Analytic combinatorics and combinatorial physics

Cyril Banderier (CNRS/Univ. Paris Nord)

International Conference on Combinatorics and Physics Karol A. Penson's 71'-Fest Polish Academy of Sciences Scientific Center in Paris, 11-12 January 2018

Photo taken by Ira Gessel during the Séminaire Lotharingien of April 2005, for Xavier Viennot's 60th birthday.

(Caveat: lists permuted & several matchings are possible!)

quantum physics						
	integer sequences (Bell, Catalan, Delannoy numbers					
Schrödinger equation	non-crossing diagrams					
chemical reactions	Toda Lattices					
quarks	free probability					
Hamiltonian	ordering					
entanglement	shuffle product					
Ising model	Heisenberg-Weyl algebra					
nuclear reaction	cyclic groups					
dissasociator	Pólya-Ehrenfest urn model					
differential equations	combinatorial Hopf algebra					
renormalization	fractional calculus					
normal ordering	modular forms					
universal laws	Latin squares					
quantum optics	moment problems, orthogonal polynomials					
crystals	number theory multiplicative functions					
simulated annealing	domino tilings enumeration					
transition phase	stable laws					
-	•					

Karol worked in an impressive large part [cf arXiv] of these topics, and also in analytic combinatorics!

- \bullet CombinatoricSSSSSSS (enumerative, bijective, algebraic, additive, topological, geometrical, extremal, additive, of words, \ldots)
- Analytic combinatorics

Aim: Enumeration of finite/recursive structures, establish statistical behaviour.

Tools: generating functions and complex analysis.

discrete object (combinatorial structure counted by a_n) $\downarrow \downarrow$ continuous (complex variable series $\sum_{n \ge 0} a_n z^n$) $\downarrow \downarrow$ analysis ("Majorer, minorer, approcher", functional eq., closed forms) asymptotics (singularities, saddle point, Mellin transform...) $\downarrow \downarrow$ properties of the discrete world (enumerative, limit laws...)

Applications: combinatorics, computer science, probability theory, number theory, biology (DNA), chemistry, statistical mechanics, ...

Cyril Banderier (CNRS/Univ. Paris Nord)

Schützenberger's credo (1920-1996): correspondence between combinatorial identities and functional identities. (\approx non-commutative world to commutative world)

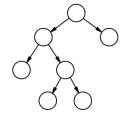
Flajolet et al.'s symbolic approach: There exists a magic dictionary which translates any combinatorial structure \mathcal{A} into its generating function $A(z) = \sum_{n} a_n z^n$.

The magic dictionary:

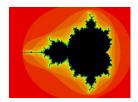
product	$\mathcal{A} imes \mathcal{B}$	\mapsto	$A(z) \times B(z)$
sequence	$Seq\mathcal{A}$	\mapsto	$\frac{1}{1-A(z)}$
set	$Set\mathcal{A}$	\mapsto	$\exp(A(z))$
cycle	$\operatorname{Cyc}\nolimits\mathcal{A}$	\mapsto	$\ln \frac{1}{1-A(z)}$
substitution	$\mathcal{B}\circ\mathcal{A}$	\mapsto	B(A(z))
inclusion – exclusion	$\mathcal{A}(atom or nothing)$	\mapsto	A(z + 1)
pointing	$\Theta \mathcal{A}$	\mapsto	$z \frac{d}{dz} A(z)$

NB: This dictionary this explains Taylor formula, Lagrange inversion, ... It also explains why combinatorial Hopf algebras lead to many nice explicit formulas.

Automatization: open source package Combstruct in 🛸 Maple



 $b_n := \text{number of binary trees with } n \text{ (internal) nodes.}$ Counted by the generating function $B(z) = \sum_{n \ge 0} b_n z^n$ recursive definition leads to functional equation: $\mathcal{B} = \text{leaf} + \mathcal{B} \times \text{node} \times \mathcal{B} \Longrightarrow B(z) = 1 + zB^2(z)$ $B(z) = \frac{1 - \sqrt{1 - 4z}}{2z} = 1 + z + 2z^2 + 5z^3 + 14z^4 + \dots$ One gets Catalan numbers: $\frac{\binom{2n}{n}}{n+1} \sim \frac{4^n}{\sqrt{\pi n^3}}$



Height of trees via Flajolet–Odlyzko's singularity analysis. Mandelbrot iteration: $b^{[h+1]}(z) = z + b^{[h]}(z)^2$ H_n : cumulative height of trees of size n $H(z) = \sum_{n \ge 0} H_n z^n = \sum_{h \ge 0} B(z) - b^{[h]}(z)$ $H(z) = -2 \ln(1 - 4z) + K + O(|1 - 4z|^{\vee})$ transfer theorem $\Rightarrow H_n \sim 2n^{-1}4^n \Rightarrow H_n/B_n = 2\sqrt{\pi n}$ Universality: height of *t*-ary trees = $O(\sqrt{\pi n})$ (limit law \approx Jacobi theta function). # permutations of $\{1, \ldots, n\}$ with k cycles

 $\mathcal{P} = Set(Cyc)$

$$F(z, u) = \sum_{n \ge 0} f_n(u) \frac{z^n}{n!} = \exp\left(u \ln \frac{1}{1 - z}\right)$$
$$\mu_n = \frac{\sum_{k \ge 0} k f_{n,k}}{f_n} = \frac{\left[\frac{z^n}{n!}\right] \partial_u F(z, u)|_{u=1}}{\left[\frac{z^n}{n!}\right] F(z, 1)}$$
$$= \frac{\left[\frac{z^n}{n!}\right] \frac{1}{1 - z} \ln\left(\frac{1}{1 - z}\right)}{n!} = \ln n + \gamma + \frac{1}{2n} + O(\frac{1}{n^2})$$

"A permutation has $\sim \ln n$ cycles in average"

$$\sigma_n = \sqrt{\ln n} + o(1)$$
$$\lim_{n \to \infty} \Pr\{X_n \le \ln n + \gamma + x\sqrt{\ln n}\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp^{-t^2/2} dt$$

→ Extension of Erdős–Kac theorem to many structures.

Thanks to the "group of 5" who invited me to a nice and snowy "combinatorial physics" meeting in Poland, I got the chance to apply the methodology of Philippe Flajolet to some problem of physics.

Thanks to the "group of 5" who invited me to a nice and snowy "combinatorial physics" meeting in Poland, I got the chance to apply the methodology of Philippe Flajolet to some problem of physics.

But before to present this, let me bribe the chairman to get more time :-)

Camille Jordan (1838-1922)

Quantum optics, anharmonic oscillator, Weyl functions, Wigner functions... \implies Apostol Vourdas ;-) Theorem (Banderier–Vourdas): in order to realize this quantic tomography, on average $\sim \frac{n^2}{n}$ "lines" are enough.

Size of the symplectic group (det $M = 1 \mod n$):

proof via : $\#Sp(2, \mathbb{Z}_{p^e}) = p^{2e}\phi(p^e)(1+1/p)$

n average
$$\sim rac{ n^2}{3 \zeta(3)}$$
 "lines" are enoug

Theorem (Banderier–Vourdas):

#Sp $(2,\mathbb{Z}_n) = nJ_2(n)$

Some multiplicative functions...

f(n.m) = f(n).f(m) for n and m relatively primes

- $Id_k(n) = n^k$
- $\epsilon(1) = 1$ and $\epsilon(n) = 0$ for n > 1
- gcd(n, k)

Leonard Euler (1707-1783)

- Legendre symbol: $\left(\frac{n}{p}\right) = 1$ if *n* is a square mod *p*, -1 elsewhere (and 0 if p|n).
- Dirichlet characters $\chi_d(n) = \omega_n$ (where $\omega_n^{\phi(d)} = 1$)
- Euler totient function φ(n) = #(ℤ/nℤ)*
- Möbius function $\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ (-1)^r & \text{if } n = p_1 \cdots p_r \\ 0 & \text{elsewhere } \end{cases}$
- sum of divisors $\sigma_k(n) = \sum_{d|n} d^k$
- Liouville functions λ(n) = a^{Ω(n)} where Ω(n) is the number of prime factors of n (with or without their multiplicities)
- Dedekind ψ function $\psi(n) = n \prod_{p|n} (1 + 1/p)$
- Jordan function $J_k(n) = n^k \prod_{p|n} (1 p^{-k})$, in particular: $J_1 = \phi, J_2(n) = \phi(n)\psi(n)$
- ...

Associated Dirichlet series...

Gustav Lejeune Dirichlet (1805-1859)

 $L(s, f) = \sum_{n \ge 1} f(n) n^{-s}$

Convolution product:

$$L(s,f).L(s,g) = \sum_{n\geq 1} \left(\sum_{a,b=n} f(a)g(b)\right) n^{-s} = L(s,f*g)$$

Euler product formula:

$$L(s,f) = \prod_{p \in \mathcal{P}} \sum_{k=0}^{\infty} \frac{f(p^k)}{p^{ks}} = \prod_{p \in \mathcal{P}} \frac{1}{1 - f(p)p^{-s}}$$

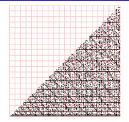
Some explicit formulae:

$$L(\boldsymbol{s},\epsilon) = 1, \qquad L(\boldsymbol{s},1) = \sum_{n \ge 1} \frac{1}{n^s} = \zeta(\boldsymbol{s}), \qquad L(\boldsymbol{s}, \boldsymbol{ld}_k) = \sum_{n \ge 1} \frac{n^k}{n^s} = \zeta(\boldsymbol{s}-k)$$

 $L(s,\mu) = \frac{1}{\zeta(s)} \quad \text{as } L(s,\epsilon) = L(s,\mu)L(s,1) \quad (\text{avatar of Möbius inversion formula})$ $L(s,\sigma_k) = L(s, Id^k)L(s,1) = \zeta(s-k)\zeta(s), \quad L(s,J_k) = \frac{\zeta(s-k)}{\zeta(s)}$

$$L(s,|\mu|) = \frac{\zeta(s)}{\zeta(2s)}, \qquad L(s,\delta) = L(s,|\mu|)L(s,1) = \frac{\zeta(s)^2}{\zeta(2s)}, \qquad L(s,\lambda) = \frac{\zeta(2s)}{\zeta(s)}$$

Residues modulo n



x is a residue k-th $\iff x \equiv y^k \mod n$.

 $k = 2, 3, 4, 5 \cdots$: quadratic, cubic residues, quartic or biquadratic, quintic...

Example in $\mathbb{Z}_{10} = \mathbb{Z}/10\mathbb{Z}$:

X	1	2	3	4	5	6	7	8	9	10
<i>x</i> ²	1	4	9	6	5	6	9	4	1	0
<i>x</i> ³	1	8	7	4	5	6	3	2	9	0
<i>x</i> ⁴	1	6	1	6	5	6	1	6	1	0

the *k*-th residues in \mathbb{Z}_{10} are thus:

- for *k* = 2: 0, 1, 4, 5, 6, 9
- for *k* = 3: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- for *k* = 4: 0, 1, 5, 6

 $\begin{array}{l} \rho_k(n) := \text{number of } k\text{-th residues in } \mathbb{Z}/n\mathbb{Z}.\\ \rho_2(10) = 6, \rho_3(10) = 10, \rho_4(10) = 4\\ \text{Computational cost of } \rho_k(n) : \frac{n \ln(k)}{2 \ln 2} \text{ operations and a } O(n) \text{ amount of memory.}\\ \text{Is it possible to do better? Yes we can!} \end{array}$

Local zeta functions, and links with combinatorics

Consider a system of polynomial equations,

their set of commun zeroes in a finite field \mathbb{K} (with q^d elements) defines a variety V, let N_d be this number of solutions.

The local zeta function is:

$$\zeta_{V,\mathbb{K}}(t) := \exp\sum_{d\geq 1} N_d rac{t^d}{d}$$

It is therefore the Bell generating function in disguise.

$$\mathsf{n}(\zeta_{V,\mathbb{K}}(t))' = \sum_{d \ge 1} N_d t^{d-1}$$

Link reminiscent of identities of Sparre Andersen, Spitzer for Brownian motion, Dvoretsky–Raney cycle lemma for Dyck paths:

$$S_n := X_1 + \dots + X_n,$$
 $au_n := \operatorname{Prob}[S_i \ge 0, i \in [[1, n-1]], S_n < 0]$

Erik Sparre Andersen's identity for ruin waiting time τ_n :

$$\sum_{n=1}^{\infty} \tau_n t^n = \exp\left(-\sum_{n=1}^{\infty} \frac{t^n}{n} \operatorname{Prob}\left[S_n < 0\right]\right)$$
$$\mathcal{B} = 1 + \mathcal{E}\Theta\mathcal{A} \qquad \Leftrightarrow \qquad B(z) = 1 + \frac{E'(z)}{E(z)}$$

André Weil (1906-1998)

Bernard Dwork (1923-1998)

Alexander Grothendieck (1928-2014)

Pierre Deligne (1944-)

In 1949, Weil conjectured:

- rationality of ζ_V , quotient of product of (1 ...) (Dwork, 1960)
- functional equation for ζ_V (Grothendieck, 1963)
- Riemann hypothesis for ζ_V (Deligne, 1973)
- Betti numbers related to ζ_V (Grothendieck, 1964)

Open question: what happens for rings $(\mathbb{Z}/q^n\mathbb{Z}$ instead of fields \mathbb{F}_{q^n} ?

Theorem

 ρ_k is a multiplicative function: $\rho_k(nm) = \rho_k(n)\rho_k(m)$ (for n and m relatively prime).

Sketch of proof.

We construct a bijection between $(\mathbb{Z}_{nm})^k$ and $(\mathbb{Z}_n)^k \times (\mathbb{Z}_m)^k$.

$$\mathbf{E}^{Card}((\mathbb{Z}_{nm})^k) = Card((\mathbb{Z}_n)^k).Card((\mathbb{Z}_m)^k)$$

 $\rho_k(nm) = \rho_k(n)\rho_k(m)$

Injective, surjective... key tool = chinese remainder theorem: For *n* and *m* relatively prime (so un + vm = 1 via Bézout's identity)

$$\left.\begin{array}{ll} x=a \mod n\\ x=b \mod m\end{array}\right\} \Longleftrightarrow x=(aun+bvm) \mod nm$$

Theorem

 $\rho_P(n) := \#\{x_i \in \mathbb{Z}_n : P(x_1, \dots, x_k) = 0 \mod n\}$ is a multiplicative function.

(Caveat $\rho_{x_1^2+x_2^2-x_3}(n) \neq r_2(n) = nb$ of representations of *n* as sums of squares).

Theorem (recurrence, base 2: $m = 2^n$)

$$ho_k(2^n) = \left\{egin{array}{cccc} 1 & & \mbox{if} & n = 0 \ 2 & & \mbox{if} & n = 1 \ 1 + rac{\phi(2^n)}{gcd(k,2)gcd(k,2^{n-2})} & \mbox{if} & 2 \le n < k \
ho_k(2^{n-k}) + rac{\phi(2^n)}{gcd(k,2)gcd(k,2^{n-2})} & \mbox{if} & n \ge k \end{array}
ight.$$

Theorem (recurrence, base p: $m = p^n$)

for odd prime p,

$$\rho_{k}(p^{n}) = \begin{cases} 1 & \text{if} \quad n = 0\\ 1 + \frac{\phi(p^{n})}{\gcd(k, \phi(p^{n}))} & \text{if} \quad 1 \le n < k\\ \rho_{k}(p^{n-k}) + \frac{\phi(p^{n})}{\gcd(k, \phi(p^{n}))} & \text{if} \quad n \ge k \end{cases}$$

Theorem (closed form, k > 2, odd p)

If k < p and k is divisible by p - 1, one has:

$$\rho_{k}(p^{n}) = \begin{cases} 1 + \frac{(p-1)p^{n-1}(1-p^{-n})}{k(1-p^{-k})} & \text{if } n = 0 \mod k \\ 1 + \frac{(p-1)p^{n-1}(1-p^{-k}(\lfloor n/k \rfloor + 1))}{k(1-p^{-k})} & \text{elsewhere} \end{cases}$$

Theorem (closed form, k > 2, odd p)

If k < p and k is not divisible by p - 1, one has:

$$\rho_k(p^n) = \begin{cases} 1 + \frac{(p-1)p^{n-1}(1-p^{-n})}{1-p^{-k}} & \text{if } n = 0 \mod k \\ 1 + \frac{(p-1)p^{n-1}(1-p^{-k}([n/k]+1))}{1-p^{-k}} & \text{elsewhere} \end{cases}$$

Theorem (closed form, k > 2, p = 2)

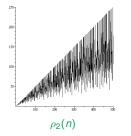
$$\rho_k(2^n) = \begin{cases} 1 + \frac{2^{n-1}(1-2^{-n})}{1-2^{-k}} & \text{if } n = 0 \mod k \\ 1 + \frac{2^{n-1}(1-2^{-k}(\lfloor n/k \rfloor + 1))}{1-2^{-k}} & \text{elsewhere} \end{cases}$$

Cyril Banderier (CNRS/Univ. Paris Nord)

What about asymptotics?

Ernesto Cesàro (1859-1906)

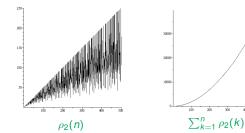
If a_n has a chaotic behaviour, one can consider $\sum_{k=1}^{n} a_k$. In one sense, $\frac{\sum_{k=1}^{n} a_k}{n}$ will give the "average order" of a_n .



What about asymptotics?

Ernesto Cesàro (1859-1906)

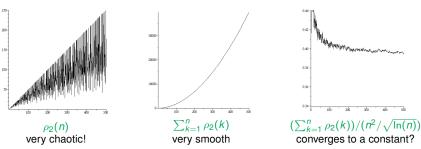
If a_n has a chaotic behaviour, one can consider $\sum_{k=1}^{n} a_k$. In one sense, $\frac{\sum_{k=1}^{n} a_k}{n}$ will give the "average order" of a_n .



What about asymptotics?

Ernesto Cesàro (1859-1906)

If a_n has a chaotic behaviour, one can consider $\sum_{k=1}^{n} a_k$. In one sense, $\frac{\sum_{k=1}^{n} a_k}{n}$ will give the "average order" of a_n .



Cyril Banderier (CNRS/Univ. Paris Nord)

Hubert Delange (1913-2003) gave a way to get asymptotics of Cesàro sums.

Theorem (tauberian theorem of Wiener–Ikehara–Delange (1930,31,54,63))

Let F(s) be a Dirichlet series with coefficients $a_n > 0$ converging for $\Re(s) > \sigma > 0$. If $F(s) = \frac{A(s)}{(s-\sigma)^{\gamma+1}} + B(s)$ (with F analytic for $\Re(s) = \sigma, s \neq \sigma$), then $\sum_{n \leq N} a_n = \frac{A(\sigma)}{\sigma \Gamma(\gamma+1)} N^{\sigma} \ln^{\gamma} N(1+o(1)).$

NB: coherent with $\zeta(s)$.

Asymptotics for the number of k-th powers mod n

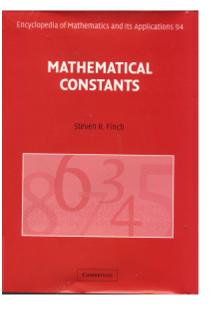
We have results for any k. Enumeration for k = 2 [Stangl 1996]. We prove a conjecture of [Finch & Sebah 2006] on enumeration and asymptotics of cubes (k = 3).

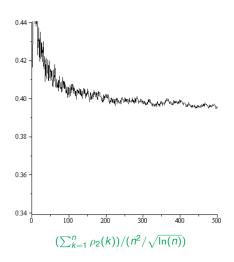
 $F(s) = \zeta(s) \left(1 + \frac{2^{2s+1} - 2^{s+1} - 1}{2^{s+2}(2^{2s+1} - 2^{s-1} - 1)} \right) \prod_{p} \left(1 - \frac{(p^{s+1} + 2)(p - 1)}{2(p^{s+1} + 1)(p^{s+1} - 1)} \right) = G(s) \cdot \zeta(s)^{1/2}$ $\sum_{n \le N} b(n) \sim C_2 \cdot N^2 \cdot (\ln N)^{-1/2} = (0.376...)N^2 \cdot (\ln N)^{-1/2}.$ $C_2 = \frac{17}{32} \frac{1}{\sqrt{\pi}} \prod_{p} \left(1 - \frac{p^2 + 2}{2(p^2 + 1)(p + 1)} \right) \left(1 - \frac{1}{p} \right)^{-1/2}$

Theorem

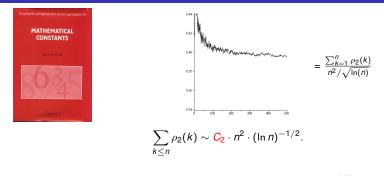
$$\sum_{n\geq 1} \frac{\rho_k(n)}{n^{s+1}} = G_k(s)\zeta(s)^{k/(k-1)} \qquad \sum_{n=1}^N \rho_k(n) \sim \frac{G_k(1)}{\Gamma((k-1)/k)} \frac{N^2}{2} (\ln N)^{-1/k}$$

Cyril Banderier (CNRS/Univ. Paris Nord)





How to compute the values of infinite products?



$$C_{2} = \frac{17}{32} \frac{1}{\sqrt{\pi}} \prod_{p} \left(1 - \frac{p^{2} + 2}{2(p^{2} + 1)(p + 1)} \right) \left(1 - \frac{1}{p} \right)^{-1/2} \approx 0.376$$

Numerical scheme to compute these infinite products unpublished [Flajolet-Vardi, 96].

$$\sum_{n=1}^{\infty} f(\frac{1}{n}) = \sum_{m=2}^{\infty} f_m \zeta(m)$$
fast convergence e.g.: $\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln n \right) = \frac{3}{2} - \ln 2 - \sum_{m=2}^{\infty} (-1)^m \frac{m-1}{m} (\zeta(m) - 1)$

Camille Jordan (1838-1922)

Quantum optics, anharmonic oscillator, Weyl functions, Wigner functions... \implies Apostol Vourdas ;-) Theorem (Banderier–Vourdas): in order to realize this quantic tomography,

Size of the symplectic group (det $M = 1 \mod n$):

proof via : $\#Sp(2, \mathbb{Z}_{p^e}) = p^{2e}\phi(p^e)(1+1/p)$

on average
$$\sim rac{n^2}{3\zeta(3)}$$
 "lines" are enough.

Theorem (Banderier–Vourdas):

#Sp $(2,\mathbb{Z}_n) = nJ_2(n)$

Analytic combinatorics and combinatorial physics

... Karol: analytic music and physical music

[cf files .html, .mpeg]

KAROL A. PENSON Transcriptions

Karol, in conclusion, happy many more birthdays, articles, and music!

