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Many links between physic and combinatorics seen these 2 days!

(Caveat: lists permuted & several matchings are possible!)

quantum physics
...

... integer sequences (Bell, Catalan, Delannoy numbers...)
Schrödinger equation non-crossing diagrams

chemical reactions Toda Lattices
quarks free probability

Hamiltonian ordering
entanglement shuffle product
Ising model Heisenberg-Weyl algebra

nuclear reaction cyclic groups
dissasociator Pólya-Ehrenfest urn model

differential equations combinatorial Hopf algebra
renormalization fractional calculus
normal ordering modular forms
universal laws Latin squares
quantum optics moment problems, orthogonal polynomials

crystals number theory multiplicative functions
simulated annealing domino tilings enumeration

transition phase stable laws
...

...

Karol worked in an impressive large part [cf arXiv] of these topics, and also in analytic combinatorics!
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Analytic combinatorics: from a discrete to a continuous world... and reciprocally!

−→

Euler Cauchy Knuth Flajolet
(1707-1783) (1789-1857) (1938–) (1948–2011)

• CombinatoricSSSSSSS (enumerative, bijective, algebraic, additive, topological, geometrical,
extremal, additive, of words, . . . )
• Analytic combinatorics
Aim: Enumeration of finite/recursive structures, establish statistical behaviour.
Tools: generating functions and complex analysis.

discrete object (combinatorial structure counted by an )
⇓

continuous (complex variable series
∑

n≥0 anzn)
⇓

analysis (“Majorer, minorer, approcher”, functional eq., closed forms)
asymptotics (singularities, saddle point, Mellin transform...)

⇓
properties of the discrete world (enumerative, limit laws...)

Applications: combinatorics, computer science, probability theory, number theory, biology (DNA),
chemistry, statistical mechanics, . . .
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The symbolic method

Schützenberger’s credo (1920-1996): correspondence between combinatorial identities and
functional identities. (≈ non-commutative world to commutative world)

Flajolet et al.’s symbolic approach:
There exists a magic dictionary which translates

any combinatorial structure A
into its generating function A(z) =

∑
n

anzn.

The magic dictionary:

product A× B 7→ A(z)× B(z)

sequence SeqA 7→ 1
1−A(z)

set SetA 7→ exp(A(z))

cycle CycA 7→ ln 1
1−A(z)

substitution B ◦ A 7→ B(A(z))
inclusion − exclusion A(atom or nothing) 7→ A(z + 1)

pointing ΘA 7→ z d
dz A(z)

NB: This dictionary this explains Taylor formula, Lagrange inversion, . . . It also explains why
combinatorial Hopf algebras lead to many nice explicit formulas.

Automatization: open source package Combstruct in
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Classical toy example: Binary trees

bn := number of binary trees with n (internal) nodes.
Counted by the generating function B(z) =

∑
n≥0

bnzn

recursive definition leads to functional equation:
B = leaf + B × node× B =⇒ B(z) = 1 + zB2(z)

B(z) =
1−
√

1− 4z
2z

= 1 + z + 2z2 + 5z3 + 14z4 + . . .

One gets Catalan numbers:

(2n
n

)
n + 1

∼
4n
√
πn3

Height of trees via Flajolet–Odlyzko’s singularity analysis.
Mandelbrot iteration: b[h+1](z) = z + b[h](z)2

Hn: cumulative height of trees of size n
H(z) =

∑
n≥0 Hnzn =

∑
h≥0 B(z)− b[h](z)

H(z) = −2 ln(1− 4z) + K + O (|1− 4z|v )
transfer theorem

⇒ Hn ∼ 2n−14n ⇒ Hn/Bn = 2
√
πn

Universality: height of t-ary trees = O(
√
πn)

(limit law ≈ Jacobi theta function).
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Structural properties of permutations

# permutations of {1, . . . , n} with k cycles

P = Set(Cyc)

F (z, u) =
∑
n≥0

fn(u)
zn

n!
= exp

(
u ln

1
1− z

)

µn =

∑
k≥0 kfn,k

fn
=

[ zn

n!
]∂uF (z, u)|u=1

[ zn

n!
]F (z, 1)

=
[ zn

n!
] 1

1−z ln( 1
1−z )

n!
= ln n + γ +

1
2n

+ O(
1
n2

)

“A permutation has ∼ ln n cycles in average”

σn =
√

ln n + o(1)

lim
n→∞

Pr{Xn ≤ ln n + γ + x
√

ln n} =
1
√

2π

∫ x

−∞
exp−t2/2 dt

 Extension of Erdős–Kac theorem to many structures.
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Efforts to create a community, to link people from different horizons

Thanks to the ”group of 5” who invited me
to a nice and snowy ”combinatorial physics”
meeting in Poland, I got the chance to apply
the methodology of Philippe Flajolet
to some problem of physics.

But before to present this, let me bribe the chairman to get more time :-)
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Symplectic transformations and quantum tomography in finite quantum systems

Camille Jordan (1838-1922)

Theorem (Banderier–Vourdas):
Size of the symplectic group (det M = 1 mod n) :
#Sp(2,Zn) = nJ2(n)
proof via : #Sp(2,Zpe ) = p2eφ(pe)(1 + 1/p)

Quantum optics, anharmonic oscillator,
Weyl functions, Wigner functions... =⇒ Apostol Vourdas ;-)
Theorem (Banderier–Vourdas):
in order to realize this quantic tomography,

on average ∼
n2

3ζ(3)
“lines” are enough.
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Some multiplicative functions...

Leonard Euler (1707-1783)

f (n.m) = f (n).f (m) for n and m relatively primes

• Idk (n) = nk

• ε(1) = 1 and ε(n) = 0 for n > 1
• gcd(n, k)

Legendre symbol:
(

n
p

)
= 1 if n is a square mod p, -1 elsewhere (and 0 if p|n).

Dirichlet characters χd (n) = ωn (where ωφ(d)
n = 1)

Euler totient function φ(n) = #(Z/nZ)∗

Möbius function µ(n) =

 1 if n = 1
(−1)r if n = p1 · · · pr
0 elsewhere

sum of divisors σk (n) =
∑

d|n dk

Liouville functions λ(n) = aΩ(n) where Ω(n) is the number of prime factors of n (with or
without their multiplicities)
Dedekind ψ function ψ(n) = n

∏
p|n(1 + 1/p)

Jordan function Jk (n) = nk ∏
p|n(1− p−k ), in particular: J1 = φ, J2(n) = φ(n)ψ(n)

...
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Associated Dirichlet series...

Gustav Lejeune Dirichlet
(1805-1859)

L(s, f ) =
∑
n≥1

f (n)n−s

Convolution product:

L(s, f ).L(s, g) =
∑
n≥1

(∑
a.b=n

f (a)g(b)

)
n−s = L(s, f ∗ g)

Euler product formula:

L(s, f ) =
∏

p∈P

∞∑
k=0

f (pk )

pks
=
∏

p∈P

1
1− f (p)p−s

Some explicit formulae:

L(s, ε) = 1, L(s, 1) =
∑
n≥1

1
ns

= ζ(s), L(s, Idk ) =
∑
n≥1

nk

ns
= ζ(s − k)

L(s, µ) =
1
ζ(s)

as L(s, ε) = L(s, µ)L(s, 1) (avatar of Möbius inversion formula)

L(s, σk ) = L(s, Idk )L(s, 1) = ζ(s − k)ζ(s), L(s, Jk ) =
ζ(s − k)

ζ(s)

L(s, |µ|) =
ζ(s)

ζ(2s)
, L(s, δ) = L(s, |µ|)L(s, 1) =

ζ(s)2

ζ(2s)
, L(s, λ) =

ζ(2s)

ζ(s)
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Residues modulo n

x is a residue k -th⇐⇒ x ≡ yk mod n.

k = 2, 3, 4, 5 · · · : quadratic, cubic residues,
quartic or biquadratic, quintic. . .

Example in Z10 = Z/10Z:

x 1 2 3 4 5 6 7 8 9 10
x2 1 4 9 6 5 6 9 4 1 0
x3 1 8 7 4 5 6 3 2 9 0
x4 1 6 1 6 5 6 1 6 1 0

the k -th residues in Z10 are thus:
for k = 2: 0, 1, 4, 5, 6, 9
for k = 3: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
for k = 4: 0, 1, 5, 6

ρk (n) := number of k -th residues in Z/nZ.
ρ2(10) = 6, ρ3(10) = 10, ρ4(10) = 4

Computational cost of ρk (n) :
n ln(k)

2 ln 2
operations and a O(n) amount of memory.

Is it possible to do better? Yes we can!
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Local zeta functions, and links with combinatorics

Consider a system of polynomial equations,
their set of commun zeroes in a finite field K (with qd elements) defines a variety V ,
let Nd be this number of solutions.
The local zeta function is:

ζV ,K(t) := exp
∑
d≥1

Nd
td

d

It is therefore the Bell generating function in disguise.

ln(ζV ,K(t))′ =
∑
d≥1

Nd td−1

Link reminiscent of identities of Sparre Andersen, Spitzer for Brownian motion, Dvoretsky–Raney
cycle lemma for Dyck paths:

Sn := X1 + · · ·+ Xn, τn := Prob [Si ≥ 0, i ∈ [[1, n − 1]],Sn < 0]

Erik Sparre Andersen’s identity for ruin waiting time τn:

∞∑
n=1

τntn = exp

(
−
∞∑

n=1

tn

n
Prob [Sn < 0]

)

B = 1 + EΘA ⇔ B(z) = 1 +
E ′(z)

E(z)
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Weil conjectures

André Weil
(1906-1998)

Bernard Dwork
(1923-1998)

Alexander Grothendieck
(1928-2014)

Pierre Deligne
(1944-)

In 1949, Weil conjectured:

rationality of ζV , quotient of product of (1− ...) (Dwork, 1960)

functional equation for ζV (Grothendieck, 1963)

Riemann hypothesis for ζV (Deligne, 1973)

Betti numbers related to ζV (Grothendieck, 1964)

Open question: what happens for rings (Z/qnZ instead of fields Fqn )?
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Multiplicativity of ρk (the number of k -th powers modulo n)

Theorem
ρk is a multiplicative function: ρk (nm) = ρk (n)ρk (m) (for n and m relatively prime).

Sketch of proof.

We construct a bijection between (Znm)k and (Zn)k × (Zm)k .

�Card((Znm)k ) = Card((Zn)k ).Card((Zm)k )

ρk (nm) = ρk (n)ρk (m)

Injective, surjective... key tool = chinese remainder theorem:
For n and m relatively prime (so un + vm = 1 via Bézout’s identity)

x = a mod n
x = b mod m

}
⇐⇒ x = (aun + bvm) mod nm

Theorem
ρP(n) := #{xi ∈ Zn : P(x1, . . . , xk ) = 0 mod n} is a multiplicative function.

(Caveat ρx2
1 +x2

2−x3
(n) 6= r2(n) = nb of representations of n as sums of squares).
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Enumeration of the number of k -th powers in Z/mZ

Theorem (recurrence, base 2: m = 2n)

ρk (2n) =



1 if n = 0
2 if n = 1

1 +
φ(2n)

gcd(k , 2)gcd(k , 2n−2)
if 2 ≤ n < k

ρk (2n−k ) +
φ(2n)

gcd(k , 2)gcd(k , 2n−2)
if n ≥ k

Theorem (recurrence, base p: m = pn)
for odd prime p,

ρk (pn) =


1 if n = 0

1 +
φ(pn)

gcd(k , φ(pn))
if 1 ≤ n < k

ρk (pn−k ) +
φ(pn)

gcd(k , φ(pn))
if n ≥ k
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Theorem (closed form, k > 2, odd p)
If k < p and k is divisible by p − 1, one has:

ρk (pn) =


1 +

(p − 1)pn−1(1− p−n)

k(1− p−k )
if n = 0 mod k

1 +
(p − 1)pn−1 (1− p−k([n/k ]+1)

)
k(1− p−k )

elsewhere

Theorem (closed form, k > 2, odd p)
If k < p and k is not divisible by p − 1, one has:

ρk (pn) =


1 +

(p − 1)pn − 1(1− p−n)

1− p−k
if n = 0 mod k

1 +
(p − 1)pn−1 (1− p−k([n/k ]+1)

)
1− p−k

elsewhere

Theorem (closed form, k > 2, p = 2)

ρk (2n) =


1 +

2n−1(1− 2−n)

1− 2−k
if n = 0 mod k

1 +
2n−1 (1− 2−k([n/k ]+1)

)
1− 2−k

elsewhere
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What about asymptotics?

Ernesto Cesàro (1859-1906)

If an has a chaotic behaviour,
one can consider

∑n
k=1 ak .

In one sense,
∑n

k=1 ak
n will give

the “average order” of an.

ρ2(n)

∑n
k=1 ρ2(k) (

∑n
k=1 ρ2(k))/(n2/

√
ln(n))

very chaotic! very smooth converges to a constant?
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Delange theorem

Hubert Delange (1913-2003)
gave a way to get asymptotics
of Cesàro sums.

Theorem (tauberian theorem of Wiener–Ikehara–Delange (1930,31,54,63))
Let F (s) be a Dirichlet series with coefficients an > 0 converging for <(s) > σ > 0. If

F (s) =
A(s)

(s − σ)γ+1
+ B(s) (with F analytic for <(s) = σ, s 6= σ), then∑

n≤N

an =
A(σ)

σΓ(γ + 1)
Nσ lnγN (1 + o(1)).

NB: coherent with ζ(s).
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Asymptotics for the number of k -th powers mod n

Bernhard Riemann (1826-1866)

We have results for any k .
Enumeration for k = 2 [Stangl 1996].
We prove a conjecture of [Finch & Sebah 2006]
on enumeration and asymptotics of cubes (k = 3).

F (s) = ζ(s)

(
1 +

22s+1 − 2s+1 − 1
2s+2(22s+1 − 2s−1 − 1)

)∏
p

(
1−

(ps+1 + 2)(p − 1)

2(ps+1 + 1)(ps+1 − 1)

)
= G(s) · ζ(s)1/2

∑
n≤N

b(n) ∼ C2 · N2 · (ln N)−1/2 = (0.376...)N2 · (ln N)−1/2.

C2 =
17
32

1
√
π

∏
p

(
1−

p2 + 2
2(p2 + 1)(p + 1)

)(
1−

1
p

)−1/2

Theorem

∑
n≥1

ρk (n)

ns+1
= Gk (s)ζ(s)k/(k−1)

N∑
n=1

ρk (n) ∼
Gk (1)

Γ((k − 1)/k)

N2

2
(ln N)−1/k
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How to compute the value of the constant?

(
∑n

k=1 ρ2(k))/(n2/
√

ln(n))
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How to compute the values of infinite products?

=
∑n

k=1 ρ2(k)

n2/
√

ln(n)

∑
k≤n

ρ2(k) ∼ C2 · n2 · (ln n)−1/2.

C2 =
17
32

1
√
π

∏
p

(
1−

p2 + 2
2(p2 + 1)(p + 1)

)(
1−

1
p

)−1/2
≈ 0.376

Numerical scheme to compute these infinite products unpublished [Flajolet–Vardi, 96].

∞∑
n=1

f (
1
n

) =
∞∑

m=2

fmζ(m)

fast convergence e.g.: γ := lim
n→∞

( n∑
k=1

1
k
− ln n

)
=

3
2
− ln 2−

∞∑
m=2

(−1)m m − 1
m

(ζ(m)− 1)
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Symplectic transformations and quantum tomography in finite quantum systems

Camille Jordan (1838-1922)

Theorem (Banderier–Vourdas):
Size of the symplectic group (det M = 1 mod n) :
#Sp(2,Zn) = nJ2(n)
proof via : #Sp(2,Zpe ) = p2eφ(pe)(1 + 1/p)
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Analytic combinatorics and combinatorial physics
...
Karol: analytic music and physical music

[cf files .html, .mpeg]
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Conclusion

Karol, in conclusion, happy many more birthdays, articles, and music!

Cyril Banderier (CNRS/Univ. Paris Nord) Analytic combinatorics and combinatorial physics 24 / 24



Conclusion

Karol, in conclusion, happy many more birthdays, articles, and music!

Cyril Banderier (CNRS/Univ. Paris Nord) Analytic combinatorics and combinatorial physics 24 / 24


