2n steps is equal to the (d− 1)-folded sum161

u(d)
2n = ∑

i1+···+id=n

(2n)!
(i1! · · · id!)2

(
1

2d

)2n
.162

Then some algebraic manipulations and Stirling’s formula imply the asymptotic163

estimate u(d)
2n = Θ(n−d/2). On the other hand, it is not hard to see that the walk is164

transient if and only if the series ∑n≥0 u(d)
2n converges, namely to a value md which165

is the expected number of returns at the origin.166
As a consequence of Theorem 2, if the drunkard lives in a 2-dimensional city,167

then he will eventually get home, even though possibly after a very long amount168
of time. But if, by misfortune, he lives in a 3-dimensional city, then the probabil-169
ity p3 of return home will be less than 1. Pólya did not find a value for p3; this170
was done later by McCrea and Whipple [298] who showed that p3 ≈ 0.34053. A171
beautiful exact formula for p3 was found by Glasser and Zucker [206], in terms172
of Euler’s gamma function Γ(x) =

∫ ∞
0 e−ttx−1 dt. It reads p3 = 1− 1/m3, where173

m3 =

√
6

32π3 Γ
(

1
24

)
Γ
(

5
24

)
Γ
(

7
24

)
Γ
(

11
24

)
≈ 1.516386060, see also [159, §2.3.5]174

and [54, 221, 395, 263]. No similar closed-form expression is known for d ≥ 4,175
although it was proved [312] that the probability of return pd equals 1− 1/md, with176

md =
d

(2π)d

∫ π

−π
· · ·

∫ π

−π

dx1 · · ·dxd
d − cos x1 − . . . − cos xd

=
∫ ∞

0
(I0(t/d))d e−t dt,177

where I0(t) is the modified Bessel function of the first kind I0(t) = ∑k≥0
(t2/4)k

k!2 .178

A question closely related with Pólya’s theorem will be discussed in §1.7.179

1.6. Blending Experimental Mathematics and Computer Algebra in the ser-180
vice of lattice paths combinatorics. The examples in §1.4 and §1.5 show that the181
study of lattice walks is an old field of research. The following sections will demon-182
strate that their exact and asymptotic enumeration is still a topical issue, with a lot183
of recent activity, new and exciting results, and many open questions. For instance,184
even when only restricting to articles published since 2000, and when only focusing185
to the case of walks confined to the quarter plane, one realizes that this particular186
case has received special attention, and much progress has been done by many re-187
cent contributors [128, 364, 25, 26, 94, 95, 237, 103, 238, 96, 316, 100, 31, 305, 255, 19,188
84, 252, 306, 308, 45, 85, 101, 180, 181, 219, 273, 274, 182, 275, 334, 365, 271, 299, 337,189
336, 90, 163, 301, 300, 7, 89, 155, 183, 178, 254, 276, 20, 32, 60, 99, 98, 152, 195, 302,190
303, 76, 86, 149, 161, 253, 307]. And this is certainly not an exhaustive list.191

†As Feller says [184, p. 360], the statement “all roads lead to Rome” is justified in two dimensions.
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The dominating point of view in these works is to develop uniform approaches,192
rather than an ad-hoc solutions to a specific question. My personal bias is twofold:193
combine an experimental mathematics approach, as promoted in the beautiful and in-194
spiring books by Borwein and collaborators [49, 22, 48, 51], with modern tools from195
the Computer Algebra arsenal as described in the recent reference textbooks [381, 70],196
in order to conjecture and prove enumerative and asymptotic results for lattice paths.197

Over the last three decades a fundamental shift has been operated in the way198
mathematics is practiced. As a consequence of the continued advance of computing199
power and of the unceasing availability of modern computational software, one can200
nowadays really take advantage of computer-aided research in order to solve sig-201
nificant and difficult mathematical problems. Our goal in this article is to overview202
computational approaches to discovery of new results in lattice path combinatorics.203
We entirely share Borwein’s viewpoint that mathematical discovery through ex-204
perimentation and the use of increasingly intelligent software is going to play an205
essential role in other fields of mathematics.206

1.7. Another example, from the SIAM 100-Digit Challenge [373, 46]. In a 2002207
SIAM News article [373], L. N. Trefethen, head of the Numerical Analysis Group at208
Oxford University, proposed a contest which consisted of ten challenging problems209
in numerical computing. Each problem was stated in at most three simple sentences210
and had a single real number as a solution. The objective was to compute each211
number to as many digits of precision as possible. Scoring for the contest would be212
simple: each correct digit of the answer, up to ten per problem, would earn a single213
point. Trefethen warned that the problems were hard and indicated that he would214
be impressed if anyone managed to score even 50 points. Problem 6 in his list was215
about lattice walks in the plane, and appears to be related to Pólya’s problem.216

Problem 6 (Biasing for a Fair Return)217
A flea starts at (0, 0) on the infinite two-dimensional integer lattice218
and executes a biased random walk: At each step it hops north or219
south with probability 1/4, east with probability 1/4 + ε, and west220
with probability 1/4− ε. The probability that the flea returns to221
(0, 0) sometime during its wanderings is 1/2. What is ε?222

As demonstrated in the wonderful book [46, Chap. 6], and in §3.2.1, Computer223
Algebra is able to conjecture and to prove the following formula224

p(ε) = 1−
√

A
2
· 2F1

(
1
2 , 1

2
1

∣∣∣∣ 2
√

1− 16ε2

A

)−1

, with A = 1 + 8ε2 +
√

1− 16ε2,225

where 2F1

( 1
2 , 1

2
1

∣∣∣∣ t
)
= ∑

n≥0

(
2n
n

)2 ( t
16

)n
.226

From this exact expression, it is easy to get the first 100 digits of the result227

ε ≈ 0.0619139544739909428481752164732121769996387749983
6207606146725885993101029759615845907105645752087861 . . .228

and actually millions of digits, if needed, in not more than a couple of seconds.229

1.8. Two basic cones: the full space and a (rational) half-space. Let us now230
turn back to the general problem as stated in §1.2, using notion introduced in there.231
The simplest possible cone is the full space C = Rd. In that case, the situation is232
very simple: the full generating function has the most basic structure, it is rational.233
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Theorem 3. If S ⊂ Zd and C = Rd, then

an = |S|n , i.e. A(t) = ∑
n>0

antn =
1

1− |S| t .

More generally:

A(t; x) = ∑
n,i

an;ixitn =
1

1− t ∑s∈S xs .

The next case by increasing order of difficulty is when the cone is a half-space.234
The full generating function is not rational anymore, but nevertheless it still has a235
very important property: it is algebraic.236

Theorem 4. If S ⊂ Zd and if C is a rational half-space, then A(t; x) is algebraic,237
given by an explicit system of polynomial equations.238

This result is due to Bousquet-Mélou and Petkovšek, see [102, Theorem 13]239
and [103, Proposition 2]. Roots of it are in [321, 322]. The important particular case240
of 2D “generalized Dyck paths” had been treated before, see [202, 278, 277, 162]. The241
most basic illustration is provided by the ballot problem (§1.4), for which A(t; 1) =242

∑n≥0 Cntn = (1−
√

1− 4t)/(2t), see Example 5 below.243
The main ingredient in the proof of [102] of Theorem 4, called the kernel method244

(terminology coined in [26]), seems to belong to the “mathematical folklore”. One245
source of this method, identified by Banderier and Flajolet in [26, p. 55], is Knuth’s246
book [259, §2.2.1], more precisely his solutions to Exercises 4 and 11, which use a247
“new method for solving the ballot problem”. Knuth’s trick may have been better248
known at that time in probability theory, as suggested by its use in a more involved249
context [291, 292, 190, 176, 177]. Various examples of its use in combinatorics are250
presented by Prodinger in [333]. More historical notes on the origins of the kernel251
method can be found in [26, §2.2] and in [27, §1]. It is my feeling that the origins252
of the method amount at least to Kingman’s article [258] in queueing theory, a253
reference that seems to have been previously overlooked. A very nice and powerful254
generalization of the kernel method is presented in [100].255

Example 5. Let us illustrate the kernel method on the simplest example, in rela-256
tion with the ballot problem introduced in §1.4. Set S = {(1, 1), (1,−1)} = {↗,↘}257
and denote by Mn,k be the number of S-walks in N2 of length n that start at (0, 0)258

and end at vertical altitude k. Let M(x, y) = ∑
n,k

Mn,kxnyk. We will show that:259

(a) M obeys the functional equation (y− x(1 + y2)) ·M(x, y) = y− x ·M(x, 0).260

(b) M is algebraic, namely M(x, y) =

√
1− 4x2 + 2xy− 1

2x(y− x(1 + y2))
.261

The starting point is an obvious recurrence relation, together with initial condi-262
tions, that translate the enumerative problem.263

(2) Mn+1,k = Mn,k−1 + Mn,k+1, M0,0 = 1, M−1,k = Mn,−1 = 0 for k, n ≥ 0.264

Multiplying the recurrence relation by xn+1yk+1, and summing over n, k ∈N yields265

y ·
(

M(x, y)− ∑
k≥0

M0,kyk

︸ ︷︷ ︸
M(0,y) = 1

)
= y2x ·M(x, y) + x ·

(
M− ∑

n≥0
Mn,0xn

︸ ︷︷ ︸
M(x,0)

)
,266
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which rewrites as the so-called kernel equation267

(3) (y− x(1 + y2)) ·M(x, y) = y− x ·M(x, 0).268

Observe that simple manipulations like setting y = 0 in (3) lead to tautologies.269
The kernel method consists in the following simple observation: let y0 ∈ Q[[x]]270

be the power series root of K = y− x(1 + y2), the coefficient of M(x, y) in Eq. (3):271

y0 =
1−
√

1− 4x2

2x
= x + x3 + 2x5 + 5x7 + 14x9 + · · · ∈ Q[[x]].272

(One recognizes the generating function of Catalan numbers y0 = ∑n≥0 Cnx2n+1.)273
Then, plugging y = y0 into the kernel equation (3) delivers M(x, 0) = y0(x)/x.274

This provides an alternative, algebraic, proof of the (non-strict version of the) ballot275
problem. Finally, plugging back this value into (3) proves (b):276

M(x, y) =
y− y0

K(x, y)
=

√
1− 4x2 + 2xy− 1

2x(y− x(1 + y2))
.277

We will encounter more sophisticated uses of the kernel method in §2 and §3.278

1.9. Lattice walks with small steps in the quarter plane. The next case by279
increasing level of complexity is the one of a cone obtained as the intersection of280
two half-spaces. Up to modifying the step set by a linear transformation, one may281
assume that the cone is the basic orthant C = Rd

+. This reduction is illustrated in the282
picture below, where the simple (Pólya) walks in the 2-dimensional cone of opening283
π/4 are put in bijection with the Gouyou-Beauchamps walks in the quarter plane.284

(i, j) = (5, 1) '

285
The power series expansions of many special functions in combinatorics and286

physics, including algebraic functions, are D-finite: they satisfy linear differential287
equations with polynomial coefficients, see §1.11 for definitions and main proper-288
ties. For example, 60 % of the handbook [2] describe D-finite functions.289

That generating functions for walks constrained to evolve in an orthant need290
not be algebraic, and not even D-finite, was first observed by Bousquet-Mélou and291
Petkovšek in [103]. Preliminary results in this direction had been obtained by the292
same authors in [321, 322, 102]. The first model of walks in the quarter plane for293
which the generating function was proved to be non-D-finite [103, §3] is the so-294
called knight walks model: these are walks confined to N2 that start from p0 = (1, 1)295
and take their steps in S = {(2,−1), (−1, 2)}. This surprising result was the starting296
point of a massive classification effort, initiated by Mishna [305, 306], intensified in297
a germinal work by Bousquet-Mélou and Mishna [101], and continued by many298
researchers [255, 19, 84, 252, 308, 85, 275, 90, 276]. The rest of this section is devoted299
to tell the story of this classification, with a viewpoint towards computerized proofs.300

Before restricting our attention to the special but important case of walks with301
small steps in the quarter plane, let us mention two general criteria that contain302
sufficient conditions for D-finiteness of the full generating function A(t; x). One was303
obtained by Bousquet-Mélou in [94, §3]. (A combinatorial proof for the particular304
case of the length generating function A(t; 1) was given in [103, §2].)305
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Theorem 6. Let C = R2
+ and let S ⊂ Z× {−1, 0, 1} be a step set symmetric with306

respect to the horizontal axis. Then A(t; x) is D-finite, given by an explicit system of linear307
differential equations.308

The other criterion, whose precise statement is too involved to be given here,309
was already mentioned in §1.4 in connection with the reflection principle. Its un-310
derlying idea (an algebraic version of the reflection principle) was discovered inde-311
pendently by Gessel and Zeilberger [204] and Biane [42]. Roughly, the result asserts312
the following: if the set of steps is left invariant by a finite Weyl group, if the cone313
where the walks are confined to is a corresponding Weyl chamber and if no allowed314
step can traverse the boundary of the cone, then the generating function A(t; x) is315
D-finite. The precise assumptions can be found in [204] and in [267, Th. 10.18.3].316
The criterion then follows by combining [204, Th. 3] with results on D-finiteness of317
positive parts and constant terms such as [285] (see also §3 of this document).318

From now on, we focus on small-step walks (or, nearest-neighbor walks) in the319
quarter plane. These are walks in the lattice Z2, confined to the cone C = R2

+ (we320

will often say confined to N2), that start at p0 = (0, 0) and use steps in a model S321
which is a fixed subset of {↙,←,↖, ↑,↗,→,↘, ↓}.322

An example of a small-step walk for the model S = {↙,←, ↑,→,↘, ↓}, with323
length n = 45 and ending point (i, j) = (14, 2), is depicted below.324

S =

Let us denote by fn;i,j the number of walks of length n ending at (i, j). The full325
counting sequence ( fn;i,j)n,i,j admits several interesting specializations:326

• fn;0,0, the number of walks of length n returning to origin (“excursions”);327
• fn = ∑i,j≥0 fn;i,j, the number of walks with prescribed length n.328

As customary in combinatorics, to these enumeration sequences one attaches (uni-329
variate, or multivariate) power series, namely the complete generating function330

FS(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]],331

and its corresponding univariate specializations:332
• FS(t; 0, 0), the generating function of excursions;333
• FS(t; 1, 1) = ∑

n≥0
fntn, the length generating function;334

• FS(t; 1, 0), resp. FS(t; 0, 1), the generating function of walks ending on the335
horizontal, resp. vertical, axis, also called boundary returns;336
• “FS(t; 0, ∞)“ :=

[
x0] FS(t; x, 1/x), the generating function of walks ending337

on the diagonal x = y of N2, also called diagonal returns.338
The general questions addressed in §1.2 specialize to the quarter-plane setting339

as follows: Given the model S, what can be said about the generating function340
FS(t; x, y), resp. about the counting sequence ( fn;i,j), and their specializations?341

• Structure of FS: is it algebraic? D-finite? None of them?342
• Explicit form: of FS? of ( fn;i,j)?343
• Asymptotics of excursions ( fn;0,0)n, or total walks ( fn)?344
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10 ALIN BOSTAN

The emphasis will be put on how Computer Algebra can be used to give computa-345
tional answers to these questions.346

1.10. Small-step models of interest. Among the 28 models S ⊆ {−1, 0, 1}2 \347
{(0, 0)}, some are trivial (e.g., if S ⊆ {↙,←,↖,↘, ↓}, then FS(t; x, y) ≡ 1), others348
are intrinsic to the half-plane (therefore FS(t; x, y) is algebraic, cf. Theorem 4),349
others come in pairs by diagonal symmetry (if S and S′ are symmetric with respect350
to the diagonal of N2, then FS(t; x, y) ≡ FS′(t; y, x)), see Fig. 1.351

Figure 1. Some discarded models: trivial; intrinsic to the half-plane; symmetric.

After discarding these cases, Bousquet-Mélou and Mishna [101] found that352
there are exactly 79 interesting distinct models of small-step walks in the quarter353
plane. They are represented in Fig. 2, and are grouped in two classes: 74 non-354
singular models (or genus-1 models in the terminology of [179]) and 5 singular models355
(or genus-0 models). The singular models are the ones for which the walks never356
return to the origin, that is for which the excursions generating function is trivial357
F(t; 0, 0) ≡ 1.358

Figure 2. The 79 models of small-step walks in the quarter plane: 74 non-sigular, 5 singular.

Among the 79 models, there are “special” ones, that are considered interesting359

enough and were enough studied to deserve names: Pólya: ; Kreweras: ;360

Gessel: ; Gouyou-Beauchamps: ; King: ; Tandem: .361
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algebraic

hypergeom

D-finite power series

Figure 3. The most basic classes of power series, and their dependencies.

One objective is then to understand and classify all these 79 models according362
to the structural properties of their generating functions.363

1.11. Classification of power series. Before stating the main results, we still364
need a few definitions on (univariate and multivariate) power series.365

Definition 7. Let S(t) = ∑∞
n=0 sntn be a power series in Q[[t]]. Then, S(t) is called366

• algebraic if it is a root of a non-trivial polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0;367

• transcendental if it is not algebraic;368
• D-finite (or holonomic) if it is satisfies a non-trivial linear differential equation369

pr(t)S(r)(t) + · · ·+ p0(t)S(t) = 0 with polynomial coefficients pi(t) ∈ Q[t];370
• hypergeometric if its coefficients sequence (sn)n satisfies a non-trivial linear recur-371

rence of order 1 with polynomial coefficients in Q[n].372

A very important class of hypergeometric series is that of Gauss hypergeometric373
functions 2F1 with parameters a, b, c ∈ Q, c /∈N, defined by374

2F1

(
a b
c

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
,375

where (x)n = x(x + 1) · · · (x + n− 1) is the Pochhammer symbol.376
This notion admits an obvious extension to the so-called generalized hypergeo-377

metric function pFq depending on p + 1 rational parameters appearing in the top378
Pochhammer symbols, and on q rational parameters on the bottom. For example,379

3F2

(
a b c
d e

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n(c)n

(d)n(e)n

tn

n!
, where a, b, c, d, e ∈ Q and d, e /∈N.380

The way these three important classes of power series (algebraic, D-finite, hy-381
pergeometric) are connected is illustrated in Fig. 3.382

That hypergeometric series are D-finite is an immediate consequence of the sim-383
ple fact that coefficient sequences of D-finite series are exactly P-recursive sequences,384
satisfying linear recurrences with polynomial coefficients [354].385

That algebraic series are D-finite has been observed in 1827 by Abel [1, p. 287].386
Cockle [144] gave an algorithm for the computation of such a differential equation387
of the minimal possible order, that Harley [226] called differential resolvent. The388
method was then rediscovered by Tannery [370, §17], see also [211, §2.4]. One of the389
applications of these differential equations is the efficient power series expansions390
of algebraic series: a linear differential equation translates into a linear recurrence,391
with the consequence that the number of operations required to compute the first N392
coefficients grows only linearly with N. This method has been popularized in the393
combinatorics community by Comtet [147] and studied from the complexity point394
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12 ALIN BOSTAN

of view by Chudnovsky and Chudnovsky [135, 136], and more recently in [72].395
Finally, understanding power series that are simultaneously algebraic and hy-396

pergeometric is an old and difficult question. Fuchs asked in 1866 [191] for a classi-397

fication of all Gauss hypergeometric functions 2F1

(
a b
c

∣∣∣∣ t
)

that are algebraic. Fuchs’398

question was solved in 1873 by Schwarz [347], who showed using geometric argu-399
ments (sphere tilings by spherical triangles) that, up to some normalization of the400
parameters, and apart from an explicitly given finite number of sporadic cases,401

2F1

(
r 1− r

1
2

∣∣∣∣ t
)
=

cos((1− 2r) · arcsin(
√

t))√
1− t

, r ∈ Q402

is the only family of algebraic 2F1 functions. Building on work by Eisenstein [171,403
230], Landau [280, 281] and Stridsberg [363], Errera [173] obtained an alternative404
arithmetic proof of Schwarz’ result, which is more elementary and algorithmic.405
Assume w.l.o.g. that a, b, c ∈ Q such that a, b, c − a, c − b /∈ Z. Then Errera’s406

criterion states that 2F1

(
a b

c

∣∣∣∣ t
)

is algebraic if and only if for every r coprime with407

the denominators of a, b and c, either {ra} ≤ {rc} < {rb} or {rb} ≤ {rc} < {ra},408
where {x} denotes the fractional part x−bxc of x. For instance, this allows to prove409
immediately that410

•
2F1

(
− 1

2 −
1
6

2
3

∣∣∣∣ 16 t
)
− 1

2t
= 1 + 2 t + 11 t2 + 85 t3 + 782 t4 + · · · is algebraic,411

and that412

• 2F1

( 1
12

5
12

1

∣∣∣∣ 1728 t
)

= 1 + 60 t + 39780 t2 + 38454000 t3 + · · · is transcen-413

dental.414
A generalization of this result, which completely solves Fuchs’ question, was ob-415
tained by Beukers and Heckman in 1989 [40].416

Theorem 8. Let {a1, . . . , ak} and {b1, . . . , bk−1, bk = 1} be two subsets of Q, assumed417

disjoint modulo Z. Let D be their common denominator. Then kFk−1

(
a1 a2 · · · ak
b1 · · · bk−1

∣∣∣∣ t
)

418

is algebraic if and only if {e2iπraj , j ≤ k} and {e2iπrbj , j < k} interlace on the unit circle for419
all 1 ≤ r < D with gcd(r, D) = 1.420

For instance, the following hypergeometric function [340], arising from Cheby-421
chev’s work on the distribution of primes numbers [371]422

∑
n

(30n)!n!
(15n)!(10n)!(6n)!

tn = 8F7

( 1
30

7
30

11
30

13
30

17
30

19
30

23
30

29
30

1
5

1
3

2
5

1
2

3
5

2
3

4
5

∣∣∣∣ 214 39 55 t
)

423

is an algebraic power series. Indeed, for all 1 ≤ r < 30 with gcd(r, 30) = 1, one424
obtains the picture in Fig. 4, where red circles that correspond to upper parameters425
of the 8F7, are interlaced with blue circles that correspond to lower parameters.426

Similar definitions for algebraicity and D-finiteness apply to multivariate power427
series. For instance, S ∈ Q[[x, y, t]] is algebraic if it is the root of a non-trivial polyno-428
mial P ∈ Q[x, y, t, T], and it is D-finite if the set of all partial derivatives of S spans a429
finite-dimensional vector space over Q(x, y, t), in other words if S satisfies a system430

This manuscript is for review purposes only.



COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS 13

Figure 4. The Beukers-Heckman interlacing criterion [40] at work.

of linear partial differential equations with polynomial coefficients of the form431

∑
i

ai(t, x, y)
∂iS
∂xi = 0, ∑

i
bi(t, x, y)

∂iS
∂yi = 0, ∑

i
ci(t, x, y)

∂iS
∂ti = 0.432

As in the univariate case, multivariate algebraic series are D-finite [286].433
The concept of hypergeometric series also admits extensions to several vari-434

ables, but they are beyond the scope of the present text. One such generalization435
was introduced around 1988 by Gel’fand, Kapranov and Zelevinski [197, 199, 200,436
198, 168, 357] and is known as GKZ-hypergeometric functions, or A-hypergeometric437
functions. Let us just mention that Beukers [39] obtained a characterization of the438
class of algebraic GKZ-hypergeometric functions, that extends the interlacing crite-439
rion from [40].440

1.12. Kreweras’ walks. An interesting model in the world of quarter-plane441
walks is Kreweras’ model S = {↓,←,↗}. It is related to a version of the three-442
candidate ballot problem, more difficult than the one mentioned at the end of §1.4.443
Let A, B, C be candidates in an election, that receive a, b, c votes respectively. What is444
the probability p(a, b, c) that, throughout the counting of the ballots, A has at least445
as many votes as B and at least as many votes as C? This amounts to counting paths446
in Z3 from the origin to (a, b, c) that use only unit positive steps and that are con-447
fined to the cone {x1 ≥ max(x2, x3) ≥ 0} of Z3. It appears that the reflection prin-448
ciple does not apply here, contrary to the case of the edge cone {x1 ≥ x2 ≥ x3 ≥ 0}.449

Equivalently, the question amounts to counting paths in the quarter plane for450
the model S = {↓,←,↗}. In a long paper, Kreweras [268] obtained a closed-451
formula for p(a, b, c) as a binomial double-sum:452

p(a, b, c) = 1− b + c
a + 1

+
1

(a + 1)(a + 2)

b

∑
i=1

c

∑
j=1

(
b
i

)(
c
j

)(
2i + 2j− 2

2i− 1

)/(i + j + a
a + 2

)
,453

which simplifies to P(a, b, 0) = 1− b/(a + 1) for the two-candidate ballot problem454
(cf. §1.4), and to a simple formula in the special case c = a:455

(4) p(a, b, a) = 22b+1
(

a!
(a− b)!

)2 (2a− 2b + 1)!
(2a + 2)!

.456

The same problem was considered independently by Flatto and Hahn [189] in457
an applied probabilistic context (double queue that arises when arriving customers458
simultaneously place two demands handled independently by two servers).459
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Figure 5. The simple walk in the cones with angle 45◦ and 135◦: Gouyou-Beauchamps and Gessel walks.

As a consequence of Eq. (4), Kreweras obtained the following result, which was460
reproved using various methods in [269, 315, 203, 94, 96, 31, 255, 85]. The last two461
references in this list provide two different computer-aided proofs. In what follows,462
we denote by K(t; x, y) = FS(t; x, y) the full generating function for Kreweras walks463
S = {↓,←,↗} in the quarter plane, and by K(t; 0, 0) the generating function for464
Kreweras excursions.465

Theorem 9 (Kreweras, [268]). The generating function K(t; 0, 0) is equal to466
(5)

3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n = 1 + 2t3 + 16t6 + 192t9 + · · · .467

As a corollary of Theorem 9, the results in §1.11 (e.g., Theorem 8) imply that468
K(t; 0, 0) is an algebraic power series. In fact, much more is true:469

Theorem 10 ([189, 203, 96]). The full generating function K(t; x, y) for the Kreweras470
walks is algebraic.471

In §2 we will sketch a computer-aided proof of this result [85] based on the472
guess-and-prove paradigm.473

1.13. Gessel’s walks. Probably the most difficult model of walks in the quarter474
plane is Gessel’s model S = {↗,↙,←,→}. In 2001, Ira Gessel formulated, in475
private conversations with colleagues (including Mireille Bousquet-Mélou, Doron476
Zeilberger and Guoce Xin), two conjectures equivalent to the following statements:477

Conjecture 1. The generating function G(t; 0, 0) of Gessel excursions is equal to478

3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n = 1 + 2t2 + 11t4 + 85t6 + · · · .479

Conjecture 2. The full generating function G(t; x, y) is not D-finite.480

Here, as for the Kreweras walks, we denoted by G(t; x, y) = FS(t; x, y) for481
S = {↗,↙,←,→} the full generating function for Gessel walks in the quarter482
plane, and by G(t; 0, 0) the generating function for Gessel excursions.483

The genesis of Gessel’s conjectures is related to his interest in finding examples484
of cones in Z2 for which the generating functions for the simple (Pólya’s) walk485
would admit nice formulas. As discussed in §1.5, Pólya [327] first observed that486

there are exactly (2n
n )

2
simple excursions of length 2n in the plane Z2, and that487

the full generating function is rational in that case. Still for the Pólya model, but488
now restricted to the half plane, resp. to the quarter plane, Arquès [17] proved489

that excursions of length 2n are counted by nice formulas: (2n+1
n )Cn for Z ×N,490

and CnCn+1 for N2. Concerning the nature of the full generating function, it is491
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algebraic for the cone Z ×N [102], and D-finite for the cone N2 [94]. Gouyou-492
Beauchamps [209] found a similar formula CnCn+2−C2

n+1 for the number of simple493
excursions of length 2n in the cone with angle 45◦ (the first octant). The generating494
function for this cone is again D-finite [204]. It was thus natural to consider the cone495
with angle 135◦, and this is what Gessel did. See [89] for more historical details.496

1.14. Algebraic reformulation: solving a functional equation. Gessel’s prob-497
lem admits the following purely algebraic reformulation, which should be seen as498
a quarter-plane analogue of Equation (3) from Example 5. If G(t; x, y) ∈ Q[x, y][[t]]499
denotes the full generating function for Gessel walks in the quarter plane then a500
simple inclusion-exclusion reasoning represented pictorially in Fig. 6 implies that501
G(t; x, y) satisfies a functional equation called the kernel equation502

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)503

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0)).(6)504
505

Figure 6. The functional equation for Gessel walks in the quarter plane, pictorially.

Moreover, G(t; x, y) is completely characterized by the functional equation (6):506
it is its unique solution in Q[x, y][[t]], and even in the ring Q[[x, y, t]]. Therefore, the507
task is simply to solve equation (6).508

Similarly, to any of the 79 models introduced in §1.10 is attached a very similar509
functional equation. Again, this equation merely reflects a step-by-step construction510
of quarter-plane walks, and is based on the most elementary decomposition: a walk511
is either the empty walk, or it is a shorter walk, followed by a permissible step.512
This observation is naturally translated into a generating function equation using513
the inventory χS(x, y) := ∑(i,j)∈S xiyj, and the kernel KS(t; x, y) = xy(1− tχS(x, y)).514
Note that for a non-trivial model with small steps the kernel is a polynomial. The515
decomposition is translated into the kernel equation (we omit the subscript S):516
(7)
K(t; x, y)F(t; x, y) = xy + K(t; x, 0)F(t; x, 0) + K(t; 0, y)F(t; 0, y)− K(t; 0, 0)F(t; 0, 0).517

Remark that the last term of the right-hand side occurs only if the step ↙ belongs518
to the model S.519

Following Zeilberger’s terminology [393], the variables x and y are said catalytic520
for equation (7). (This means that one cannot simply set x = 0 or y = 0 in the521
equation to solve for F(t; x, 0) and F(t; 0, y) first.) The number of catalytic variables522
is related to the number of constraints imposed to the walk. The case of kernel523
equations with a single catalytic variable corresponds to uni-directional walks and524
it is well-understood, the solutions being always algebraic [102], see Theorem 4.525
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Classifying lattice walks in the quarter plane thus amounts to solving 79 such526
equations. In the remaining part of Section 1 we describe several classes of results527
in this direction that have been obtained using Computer Algebra tools.528

1.15. Main results (I): algebraicity of Gessel walks. After an almost success-529
ful attempt in [255], Gessel’s first conjecture was finally solved in 2009 by Kauers,530
Koutschan and Zeilberger in [252] using an extension of the guess-and-prove ap-531
proach described in [255].532

Theorem 11 ([252]). G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)

.533

This result implies in particular that G(t; 0, 0) is D-finite, but has no immediate534
implications concerning the D-finiteness of G(t; x, y). It came as a total surprise535
when Bostan and Kauers [85] proved that Gessel’s second conjecture was false.536

Theorem 12 ([85]). The generating function G(t; x, y) for Gessel walks is algebraic.537

Prior to this result, even the algebraicity of G(t; 0, 0) had been overlooked, even538
though the classical results recalled in §1.11 obviously apply. For instance, because539
of the alternative representation540

(8) 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

1
t2

(
1
2 2F1

(
−1/6 −1/2

2/3

∣∣∣∣ 16t2
)
− 1

2

)
,541

it is clear that algebraicity of G(t; 0, 0) could have been decided using Schwarz’s542
classification, but it appears that, quite strangely, nobody recognized that the pa-543
rameters (−1/6,−1/2; 2/3) actually fit to Case III of Schwarz’s table [347].544

The original discovery and proof of Theorem 12 was computer-driven, and used545
a guess-and-prove approach, based on Hermite-Padé approximants. This will be ex-546
plained in more details in §2. Note that as a byproduct of this proof, an estimate on547
the size of the minimal polynomial of G(t; x, y) has been given: according to [85],548
that minimial polynomial has more than 1011 terms when written in dense (ex-549
panded) form, for a total size of ≈ 30 Gb (!)550

Let us notice that meanwhile several human proofs of this result appeared: the551
first one used complex analysis [86], the second one was purely algebraic [99], and552
the more recent one is probably the most elementary [32, 33].553

1.16. Main results (II): Explicit form for G(t; x, y). An interesting consequence554
of Theorem 12 is the following result, which contains a closed-formula for the full555
generating function G(t; x, y) of Gessel walks [85].556

Theorem 13 ([85]). Let V=1 + 4t2 + 36t4 + 396t6 +· · · be the unique root in Q[[t]]557
of558

(V − 1)(1 + 3/V)3 = (16t)2,559

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be the unique root in Q[x][[t]] of560

x(V − 1)(V + 1)U3 − 2V(3x + 5xV − 8Vt)U2561

−xV(V2 − 24V − 9)U + 2V2(xV − 9x− 8Vt) = 0,562563

and let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be be the unique root in Q[y][[t]] of564

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V − 1 = 0.565
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OEIS S Pol size LDE size Rec size OEIS S Pol size LDE size Rec size
1 A005566 — (3, 4) (2, 2) 13 A151275 — (5, 24) (9, 18)
2 A018224 — (3, 5) (2, 3) 14 A151314 — (5, 24) (9, 18)
3 A151312 — (3, 8) (4, 5) 15 A151255 — (4, 16) (6, 8)
4 A151331 — (3, 6) (3, 4) 16 A151287 — (5, 19) (7, 11)
5 A151266 — (5, 16) (7, 10) 17 A001006 (2, 2) (2, 3) (2, 1)
6 A151307 — (5, 20) (8, 15) 18 A129400 (2, 2) (2, 3) (2, 1)
7 A151291 — (5, 15) (6, 10) 19 A005558 — (3, 5) (2, 3)
8 A151326 — (5, 18) (7, 14)
9 A151302 — (5, 24) (9, 18) 20 A151265 (6, 8) (4, 9) (6, 4)

10 A151329 — (5, 24) (9, 18) 21 A151278 (6, 8) (4, 12) (7, 4)
11 A151261 — (4, 15) (5, 8) 22 A151323 (4, 4) (2, 3) (2, 1)
12 A151297 — (5, 18) (7, 11) 23 A060900 (8, 9) (3, 5) (2, 3)

Figure 7. Models with D-Finite length generating function FS(t; 1, 1); sizes (order, degree) of the equations.

Then G(t; x, y) is equal to566

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 −
y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.567

Again, the original discovery and proof of this result was computer-driven.568
During the computerized proof, a few other remarkable facts have been noticed,569
namely that G(t; x, y) can be expressed using nested radicals; for instance the length570
generating function G(t; 1, 1) = 1 + 2t + 7t2 + 21t3 + 78t4 + · · · writes571

G(t; 1, 1) = − 1
2t

+

√
3

6t

√√√√H(t) +

√
16t(2t + 3) + 2
(1− 4t)2H(t)

− H(t)2 + 3 ,572

where H(t) =
√

1 + 4t1/3(1 + 4t)2/3/(1− 4t)4/3.573
574

Actually, the proof uses the minimal polynomials for G(t; x, 0) and G(t; 0, y)575
that were guessed and proved during the algebraicity proof. A striking feature of576
Theorem 13 is the relative simplicity of the closed-form expression, especially when577
compared to the size of the minimal polynomial of G(t; x, y). As in the case of578
Theorem 12, the result in Theorem 13 admits several recent human proofs [86, 99, 32,579
33].580

1.17. Main results (III): Models with D-Finite length generating function.581
The computer-driven approach that allowed Bostan and Kauers [84] to discover and582
prove the properties of the puzzling generating function for Gessel walks was used583
as soon as 2008 by the same authors to provide a (conjecturally) exhaustive list of584
models having (conjecturally) D-finite and algebraic generating functions. That re-585
sulted in an experimental classification result, synthesized in Fig. 7, which displays586
23 models of walks in the quarter plane for which the length generating function587
F(t; 1, 1) was conjectured to be D-finite. The computerized discovery used again a588
guess-and-prove method, based on Hermite–Padé approximation. Details will be589
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OEIS S algebraic? asymptotics OEIS S algebraic? asymptotics

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =
√

4
√

6−1
19

Figure 8. Models with D-Finite length generating function FS(t; 1, 1): asymptotics of fn = [tn]F(t; 1, 1).
For models 11, 13 and 15, estimates only hold for even n; for odd n, the constants change into 18

π , 144√
5

and 32
π [303].

presented in Section 2. The labels used in column “OEIS” are taken from Sloane’s590
On-Line Encyclopedia of Integer Sequences [352]. The columns “LDE size”, resp.591
“Rec size”, refer to the minimal-order homogeneous linear differential, resp. recur-592
rence, equation satisfied by F(t; 1, 1); they contain the order of the equation, and593
the maximum degree of its polynomial coefficients. The “Pol size” column refers to594
the algebraicity or transcendence of F(t; 1, 1): cases marked “—” were conjectured595
transcendental, the other cases were conjectured algebraic and the bidegree of the596
minimal polynomial was displayed. For example, the generating function F(t; 1, 1)597
for Kreweras walks (A151265) satisfies a differential equation of order 4 with poly-598
nomial coefficients of degree 9 and an algebraic equation P(F(t; 1, 1), t) = 0 for a599
polynomial P(T, t) of degree 6 in T and 8 in t. The coefficient sequence of F(t; 1, 1)600
satisfies a recurrence equation of order 6 with polynomial coefficients of degree 4.601

For cases 1–22, these conjectural results on D-finiteness, resp. algebraicity,602

were confirmed by human proofs‡ obtained almost simultaneously with [84] by603
Bousquet-Mélou and Mishna [101], using an uniform approach that we will present604
in §3. We discussed the difficult case 23 (Gessel’s model) in §1.15 and §1.16. Con-605
cerning the conjectural transcendence results, the first unified proof was given606
in [76] and it is computer-driven; this will be discussed in §1.20. The reference [76]607
also contains the first proof, again computer-driven, that the (differential / recur-608
rence / algebraic) equations conjectured in [84] are indeed correct.609

As a complement to the results contained in Fig. 7, Bostan and Kauers demon-610

‡Apart from Kreweras’ and Gessel’s models 20 and 23, the D-finiteness of FS(t; x, y) also follows
from: Theorem 6 for the symmetric models 1–16; the Gessel-Zeilberger formula [204] for the “Weyl
chamber models” 17–19; [306, Th. 2.4] for the “reverse Kreweras model” 21. For the “doubly Kreweras
model” 22, [101, Prop. 15] seems to contain the first proof of D-finiteness, and even of algebraicity.
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strated that Computer Algebra tools are also able to produce conjectural expressions611
for the asymptotics of fn = [tn]F(t; 1, 1). Their results are displayed in Fig. 8 and612
have been obtained using a combination of algorithmic tools, including Hermite–613
Padé approximation, constant recognition algorithms built on integer relation de-614
tection algorithms like LLL [283] and PSLQ [185], and convergence acceleration615
techniques [109, 110]. These results have been confirmed a few years later by hu-616
man proofs by Melczer and Wilson [303], using the theory of analytic combinatorics617
in several variables [320]. (Partial results had been previously obtained by Fay-618
olle and Raschel [182], Johnson, Mishna and Yeats [241], Duraj [163], Melczer and619
Mishna [301], Garbit and Raschel [195]).620

1.18. The group of a model. In order to formulate more results on the clas-621
sification of lattice walks in the quarter plane, we need to introduce an important622
concept, the group of the walk. To a small-step walk model S one attaches the generat-623
ing polynomial (also called the inventory) χS(x, y) := ∑(i,j)∈S xiyj. This is a bivariate624

Laurent polynomial in Q[x, x−1, y, y−1], that can be decomposed along powers of x,625
resp. of y, as follows:626

χS = ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)xi =
1

∑
j=−1

Aj(x)yj.627

The basic, yet fundamental, observation is that χS(x, y) is left invariant under two628
rational transformations629

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,630

and thus under any element of the group GS :=
〈
ψ, φ

〉
of birational transformations631

generated by ψ and φ. When it is finite, GS is isomorphic to a dihedral group, since632
ψ and φ are involutions. This notion of group of a walk originates from a similar633
notion, introduced in a probabilistic context by Malyshev in the 1970s [291]. It634
was first formally imported in the combinatorial framework by Mishna [305, 306],635
who realized that the method used in one of Bousquet-Mélou’s solutions of the636
Kreweras model [96, §2.3], the algebraic kernel method, can be used to solve all models637
with cardinality at most 3. This method is a variation of the classical kernel method:638
instead of canceling the kernel, it finds a group of actions which fixes the kernel, and639
which is then used to generate more functional equations that are finally combined640
together using an algebraic method similar to the reflection principle. Mishna [305,641
306] showed that in the 23 models in Fig. 7, the group is finite, and she determined642
explicitly its cardinal, which appears to be either 4 (for models 1–16 with an axial643
symmetry), or 6 (for the models 17, 18, 20, 21, 22, with a diagonal or an anti-diagonal644
symmetry), or 8 (for the remaining models 19 and 23), see Fig. 9. In a subsequent645
joint paper, Bousquet-Mélou and Mishna [101] exploited this idea and managed to646
solve 22 out of the 23 models in Fig. 7. Their solution will be explained in §3.4.647

Bousquet-Mélou and Mishna [101] proved in addition that for all the other 56648
models, the group is infinite. Let us sketch their argument, since it is simple, beauti-649
ful and very similar to the one used in §1.21. It reduces the question of the infinitude650
of the group to a (non-)cyclotomy question. Similarly, the argument in §1.21 will651
reduce the question of non-D-finiteness to the same (non-)cyclotomy question for652
the same polynomials. (This coincidence, which apparently has not been noticed653
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Figure 9. Examples of models with groups of orders 4, 6, 8 and ∞, respectively.

before, is not fortuitous, see §1.21.) The argument goes as follows. Assume that GS654
is finite. Then, denoting by θ the composition ψ ◦ φ, the order of θ is finite. Using655
a Taylor expansion, it follows that for any point (a, b) ∈ C2 fixed by θ, the order of656
the Jacobian matrix Jac(θ) at (a, b) is finite, and in particular its two eigenvalues are657
roots of unity. Now, for all models with infinite group§, there exists a fixed point658
of θ, and a multiple in Q[t] of the characteristic polynomial of Jac(θ) at that fixed659
point, that does not contain any cyclotomic factor. This proves that GS is infinite.660

At this point, we know that the finiteness of the group for some model implies661
the D-finiteness of the generating function for that model. One important remaining662
question is: is the converse true? Another important pending question is: in the D-663
finite cases, are there any closed-form expressions for the generating functions? The664
next two subsections will bring answers and completely clarify the situation.665

1.19. Main results (IV): explicit expressions for models 1–19. Models 20–23 in666
Fig. 7 admit full generating functions that are algebraic. Moreover, closed formulas667
exist for them. For the three models 20–22 related to the Kreweras model, such668
formulas are displayed in [101, §6]. The most difficult case among these four is669
model 23 (Gessel’s), for which Theorem 13 provides a closed-form expression.670

We now focus on models 1–19. The natural question is whether closed-form671
expressions also exist in these cases. This question has been recently answered672
in a positive way using Computer Algebra tools in [76]: FS is uniformly express-673
ible using iterated integrals of hypergeometric 2F1 expressions. More precisely, the674
following structure result, already conjectured in [84, §3.2], holds true. Note that675
a similar expression also appears in a related combinatorial context [77] for rook676
paths on a three-dimensional chessboard, see Theorem 35 in §3.1.2.677

Theorem 14 ([76]). Let S be one of the models 1–19 in Fig. 7. Then FS(t; x, y) is678
expressible as a finite sum of iterated integrals of products of algebraic functions in x, y, t679

and of expressions of the form 2F1

(
a b

c

∣∣∣∣w(t)
)

, where c ∈N and w(t) ∈ Q(t).680

Once again, the discovery and the proof of this result are computer-driven; no681
human proof is available yet. The proof is based, among other tools, on creative682
telescoping, an efficient algorithmic technique for the symbolic integration of multi-683
variate functions. Details will be discussed in §3.684

§Bousquet-Mélou and Mishna [101, §3] do so for the 51 non-singular models, but F. Chyzak [private
communication] points out that the argument still works on some iterate of θ.
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S occurring 2F1 w S occurring 2F1 w

1 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2 11 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2

4t2+1

2 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2 12 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

3 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t2

(12t2+1)2 13 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2

4 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t(t+1)
(4t+1)2 14 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

5 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t4 15 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t4

6 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2 16 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t3(t+1)
(1−4t2)2

7 2F1

( 1
2 , 1

2
1

∣∣∣∣w
)

16t2

4t2+1 17 2F1

( 1
3 , 2

3
1

∣∣∣∣w
)

27t3

8 2F1

( 1
4 , 3

4
1

∣∣∣∣w
)

64t3(2t+1)
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( 1
3 , 2
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)
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( 1
4 , 3

4
1

∣∣∣∣w
)
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2
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)

16t2
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( 1
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4
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∣∣∣∣w
)

64t2(t2+t+1)
(12t2+1)2

Figure 10. Hypergeometric series occurring in explicit expressions for F(t; x, y). The 2F1 are given up to
contiguity and derivation, that is, up to integer shifts of the parameters.

The parameters a, b, c of the occurring 2F1’s as well as the rational functions w(t)685
are explicitly given in Table 10. The full expressions of the generating functions686
F(t; 0, 0), F(t; 0, 1), F(t; 1, 0), F(t; 1, 1), F(t; x, 0), F(t; 0, y) and F(t; x, y) are too large687
to be displayed here, and are available on-line. It turns out by inspection that the688
involved hypergeometric functions have a very particular form: they are intimately689
related to elliptic integrals, namely to the complete elliptic integrals of first and690
second kinds,691

K(k) =
∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ =

π

2 2F1

( 1
2 , 1

2
1

∣∣∣∣ k2
)

,692

E(k) =
∫ π/2

0
(1− k2 sin2 θ)1/2 dθ =

π

2 2F1

(
− 1

2 , 1
2

1

∣∣∣∣ k2
)

.693
694

For instance, for King walks (case 4), the length generating function is equal to695

(9) F(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

( 3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx.696

See §3.4 for a detailed presentation of this example. Alternatively, an expression697
of F(t; 1, 1) in terms of elliptic integrals is698

F(t; 1, 1) =
1
t

∫ t

0

1
π(1 + 4x)2

√
x(1 + x)

· K′
(

4
√

x(1 + x)
1 + 4x

)
dx.699
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The relationship to elliptic integrals appears to hold true in a far more general700
setting. Indeed, taking Theorem 14 as starting point, van Hoeij has checked that701
for many (more than 100) integer sequences (an)n≥0 in the OEIS whose generating702
function A(t) = ∑n≥0 antn is both D-finite and convergent in a small neighborhood703
of t = 0, all second-order irreducible factors of the minimal-order linear differential704
operator annihilating A(t) are solvable either in terms of algebraic functions, or in705
terms of complete elliptic integrals. This surprisingly general feature, reminiscent706
of Dwork’s conjecture mentioned in [84, §3.2], begs for a combinatorial explanation.707

1.20. Main results (V): transcendence for models 1–19. As said before, models708
20–23 in Fig. 7 admit full generating functions that are algebraic. What about the full709
generating function FS(t; x, y), and its combinatorially meaningful specializations710
FS(t; 0, 0), FS(t; 1, 0), FS(t; 0, 1), FS(t; 1, 1) for the models 1–23? Computer algebra711
is able to answer this question.712

Theorem 15 ([76]). Let S be one of the models 1–19 in Fig. 7. Then for any (α, β) ∈713
{(0, 0), (1, 0), (0, 1), (1, 1)}, the power series FS(t; α, β) is transcendental, except in the714
following four cases:715

• S = (model 17) and (α, β) = (1, 1),716

• S = (model 18) and (α, β) ∈ {(1, 0), (0, 1), (1, 1)}.717
As a consequence, the power series FS(t; x, y), FS(t; x, 0), and FS(t; 0, y) are tran-718

scendental for all the 19 models. Additionally, the generating functions of the four algebraic719
cases are equal to:720

• F (t; 1, 1) = 1
2t2

(
1− t−

√
(1 + t)(1− 3t)

)
,721

• F (t; 1, 1) = 1
8t2

(
1− 2t−

√
(1 + 2t)(1− 6t)

)
,722

• F (t; 1, 0) = F (t; 0, 1) = 1
32t3

(
(1− 6t)3/2(1 + 2t)1/2 − 4t2 + 8t− 1

)
.723

Again, the proof of Theorem 15 is computer-driven and crucially relies on the724
use of several modern Computer Algebra algorithms. This will be discussed in725
§2.4.5.726

Algebraicity/transcendence proofs were first considered in some isolated cases:727
for model 15, F(t; x, y) was proved transcendental by Mishna [306, Th. 2.5]; for728
model 17, Mishna [306, §2.3.3] and Bousquet-Mélou and Mishna [101, §5.2], showed729
that F(t; x, y) and F(t; 0, 0) are transcendental and that F(t; 1, 1) is algebraic; for730
model 18, F(t; 1, 1) was proved algebraic by Bousquet-Mélou and Mishna [101,731
§5.2]; for model 19, Bousquet-Mélou and Mishna [101, §5.3] showed that F(t; 0, 0),732
F(t; 0, 1), F(t; 1, 0) and F(t; 1, 1) are transcendental. The first unified transcendence733
proof for F(t; x, y) applying to all 19 models is by Fayolle and Raschel [180, Theo-734
rem 1.1], although they attribute that result to Bousquet-Mélou and Mishna [101].735
They actually proved more, namely that F(t0; x, y) is transcendental for each t0 ∈736
(0, #S−1], using the approach in [179, Chap. 4]. However, this result does not pro-737
vide any transcendence information about specializations at x, y ∈ {0, 1}.738

Note that, for all the 19 models, the excursions generating functions F(t; 0, 0)739
could alternatively be proved transcendental by an argument based on asymptotics,740
similar to the one in [90]: using results from [155], one can show that the coefficient741
of t12n in F(t; 0, 0) grows like κρnnα for α ∈ {−3,−4,−5}, and this implies tran-742
scendence of F(t; 0, 0) by [187, Theorem D]. By contrast, note that this asymptotic743
argument is not sufficient to prove the transcendence of all the other transcendental744
specializations, as showed for instance by Fig. 8 in the case of F(t; 1, 1) for models745
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Figure 11. Rotations of a scarecrow: models with zero drift that have a non-D-finite generating function.

5–10, for which α = −1/2 is not incompatible with algebraicity.746

1.21. Main results (VI): non-D-finiteness for models with an infinite group.747
The last question in view of the complete classification of small step walks in the748
quarter plane concerns the 56 models with an infinite group. Among them, 5 mod-749
els are singular; for them, a variant of the kernel method, called the iterated kernel750
method was used by Mishna and Rechnitzer [308] (for two models) and by Melczer751
and Mishna [299] (for all five models), who showed that the length generating func-752
tion F(t; 1, 1), and thus also the full generating function F(t; x, y), are non-D-finite.753

The remaining question concerns the 51 non-singular models with an infinite754
group: is the full generating function (and its specializations) still non-D-finite?755

Computer Algebra is able to help proving the following result.756

Theorem 16 ([90]). Let S ⊆ {0,±1}2 be any of the 51 nonsingular step sets in N2757
with infinite group GS. Then the generating function FS(t; 0, 0) of S-excursions is not758
D-finite. Equivalently, the excursion sequence ( fn;0,0)n≥0 does not satisfy any nontrivial759
linear recurrence with polynomial coefficients.760

In particular, the full generating function FS(t; x, y) is not D-finite in the 51761
cases, since D-finiteness is preserved by specialization [286]. This corollary had762
been already obtained by Kurkova and Raschel [275], but the approach in [90] is at763
the same time simpler, and delivers a more accurate information. This new proof764
only uses asymptotic information about the coefficients of FS(0, 0, t), and arithmetic765
information about the constrained behavior of the asymptotics of these coefficients766
when their generating function is D-finite. More precisely, [90] first makes explicit767
consequences of the general results by Denisov and Wachtel [155] in the case of768
walks in the quarter plane. This analysis implies that, when n tends to infinity,769
the excursion sequence fn;0,0 behaves like κ · ρn · nα, where κ = κ(S) > 0 is a real770
number, ρ = ρ(S) is an algebraic number, and α = α(S) is a real number such that771
c = − cos( π

1+α ) is an algebraic number. More precisely,772

(10) ρ := χ(x0, y0), c :=
∂2χ

∂x∂y√
∂2χ
∂x2 · ∂2χ

∂y2

(x0, y0), α := −1− π/ arccos(−c),773

where (x0, y0) is the unique solution in R2
>0 of the system

∂χ

∂x
=

∂χ

∂y
= 0.774

Starting from the step set S, explicit real approximations for ρ, α and c can be775
determined to arbitrary precision. Moreover, exact minimal polynomials of ρ and c776
can be determined algorithmically, using tools from elimination theory, namely777
Gröbner bases [150]. A classical result in the arithmetic theory of linear differential778
equations [167, 12, 196] about the possible asymptotic behavior of an integer-valued,779
exponentially bounded D-finite sequence, states that if such a sequence grows like780
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Figure 12. The 9 models with a non-D-finite but D-algebraic generating function.

κ · ρn · nα, then α is necessarily a rational number. For the 51 cases of nonsingular781
walks with infinite group, [90] proves that the constant α = α(S) is not a rational782
number. The proof amounts to checking that some explicit polynomials in Q[t] are783
not cyclotomic. This mirrors the proof of the infinitude of groups for the 51 models,784
sketched at the end of §1.18. The resemblance is not accidental: with the notations785
of §1.18, it is possible to prove that (x0, y0) is a fixed point for θ and that the charac-786
teristic polynomial of the Jacobian Jac(θ) at (x0, y0) is equal to T2 + (2− 4c2)T + 1,787
which admits roots that are roots of unity if and only if α = −1− π/ arccos(−c) is788
a rational number.789

Example 17. Consider the three scarecrows models depicted in Fig. 11. For the790
first and the third, the approach sketched above shows that the excursions sequence791
[tn] FS(t; 0, 0)792

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .793

is asymptotically equivalent to κ · 5n · nα, for α = −1−π/ arccos( 1
4 ) = −3.383396 . . .794

The irrationality of α prevents FS(t; 0, 0) from being D-finite.795

Let us note that a new line of research is currently under development: using796
a method based on Tutte invariants, Bernardi, Bousquet-Mélou and Raschel [32, 33]797
showed that for 9 of these 51 models, the generating function is nevertheless D-798
algebraic, i.e., it satisfies a system of non-linear differential differential equations799
with polynomial coefficients. These models are represented in Fig. 12. In parallel,800
using differential Galois theory, Dreyfus, Hardouin, Roques and Singer [160] proved801
the hypertranscendence of the remaining 42 models.802

1.22. Summary: Classification of 2D non-singular walks. By combining the803
previous results, we obtain the following classification theorem, which provides a804
complete characterization of the nonsingular small-step sets with D-finite generat-805
ing function. Before stating the result, we introduce the notion of orbit sum, that will806
emerge in §3 in relation with the kernel method.807

Definition 18. The orbit sum of a quarter-plane model S with finite group GS is the
following polynomial in Q[x, x−1, y, y−1]:

OSS := ∑
g∈GS

(−1)gg(x)g(y),

where for g ∈ GS we denote by (−1)g the sign of g, which is 1 if g is the product of an808
even number of generators φ and ψ, and −1 otherwise.809

For example in the case of the simple walk OS = x · y− 1
x
· y +

1
x
· 1

y
− x · 1

y
.810

A simple computation shows that for exactly the four models 20–23, the orbit811
sum is zero. E.g., for the Kreweras model:812

OS = x · y− 1
xy
· y +

1
xy
· x− y · x + y · 1

xy
− x · 1

xy
= 0.813
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We now state the main result of this article. Recall that the drift of a model S is814
defined as the sum of the vectors in S.815

Theorem 19. Let S ⊆ {0,±1}2 be any of the 74 nonsingular quarter-plane models816
in Fig. 2. The following assertions are equivalent:817

(1) The full generating function FS(t; x, y) is D-finite;818
(2) the excursions generating function FS(t; 0, 0) is D-finite;819
(3) the excursions sequence [t2n] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q;820
(4) the group GS is finite;821
(5) S has either an axial symmetry, or zero drift and cardinal different from 5.822

Moreover, under (1)–(5), the cardinality of GS is equal to 2 ·min
{
` ∈N? | `

α+1 ∈ Z
}

.823

Still under (1)–(5), FS(t; x, y) is algebraic if and only if S has positive covariance824

∑
(i,j)∈S

ij− ∑
(i,j)∈S

i · ∑
(i,j)∈S

j > 0 and if and only if OSS = 0. In this case, FS(t; x, y) is825

expressible using nested radicals.826
Otherwise, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.827

Proof. Implication (1)⇒ (2) is easy; (2)⇒ (3) is highly non-trivial and follows828
the combination of a strong probabilistic result [155] and of a strong arithmetic re-829
sult [167, 12, 196]; (3) ⇒ (4) is the core of the results in [90] discussed in §1.21;830
(4) ⇒ (1) is a consequence of results in [101, 85]. The equivalence of (2) and (5)831
is read off the tables in Appendix A of [90]. Condition (5) might seem unnatural;832
its purpose is to eliminate the three rotations of the “scarecrow” model with step833
sets depicted in Fig. 11, which have zero drift and non-D-finite generating func-834
tions. Finally, the observation on the cardinality can be checked from the data [101,835
Tables 1–3].836

The characterization of algebraicity in terms of covariance and drift follows by837
inspection using Theorem 15. The last assertion is Theorem 14.838

The classification of walks with small steps in the quarter plane can then be839
summarized pictorially as follows:840

quadrant models S: 79

|GS|<∞: 23

nonzero orbit sum: 19

Creative Telescoping

D-finite

zero orbit sum: 4

Guess-and-Prove

algebraic

|GS| = ∞: 56

asymptotics + Gröbner Bases

not D-finite

841

1.23. Extensions and open questions. We conclude this first part of the docu-842
ment with some generalizations and some problems for future investigation.843

Walks with unit steps in N2. Although small step walks in the quarter plane are844
quite well understood by now, there remain some open problems. For example, it845
is still unknown whether the length generating function F(t; 1, 1) is non-D-finite for846
all 56 models with infinite group. On the other hand, a unified proof is still lacking847
for the correspondence finite group↔ D-finite generating function.848

Walks with unit steps in N3. One direction of research concerns the classification849
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of lattice walks in higher dimension. For the moment, an extensive investigation of850
the case of small step walks in the octant N3 has been initiated in [60]. In this case,851
the notions of the group of a model and of the orbit sum can be mimicked on the852

2D case. The first difficulty is the number of cases: there are 233−1 ≈ 67 millions853
models, of which 11 074 225 models are inherently 3-dimensional (instead of 79 in854
dimension 2). The article [60] focuses on the 20 804 models that have at most six855
steps. Among them, 170 cases appear to have a finite group; in the remaining cases,856
experiments suggest that the group is infinite. Needless to add, Computer Algebra857
was of crucial help in this study. The full generating function has been proved D-858
finite in all the 170 cases, with the exception of 19 intriguing models for which the859
nature of the generating function still remains unclear. One of them (the fifth in the860
list below) is the 3D analogue of the Kreweras model.861

862

863
This leaves an open question: are there 3D non-D-finite models with a finite864

group? If so, this would constitute a major difference with the 2D case. We865
have played with the 3D Kreweras model and we conjecture that its generating866
function is indeed non-D-finite. This is supported by the fact that two different867
computations suggest that the asymptotics of the sequence k4n of 3D Kreweras868
excursions of length 4n (which starts 1, 6, 288, 24444, 2738592, 361998432, . . . )869
grows like k4n ≈ C · 256n/n3.3257570041744..., for some C > 0, and the exponent870
3.3257570041744 . . . does not appear to be a simple rational number.871

Another difference with the case of quarter-plane walks is the disappearance of872
algebraic models. Certain models do admit algebraic specializations, but then the873
walks counted by these series do not use all steps of the model, and deleting the874
unused steps leaves a model of lower dimension. We conjecture that, apart from875
these degenerate cases, there is no algebraic series among the 3D octant models.876

The study [60] can be summarized as follows.877

3D octant models S with ≤ 6 steps: 20 804

|GS| < ∞: 170

orbit sum 6= 0: 108

kernel method

D-finite

orbit sum = 0: 62

2D-reducible: 43

D-finite

not 2D-reducible: 19

not D-finite?

|GS| = ∞: 20 634 [161, Th. 1.3]

not D-finite?

878
These results have been recently extended in a computational tour de force by879

Bacher, Kauers and Yatchak [20] to all 3D octant models: they have found 170 models880
with |GS| < ∞ and orbit sum 0 (instead of 19 models found by [60]). Kauers and881
Wang [253] have determined the structure of the group of the models in all these882
cases, extending results previously obtained by Du, Hou and Wang [161].883

Walks with weighted small steps in N2. Another line of research concerns the884
classification of nearest neighbor walks in the quarter plane for models in which885
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Model A Model B

Figure 13. Two interesting quadrant models with repeated steps. Both are D-finite, and model B is even
algebraic. Note that with only one copy of the repeated step, none of these models would be D-finite (§1.21).

multiplicities are attached to each direction in the step set. The study has been initi-886
ated by Bostan, Bousquet-Mélou, Kauers and Melczer [60] during their classification887
of octant models, as it turns out that some 3D models can be reduced by projection888
to 2D models with multiplicities. Among the octant models, they have identified889
14 744 two-dimensional models with at most 6 steps, which yield by projection 527890
distinct quadrant models with at most 6 (possibly repeated) steps. Among them,891
118 models appeared to have a finite group, of which 95 have a non-zero orbit sum.892
For 94 of them, the kernel method establishes the D-finiteness of the full generating893
function, but for one of them (Model A in Fig. 13) Computer Algebra was needed.894
All the remaining 23 models with finite group and zero orbit sum have been proved895
algebraic. Among them, 22 can be reduced to a usual quarter-plane model with al-896
gebraic generating function, but for the last of them (Model B in Fig. 13) Computer897
Algebra was needed again. In some sense, models A and B in Fig. 13 are similar to898
the Gessel model, but much more difficult.899

The study in [60] has been continued by Kauers and Yatchak [254], whose work900
also heavily relies on Computer Algebra. They carried out a systematic search over901
all the 48 = 65 536 models where each of the eight directions may have any of the902
four multiplicities 0, 1, 2, 3. Of these, 30 307 were found nontrivial and essentially903
different. Of these nontrivial models, 1457 turned out to be D-finite (of which 79904
models are even algebraic). Of these, three models have a group of order 10, a cardi-905
nal that was not possible in the classical (unweighted) setting. Less surprisingly, the906
correspondence between finite group and D-finite generating function observed in [60]907
continues to hold in this weighted 2D context. One open question raised by this908
study is: does there exist for every n ≥ 2 a quarter-plane model with multiplicities909
whose group has order 2n? This is true in a probabilistic context, but for a differ-910
ent notion of group [179]. In a very recent work, Courtiel, Melczer, Mishna and911
Raschel [149] push even further the investigation of weighted models.912

Other extensions. There are many other questions on the combinatorics of lattice913
paths in the cones, and certainly Computer Algebra will have a word to say, at914
least for some of them. Counting walks in non-convex cones is currently under915
investigation: after the case of the slit plane [104, 93, 105, 387, 342], it is now the turn916
of the cone C := {(i, j) : i ≥ 0 or j ≥ 0} [99]. Also, walks with larger steps in the917
quadrant are currently under investigation [183, 61]. There are several challenges,918
among them to find (and to use!) a notion close to the group of a model, which919
was specific to small-step models. For instance, for S = {(0, 1), (1,−1), (−2,−1)},920
Bostan, Bousquet-Mélou and Melczer show that such a notion exists, and allows to921
prove that FS(t; x, y) is D-finite, via the positive part representation:922

xyFS(t; x, y) = [x>0y>0]
(x− 2x−2)(y− (x− x−2)y−1)

1− t(xy−1 + y + x−2y−1)
.923
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2. Guess-and-Prove.924
What is “scientific method”? Philosophers and non-philosophers have discussed925

this question and have not yet finished discussing it. Yet as a926
first introduction it can be described in three syllables:927

Guess and test.928
Mathematicians too follow this advice in their research although they sometimes refuse929

to confess it. They have, however, something which the other scientists930
cannot really have. For mathematicians the advice is931

First guess, then prove.932
G. Pólya [329].933

In this second part of the document, we enter into more technical details related934
to the experimental mathematics methodology that was employed to discover and935
to prove an important part of the results presented in §1, notably related to the936
celebrated Gessel walks (§1.15, §1.16) and more generally to the classification of937
lattice path models with D-finite generating functions (§1.17, §1.23). The process of938
experimental mathematics is to discover mathematical phenomenona by observing939
them via computations, before formally proving them. The rigorous proving step940
may be human, in the spirit of classical mathematics, or itself computerized, in941
the spirit of the current article. One of the experimental mathematics paradigms942
that was intensively used in recent years in the lattice path combinatorics context943
is the so-called guess-and-prove approach. It was introduced in this combinatorial944
context in work by Bostan and Kauers [84, 85], but its roots can be found in Pólya’s945
remarkable books [331, 330], who popularized it as a fruitful mathematical proof946
strategy. The power of the method is highly enhanced when used on a computer,947
in conjunction with fast Computer Algebra algorithms.948

This enhancement could be called the automated (or, algorithmic) guess-and-prove949
approach, and it is the topic of the current section. The first half (the guessing part)950
of the approach is based on a “functional interpolation” phase, which consists in951
recovering equations starting from (truncations of) solutions. It is called differential952
approximation [223, 257], or algebraic approximation [106], depending on the type of953
equations to be reconstructed. For instance, differential approximation is an oper-954
ation to get an ODE likely to be satisfied by a given approximate series expansion955
of an unknown function. This has been used at least since the 1970s by physi-956
cists [223, 220], and is a key stone in recent spectacular applications in experimental957
mathematics, such as [264]. Modern versions [343, 249, 229] are based on subtle958
algorithms for Hermite–Padé approximants [29]. The second half (the proving part)959
of the approach is based on fast manipulations (e.g., resultants and factorization)960
with exact algebraic objects (e.g., polynomials and differential operators).961

2.1. Methodology for proving algebraicity and D-finiteness. We illustrate the962
general principles of the guess-and-prove method when applied to proving that, for963
some lattice path model S with small steps in the quarter plane, the full generat-964
ing function FS(t; x, y) is D-finite or algebraic. Recall from §1.14 that the problem965
amounts to solving the kernel equation (7):966

K(t; x, y)F(t; x, y) = xy + K(t; x, 0)F(t; x, 0) + K(t; 0, y)F(t; 0, y)− K(t; 0, 0)F(t; 0, 0),967

where KS(t; x, y) = xy(1− t∑(i,j)∈S xiyj) is the kernel polynomial.968
The method can be decomposed into three main steps:969

(S1) Data generation: one first computes a high order expansion of the power970
series FS(t; x, y);971
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(S2) Conjecture: from the local information computed at Step (S1), one tries to972
guess a global information, namely a candidate for a polynomial, resp. for973
a system of linear differential equations, satisfied by FS(t; x, y); this is done974
by using algebraic, resp. differential, approximation;975

(S3) Proof: one rigorously certifies the output of Step (S2), by using (exact) com-976
putations on multivariate polynomials, and on linear differential equations977
with polynomial coefficients.978

In practice, Steps (S1), (S2), (S3) are performed using efficient algorithms from979
Computer Algebra.980

As it turns out, an important improvement from the complexity of computa-981
tions viewpoint is to perform the guessing step (S2) on the sections FS(t; x, 0) and982
FS(t; 0, y) only. This is sufficient due to the kernel equation, since both algebraicity983
and D-finiteness are preserved by sums, products and specializations. This sim-984
plification is crucial, as equations for the sections are usually much smaller than985
equations for the full generating function.986

In §2.2, §2.3 and §2.4 we take a closer look at Steps (S1), (S2) and (S3).987

2.2. Step (S1): high order series expansions. The first step of the method is988
based on a very basic observation: the full counting sequence ( fn;i,j) satisfies a989
recurrence with constant coefficients990

(11) fn+1;i,j = ∑
(k,`)∈S

fn;i−k,j−` for n, i, j ≥ 0991

with the initial conditions f0;i,j = δ0,i,j and fn;−1,j = fn;i,−1 = 0. The recurrence sim-992
ply translates the step-by-step construction of quarter plane walks with model S:993
a S-walk of length n finishing at (i, j) is obtained from a walk of length n − 1,994
followed by a step in S; the initial conditions translate the quarter-plane constraint.995

Notice that as in the case of the much simpler kernel equation (2), multiplying996
the recurrence (11) by tnxiyj, summing over n, i, j, and using the initial conditions997
yields the kernel equation (7).998

Example 20. For the Kreweras walks, where kn;i,j denotes fn;i,j for S = ,999

kn+1;i,j = kn;i+1,j1000

+ kn;i,j+11001

+ kn;i−1,j−1.10021003

1004
1005

The recurrence (11) can be used to determine the value of fn;i,j for specific in-1006
tegers n, i, j ∈ N. The inequality fn;i,j ≤ #Sn implies that fn;i,j is a non-negative1007
integer whose bit size is at most O(n). Therefore, if N ∈ N, the truncated power1008
series FS(t; x, y) mod tN can be computed by a straightforward algorithm that uses1009
O(N3) arithmetic operations and Õ(N4) bit operations. (We assume that two inte-1010
gers of bit-size N are multiplied in Õ(N) bit operations using FFT [346]; here, the1011
soft-O notation Õ( ) hides logarithmic factors.) The memory storage requirement is1012
proportional to N3. For the experiments made in [84], N = 1000 was chosen. With1013
this choice, the computation of the fn;i,j becomes very time and memory consuming.1014
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Example 21. For the Kreweras model, one obtains1015

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t31016

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t41017

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · · ,10181019

from which the first terms of the length generating function K(t; 1, 1) are computed1020

K(t; 1, 1) = 1 + t + 3t2 + 7t3 + 17t4 + 47t5 + 125t6 + 333t7 + 939t8 + 2597t9+1021

7183t10 + 20505t11 + 57859t12 + 163201t13 + 469795t14 + · · · .10221023

To summarize, step (S1) is very simple mathematically, but the naive algorithm1024
used for it is not satisfactory. Its weakness is that in order to compute an univari-1025
ate series such as FS(t; 1, 1), or a bivariate series like FS(t; x, 0), it needs to compute1026
the trivariate series FS(t; x, y). An important problem is to accelerate this algorithm.1027
Our suggestion is to devise a divide-and-conquer method based on equation (18) be-1028
low, in the spirit of the algorithms in [107, 108, 74, 67]. This would allow to compute1029
the sections FS(t; x, 0) mod tN and FS(t; 0, y) mod tN in quasi-optimal time (i.e., al-1030
most linear in their size, up to logarithmic factors), from which FS(t; 1, 1) mod tN1031
could be easily reconstructed using the kernel equation (7) evaluated at x = y = 1.1032

2.3. Step (S2): guessing equations. The purpose of the second step of the1033
method is to guess (differential, or algebraic) equations for FS(t; x, y).1034

2.3.1. A first idea. A first, but crucial, simplification comes from the simple1035
remark that the kernel equation (7) expresses the full generating function FS(t; x, y)1036
as a linear combination with rational function coefficients in Q(x, y, t) of its sections1037
FS(t; x, 0), FS(t; 0, y) and FS(t; 0, 0). Therefore, by closure properties of algebraic1038
and D-finite functions [286], FS(t; x, y) is D-finite (resp., algebraic) if and only if its1039
sections FS(t; 0, y) and FS(t; 0, 0) are both D-finite (resp., algebraic).1040

Example 22. In terms of generating functions, the recurrence in Ex. 20 reads1041

(12)
(

xy− (x + y + x2y2)t
)
K(t; x, y) = xy− xt K(t; x, 0)− yt K(t; 0, y).1042

In order to prove the D-finiteness, resp. the algebraicity, of K(t; x, y), it is enough to1043
prove the D-finiteness, resp. the algebraicity, of its sections K(t; x, 0) and K(t; 0, y).1044

In some cases, this simplification is crucial; for instance, in the case of the Gessel1045
model, the minimal polynomial of F(t; x, y) has a size of ≈ 30Gb, while sizes of the1046
minimal polynomials of the sections F(t; x, 0) and F(t; 0, y) are merely ≈ 1Mb.1047

2.3.2. Guessing equations for the sections FS(t; x, 0) and FS(t; 0, y). At the1048
end of Step (S1), we are reduced to performing the following guessing tasks.1049

Task 1 (differential guessing): Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]],1050
search for a linear differential equation satisfied by S at precision N:1051

(13) Lx,0(S) = cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .1052

Task 2 (algebraic guessing): Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]],1053
search for a polynomial equation satisfied by S at precision N:1054

(14) Px,0(S) = cr(x, t) · Sr + · · ·+ c1(x, t) · S + c0(x, t) · 1 = 0 mod tN .1055

This manuscript is for review purposes only.



COMPUTER ALGEBRA FOR LATTICE PATH COMBINATORICS 31

Here and below, we use the compact notation Px,0 for a trivariate polynomial in1056
Q[T, t, x], and Lx,0 for an operator in the Weyl algebra Q(x, t)〈∂t〉 of linear differen-1057

tial operators in ∂t =
d
dt with rational function coefficients in Q(t, x).1058

We use the similar notation L0,y(S′) and P0,y(S′) for equations potentially sat-1059
isfied by the other section S′ = FS(t; 0, y) ∈ Q[y][[t]].1060

The idea behind differential guessing is that if the given power series S happens1061
to be D-finite, then for a sufficiently large N, a differential equation of type (13) (thus1062
satisfied a priori only at precision N) will provide a differential equation which is1063
really satisfied by S in Q[x][[t]] (i.e., at precision infinity). In other words, the1064
(conjectural) D-finiteness of a power series can be eventually recognized using a1065
finite amount of information. The same holds for the algebraic guessing.1066

Example 23 (continued). Using N = 80 terms of K(t; x, 0) = F (t; x, 0), one1067

can guess a linear differential operator of order 4, and degrees (14, 11) in (t, x):1068

Lx,0 = t3 · (3t− 1) · (9t2 + 3t + 1) · (3t2 + 24t2x3 − 3xt− 2x2)·1069

· (16t2x5 + 4x4 − 72t4x3 − 18x3t + 5t2x2 + 18xt3 − 9t4)·1070

· (4t2x3 − t2 + 2xt− x2) · ∂4
t + · · ·10711072

such that Lx,0(K(t; x, 0)) = 0 mod t80.1073
Similarly, one can guess a polynomial of degree (6, 10, 6) in (T, t, x)1074

Px,0 = x6t10T6 − 3x4t8(x− 2t)T5+1075

+ x2t6
(

12t2 + 3t2x3 − 12xt +
7
2

x2
)

T4 + · · ·1076
1077

such that Px,0(K(t; x, 0)) = 0 mod t80.1078
Therefore, it is very likely that K(t; x, 0) verifies the linear differential equation1079

Lx,0(K(t; x, 0)) = 0 and the algebraic equation Px,0(K(t; x, 0)) = 0, but at this stage1080
we only have experimental evidence, which is by no means a rigorous proof.1081

In Tasks 1 and 2, the unknowns ci are (not simultaneously zero) polynomials in1082
Q[x, t]. If their degrees in t are bounded by some prescribed integer d ≥ 0 such that1083
(d + 1)(r + 1) > N, then a simple linear algebra argument shows that a differential1084
equation of type (13), resp. an algebraic equation of type (14), should exist. On1085
the other side, if d, r and N are such that (d + 1)(r + 1) � N, then equation (13)1086
and (14) translate into highly over-determined linear systems, which have no reason1087
to possess non-trivial solutions (unless S really is D-finite, resp. algebraic).1088

All previous remarks also apply to any specialization of S to same value x ∈ Q.1089

The pending question is: how to solve efficiently Tasks 1 and 2, given d, r, N? Ob-1090
viously, both amount to solving linear algebra problems in size N over Q(x). More1091
precisely, a candidate differential, resp. polynomial, equation of type (13), resp. (14),1092
for S can be computed by Gaussian elimination. But the corresponding systems are1093
not randomly dense linear systems. They possess a very special structure, that can1094
be exploited algorithmically in several ways. First, instead of solving linear systems1095
of size N over Q(x), it is better to use an evaluation-interpolation scheme: evaluate1096
the system at several points x, solve the corresponding systems over Q, and re-1097
combine the results by interpolation. The evaluation and interpolation steps can be1098
performed very efficiently [381, Chap. 10], especially at points in geometric progres-1099
sion [91, §5]. Second, instead of solving linear systems over Q, it is better to solve1100
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several systems over finite fields Fp using a modular approach: the linear algebra1101
step is performed modulo several primes p, and the results are recombined over Q1102
via rational reconstruction based on an effective version of the Chinese remainder1103
theorem. Again, this can be performed very efficiently [381, Chap. 10]. Third, in-1104
stead of using Gaussian elimination for solving the linear systems over Fp that arise1105
from (13) and (14) by specialization and reduction, it is better to exploit their Toeplitz-1106
like structure: their matrices are obtained by concatenation of Sylvester-like blocks,1107
that possess the Toeplitz property of diagonal invariance, see §2.5 for details. Said1108
differently, equations (13) and (14) are particular instances of Hermite-Padé approxi-1109
mation problems, and can be solved very efficiently. More precisely, while Gaussian1110
elimination in size N over Fp has cubic arithmetic complexity in N, fast algorithms1111
for Hermite-Padé approximation have quasi-linear complexity in N, see §2.5.3. Such1112
sophisticated algorithms rely on fast (FFT-like) arithmetic for the polynomial ring1113
Fp[t] [381, 43, 113] and for the Weyl algebra Fp[t]〈∂t〉 [216, 374, 55, 71, 30, 75, 375].1114
They are not needed for simple examples, but they become of crucial help in the1115
treatment of examples of critical sizes, such as for the computations involved in1116
Gessel’s model, see Example 24.1117

In practical implementations, for a given precision N, one searches for equa-1118
tions of increasing order r = 1, 2, . . ., and a corresponding degree d ≈ N/r. If no1119
differential equation like (13) is found, this definitely rules out the possibility that1120
a differential equation of order r and degree d exists. However, this does not imply1121
that the series at hand is not D-finite. It may still be that S satisfies a differen-1122
tial equation of order higher than r, or an equation with polynomial coefficients of1123
degree exceeding d. In that case, one doubles the series precision N, and starts over.1124

Sometimes (see §2.3.3 and §2.4.5) one needs to obtain the minimal-order differ-1125
ential equation Lmin(S) = 0 satisfied by the given generating power series S. The1126
choice (d, r) of the target degree and order does not necessarily lead to the minimal1127
operator Lmin. Worse, it may even happen that the number of initial terms N is not1128
large enough to allow the recovery of Lmin, while these N terms suffice to guess1129
non-minimal order operators. The explanation of why such a situation occurs sys-1130
tematically was first given in [72] for the case of differential equations satisfied by1131
algebraic functions: minimal-order differential equations are often cluttered with1132
apparent singularities, which considerably increase the degree of their coefficients.1133
Therefore, they require too many terms N of the series S, and this prevents, or1134
slows down, the reconstruction of equations. Differential guessing can benefit from1135
the calculation of non-minimal equations, by minimizing not the order but the total1136
size of the output. These considerations are intimately related to the operation of1137
desingularization [120, 121, 119, 126]. All in all, a good heuristic to get Lmin is to1138
compute several non-minimal operators and to take their greatest common right1139
divisor (gcrd); generically, the result is exactly Lmin.1140

Example 24. For Gessel walks, N = 1000 terms of G(t; x, y) = F (t; x, y) are1141

sufficient to guess1142
• a differential operator Lx,0 ∈ Q(x, t)〈∂t〉, of order 11 in ∂t, bidegree (96, 78)1143

in (t, x), and integer coefficients of at most 61 digits1144
• a differential operator L0,y ∈ Q(y, t)〈∂t〉, of order 11 in ∂t, bidegree (68, 28)1145

in (t, y), and integer coefficients of at most 51 digits1146
such that Lx,0(G(t; x, 0)) = L0,y(G(t; 0, y)) = 0 mod t1000.1147

Here is the way this was done. For a fixed value a, and modulo a fixed prime p,1148
several (non-minimal order) operators in Fp[t]〈∂t〉 for G(t; a, 0) can be guessed by1149
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Figure 14. Guessing differential operators for G(t; a, 0), for prime p and a ∈ Fp: minimal-order operator
(blue point above the hyperbola) obtained as gcrd of several non-minimal operators (blue points below the hyperbola).
Points below the hyperbola correspond to operators obtainable by Hermite-Padé approximation with 1000 terms.

Hermite-Padé approximation using 1000 terms of G(t; a, 0). Some of them are rep-1150
resented by the blue points below the hyperbola in Figure 14, e.g., one of them has1151
order 14 and degree 43 in t. However, interpolating from one of those an operator in1152
Q[t, x]〈∂t〉 for G(t; x, 0) appears to be computationally extremely expensive. The recon-1153
struction (w.r.t. x) becomes feasible (in reasonable degree 78) when applied to the1154
minimal-order operators (represented by the blue point above the hyperbola), them-1155
selves obtained as gcrds in Fp(t)〈∂t〉 of several non-minimal operators. Note that1156
without gcrds, the minimal-order operator could not have been found by Hermite-1157
Padé approximation with only 1000 terms. Also note that guessing Lx,0 naively by1158
undetermined coefficients would have required solving a dense linear system of size1159
91956 with ≈ 1000 digits entries! As a historical note, the discovery in 2008 of Lx,01160
and L0,y first led Bostan and Kauers [85] suspect that G(t; x, y) is D-finite.1161

Efficient implementation of differential and algebraic guessing procedures have1162
been implemented in most computer algebra systems, see e.g., the Maple package1163
gfun written by Salvy and Zimmermann [343], the Mathematica package Guess.m by1164
Kauers [249], or the FriCAS package Guess written by Hebisch and Rubey [229].1165

2.3.3. Empirical certification of guesses. Confidence in guessed equations can1166
be complemented by using various filters. Once discovered a differential equa-1167
tion (13) or an algebraic equation (14) that the power series S seems to satisfy, it1168
is useful to inspect several properties of these equations, in order to provide more1169
convincing evidence that they are correct. These properties have various flavors: al-1170
gebraic, analytic and even arithmetic. If the candidate guessed equations pass these1171
filters, this offers striking experimental evidence that they are not artefacts.1172

Algebraic sieve: High order series matching. The equations (13) and (14) are1173
obtained starting from N coefficients of the power series S. They are therefore1174
satisfied a priori only modulo tN . One can compute more terms of S, say 2N, and1175
check whether the same equations still hold modulo t2N . If this is the case, chances1176
increase that the guessed equations also hold at infinite precision.1177
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Analytic sieve: Singularity analysis. For any a ∈ N, the univariate power series1178
FS(t; a, 0) has integer coefficients and positive radius of convergence. Thus, if in1179
addition it is D-finite, then it is a G-function [167]. General results by Katz and1180
Honda [244, 234], and Chudnovsky [134] then imply that the minimal order differ-1181
ential operator for FS(t; a, 0) needs to be Fuchsian (it admits only regular singular-1182
ities, including at infinity) and its exponents at each singularity must be rational1183
numbers. See [11, 117, 167] for more details on this topic.1184

Arithmetic sieve: G-functions and global nilpotence. Last, but not least, one may1185
check an arithmetic property of the guessed differential equations by exploiting1186
the fact that those expected to arise in our combinatorial context are very special.1187
Indeed, by a theorem due to the Chudnovsky brothers [134], the minimal order1188
differential operator L = LS

min ∈ Q[t]〈∂t〉 killing a G-function S enjoys a remarkable1189
arithmetic property: L is globally nilpotent. By definition, this means that for almost1190
every prime number p (i.e., for all with finitely many exceptions), there exists an1191

integer µ ≥ 1 such that the remainder of the Euclidean (right) division of ∂
pµ
t by L1192

is congruent to zero modulo p [234, 166]. From a computational view-point, a fine1193
feature is that the nilpotence modulo p is checkable. If r denotes the order of L,1194
let Ap(L) be the p-curvature matrix of L, defined as the r× r matrix with entries in1195

Q(t) whose (i, j) entry is the coefficient of ∂
j−1
t in the remainder of the Euclidean1196

(right) division of ∂
p+i−1
t by L. Then, L is nilpotent modulo p if and only if the1197

matrix Ap(L) is nilpotent modulo p [166, 345]. Faster tests exist [92, 62, 63, 64].1198
This yields a fast algorithmic filter: as soon as we guess a candidate differential1199

equation satisfied by a generating function which is suspected to be a G-function1200
(e.g., by F(t; 1, 1)), we check whether its p-curvature matrix Ap(L) is nilpotent, say1201
modulo the first 50 primes for which the reduced operator L mod p is well-defined.1202
If Ap(L) is indeed nilpotent modulo p for all those primes p, then the guessed1203
equation is, with very high probability, the correct one. This arithmetic sieving can1204
be pushed even further. A famous conjecture, attributed to Grothendieck [246, 247,1205
13], asserts that the differential equation L(S) = 0 possesses a basis of algebraic1206
solutions (over Q(t)) if and only if Ap(L) is zero modulo p for almost all primes p.1207
Even if the conjecture is, for the moment, fully proved only in special cases [117]1208
(notably for Picard-Fuchs equations [246]) one can use it as an oracle to detect1209
whether a guessed differential equation has a basis of algebraic solutions.1210

Example 25 (continued). For Gessel walks, the guessed (order-11) operators Lx,01211
and L0,y for G(t; x, y) = F (t; x, y) pass all the preceding filters, including the one1212

based on p-curvatures. More precisely, for randomly chosen prime number p, and1213

a, b ∈ Fp, both La,0 and L0,b right-divide the pure power ∂
11·p
t in Fp(x)〈∂t〉. These1214

operators actually have a stronger property: they even right-divide ∂
p
t ; in other1215

terms, they have zero p-curvature for all the tested primes p. This was the key1216
observation in the discovery [85] that the trivariate generating function for Gessel1217
walks is algebraic.1218

The reader may wonder why the authors of [85] did not try algebraic guessing1219
first. The first reason is that they had no reason to suspect that G(t; x, y) is algebraic,1220
since even the specialization G(t; 0, 0) was generally thought to be transcendental.1221
The second reason is that more terms of G(t; x, y) are needed to recognize alebraicity1222
(1200, instead of 1000, see below), and the power series expansion to such high1223
orders is computationally very expensive both in time and memory.1224
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Example 26 (continued). Still for Gessel walks, now using N = 1200 terms of1225
G(t; x, y) = F (t; x, y) is sufficient to guess annihilating polynomials for sections:1226

• Px,0 ∈ Z[T, t, x] of degree (24, 43, 32), integer coefficients of at most 211227
digits,1228
• P0,y ∈ Z[T, t, y] of degree (24, 44, 40), integer coefficients of at most 231229

digits,1230
such that Px,0(G(t; x, 0)) = P0,y(G(t; 0, y)) = 0 mod t1200.1231

2.4. Step (S3): rigorous proof.1232
Guessing is good, proving is better.1233

G. Pólya [331].1234

2.4.1. Basic idea. The third and last step of the guess-and-prove method (for a1235
quarter-plane model S for which the first two steps are assumed to have succeeded)1236
consists in rigorously proving that the candidate (guessed) equations are indeed cor-1237
rect. Roughly, the basic idea is the following. Assume that one guessed equations1238
for FS(t; x, y) which admit a solution S(t; x, y) in some power series ring R, typi-1239
cally Q[[x, y, t]] or Q[x, x−1, y, y−1][[t]], in which the kernel equation (7) has a unique1240
solution, namely FS(t; x, y). Then, using effective closure properties for algebraic1241
and D-finite functions [286] enables to compute the same (algebraic, or differen-1242
tial) equations for both sides of the kernel equation (7) with FS(t; x, y) replaced by1243
S(t; x, y), and to eventually prove that the identity1244

(15)
K(t; x, y)S(t; x, y) = xy + K(t; x, 0)S(t; x, 0) + K(t; 0, y)S(t; 0, y)− K(t; 0, 0)S(t; 0, 0)1245

holds in R, where KS(t; x, y) = xy(1 − t∑(i,j)∈S xiyj). By uniqueness, it follows1246

that FS(t; x, y) and S(t; x, y) coincide, and thus FS(t; x, y) is indeed algebraic (or1247
D-finite), since S(t; x, y) is so, by design.1248

In practice, contrary to this ideal scenario, equations for the full generating1249
function are too big to be computed, at least in many interesting cases. As explained1250
in §2.3, one only has access to guessed equations for the sections FS(t; x, 0) and1251
FS(t; 0, y). In this case, a variant of the method is used, and it is based on the1252
reduced kernel equation, see §2.4.3 below. But before going into this, let us illustrate1253
the guess-and-prove philosophy on a simpler example.1254

2.4.2. Warm-up: algebraicity of Gessel excursions. Let us prove that the gen-1255
erating function G(t; 0, 0) of Gessel excursions is algebraic, by taking Theorem 11 as1256
the starting point. In other words, let us prove the algebraicity of the power series1257

g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n.1258

Of course, one could appeal to a proof that relies on equation (8) and on1259
Schwarz’s classification [347] of algebraic 2F1s, or other methods discussed in §1.11,1260
like the Beukers-Heckman criterion (Theorem 8). Compared to these proofs, the1261
constructive proof given below has the advantage that it can be applied similarly in1262
situations where no classification results are available.1263

The guess-and-proof method works as follows: first guess a polynomial P(t, T)1264
in Q[t, T], then prove that P admits the power series g(t) = ∑∞

n=0 gntn as a root,1265
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where gn = (5/6)n(1/2)n
(5/3)n(2)n

16n. In more details, the proof decomposes into three main1266

steps:1267

1. (Guessing) A suitable polynomial P (see below) can be guessed automati-1268
cally from the first 100 terms of g(t) using the approach explained in §2.1269

2. (Uniqueness) By the implicit function theorem, this polynomial P admits a1270
root r(t) ∈ Q[[t]] with r(0) = 1. Since P(T, 0) = T− 1 has a single root in C,1271
the series r(t) is the unique root of P in C[[t]].1272

3. (Proof) r(t) = ∑∞
n=0 rntn being algebraic, it is D-finite (§1.11), and thus its1273

coefficients satisfy a recurrence with polynomial coefficients, which is1274

(16) (n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1.1275

Thus rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, and g(t) = r(t) is algebraic.1276

The concrete computations can be performed for instance in Maple using the pack-1277
age gfun, which provides the commands algeqtodiffeq for the algebraic guessing task1278
in Step 1, algeqtodiffeq for Abel’s theorem in Step 3 and diffeqtorec for the conversion1279
differential equation→ recurrence in Step 3. The result of the two lines1280

> P:=gfun:-listtoalgeq([seq(pochhammer(5/6,n)*pochhammer(1/2,n)/
pochhammer(5/3,n)/pochhammer(2,n)*16^n, n=0..100)], g(t)):

> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P[1], g(t)), g(t), r(n));
1281

is the recurrence (16).1282

2.4.3. Algebraicity proofs for Kreweras and Gessel walks. We now sketch the1283
last part of the guess-and-prove method for proving the algebraicity of the gener-1284
ating functions for Kreweras and for Gessel walks. We focus on the Kreweras case,1285
since the computations are easier and most of the ideas are already present.1286

The proof follows the same principles as the one just explained in §2.4.2. The1287
idea is to guess, then to certify annihilating polynomials. The main difference with1288
the situation in §2.4.2 is that an explicit closed form expression is no longer avail-1289
able beforehand for the power series whose algebraicity needs to be proved. In-1290
stead, we only have implicit equations that define that series. The method has1291
three steps, and consists in applying the basic idea explained in §2.4.1, with the1292
major difference that we cannot afford guessing of equations for the full gener-1293
ating function. The first step produces a so-called reduced kernel equation for the1294
sections F(t; x, 0) and F(t; 0, y). In the Kreweras case, the step set being symmet-1295
ric with respect to the main diagonal, the generating function K(t; x, y) enjoys the1296
property K(t; x, y) = K(t; y, x), which simplifies the kernel equation (7) to1297

(17) (xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; y, 0).1298

The proof goes as follows (the corresponding computations, performed in Maple,1299
are displayed in Fig. 15):1300

1. (Reduced kernel equation) Plugging1301

y0 =
x− t−

√
−4t2x3 + x2 − 2tx + t2

2tx21302

= t + 1
x t2 + x3+1

x2 t3 + 3x3+1
x3 t4 + 2x6+6x3+1

x4 t5 + · · · ∈ Q[x, x−1][[t]],13031304
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# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)
> libname:=".",libname:gfun:-version();

3.62
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617

Figure 15. Algebraicity of Kreweras walks: a computerized proof in a nutshell.

in (17) shows that U = K(t; x, 0) satisfies the reduced kernel equation1305

(18) 0 = x · y0 − x · t ·U(t, x)− y0 · t ·U(t, y0).1306

2. (Uniqueness) Eq. (18) has a unique solution in Q[[x, t]], namely U = K(t; x, 0).1307

3. (Proof) Candidate Px,0(T, t, x) guessed in (23) admits a root H in Q[[t, x]].1308
Resultant computations prove that U = H(t, x) also satisfies (18).1309
By uniqueness, K(t; x, 0) coincides with H(t, x), which is algebraic.1310

In the case of Gessel walks the proof follows the same strategy, but several1311
complications occur:1312

• the diagonal symmetry of the step set is lost, so G(t; x, y) 6= G(t; y, x);1313
• G(t; 0, 0) occurs in (7) (because of the step↙);1314
• guessed equations are ≈ 5 000 times bigger.1315

To bypass these difficulties, one ingredient of the solution proposed in [85] is1316
to replace equation (18) by an equivalent system of two reduced kernel equations,1317
and to make use of fast algorithms for manipulating algebraic series, inspired by1318
the algorithms for sums and products of algebraic numbers, designed in [81]. For1319
more details, we refer the reader to the original article [85].1320

2.4.4. D-finiteness proofs for models A and B in Fig. 13. Here we simply state1321
two recent results that have been discovered and proved using the guess-and-prove1322
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strategy explained before. The first one, Theorem 27, is remarkable in that it is a1323
(more difficult) analogue of Theorem 11 (former Gessel Conjecture 1). The simple1324
formulas beg for a combinatorial proof, but for the moment no human proof at all1325
is known for it.1326

Theorem 27 ([60]). The generating function E(t) = FA(t; 0, 0) = FB(t; 0, 0) of ex-1327
cursions for the quadrant models A and B in Fig. 13 is1328

4F3

( 5
6

1
2 1 7

6
5
4 2 7

4

∣∣∣∣ 27t2
)
= ∑

n>0

6(6n + 1)!(2n + 1)!
(3n)!(4n + 3)!(n + 1)!

t2n = 1+ 3t2 + 26t4 + 323t6 + · · · .1329

It is algebraic of degree 6, root of the polynomial1330

16t10T6 + 48t8T5 + 8(6t2 + 7)t6T4 + 32(3t2 + 1)t4T31331

+ (48t4 − 8t2 + 9)t2T2 + (48t4 − 56t2 + 1)T + (16t4 + 44t2 − 1).13321333

A parametric expression of E(t) is t2E(t) = Z(1− 6Z + 4Z2), where Z is the unique series
in t with constant term 0 satisfying

Z(1− Z)(1− 2Z)4 = t2.

The second result, Theorem 28, has two parts. The first part is remarkable in1334
that it provides the first example of D-finiteness result of a (non-algebraic) quadrant1335
model that is currently proved uniquely via computer algebra. The second part is1336
remarkable in that it is a (more difficult) analogue of Theorem 12 (former Gessel1337
Conjecture 2). Again, no human proof is known for these results.1338

Theorem 28 ([60]). (a) The full generating function FA(t; x, y) is D-finite.1339

(b) The full generating function FB(t; x, y) is algebraic, of degree 12. It satisfies1340

FB(t; x, y) =
xy− t(1 + x2)FB(t; x, 0)− t(1 + y)FB(t; 0, y) + tFB(t; 0, 0)

(y− t(1 + y)(1 + x2(1 + y)))
.1341

The sections FB(t; x, 0) and FB(t; 0, y) can be written in parametric form as follows.1342
Let T(t) = t + 4t3 + 48t5 + · · · be the unique series in t with constant term 0 such that

T(1− 4T2) = t.

Let S(t) = t + 5t3 + 62t5 + · · · be the unique series in t with constant term 0 such that

S(1− S2)2 = t(1 + S2)3.

Then FB(t; x, 0) has degree 12 and is quadratic over Q(x, S):1343
1344

FB(t; x, 0) =
(

1 + S2

1− S2

)3

×1345

x(1 + 6S2 + S4)−2S(1− S2)(1 + x2)−(x− 2S + xS2)
√
(1− S2)2 − 4xS(1 + S2)

2x(1 + x2)S2 .1346
1347

Let finally W(t, y) be the unique power series in t with constant term 0 such that

W (1− (1 + y)W) = T2.
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Then FB(t; 0, y) has degree 6 and is rational in T and W:1348

FB(t; 0, y) = t−2W(1− 4T2 − 2W).1349

Moreover, its coefficients are doubly hypergeometric:

FB(t; 0, y) = ∑
n>j>0

6(2j + 1)!(6n + 1)!(2n + j + 1)!
j!2(3n)!(4n + 2j + 3)!(n− j)!(n + 1)

yjt2n.

2.4.5. Transcendence proofs for D-finite models. We have seen that the guess-1350
and-prove paradigm can be successfully used to prove D-finiteness and algebraicity.1351
The proofs are constructive by design: they internally construct (differential, or1352
algebraic) equations. It might thus look surprising that guess-and-prove can also1353
be used to prove transcendence, that is, lack of algebraic equations. The framework1354
is as follows. Assume that f ∈ Q[[t]] is a D-finite power series for which some1355
linear differential equation L( f ) = 0 (not necessarily of minimal order) is known.1356
For instance, this differential equation could have been produced itself by a guess-1357
and-prove process. The question is how to prove that f is transcendental? This is1358
interesting especially in cases where all known transcendence criteria (such as those1359
in [187]) fail to apply. Such cases do occur, as seen in §1.20 for the length generating1360
function F(t; 1, 1) for models 5–10 in Fig. 8, for which the asymptotic behavior is not1361
incompatible with algebraicity. For these models, one possible workaround uses1362
the factorization patterns of the differential operators for F(t; 1, 1): the operators1363
systematically factor as a product of an order-2 operator on the left, and several1364
order-1 operators on the right, so that Kovacic’s algorithm [266] can be used to1365
prove transcendence in an uniform way [76].1366

But factorization of linear differential operators, although quite well studied in1367
theory [216, 351, 112, 378] is computationally very expensive, or even infeasible in1368
practice, when applied to operators of high orders. Such an example is provided by1369
Model B in Fig. 13. By Theorem 28, its full generating function FA(t; x, y) is D-finite,1370
and by Theorem 27 its excursions generating function FA(t; 0, 0) is even algebraic.1371
A natural question is: is FA(t; x, y) algebraic, or transcendental? The answer is1372
contained in the Theorem 29 below.1373

Theorem 29 ([60]). FA(t; 1, 0) = 1+ t + 4 t2 + 8 t3 + 39 t4 + 98 t5 + 520 t6 + · · · is1374
transcendental. In particular, the full generating function FA(t; x, y) is transcendental.1375

The only available proof [60] uses the guess-and-prove method. It consists in1376

computing the minimal-order operator L f
min for f = FA(t; 1, 0) and checking that1377

L f
min admits logarithms in some local expansions, which in particular prevents al-1378

gebraicity of f . The computation of L f
min is inspired by [378, §9]. The main idea can1379

be traced back at least to [317]; similar arguments are used in [138, 35] and [148, §2].1380
All in all, the argument may be viewed as a general technique for proving tran-1381

scendence of D-finite power series¶; it reduces the transcendence question to dif-1382
ferential guessing. In the case of f = FA(t; 1, 0), the proof consists in the following1383
steps:1384

¶There exists an alternative algorithmic procedure based on [350], that allows in principle to answer
this question [349]. It involves, among other things, factoring linear differential operators, and deciding
whether a linear differential operator admits a basis of algebraic solutions. However, this procedure
would have a very high computational cost when applied to our situation.

This manuscript is for review purposes only.



40 ALIN BOSTAN

1. (D-finiteness) Discover and certify a differential equation L for f (t) of order1385
11 and degree 731386

2. (Local analysis) L is Fuchsian and has a logarithmic singularity at t = 01387

3. (Bounds) If ord(L f
min) ≤ 10, then L f

min has coefficients of degrees ≤ 5801388
4. (Guessing) Differential Hermite-Padé approximants rule out this possibility1389

5. (Conclusion) Thus, L f
min = L, and so f is transcendental.1390

The bounds in Step 3 are the mathematical heart of the proof: they are obtained1391
by using the Fuchsianity of L, and by bounding the apparent singularities of factors1392
of L via Fuchs’ equality, cf. [377, §4.4.1] and [332, §20].1393

2.5. Inside the toolbox: Hermite-Padé approximants. We now have a quick1394
closer look at what is hidden behind guessing: Hermite-Padé approximants.1395

2.5.1. Definition. Let K be a field, typically Q or a finite field Fp for a prime p.1396

Given a column vector of power series F = ( f1, . . . , fn)T ∈ K[[t]]n and an n-tuple of1397
integers d = (d1, . . . , dn) ∈ Nn, a Hermite-Padé approximant of type d for F is a row1398
vector of polynomials P = (P1, . . . , Pn) ∈ K[t]n \ {0} such that:1399

(1) P · F = P1 f1 + · · ·+ Pn fn = O(tσ) with σ = ∑i(di + 1)− 1,1400
(2) deg(Pi) ≤ di for all i.1401

The integer σ is called the order of the approximant P, and d is called its type.1402

When n = 2, Hermite-Padé approximants are called Padé approximants, a no-1403
tion intimately related to rational approximations and continued fractions. When1404

f` = A(`−1), resp. f` = A`−1, for some A ∈ K[[t]], we talk about differential approxi-1405
mation, resp. of algebraic approximation, which form the basis of the differential, resp.1406
algebraic, guessing described in §2.3.2.1407

These concepts were initially studied by Hermite [233] and by Padé [318], and1408
turned out to be very useful in irrationality and transcendence proofs. For in-1409
stance they (or, variants of them) served to prove the transcendence of e [232] and1410
of π [284], see also [288, 289, 37]. The Chudnovsky brothers [138, 137, 134] used1411
Hermite-Padé approximants for irrationality and transcendence proofs for values1412
of quite general D-finite functions. A spectacular recent success using such approx-1413
imants is the proof [24] of the irrationality of infinitely many values of the zeta1414
function at odd integers. In most of these works, arithmetic results are obtained1415
using explicit closed-form expressions for approximants, highly based on the struc-1416
ture of the functions to be approximated.1417

Our need is different, of algorithmic nature: we need fast algorithms that com-1418
pute Hermite-Padé approximants on generic inputs. Before showing how to do1419
that, we start with a very basic example.1420

2.5.2. Worked example. Let us compute a Hermite-Padé approximant of type1421

(1, 1, 1) for (1, C, C2), where C(t) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + O(t6).‖1422

This boils down to finding α0, α1, β0, β1, γ0, γ1 ∈ Q (not all zero) such that1423

α0+α1t+(β0 + β1t)(1 + t + 2t2 + 5t3 + 14t4)+(γ0 + γ1t)(1 + 2t + 5t2 + 14t3 + 42t4)=O(t5).1424

‖The perceptive reader recognized the first terms of the generating function for Dyck walks (§1.4,
§1.8).
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> gfun:-listtoalgeq([1,1,2,5,14], y(t));
2

[1 - y(t) + t y(t) , ogf]

> gfun:-listtodiffeq([1,1,2,5,14,42,132,429], y(t), [ogf]);
FAIL

> gfun:-listtodiffeq([1,1,2,5,14,42,132,429,1430,4862], y(t), [ogf])[1][1];
/ 2 \

/d \ 2 |d |
2 y(t) + (10 t - 2) |-- y(t)| + (4 t - t) |--- y(t)|

\dt / | 2 |
\dt /

Figure 16. A toy guessing example: the generating function of the Catalan sequence is recognized to be
algebraic by gfun using its first 5 terms. It is also recognized to be D-finite using a few more terms.

Identifying coefficients, this is equivalent to a homogeneous linear system:1425


1 0 1 0 1 0
0 1 1 1 2 1
0 0 2 1 5 2
0 0 5 2 14 5
0 0 14 5 42 14

×


α0
α1
β0
β1
γ0
γ1

 = 0⇐⇒


1 0 1 0 1
0 1 1 1 2
0 0 2 1 5
0 0 5 2 14
0 0 14 5 42

×


α0
α1
β0
β1
γ0

 = −γ1


0
1
2
5

14

 .1426

By homogeneity, one can choose γ1 = 1. The bottom-right 3× 3 minor shows that1427
one can take (β0, β1, γ0) = (−1, 0, 0). Finally, the other values are α0 = 1, α1 = 0.1428

Thus the searched approximant is (1,−1, t): this means that we have guessed1429
the candidate P = 1− y + ty2 such that P(t, C(t)) = 0 mod t5. This kind of func-1430
tionality is implemented in most Computer Algebra systems. For instance, Maple’s1431
package gfun [343] implements the commands seriestoalgeq and listtoalgeq for alge-1432
braic approximants, resp. seriestodiffeq and listtodiffeq for differential approximants.1433

2.5.3. Existence and quasi-optimal computation. The existence of Hermite-1434
Padé approximants is guaranteed by a simple linear algebra argument: the unde-1435

termined coefficients of a potential approximant P = (∑di
j=0 pi,jtj)i ∈ K[t]n satisfy a1436

linear homogeneous system with σ = ∑i(di + 1)− 1 equations and σ+ 1 unknowns.1437
This proof is constructive and gives a first, naive, algorithm for the effective com-1438
putation of Hermite-Padé approximants, of complexity O(σω), where 2 ≤ ω ≤ 31439
denotes a feasible linear algebra exponent, that is a constant that governs the com-1440
plexity of most operations on dense matrices with coefficients in K [381, Ch. 12].1441

However, as can be seen on the example in §2.5.2, the linear system has a1442
Toeplitz-like structure: its matrix is obtained by concatenation of Sylvester-like blocks,1443
that possess the Toeplitz property of invariance along diagonals. There are better1444
algorithms that are able to exploit this structure. For instance, a generalization of1445
the Euclidean algorithm yields a fast algorithm, of quadratic complexity O(σ2) [348]1446
with respect to the order of approximation σ, see also [29] and the references therein.1447
There are even faster algorithms that achieve a complexity softly-linear in σ, namely1448

O(σ log2 σ). They are based on fast (FFT-based) polynomial multiplication [381,1449
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Chap. 8], and they rely on a divide-and-conquer scheme. Some are direct [29], other1450
use the artillery of the theory of matrices with small displacement rank [319, 83, 82].1451

Here we give a rough sketch of the structure of the superfast Berkermann-1452
Labahn algorithm [29, §4], when applied to compute a Hermite-Padé approximant1453
of type (d, . . . , d) for F = ( f1, . . . , fn) ∈ K[[t]]n. The two main ideas are: to compute1454
a whole matrix of approximants instead of just one approximants; to use a strategy of1455
divide-and-conquer with respect to the order of the approximant σ = n(d + 1)− 1.1456
The algorithm proceeds as follows:1457

1. If σ is below some chosen threshold, then use the naive algorithm1458
2. Else:1459

(a) recursively compute P1 ∈ K[t]n×n s.t. P1 · F = O(tσ/2), deg(P1) ≈ d
21460

(b) compute the residue R ∈ K[[t]]n×n s.t. P1 · F = tσ/2 · (R + O(tσ/2))1461

(c) recursively compute P2 ∈ K[t]n×n s.t. P2 · R = O(tσ/2), deg(P2) ≈ d
21462

(d) return P := P2 · P11463
By construction, P · F = O(tσ). The precise choices of degrees is a delicate issue,1464
and is one of the most difficult technical parts in the correctness proof. From the1465
complexity point of view, up to logarithmic factors, the total cost of the whole1466
algorithm is concentrated into the one of a product of n× n polynomial matrices of1467

degree ≈ d
2 , that is Õ(nωd) operations in K. For more details, the reader is referred1468

to the original article [29].1469

2.6. Back to the exercise in §1.1. To finish this section, we come back to the1470
problem stated at the very beginning of the article, and show how to apply the1471
Hermite-Padé approximation in order to guess the answer. A rigorous proof will1472
be given in §3.5. In what follows, S denotes the step set {↑,←,↘}.1473

2.6.1. A recurrence relation for S-walks in Z×N. Let us denote by hn;i,j the1474
number of S-walks in Z×N of length n from (0, 0) to (i, j).1475

The numbers hn;i,j satisfy the following recurrence:

hn;i,j =


0 if j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(k,`)∈S

hn−1;i−k,j−` otherwise.

The following Maple lines compute the first terms of the generating function A of1476
the sequence (an)n = (hn;0,0)n counting S-walks in Z×N that end at the origin:1477

> h:=proc(n,i,j)
option remember;

if j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else h(n-1,i,j-1) + h(n-1,i+1,j) + h(n-1,i-1,j+1) fi

end:

> A:=series(add(h(n,0,0)*t^n, n=0..30), t,30);
1478

They produce the output1479

A =1 + 3 t3 + 30 t6 + 420 t9 + 6930 t12 + 126126 t15 + 2450448 t181480

+49884120 t21 + 1051723530 t24 + 22787343150 t27 + O(t30).(19)14811482
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2.6.2. A recurrence relation for S-walks in N2. Let us denote by qn;i,j the num-1483

ber of S-walks in N2 of length n from (0, 0) to (i, j).1484
The numbers qn;i,j satisfy the same recurrence as hn;i,j, but with different bound-

ary conditions:

qn;i,j =


0 if i < 0 or j < 0 or n < 0,
1i=j=0 if n = 0,

∑
(k,`)∈S

qn−1;i−k,j−` otherwise.

The following Maple lines compute the first terms of the generating function B of1485
the sequence (bn)n = (∑k qn;k,k)n, counting S-walks in N2 that end on the diagonal:1486

> q:=proc(n,i,j)
option remember;

if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else q(n-1,i,j-1) + q(n-1,i+1,j) + q(n-1,i-1,j+1) fi

end:

> B:=series(add(add(q(n,k,k), k=0..n)*t^n, n=0..30), t,30);
1487

The produced output is1488

B =1 + 3 t3 + 30 t6 + 420 t9 + 6930 t12 + 126126 t15 + 2450448 t181489

+49884120 t21 + 1051723530 t24 + 22787343150 t27 + O(t30).(20)14901491

We observe that A = B mod t30, but of course this is not yet a proof that A = B.1492

2.6.3. Guessing a closed form for the answer. From the first 30 terms of A and1493
B, one can guess a nice formula for them. The following Maple lines show a way1494
to do that. One could first guess a differential equation (seriestodiffeq), then convert1495
it to a recurrence (diffeqtorec); here we appeal to the a shortcut (seriestorec) which1496
guesses directly a first-order recurrence for the coefficients of A. The series A is a1497
hypergeometric function, that can be computed explicitly.1498

> seriestorec(A, u(n))[1];
2 2

{(-27 n - 81 n - 54) u(n) + (n + 9 n + 18) u(n + 3),
u(0) = 1, u(1) = 0, u(2) = 0}

> rsolve(%, u(n)):

> A:=sum(subs(n=3*n, op(2,%))*t^(3*n), n=0..infinity);
3

A := hypergeom([1/3, 2/3], [2], 27 t )

1499

In other words, guessing predicts the following equality, equivalent to (1):1500

A(t) = B(t) = 2F1

( 1
3

2
3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.1501
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1502

3. Creative telescoping.1503
Then we wish to show that (n + 1)2bn+1 − n2bn−1 = (11n2 + 11n + 3)bn,1504

where bn = ∑n
k=0 Fn,k with Fn,k = (n

k)
2
(n+k

k ).1505
Neither Cohen nor I had been able to prove this in the intervening 2 months.1506

After a few days of fruitless effort the specific problem was mentioned to Don Zagier (Bonn),1507
and with irritating speed he showed that indeed the sequence (bn) satisfies this recurrence.1508

We cleverly construct Bn,k = (k2 + 3(2n + 1)k− 11n2 − 9n− 2)Fn,k,1509
with the motive that1510

Bn,k − Bn,k−1 = (n + 1)2Fn+1,k − (11n2 + 11n + 3)Fn,k − n2Fn−1,k,1511
and, O mirabile dictu, the sequence (bn) does indeed satisfy the recurrence1512

by virtue of the method of creative telescoping.1513
A. van der Poorten [376].1514

3.1. Diagonals. Algebraic power series are D-finite (§1.11). An intermediate1515
important class of power series is formed by diagonals of rational functions. All the1516
examples of D-finite generating functions occurring in our combinatorial context of1517
enumeration of walks appear to be diagonals, either directly (by their combinato-1518
rial definition), or indirectly (by the resolution method). The differential equations1519
that they satisfy are special cases of Picard-Fuchs equations for periods of rational1520
functions, and can be constructed algorithmically. A conjecture of Christol’s [132]1521
predicts even more: any D-finite power series S ∈ Z[[t]] with finite non-zero radius1522
of convergence is the diagonal of a rational function.1523

In combinatorics, the importance of diagonals stems from the fact that nu-1524
merous combinatorial constructions on generating functions (Hadamard products,1525
constant terms or positive parts of Laurent series, . . . ) can be encoded as diago-1526
nals [355]. A classical result [285, 131] asserts that the diagonal of a rational function1527
is D-finite (Theorem 33). A natural question is then: how to obtain algorithmically1528
the linear differential equation satisfied by a diagonal? The problem reformulates1529
in terms of the computation of a multiple integral with parameters taken on a cycle1530
(§3), and can thus be attacked from a geometrical viewpoint [38, 153].1531

j

i

j

i

Figure 17. The diagonal of a bivariate power series (on the left) viewed as a residue (on the right).

Definition 30. The diagonal of a multivariate power series F ∈ Q[[x1, . . . , xn]]1532

F = ∑
i1,...,in≥0

ai1,...,in xi1
1 · · · x

in
n1533

is the univariate power series1534

Diag(F) = ∑
i

ai,...,iti.1535
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3.1.1. Pólya’s theorem. Almost a century ago, Pólya proved that diagonals of1536
bivariate rational functions are algebraic [328]. Later, Furstenberg showed that the1537
converse also holds [193]. Interestingly, Pólya’s result becomes false for more than1538
two variables. A simple example is provided by1539

Diag
(

1
1− x− y− z

)
= ∑

n≥0

(
3n

n, n, n

)
tn = 2F1

( 1
3

2
3

1

∣∣∣∣ 27t
)

.1540

The transcendence of this series can be proved in various ways, for instance by1541

using the asymptotics ( 3n
n,n,n) = (3n)!

n!3 ∼ 33n
√

3
2πn and [187, Theorem D], or by using1542

the interlacing criterion from Theorem 8.1543
Pólya’s result can be proved as follows. First, using the simple observation1544

Diag(F)(t) = [x0] F(x, t/x), the diagonal of the rational function F(x, y) ∈ Q(x, y) is1545
encoded as a complex integral using Cauchy’s integral theorem (for some ε > 0)1546

Diag (F) (t) = [x−1]
1
x

F
(

x,
t
x

)
=

1
2πi

∮
|x|=ε

F
(

x,
t
x

)
dx
x

,1547

which in a second step can be evaluated using the residues theorem as a sum of1548
residues (precisely: the residues of F(x, t/x)/x at its “small poles”, having limit 01549
at t = 0). Each of these residues are algebraic functions, and so is their sum Diag(F).1550

Example 31 (Dyck bridges). Let S = {↗,↘}, and let Bn be the number of Dyck1551
bridges (i.e. S-walks in Z2 starting at (0, 0) and ending on the horizontal axis), of1552
length n. Using a rotation counterclockwise by π/4, the integer Bn is seen to be the1553
number of {↑,→}-walks in Z2 from (0, 0) to (n, n). This implies1554

B(t) = ∑
n≥0

Bntn = Diag
(

1
1− x− y

)
,1555

and the proof sketched above concludes:1556

B(t) =
1

2πi

∮
|x|=ε

dx
x− x2 − t

=
1

1− 2x

∣∣∣∣
x= 1−

√
1−4t

2

=
1√

1− 4t
= ∑

n≥0

(
2n
n

)
tn.1557

Rothstein-Trager resultant. It is not always possible to compute explicitly a closed-1558
form expression for the poles and the residues, as we did in Example 31, for instance1559
when the denominator of F(x, t/x)/x has degree more than 4. However, using1560
resultants one can compute annihilating polynomials for them, and thus also for1561
the diagonal. We show how this is done if F(x, t/x)/x has simple poles only.1562

Assume that K is a field (in our case, K is a placeholder for Q(t)), and let A, B ∈1563
K[x] be such that deg(A) < deg(B), with B squarefree. Then the rational function1564
F = A/B has simple poles only, and if F admits the partial fraction decomposition1565

F = ∑
i

γi
x− βi

, then the residue γi of F at the pole βi equals γi =
A(βi)

B′(βi)
. Therefore,1566

the residues γi of F are roots of the so-called Rothstein-Trager resultant [341, 372]:1567

R(t) = Res x
(

B(x), A(x)− t · B′(x)
)
,1568

which was originally introduced in computer algebra for the symbolic (indefinite)1569
integration of rational functions.1570

A generalization of the Rothstein-Trager resultant to the case of multiple poles1571
was given by Bronstein [111].1572
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1, 2, 14, 106, 838, 6802, 56190, 470010, . . .

Figure 18. Number dN of diagonal 2D Rook paths from lower-left corner to N × N upper-right corner.

Example 32 (Diagonal Rook paths). Consider the following question [172, 146]:1573
A Rook can move any number of squares horizontally or vertically. Assuming that1574
the Rook moves right or up at each step, how many paths can the Rook take from the1575
lower-left corner square to the upper-right corner square of an N × N chessboard?1576

Denote this number by dN , see Fig. 18. The generating function of (dn)n is1577

Diag(F) = [x0] F(x, t/x) =
1

2πi

∮
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.1578

Then, Diag(F) is a sum of roots y(t) of the Rothstein-Trager resultant1579

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> factor(resultant(denom(G),numer(G)-y*diff(denom(G),x),x));

1580

which is t2(1− t)(2y− 1)(36ty2 − 4y2 + 1− t). By identifying which residues cor-1581
respond to small poles, one concludes that the generating function of diagonal 2D1582

Rook paths is equal to the algebraic function
1
2

(
1 +

√
1− t

1− 9t

)
.1583

The same method can be used for other walks of the same type [271].1584
Algorithmic questions related to the computation of algebraic equations for1585

diagonals Diag(F) of bivariate rational functions F have been considered in connec-1586
tion with the enumeration of 1D lattice walks (bridges, excursions and meanders)1587
by Banderier and Flajolet [26]. A general and efficient algorithm that computes an1588
annihilating polynomial for Diag(F) was later proposed by Bostan, Dumont and1589
Salvy [78, 80]; that solves positively the question of an effective version of Pólya’s1590
theorem. On the negative side, they showed that the minimal polynomial of Diag(F)1591
has generically an exponential size with respect to the degree of the input rational1592
function F. By contrast, linear differential equations satisfied by Diag(F) had been1593
proved to have polynomial size [65]. This implies that for bivariate diagonals, the1594
differential equations are the right data-structure, and not algebraic equations. It1595
was shown in [78, 80] that the first N terms of generating functions for various 1D1596
walks can be computed in quasi-linear complexity in N using this data-structure.1597
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3.1.2. Lipshitz’s theorem. Although diagonals of multivariate rational func-1598
tions are not necessarily algebraic, they are still D-finite. In fact, much more holds.1599

Theorem 33 (Lipshitz, [285]). Diagonals of D-finite power series are D-finite.1600

For rational∗∗†† power series, this result was previously obtained by Christol in1601
an “elementary” way under a regularity assumption [129], and in the general case1602
using quite involved geometric arguments [153, 130, 131], see also [287, 132, 133].1603
Very briefly, the argument is the following. First, as in the bivariate case, if f ∈1604
Q(x1, . . . , xn) ∩Q[[x1, . . . , xn]], the residue theorem allows to write (for some ε > 0)1605
(21)

Diag( f )(t) =
1

(2πi)n−1

∮
|x1|=···=|xn−1|=ε

f
(

x1, . . . , xn−1,
t

x1 · · · xn−1

)
dx1 · · · dxn−1

x1 · · · xn−1
,1606

so that Diag( f )(t) is the (relative) period of a (family of) rational function(s) [243].1607
Its D-finiteness is then a consequence of the (highly non-trivial) finite-dimension1608
property over C(t) of the de Rham cohomology for the complement of the variety1609

in An
C(t) defined by the equations denom( f )(x1, . . . , xn) = 0 and x1 · · · xn = t.‡‡1610

In more down-to-earth terms this proof guarantees, in a non-effective way, that re-1611
peated differentiation under the integral sign eventually produces a finite sequence1612
of rational integrands that admit a linear combination with coefficients in Q(t) that1613
becomes an exact differential. On the one had, this geometric method allows access1614
to more information about the minimal-order differential equation: it is Fuchsian1615
and it has only rational exponents at each singularity (see [213, 214, 215] for an1616
analytic proof and [244, 245] for an arithmetic proof§§). On the other hand, it is1617
non constructive. (See §3.2.3 for a way to make it constructive, using the so-called1618
Griffiths-Dwork reductions.)1619

By contrast, Lipshitz’ proof [285] is elementary and constructive. However, the1620
algorithm behind its proof in highly inefficient. We demonstrate this using the1621
example provided by the following combinatorial problem.1622

Example 34 (Diagonal 3D Rook paths). Consider the following question [172]:1623
How many ways can a Rook move on a 3D chessboard from (0, 0, 0) to (N, N, N),1624
where each step is a positive integer multiple of (1, 0, 0), (0, 1, 0), or (0, 0, 1)?1625

This is a 3D extension of the question in Example 32. Denote by DN the number1626
of diagonal 3D Rook paths of length N. The first terms of the sequence (DN) are:1627

1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, . . .1628

The combinatorial problem in Example 34 readily translates into an algebraic1629
problem. The generating function ∆(t) = Dntn of diagonal 3D Rook paths is the1630

∗∗For rational series, Th. [285] had been conjectured by Stanley [354, §4(b)] and incompletely proved
in [388, 201].
††For algebraic series, Th. [285] can be proved by reduction to the rational case [154, 3], for the price

of doubling the number of variables.
‡‡The finiteness proof needs Hironaka’s resolution of singularities, among other things [218, 311, 227].
§§Katz first shows in [244, §5] that the minimal-order equation for a period is globally nilpotent; this

result has been generalized by the Chudnovskys to any G-function [134], see also [167, Chap. VIII].
Then, Katz shows in [244, §13] that globally nilpotent operators are Fuchsian, with rational exponents;
see also [234, 166] for a more elementary proof.
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diagonal of the rational function F(x, y, z) given by1631 (
1− ∑

n≥1
xn − ∑

n≥1
yn − ∑

n≥1
zn

)−1

=
(1− x)(1− y)(1− z)

1−2(x+y+z)+3(xy+yz+zx)−4xyz
.1632

A closed form for ∆(t) has been obtained by Bostan, Chyzak, van Hoeij and1633
Pech [77], as an integral of a hypergeometric 2F1. Its form is very similar to the ones1634
in §1.19 for quarter-plane walks with small steps (models 1–19 in Fig. 7).1635

Theorem 35 ([77]).

∑
n

Dntn = 1 + 6 ·

∫ t

0

2F1

(
1/3 2/3

2

∣∣∣∣ 27x(2−3x)
(1−4x)3

)
(1− 4x)(1− 64x)

dx.1636

The proof of Theorem 35 consists in first computing a differential equation for1637
Diag(F), then in solving it in closed form, using algorithms in [77, 272, 239, 240].1638
In what follows, we focus on the first part, and describe the main steps on Lipshitz’1639
proof when applied to prove the D-finiteness of Diag(F). The starting point is the1640
following: If one is able to find a nonzero differential operator of the form1641

L(t, ∂t, ∂x, ∂y) = P(t, ∂t) + ( higher-order terms in ∂x and ∂y )1642

that annihilates G =
1

xy
· F
(

x,
y
x

,
t
y

)
, then P(t, ∂t) annihilates Diag(F). This is ex-1643

plained by the sequence of equalities:1644

0 = [x−1y−1]L(G) = [x−1y−1]P(G) = P([x−1y−1]G) = P(Diag(F)).1645

The first equality comes from 0 = L(G), the second one is a consequence of L(G) =1646
P(G) + ∂x(·) + ∂y(·) and of the fact that derivatives w.r.t. x (resp. y) do not contain1647

terms in x−1 (resp. in y−1); the third equality is explained by the fact that P does1648

only depend on t; the last one comes from Diag(F) = [x0y0] F (x, y/x, t/y).1649
The remaining task is to show that such an L does indeed exist. To do this, a

combinatorial argument is applied: By Leibniz’s rule, the (N+4
4 ) rational functions

ti∂
j
t∂

k
x∂`y(G), 0 6 i + j + k + ` ≤ N

are contained in the Q-vector space of dimension ≤ 18(N + 1)3 spanned by

tixjyk

denom(G)N+1 , 0 6 i 6 2N + 1, 0 6 j 6 3N + 2, 0 6 k 6 3N + 2.

Thus, if (N+4
4 ) > 18(N + 1)3, then there exists L(t, ∂t, ∂x, ∂y) (resp. P(t, ∂t)) of1650

total degree at most N, such that LG = 0 (resp. P(Diag(F)) = 0).1651

At this point, note that N = 425 is the smallest integer satisfying (N+4
4 ) >1652

18(N + 1)3. Therefore, finding the operator P by Lipshitz’ argument would require1653

solving a linear system with 1,391,641,251 unknowns and 1,391,557,968 equations!¶¶1654

The conclusion is that Lipshitz’s approach is not sufficient to obtain effectively1655
differential equations for diagonals. This lack of efficiency motivates the creative1656
telescoping algorithms described in the next section §3.1657

¶¶By highly optimizing this argument [77] reduces the problem to a kernel computation of a polyno-
mial matrix of size 8917× 9139, with entries in Q[x] of degree at most 37: these sizes are still too high to
be dealt with in practice.
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3.2. Creative telescoping for sums and integrals.1658
Toutes les relations mentionnées ci-dessus, y compris l’extraordinaire récurrence d’Apéry,1659

sont retrouvées de manière systématique et automatique, et l’on dispose d’un outil1660
qui permet de découvrir et de démontrer des identités d’un certain type.1661

Le jour est sans doute proche où les formulaires classiques sur les fonctions spéciales1662
seront remplacés par un logiciel d’interrogation performant.1663

P. Cartier [114].1664
Creative telescoping is an algorithmic paradigm for proving identities on mul-1665

tiple definite integrals and sums with parameters. This powerful computer al-1666
gebra tool was introduced in the early 1990s by Zeilberger in the hypergeomet-1667
ric/hyperexponential setting [390, 391, 9, 392, 383], vastly generalized by Chyzak in1668
the 2000s to the framework of holonomic functions [139, 140, 143, 141], and greatly1669
enhanced and used in computerized proofs of difficult combinatorial applications1670
by Koutschan in the 2010 [261, 260, 264, 262, 263, 228]. Since its birth, almost 301671
years ago, the methodology of creative telescoping gained more and more popular-1672
ity. As of 2017, it is one of the main topics in influential conferences like ISSAC∗∗∗,1673
where it has yearly its own dedicated special session.1674

We will give a brief account on creative telescoping, since several excellent texts1675
already exist on this topic. We refer the reader to Chyzak’s habilitation thesis [142],1676
and to the surveys [262, 122].1677

Example 36. (Hypergeometric summation) Creative telescoping can automati-1678
cally prove the following identities:1679

• ∑
k∈Z

(−1)k
(

a + b
a + k

)(
a + c
c + k

)(
b + c
b + k

)
=

(a + b + c)!
a!b!c!

(Dixon 1891 [157, 18])1680

• an =
n

∑
k=0

(
n
k

)2(n + k
k

)2
satisfies the recurrence (Apéry [16, 376])

(n + 1)3an+1 = (2n + 1)(17n2 + 17n + 5)an − n3an−1

•
n

∑
k=0

(
n
k

)2(n + k
k

)2
=

n

∑
k=0

(
n
k

)(
n + k

k

) k

∑
j=0

(
k
j

)3
(Strehl [361, 360, 362, 344])1681

1682

Example 37. (Diagonals and integrals) Creative telescoping can automatically1683
prove the following integral and diagonal evaluations:1684

• Diag
1

(1− x− y)(1− z− u)− xyzu
= ∑

n>0
antn (Straub [15, 359])1685

• 1
2πi

∮ (1 + 2xy + 4y2) exp
(

4x2y2

1+4y2

)
yn+1(1 + 4y2)

3
2

dy =
Hn(x)
bn/2c! (Doetsch [158])1686

•
∫ +∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1− a4)

2πa2 (Glasser-Montaldi [205])1687

where J1, Y0 are Bessel functions, I1, K0 are modified Bessel functions [2, Chap. 9],1688
and Hn are Hermite polynomials [2, Chap. 22].1689

We briefly discuss the main principles of the Creative Telescoping paradigm for1690
sums and integrals.1691

∗∗∗ISSAC, the International Symposium on Symbolic and Algebraic Computation, is the premier con-
ference for research in symbolic computation and computer algebra http://www.issac-symposium.org.
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3.2.1. Creative Telescoping for sums. Let us explain the basic principle of the1692
method on the simplest example possible. Denote by In the definite sum1693

In :=
n

∑
k=0

(
n
k

)
.1694

We want to prove that In = 2n. The idea is that if one writes Pascal’s triangle1695
identity under the “telescopic form”:1696 (

n + 1
k

)
=

(
n
k

)
+

(
n

k− 1

)
= 2

(
n
k

)
+

(
n

k− 1

)
−
(

n
k

)
,1697

then summation over k yields the recurrence1698

In+1 = 2In.1699

Taking into account the initial condition I0 = 1 concludes the proof that In = 2n.1700
More generally, assume that (un,k) is a bivariate sequence, and that one wants1701

to “compute” its definite sum1702
Fn = ∑

k
un,k,1703

where “computing Fn” means, as in the example, finding a recurrence relation on it.1704
The principle is the same as in the example. Let us denote by Sn and Sk the forward1705
shift operators with respect to n and k, which act on bivariate sequences by the1706
simple rules Sn · vn,k = vn+1,k, Sk · vn,k = vn,k+1. Then, if one knows recurrence1707
operator P(n, Sn) free of k and another recurrence operator Q(n, k, Sn, Sk) such that1708

(22) (P(n, Sn)− (Sk − 1)Q(n, k, Sn, Sk)) · un,k = 0,1709

then the sum “telescopes”, leading (under “nice” boundary assumptions) to the1710
recurrence P(n, Sn) · Fn = 0.1711
Observe that essentially the same idea was used in Lipshitz’ proof of Theorem 33.1712
The operator P is called a telescoper for un,k, while the operator Q is called a certificate.1713

The whole game is then to be able to produce an equality like (22). This is1714
the objective of creative telescoping, a name seemingly coined by A. van der Poorten1715
in his account of Apery’s proof of the irrationality of ζ(3) [376], where Zagier is1716

credited for having solved (22) for the sequence un,k = (n
k)

2
(n+k

k )
2
. A decade later, it1717

was Zeilberger who systematized, generalized, and quantified “Zagier’s trick” in a1718
series of articles [388, 391, 390, 392, 383]. The article [314] and the entire book [323]1719
are devoted to popularize this summation framework.1720

Building on previous work by Fasenmyer [175] and Verbaeten [380], Wilf and1721
Zeilberger [383] proved that the existence of a non-trivial solution (P, Q) of (22) is1722
guaranteed if the summand sequence (un,k) is proper hypergeometric, i.e., of the form:1723

un,k = p(n, k)αnβk
L

∏
`=1

(a`n + b`k + c`)!±1,1724

where p(n, k) ∈ Q[n, k], where a`, b`, c` ∈ Z, and α, β ∈ Q. Moreover, they described1725
an algorithm to compute such a pair (P, Q), similar in spirit to that of Theorem 33,1726
and they extended these results to multiple sums and integrals. Although based1727
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on linear algebra only, the resulting algorithm suffered from too high a complexity1728
and from long running times in implementations, just as in the case of Lipshitz’s1729
approach for diagonals (§3.1.2).1730

Shortly after, Zeilberger came up with a fast algorithm for definite hypergeometric1731
summation [390, 392], which is based on Gosper’s decision algorithm for the indef-1732
inite summation of hypergeometric sequences [207]. Zeilberger actually realized1733
that if the telescoper P in (22) were known beforehand, then the sequence vn,k =1734
Q(n, k, Sn, Sk) · un,k, which satisfies P(n, Sn) · un,k = vn,k+1 − vn,k, could be obtained1735
by simply calling Gosper’s algorithm. To turn this remark into an algorithm, he1736
explained that the simultaneous search for the coefficients of the telescoper P(n, Sn)1737
and for the rational function vn,k/un,k amounts to using a parametrized variant of1738
Gosper’s algorithm. Zeilberger named his fast algorithm the method of creative tele-1739
scoping. It is implemented in many Computer Algebra systems. In Maple, a sum-1740
mation package SumTools[Hypergeometric] contains a command called Zeilberger.1741

Example 38 (Back to the SIAM flea). Keeping notation from §1.7, the probability1742
pn(ε) of occupying the origin at step 2n is equal to pn(ε) = ∑n

k=0 Un,k(ε), where1743

Un,k(ε) :=
(

2n
2k

)(
2k
k

)(
2n− 2k

n− k

)(
1
4
+ ε

)k (1
4
− ε

)k 1
42n−2k .1744

A linear recurrence for (pn(ε))n can then be computed using Zeilberger’s algorithm1745

> pN:=1/4: pS:=1/4: pE:=1/4 + e: pW:=1/4 - e:
> U:=binomial(2*n,2*k)* binomial(2*k,k)*pE^k*pW^k *

binomial(2*n-2*k,n-k)*pN^(n-k)*pS^(n-k):
> SumTools[Hypergeometric][Zeilberger](U,n,k,Sn):
> collect(%[1], Sn, factor);

1746

whose output is1747

(23) 4(n + 2)2S2
n + (2n + 3)2(8ε2 − 1)Sn + 16ε4(2n + 3)(2n + 1).1748

The probability p(ε) is equal to 1 − 1
Rε(1)

, where Rε(t) = ∑n pn(ε)tn. Now (23)1749

converts into a second-order differential equation satisfied by Rε(t), which is solved1750
in terms of 2F1’s, giving the answer announced in §1.7.1751

3.2.2. Creative Telescoping for integrals. A similar discussion applies to the1752
case of parametrized integrals. Assume that H(t, x) is a bivariate function, and that1753
one wants to “compute” its definite integral1754

I(t) =
∮

γ
H(t, x) dx,1755

where “computing I(t)” means finding a linear differential equation satisfied by1756
I(t). The principle from the discrete case applies to the continuous analogue. Let us1757
denote by ∂t and ∂x the operators of partial derivation with respect to t and x, which1758

act on bivariate functions by the simple rules ∂t · f (x, t) = ∂ f
∂t and ∂x · f (x, t) = ∂ f

∂x .1759
Then, if one knows a differential operator P(t, ∂t) free of x and another differential1760
operator Q(t, x, ∂t, ∂x) such that1761

(24) (P(t, ∂t)− ∂xQ(t, x, ∂t, ∂x)) · H(t, x) = 0,1762
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then the integral with respect to x “telescopes”, leading (under “nice” assumptions1763
on the integration domain) to the differential equation1764

P(t, ∂t) · I(t) = 0.1765

Again, the differential operator P is called a telescoper for the integrand H(t, x),1766
while the operator Q is called a certificate.1767

Again, the whole game is then to be able to produce an equality like (22). First,1768
the existence of a pair (P, Q) like in (24) is guaranteed if the integrand H(t, x) is1769

hyperexponential, that is such that both ∂H
∂t and ∂H

∂x are rational functions in t and1770
x [383]. Moreover, the computation of such a pair (P, Q) can be done in a slow fash-1771
ion, à la Lipshitz, but also by an analogue of Zeilberger’s fast creative telescoping,1772
due to Alkmkvist and Zeilberger [9]. The algorithm from [9] is implemented for1773
instance in Maple in the DEtools package, under the name Zeilberger.1774

Example 39 (Diagonal Rook paths, cont.). Using notation from Example 32, one1775
needs to compute1776

Diag(F) = [x0] F(x, t/x) =
1

2πi

∮
F(x, t/x)

dx
x

, where F =
1

1− x
1−x −

y
1−y

.1777

A linear differential equation for Diag(F) can be computed using creative telescoping1778

> F:=1/(1-x/(1-x)-y/(1-y)):
> G:=normal(1/x*subs(y=t/x,F)):
> DEtools[Zeilberger](G, t, x, Dt)[1];

1779

whose output is1780

(9t2 − 10t + 1)∂2
t + (18t− 14)∂t1781

and which can be solved explicitly, giving the answer Diag(F) =
1
2

(
1 +

√
1− t

1− 9t

)
.1782

3.2.3. Principle of Creative Telescoping for multiple integrals.. In the multi-1783
variate case, we restrict our attention to the integration of rational functions. This1784
will be sufficient for our purposes in the combinatorial applications to lattice path1785
enumeration. Let H(t, x) be a rational function, where x = x1, . . . , xn denote the1786
integration variables, and t is the parameter left after integration. Let γ be an in-1787
tegration domain in Cn, without boundary (more precisely, an n-cycle), on which1788
H is assumed to take finite values only. The aim is to “compute” the parametrized1789
integral, called period,1790

I(t) =
∮

γ
H(t, x)dx.1791

Example 40. The generating function for the Apéry numbers (sequence (an)n in1792
Example 36) is the period of the rational integral [38, 41]1793

1
(2πi)3

∮
γ

dx dy dz
1− (1− xy)z− txyz(1− x)(1− y)(1− z)

,1794

where γ is a suitable 3-cycle in C3.1795
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More generally, diagonals of rational functions are periods, due to equation (21).1796

It is a classical theorem that periods of rational integrals are D-finite; this gen-1797
eralizes Theorem 33. The corresponding linear differential equations are known1798
under the name of Picard-Fuchs equations. They describe the variation of the family1799
of periods with respect to the parameter of the family.1800

Particular cases of this theorem have been proved by Legendre (1825) and Kum-1801
mer (1836) [270, §29], see also [212], for the periods of the complete elliptic inte-1802
grals, and by Fuchs [192] and Picard [325] for the periods of hyperelliptic integrals1803
and other abelian integrals on curves of arbitrary genus. The more general state-1804
ments are due to Manin [294, 295], who coined the term Picard-Fuchs equations (see1805
also [243, 248, 244]). and to Griffiths [213, 214, 215]. Modern proofs of this D-1806
finiteness result are based, as in the case of diagonals (§3.1) on the finiteness of the1807
relative de Rham cohomology of the complementary of the hypersurface defined by1808
the singular locus of the rational integrand [218, 311, 227].1809

The principle of creative telescoping for the computation of Picard-Fuchs equa-1810
tions, already used by Manin in [295], is the following: if one knows a differential1811
operator P(t, ∂t) free of x and rational functions (A1, . . . , An) such that1812

(25) P(t, ∂t) · H(t, x) =
n

∑
i=1

∂Ai
∂xi

,1813

then the integral with respect to x “telescopes”, leading to the differential equation1814

P(t, ∂t) · I(t) = 0.1815

(The reason is simply that integrals over cycles of pure derivatives are equal to zero.)1816
The differential operator P is called a telescoper for the integrand H(t, x), and1817

(A1, . . . , An) is called a certificate. The question is then how to produce effectively1818
an equality like (25). Ideally, one would like to compute the telescoper without1819
computing the certificate, for reasons that will become apparent in the next example.1820

Example 41 (Perimeter of an ellipse). Computations of differential equations for1821
periods can be traced back to Euler [174, §7], in his study of the perimeter p(e) of1822
an ellipse with semi-major axis 1, as a function of its eccentricity e:1823

p(e) = 4

∫ 1

0

√
1− e2x2

1− x2 dx = 2π − π

2
e2 − 3π

32
e4 − 5

128
e6 − 175

8192
e8 + · · · .1824

The question can be casted into the framework of periods of rational integrals:1825

p(e) =

∮
dxdy

1− 1−e2x2

(1−x2)y2

,1826

and a telescopic relation of type (25) reads:1827
1828 (

(e− e3)∂2
e + (1− e2)∂e + e

)
·

 1

1− 1−e2x2

(1−x2)y2

 =1829

∂x

(
− e(−1−x+x2+x3)y2(−3+2x+y2+x2(−2+3e2−y2))

(−1+y2+x2(e2−y2))
2

)
1830

+ ∂y

(
2e(−1+e2)x(1+x3)y3

(−1+y2+x2(e2−y2))
2

)
.1831

1832

This manuscript is for review purposes only.



54 ALIN BOSTAN

From there, Euler’s equation (e − e3)p′′(e) + (1− e2)p′(e) + ep(e) = 0 follows di-1833
rectly. The size of the certificate is much bigger than the that of the telescoper.1834

Several generations of Creative Telescoping algorithms. Algorithms for creative1835
telescoping for periods can be divided into four generations. Algorithms from the1836
first generation –à la Lipshitz– use holonomy theory and elimination for operator1837
ideals [391, 367, 383, 368, 143]; they are not very efficient in practice. Algorithms1838
from the second generation, due to Chyzak [141] and to Koutschan [261], are gen-1839
eralizations of Zeilberger’s fast algorithms for hypergeometric summation and hy-1840
perexponential integration [390, 392, 9]; they reduce the resolution of the telescopic1841
equation (25) to the computation of the rational solutions of a system of linear dif-1842
ferential equations. The roots of this method can be traced back to Picard [324] for1843
n = 2. Algorithms from the third generation only use linear algebra, and are based1844
on an idea that was first formulated by Apagodu and Zeilberger in [309, 14], and1845
has later been refined and generalized [261, 121, 120, 123]. This approach is inter-1846
esting not only because it is easier to implement and tends to run faster than earlier1847
algorithms, but also because it is easy to analyze.1848

A common drawback of these three generations of algorithms is that they all1849
compute certificates, whose size is much bigger than that of telescopers. Moreover,1850
1G algorithms are slow, 2G algorithms have a bad or unknown complexity, and 3G1851
algorithms do not necessarily output telescopers of minimal orders. However, al-1852
ready algorithms from the second generation are able to solve non-trivial problems.1853

Example 42 (Diagonal 3D Rook paths, cont.). Using notation from Example 341854
and from the proof of Theorem 35, the aim is to construct a linear differential oper-1855
ator P(t, ∂t), and two rational functions R and S in Q(t, x, y) such that1856

P(G) =
∂R
∂x

+
∂S
∂y

.1857

Maple’s implementation of Chyzak’s algorithm is able to do this in a few seconds:1858

> G:=subs(y=y/x,z=t/y,1/(1-x/(1-x)-y/(1-y)-z/(1-z)))/y/x:
> P,R,S:=op(op(Mgfun:-creative_telescoping(G,t::diff,

[x::diff,y::diff])));
1859

It outputs the differential equation P(∆) = 0 satisfied by ∆(t) = Dntn, where1860

P = t(t− 1)(64t− 1)(3t− 2)(6t + 1)∂3
t1861

+(4608t4 − 6372t3 + 813t2 + 514t− 4)∂2
t1862

+4(576t3 − 801t2 − 108t + 74)∂t,18631864

which helps proving a recurrence conjectured in [172].1865

4G Creative Telescoping. Algorithms from the fourth and most recent generation1866
of creative telescoping algorithms are called reduction-based algorithms. Its roots are1867
in works by Hermite [231] and Picard [324, 325]. This approach was first applied to1868
the integration of bivariate rational functions by Bostan, Chen, Chyzak and Li [65].1869
This first article generated a very active area of research [125, 66, 87, 118, 235, 279,1870
79, 124, 127, 88].1871

Let us explain the principle of the method in the univariate case, that is when1872
n = 1 in the telescopic Equation (25).1873
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The problem at hand is: given H = P/Q ∈ K(t, x), compute
∮

γ H(t, x)dx. The1874

principle of the method originates from the Hermite reduction [231], a procedure1875
for computing a normal form of a univariate function modulo derivatives. Hermite1876
introduced his method as a way to compute the algebraic part of the primitive of1877
a univariate rational function without computing the roots of its denominator, as1878
opposed to the classical partial fraction decomposition method.1879

By Hermite reduction, the integrand H can be written in reduced form1880

H = ∂x(g) +
a

Q?
,1881

where Q? is the squarefree part of Q and degx(a) < d? := degx(Q
?).1882

The principle of the algorithm in [65] is then the following:1883
1. For i = 0, 1, . . . , d? compute the Hermite reduction of ∂i

t(H):1884

∂i
t(H) = ∂x(gi) +

ai
Q?

, degx(ai) < d?.1885

2. Find the first linear relation over Q(t) of the form ∑r
k=0 ckak = 0.1886

Then L = ∑r
k=0 ck∂k

t is a telescoper, and ∑r
k=0 ckgk the corresponding certificate.1887

The method has been extended to the multivariate case of periods of rationals1888
integrals by Bostan, Lairez and Salvy [87]. They have obtained the following result.1889

Theorem 43 ([87]). Let H = P
Q be a rational function in t and x = x1, . . . , xn1890

and denote by dx the degree of Q w.r.t. x, and dt = max(degt P, degt Q). Assume1891

degx P + n + 1 6 dx. Then a telescoper for H can be computed using Õ(e3nd8n
x dt) op-1892

erations in Q, uniformly in all the parameters. The minimal telescoper has order ≤ dn
x and1893

degree O(end3n
x dt). These size bounds are generically reached.1894

There are three main ideas behind the proof of Theorem 43:1895
• in the generic case, a multivariate generalization of Hermite’s reduction is1896

used; it called the Griffiths–Dwork method [164, §3], [165, §8], [214];1897
• in the general case, a deformation technique is used to reduce to the generic1898

case, by an input perturbation using a new free variable;1899
• fast linear algebra algorithms for polynomial matrices [358, 394] is used to1900

deal with Macaulay matrices that encode Gröbner bases computations.1901
The algorithm behind Theorem 43 is the first algorithm for creative telescoping1902

with polynomial complexity in the generic size of the output Picard-Fuchs equation.1903
It avoids the costly computation of certificates. This is crucial since, generically, cer-1904

tificates have size Ω(dn2/2
x ). Previous algorithms have (at least) doubly-exponential1905

complexity, inherited from the fact that they need to compute certificates. A recent,1906
and highly non-trivial, extension of the results in [87] was given by Lairez [279]. It1907
tremendously improves the practical efficiency of the algorithm in [87].1908

3.3. Binomial sums. As explained in §3.2.1, creative telescoping allows to prove1909
identities like Dixon’s (first item in Example 36), and to deal with definite sums like1910

(26)
n

∑
k=0

4k

(2k
k )

,
n

∑
k=0

(
k

∑
j=0

(
n
j

))3

or
n

∑
i=0

n

∑
j=0

(
i + j

j

)2(4n− 2i− 2j
2n− 2i

)
.1911

Many multiple sums can be cast into problems of rational integration by pass-1912
ing to generating functions. This observation was intensively used by Egorychev in1913
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his book [170], but its algorithmic consequences were studied only quite recently1914
by Bostan, Lairez and Salvy [88]. They defined a class of multi-indexed sequences1915
called (multiple) binomial sums, which is closed under partial summation, and con-1916
tains most of the sequences obtained by multiple summation of products of bino-1917
mial coefficients and also all the sequences with algebraic generating function. Not1918
every sum that creative telescoping can handle is a binomial sum: for example,1919
among the three sums in Eq. (26), the second one and the third one are binomial1920
sums but the first one is not, since it contains the inverse of a binomial coefficient.1921
Yet many sums coming from combinatorics and number theory are binomial sums.1922
The starting point is that integral representations of the generating function of a bino-1923
mial sum can be computed in an automated way. The outcome is twofold. Firstly,1924
the generating functions of univariate binomial sums are exactly the diagonals of1925
rational power series; this equivalence characterizes binomial sums in an intrinsic1926
way. All the theory of diagonals transfers to univariate binomial sums and gives1927
many interesting arithmetic properties. Secondly, integral representations can be1928
used to actually compute with binomial sums (e.g. find recurrence relations or1929
prove identities automatically) via the computation of Picard-Fuchs equations.1930

Example 44. (A particular instance of Dixon’s identity) We will simply illustrate1931
the main points of the method in [88] on the identity1932

(27)
2n

∑
k=0

(−1)k
(

2n
k

)3
= (−1)n (3n)!

n!3
.1933

The strategy is as follows: find an integral representation of the generating func-1934
tion of the left-hand side; simplify this integral representation using partial integra-1935
tion; use the simplified integral representation to compute a differential equation of1936
which the generating function is solution; transform this equation into a recurrence1937
relation; solve this recurrence relation.1938

First of all, the binomial coefficient (n
k) is the coefficient of xk in (1 + x)n.1939

Cauchy’s integral formula ensures that1940 (
n
k

)
=

1
2πi

∮
γ

(1 + x)n

xk
dx
x

,1941

where γ is the circle
{

x ∈ C

∣∣∣ |x| = 1
2

}
. Therefore, the cube of a binomial coefficient1942

can be represented as a triple integral1943 (
2n
k

)3
=

1
(2πi)3

∮
γ×γ×γ

(1 + x1)
2n

xk
1

(1 + x2)
2n

xk
2

(1 + x3)
2n

xk
3

dx1

x1

dx2

x2

dx3

x3
.1944

As a result, the generating function y(t) of the left-hand side of Equation (27) equals1945

=
1

(2iπ)3

∮
γ3

∞

∑
n=0

2n

∑
k=0

(
t

3

∏
i=1

(1 + xi)
2

)n (
−1

x1x2x3

)k dx1

x1

dx2

x2

dx3

x3
1946

=
1

(2iπ)3

∮
γ3

∞

∑
n=0

(
t

3

∏
i=1

(1 + xi)
2

)n 1−
(
−1

x1x2x3

)2n+1

1 + 1
x1x2x3

dx1

x1

dx2

x2

dx3

x3
1947

=
1

(2iπ)3

∮
γ3

(
x1x2x3 − t ∏3

i=1(1 + xi)
2
)

dx1dx2dx3(
x2

1x2
2x2

3 − t ∏3
i=1(1 + xi)2

) (
1− t ∏3

i=1(1 + xi)2
) .1948

1949
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The partial integral with respect to x3 along the circle |x3| = 1
2 is the sum of the1950

residues of the rational function being integrated at the poles whose modulus is1951

less than 1
2 . When |t| is small and |x1| = |x2| = 1

2 , the poles coming from the1952

factor x2
1x2

2x2
3 − t ∏3

i=1(1 + xi)
2 all have a modulus that is smaller than 1

2 : they are1953

asymptotically proportional to |t|1/2. In contrast, the poles coming from the fac-1954

tor 1 − t ∏3
i=1(1 + xi)

2 behave like |t|−1/2 and have all a modulus that is bigger1955

than 1
2 . In particular, any two poles that come from the same factor are either1956

both asymptotically small or both asymptotically large. This implies that the partial1957
integral is a rational function of t, x1 and x2; and we compute that1958

y(t) =
1

(2iπ)2

∮
γ×γ

x1x2dx1dx2

x2
1x2

2 − t(1 + x1)2(1 + x2)2(1− x1x2)2
.1959

This formula echoes the original proof of [157] in which the left-hand side of (27)1960
is expressed as the coefficient of (xy)4n in ((1− y2)(1− z2)(1− y2z2))2n. Using any1961
algorithm described in §3.2.3 that performs definite integration of rational functions1962
reveals a differential equation satisfied by y(t):1963

t(27t + 1)y′′ + (54t + 1)y′ + 6y = 0.1964

Looking at the coefficient of tn in this equality leads to the recurrence relation1965

3(3n + 2)(3n + 1)un + (n + 1)2un+1 = 0,1966

where un = ∑2n
k=0(−1)k(2n

k )
3
. Since u0 = 1, it proofs Dixon’s identity (27).1967

Note that the method avoids the computation of certificates; this nice feature1968
is inherited from the computation of Picard-Fuchs equations for periods of rational1969
integrals, which can be achieved efficiently without computing the corresponding1970
certificate and without introducing spurious singularities (§3.2.3). This should be1971
contrasted with the usual creative telescoping methods for sums (§3.2.1).1972

3.4. Creative Telescoping for quarter plane walks. Let us now turn back to1973
quarter plane walks with small steps. We focus on models 1–19 in Fig. 7, and to1974
Theorem 14. We write F(t; x, y) for the full generating function FS(t; x, y), where S1975
is one of the 19 models.1976

Using the kernel method, Bousquet-Mélou and Mishna showed in [101, Prop. 8]1977
that the generating function F(t; x, y), can be written in the form1978

(28) F(t; x, y) =
1

xy
[x>][y>]

N(x, y)
1− tS(x, y)

1979

where N(x, y) and S(x, y) are certain Laurent polynomials in y with coefficients1980
that are rational functions in x. The intended reading of (28) is: first interpret1981
N(x, y)/(1− tS(x, y)) as an element of Q(x)[y, 1/y][[t]]; let [y>] act term by term,1982
obtaining a series in Q(x)[y][[t]] that actually belongs to Q[x, 1/x][y][[t]] for all1983
cases in Figure 7; then let [x>] act term by term, finally obtaining an element of1984
Q[x][y][[t]]. In this reading, the composition [x>][y>] of positive-part operators is1985
only applied to Laurent polynomials, for which it is well-defined, in a unique way.1986

As pointed out by Bousquet-Mélou and Mishna, Equation (28) already implies1987
the D-finiteness of F(t; x, y), by Theorem 33 and since positive parts can be encoded1988
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as diagonals, To be more specific, the positive part [x>][y>]R(t; x, y) of a formal1989
power series R ∈ Q[[x, y, t]] can be encoded as1990

(29)
x

1− x
y

1− y
�x,y R(t; x, y) = Diagx,x′Diagy,y′

x
1− x

y
1− y

R(t; x′, y′),1991

where the Hadamard product denoted �x,y is the term-wise product of two series,1992
while the diagonal operator Diagx,x′ selects those terms with equal exponents of x1993

and x′. This argument also implies an algorithm for computing linear differential1994
equations satisfied by F(t; x, y), since diagonals can be computed using creative1995
telescoping. Therefore, from (28) one could, in principle, determine differential1996
equations for F(t; x, y). However, the direct use of (29) in our context leads to1997
infeasible computations; worse, the intermediate algebraic objects involved in the1998
calculations would probably have too large sizes to be merely written and stored.1999
This is really unfortunate, since our need is mere evaluations of the diagonals in (29)2000
at specific values for x and y.2001

Example 45. (King Walks in the Quarter Plane) We illustrate the approach on the2002

king walks (model 4 with S = in Fig. 7). The first terms of the length generating2003
function F(t; 1, 1) read (see http://oeis.org/A151331)2004

F(t; 1, 1) = 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · · ,2005

and we describe the method used in [76] to obtain the closed formula (9) for it.2006
First, the kernel equation (7) writes2007

(30) xyJ(x, y)F(x, y) = xy− tx(x+ 1+ x̄)F(x, 0)− ty(y+ 1+ ȳ)F(0, y)+ tF(0, 0),2008

where F(x, y) ≡ F(t; x, y), x̄ := 1/x, ȳ := 1/y and J(x, y) is the Laurent polynomial2009

J(x, y) = 1− t ∑
(i,j)∈S

xiyj = 1− t(xy + y + x̄y + x + x̄ + xȳ + ȳ + x̄ȳ).2010

The group of S has order 4: it contains the elements (x, y), (x̄, y), (x̄, ȳ), (x, ȳ), which2011
leave invariant J(t; x, y). Applying these rational transformations to the kernel2012
equation (30) yields the four relations:2013

xyJ(x, y)F(x, y) = xy− tx(x + 1 + x̄)F(x, 0)− ty(y + 1 + ȳ)F(0, y) + tF(0, 0),2014

−x̄yJ(x, y)F(x̄, y) = −x̄y + tx̄(x + 1 + x̄)F(x̄, 0) + ty(y + 1 + ȳ)F(0, y)− tF(0, 0),2015

x̄ȳJ(x, y)F(x̄, ȳ) = x̄ȳ− tx̄(x + 1 + x̄)F(x̄, 0)− tȳ(y + 1 + ȳ)F(0, ȳ) + tF(0, 0),2016

−x̄yJ(x, y)F(x̄, y) = −xȳ + tx(x + 1 + x̄)F(x, 0) + tȳ(y + 1 + ȳ)F(0, ȳ)− tF(0, 0).20172018

Upon adding up these equations, all terms in the right-hand side involving F dis-2019
appear, resulting in2020

xyF(x, y)− x̄yF(x̄, y) + x̄ȳF(x̄, ȳ)− xȳF(x, ȳ) = J(x, y)−1 (xy− x̄y + x̄ȳ− xȳ) .2021

Now, the main observation is that on the left-hand side, all terms except the first2022
one involve negative powers either of x or of y. Therefore, extracting positive parts2023
expresses the generating series xyF(x, y) as the positive part (w.r.t. x and y) of a2024
trivariate rational function:2025

(31) xyF(x, y) = [x>][y>]
(

xy− x̄y + x̄ȳ− xȳ
1− t(xy + y + yx̄ + x̄ + x̄ȳ + ȳ + xȳ + x)

)
.2026
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Up to this point, the reasoning is borrowed from Bousquet-Mélou’s and Mishna’s2027
article [101]. Combined with Theorem 33, it already implies that F(x, y) is D-finite;2028
in particular, F(1, 1) is also D-finite. Our aim is to refine this qualitative result, and2029
explicitly obtain a linear differential equation satisfied by F(1, 1).2030

Starting from (31) and following more closely Lipshitz’ encoding [285], a first2031
observation is that F(x, y) is equal to the iterated diagonal Diagx1,x2

Diagy1,y2
of the2032

rational function2033

(32)
x2y2(x1y1 − x̄1y1 + x̄1ȳ1 − x1ȳ1)

(1− x2)(1− y2)(1− t(x1y1 + y1 + y1 x̄1 + x̄1 + x̄1ȳ1 + ȳ1 + x1ȳ1 + x1))
.2034

However, this computation is too difficult, and exceeds by far the limits of the best2035
existing algorithms for diagonals. The reason is that differential equations w.r.t. t2036
and with polynomial coefficients in x, y, t are really huge, so the main limitation2037
of algorithms computing (32) already comes from the size of the output. Another2038
weakness of the diagonal encoding (32) is that it does not provide direct access to2039
the univariate series F(1, 1), since taking diagonals and specializing variables are2040
operations that do not commute.2041

To circumvent these difficulties and to make the computation feasible, the key2042
idea in [76] is to encode the positive part in (31) as a formal residue:2043
(33)

F(α, β) = [x−1y−1]

(
xy− x̄y + x̄ȳ− xȳ

(1− αx)(1− βy)(1− t(xy + y + yx̄ + x̄ + x̄ȳ + ȳ + xȳ + x))

)
.2044

The formal proof of this encoding is delicate. The advantage of (33) over (32) is2045
twofold. On the one hand, the residue computation can be carried out by using2046
a single call to the creative-telescoping algorithm for rational functions, while the2047
diagonal computation (32) has two steps, the first for a rational function in five2048
variables, the second for an algebraic function in four variables. On the other hand,2049
and more importantly, taking residues commutes with specialization, contrarily to2050
positive parts and diagonals. Therefore, the generating series for walks F(1, 1) is2051

F(1, 1) = [x−1y−1]

(
xy− x̄y + x̄ȳ− xȳ

(1− x)(1− y)(1− t(xy + y + yx̄ + x̄ + x̄ȳ + ȳ + xȳ + x))

)
,2052

and a differential equation L(F(1, 1)) = 0 can now be computed by creative tele-2053
scoping:2054

2055

(34) L = t2(1 + 4t)(8t− 1)(2t− 1)(1 + t)∂3
t + t(200t3 + 576t4 − 33t− 252t2 + 5)∂2

t2056

+ 4(22t3 − 117t2 − 12t + 288t4 + 1)∂t + 384t3 − 12− 144t− 72t2.20572058

Note that this is precisely the differential operator guessed in [84].2059
Moreover, factorization algorithms for linear differential operators [216, 351,2060

112, 378] can be used to prove that L = L2L1, where L1 = ∂t + 1/t and2061
2062

(35) L2 = t2(1 + 4t)(1− 8t)(1− 2t)(1 + t)∂2
t + 2t(256t4 + 80t3 − 111t2 − 14t + 2)∂t2063

+ 768t4 + 8t3 − 306t2 − 30t + 2.20642065

It follows that the Laurent power series2066

f (t) =
dF
dt

(1, 1) +
F(1, 1)

t
= t−1 + 6 + 54t + 420t2 + 3420t3 + 27300t4 + O(t6)2067
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is a solution of L2. Starting from the second order operator L2, algorithmic methods2068
explained in [77, §2.6] (see also [272, 239, 240]) allow to express f (t) as2069

f (t) =
1

t(1 + 4t)3 · 2F1

( 3
2

3
2

2

∣∣∣∣ 16t(1 + t)
(1 + 4t)2

)
.2070

Finally, solving the equation d/dt F(1, 1) + F(1, 1)/t = f (t) yields formula (9).2071
Similarly, for indeterminates α and β we obtain the formal residue representa-2072

tions for F(α, 0) and F(0, β), and creative-telescoping techniques still allow the ef-2073
fective computation of differential operators for F(α, 0), resp. for F(0, β). Owing to2074
the additional symbolic indeterminate, the computations are much harder than for2075
F(1, 1), but still feasible. Each of the resulting differential operators factors again,2076
this time as a product of an order-two operator and of three order-one operators.2077
Moreover, the second-order operators are again solvable in terms of 2F1 functions.2078
Finally, a closed formula for F(α, β) is obtained from the closed formulas for F(α, 0)2079
and F(0, β) via the kernel equation (30). This detour is computationally crucial,2080
since performing creative telescoping directly on the five-variable rational function2081
from (33) is not feasible even using today’s best algorithms.2082

A similar reasoning applies to any of the 19 models in Fig. 7 with finite group2083
and non-zero orbit sum, and this allows to prove Theorem 14 with the help of the2084
fundamental equation2085

GF = PositivePart
(
orbit sum
kernel

)
2086

2087

3.5. Back to the exercise in §1.1. To conclude, we come back to the problem2088
stated at the very beginning of the article, for which we have guessed the answer2089
in §2.6. Recall that S denotes the step set {↑, ←, ↘}. For convenience, we will2090
continue to use the shortcut notation x̄ = 1/x, ȳ = 1/y.2091

3.5.1. A functional equation for S-walks in N2. Let us consider the full gen-2092
erating function for S-walks in N22093

Q(x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

qn;i,jtnxiyj ∈ Q[x, y][[t]].2094

It satisfies the kernel equation (7), which writes:2095

(36)
(
1− t(y + x̄ + xȳ)

)
xyQ(x, y) = xy− tx2Q(x, 0)− tyQ(0, y).2096

We are interested in the generating function of diagonal returns B(t) = [x0] Q(x, x̄).2097

3.5.2. A functional equation for S-walks in Z×N. Similarly, let H(t; x, y) ≡2098
H(x, y) denote the full generating function for S-walks in Z×N,2099

H(x, y) =
∞

∑
n=0

n

∑
i=−n

∞

∑
j=0

h(n; i, j)tnxiyj ∈ Q[x, x̄, y][[t]].2100

It satisfies a functional equation very similar to (36), namely2101
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(37)
(
1− t(y + x̄ + xȳ)

)
xyH(x, y) = xy− tx2H(x, 0).2102

This time, we are interested in A(t) = [x0] H(x, 0), the generating function of excur-2103
sions in the upper half-plane.2104

3.5.3. The kernel method for Z×N. We solve Eq. 37 by using the same tech-2105
nique as we did for Dyck walks (Equation (3) from Example 5).2106

Let2107

y0 =
x− t−

√
(t− x)2 − 4t2x3

2tx
= xt + t2 + (x2 + x̄)t3 + (3x + x̄2)t4 + · · ·2108

be the (unique) root in Q[x, x̄][[t]] of K(x, y0) = 0, where K(x, y) = 1− t(y + x̄ + xȳ).2109
Then plugging y0 in (37) yields2110

0 = K(x, y0)yH(x, y0) = y0 − txH(x, 0),2111

and thus2112
H(x, 0) =

y0

tx
and A(t) =

[
x0
] y0

tx
.2113

This allows to express A(t) as a period of an algebraic integral. A differential2114
equation satisfied by A(t) can then be computed using creative telescoping:2115

> y0:= - sqrt((t-x)^2 - 4*t^2*x^3)/(2*t*x):
> DEtools[Zeilberger](1/x * y0/(t*x), t, x, Dt)[1];

2116

which proves the equation2117

(27t4 − t)A′′(t) + (108t3 − 4)A′(t) + 54t2 A(t) = 0,2118

or equivalently, the recurrence relation on its coefficients:2119

27(n + 2)(n + 1)an = (n + 6)(n + 3)an+3.2120

3.5.4. The kernel method for N2. The inventory χ(x, y) = x̄ + y + xȳ of S is
left unchanged by the involutions

Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) .

which generate a finite dihedral group D3 of order 6:2121

(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)

2122
Letting the group act on the kernel equation (36) gives six equations, whose alter-2123
nate sum gives birth to the orbit equation:2124

2125

xyQ(x, y)− x̄y2Q(x̄y, y) + x̄2yQ(x̄y, x̄)2126

− x̄ȳQ(ȳ, x̄) + xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ) =2127

xy− x̄y2 + x̄2y− x̄ȳ + xȳ2 − x2ȳ
1− t(y + x̄ + xȳ)

2128
2129
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Extracting the part with positive powers of x and y like in (3.4) gives

xyQ(x, y) = [x>0y>0]
xy− x̄y2 + x̄2y− x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)
.

Then, applying the method in [76] allows to express B(t) as a residue:

B(t) = [x0]Q(x, x̄) = [u−1v−1z−1]
ūv̄− uv̄2 + u2v̄− uv + ūv2 − ū2v

z(1− zu)(1− vz̄)(1− t(v̄ + u + ūv))
.

Finally, multivariate Creative Telescoping proves a differential equation for B(t):2130

> OS := x*y - y^2/x + y/x^2 - 1/x/y + x/y^2 - x^2/y;
> ker := 1-t*(y + 1/x + x/y);
> S:=normal(subs({x=1/u,y=1/v}, OS/ker)/(1-z*u)/(1-v/z)/z);
> Mgfun:-creative_telescoping(S,t::diff,[z::diff,u::diff,v::diff]):

2131

namely (27t4 − t)B′′(t) + (108t3 − 4)B′(t) + 54t2B(t) = 0.2132

3.5.5. Conclusion. We have proved that A(t) and B(t) are both solutions of2133

(27t4 − t)y′′(t) + (108t3 − 4)y′(t) + 54t2y(t) = 0.2134

2135
Solving this equation in closed form proves that2136

A(t) = B(t) = 2F1

(
1/3 2/3

2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

(3n)!
n!3

t3n

n + 1
.2137

2138
Thus the two sequences are equal to2139

a3n = b3n =
(3n)!

n!2 · (n + 1)!
, and am = bm = 0 if 3 does not divide m.2140

2141
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