Laboratoire de Physique Théorique de la Matière Condensée

 

          Research interest: condensed-matter theory; strongly-correlated quantum fluids, cold atoms.


 

Nicolas Dupuis
Directeur de Recherche at CNRS
Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600
Sorbonne Université
4 Place Jussieu
75252 Paris Cedex 05,  France
Phone/Fax: +33 1 4427 2904/5100  
E-mail: firstname dot lastname at sorbonne-universite.fr

 

2021: Directeur de Recherche (DR1) at CNRS
2010: Directeur de Recherche (DR2) at CNRS
Sept. 2007-: Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, Paris
Sept. 2004 - Sept. 2007: Visiting scientist at Imperial College, London
Janv. 1996 - Dec. 1998: Visiting scientist at university of Maryland, USA
1993: Researcher at CNRS (Chargé de Recherche), Laboratoire de Physique des Solides, Université Paris-Sud
1990-1993: Ph.D thesis at Laboratoire de Physique des Solides, Université Paris-Sud
1989-1990: military obligations as scientist at École Normale Supérieure, Paris
1988-1989: DEA in condensed-matter physics, Université Paris-Sud
1985-1988: Engineering school: Télécom ParisTech

 

 

I have been interested in various aspects of condensed-matter and cold-atom physics: 

  • Low-dimensional organic conductors 
  • 2D Hubbard model 
  • Fermi-liquid theory and renormalization group 
  • Superfluidity in a Bose gas
  • Superfluid--Mott-insulator transition of bosons in an optical lattice 
  • Quantum phase transitions 
  • Disorder and interactions in one-dimensional quantum fluids
  • methodological developments of the nonperturbative functional renormalization group 

A summary, in French, can be found here


Publications on arXiv

Publications in refereed journals

76- Tan's two-body contact in a planar Bose gas: experiment vs theory, 
A. Rançon and N. Dupuis, Phys. Rev. Lett. 130, 263401 (2023).

75- Operator product expansion coefficients from the nonperturbative functional renormalization group.
F. Rose, C. Pagani, and N. Dupuis, Phys. Rev. D 105, 065020 (2022).

74- Flowing bosonization in the nonperturbative functional renormalization-group approach.
R. Daviet and N. Dupuis, SciPost Phys. 12, 110 (2022).

73- Physical properties of the massive Schwinger model from the nonperturbative functional renormalization group.
P. Jentsch, R. Daviet, N. Dupuis, and S. Floerchinger, Phys. Rev. D 105, 016028 (2022).

72- Chaos in the Bose-glass phase of a one-dimensional disordered Bose fluid.
R. Daviet and N. Dupuis, Phys. Rev. E 103, 052136 (2021).

71- The nonperturbative functional renormalization group and its applications.
N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M. Pawlowski, M. Tissier, and N. Wschebor, Phys. Rep. 910, 1 (2021).

70- Mott-glass phase of a one-dimensional quantum fluid with long-range interactions.
R. Daviet and N. Dupuis, Phys. Lett. 125, 235301 (2020).

69- Is there a Mott-glass phase in a one-dimensional disordered quantum fluid with linearly confining interactions?
N. Dupuis, Europhys. Lett. 130, 56002 (2020).

68- Entanglement measures and nonequilibrium dynamics of quantum many-body systems: A path integral approach.
R. Ghosh, N. Dupuis, A. Sen, and K. Sengupta, Phys. Rev. B 101, 245130 (2020).

67- Bose-glass phase of a one-dimensional disordered Bose fluid: Metastable states, quantum tunneling, and droplets.
N. Dupuis and R. Daviet, Phys. Rev. E 101, 042139 (2020).

66- Glassy properties of the Bose-glass phase of a one-dimensional disordered Bose fluid.
N. Dupuis, Phys. Rev. E 100, 030102(R) (2019).

65- Nonperturbative functional renormalization-group approach to the sine-Gordon model and the Lukyanov-Zamolodchikov conjecture.
R. Daviet and N. Dupuis, Phys. Rev. Lett. 122, 155301 (2019).

64- Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions.
F. Rose and N. Dupuis, Phys. Rev. B 97, 174514 (2018).

63- Kosterlitz-Thouless signatures in the low-temperature phase of layered three-dimensional systems.
A. Rançon and N. Dupuis, Phys. Rev. B 96, 214512 (2017).

62- Superuniversal transport near a (2+1)-dimensional quantum critical point.
F. Rose and N. Dupuis, Phys. Rev. B 96, 100501(R) (2017).

61- Quantum criticality at the superconductor to insulator transition revealed by specific heat measurements.
S. Poran, T. Nguyen-Duc, A. Auerbach, N. Dupuis, A. Frydman, and O. Bourgeois, Nature Communications 8, 14464 (2017).

60- Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2+1)-dimensional O(N)-symmetric quantum critical point.
F. Rose and N. Dupuis, Phys. Rev. B 95, 014513 (2017)

59- First-order phase transitions in spinor Bose gases and frustrated magnets
T. Debelhoir and N. Dupuis,  Phys. Rev. A 94, 053623 (2016).

58- Critical Casimir forces from the equation of state of quantum critical systems.
A. Rançon, L.-P. Henry, F. Rose, D. Lopes Cardozo, N. Dupuis, P. C. W. Holdsworth and T. Roscilde,  Phys. Rev. A 94, 140506(R) (2016).

57- Simulating frustrated magnetism with spinor Bose gases.
T. Debelhoir and N. Dupuis, Phys. Rev. A 93, 051603(R) (2016).

56- Critical region of the superfluid transition in the BCS-BEC crossover.
T. Debelhoir and N. Dupuis, Phys. Rev. A 93, 023642 (2016).

55- Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point: a nonperturbative renormalization-group approach.
F. Rose, F. Léonard and N. Dupuis, Phys. Rev. B 91, 224501 (2015).

54- Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition.
P. Jakubczyk, N. Dupuis, and Delamotte, Phys. Rev. E 90, 062105 (2014).

53- Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point.
A. Rançon and N. Dupuis, Phys. Rev. B 89, 180501(R) (2014).

52- Nonperturbative renormalization-group approach to fermion systems in the two-particle-irreducible effective action formalism.
N. Dupuis, Phys. Rev. B 89, 035113 (2014).

51- Quantum XY criticality in a two-dimensional Bose gas near the Mott transition.
A. Rançon and N. Dupuis, Europhys. Lett.  104, 16002 (2013).

50- Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.
A. Rançon, O. Kodio, N. Dupuis,, and P. Lecheminant, Phys. Rev. E 88, 012113 (2013).

49- Thermodynamics of a Bose gas near the superfluid--Mott-insulator transition.
A. Rançon and N. Dupuis, Phys. Rev. A 86, 043624 (2012).

48- Universal thermodynamics of a two-dimensional Bose gas.
A. Rançon and N. Dupuis, Phys. Rev. A 85, 063607 (2012).

47- Quantum criticality of a Bose gas in an optical lattice near the Mott transition.
A. Rançon and  N. Dupuis,Phys. Rev. A 85, 011602(R) (2012).

46- Nonperturbative renormalization-group approach to strongly correlated lattice bosons.
A. Rançon and N. Dupuis, Phys. Rev. B 84, 174513 (2011).

45- Nonperturbative renormalization-group approach to the Bose-Hubbard model.
A. Rançon and N. Dupuis, Phys. Rev. B 83, 172501 (2011).

44- Infrared behavior in systems with a broken continuous symmetry: classical O(N) model vs interacting bosons.
N. Dupuis, Phys. Rev. E 83, 031120 (2011).

43- From local to critical fluctuations in lattice models: a non-perturbative renormalization-group approach.
T. Machado and N. Dupuis, Phys. Rev. E 82, 041128 (2010).

42- Infrared behavior and spectral function of a Bose superfluid at zero temperature.
N. Dupuis, Phys. Rev. A 80, 043627 (2009).
 
41- DMFT-NRG for superconductivity in the attractive Hubbard model.
J. Bauer, A.C. Hewson, and N. Dupuis, Phys. Rev. B 79, 214518 (2009).
 
40- Unified picture of superfluidity: from Bogoliubov's approximation to Popov's hydrodynamic theory.
N. Dupuis, Phys. Rev. Lett. 102, 190401 (2009).
 
39- Non-perturbative renormalization-group approach to lattice models.
N. Dupuis and K. Sengupta, Eur. Phys. J. B  66, 271 (2008).
 
38- Non-perturbative renormalization-group approach to zero-temperature Bose systems.
N. Dupuis and K. Sengupta, Europhys. Lett.  80, 50007 (2007).

37- Bose-Fermi mixtures in an optical lattice.
K. Sengupta, N. Dupuis, and P. Majumdar, Phys. Rev. A  75, 063625 (2007).

36- Variational Cluster Perturbation Theory for Bose-Hubbard models.
W. Koller and N. Dupuis, J. Phys.: Condens. Matter  18, 9525-9540 (2006).

35- Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors.
J. C. Nickel, R.  Duprat, C. Bourbonnais, and N. Dupuis, Phys. Rev. B  73, 165126 (2006).

34- Comment on ``Universal Spin-Flip Transition in Itinerant Antiferromagnets" by G. Varelogiannis.
N. Dupuis, Phys. Rev. Lett.  96, 209701 (2006).

33- Renormalization group approach to interacting fermion systems in the two-particle-irreducible formalism.
N. Dupuis, Eur. Phys. J. B  48, 319 (2005).

32- Triplet superconducting pairing and density-wave instabilities in organic conductors.       
J. C. Nickel, R.  Duprat, C. Bourbonnais, and N. Dupuis, Phys. Rev. Lett.  95, 247001 (2005).

31- Effective action for superfluid Fermi systems in the strong-coupling limit.
N.  Dupuis, Phys. Rev. A  72, 013606 (2005).

30- Mott insulator to superfluid transition in the Bose-Hubbard model: a strong-coupling approach.
K. Sengupta and N. Dupuis, Phys. Rev. A  71, 033629 (2005).

29- Mott insulator to superfluid transition of ultracold bosons in an optical lattice near a Feshbach resonance.
K. Sengupta and N. Dupuis, Europhys. Lett. 70, 586 (2005).

28- Berezinskii-Kosterlitz-Thouless transition and BCS-Bose crossover in the two-dimensional attractive Hubbard model.
N. Dupuis, Phys. Rev. B  70, 134502 (2004).

27- Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: a non-linear sigma model approach.  
K. Borejsza and N. Dupuis, Phys. Rev. B  69, 085119 (2004).

26- Field-induced spin-density-wave phases in TMTSF organic conductors: quantization versus non-quantization.
K. Sengupta and N. Dupuis,  Phys. Rev. B  68, 094431 (2003).

25- Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: Slater vs Mott-Heisenberg.   
K. Borejsza and N. Dupuis, Europhys. Lett.  63, 722 (2003).

24- Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model at weak coupling.
N. Dupuis, Phys. Rev. B  65, 245118 (2002).

23- Spin-density-wave instabilities in the organic conductor (TMTSF)2ClO4: Role of anion ordering.
K. Sengupta and N. Dupuis, Phys. Rev. B  65, 035108 (2001)
 
22- A new approach to strongly correlated fermion systems: the spin-particle-hole coherent-state  path integral.
N. Dupuis, Nucl. Phys. B  618, 617 (2001).
 
21-  Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors.
Y. Tomio, N. Dupuis and Y. Suzumura, Phys. Rev. B  64, 125123 (2001)

20- A strong-coupling expansion for the Hubbard model.
N. Dupuis and S. Pairault, Int. J. of Mod. Phys. B  14, 2529 (2000). 

19- Effective action and collective modes in quasi-one-dimensional spin-density-wave systems.
K. Sengupta and N. Dupuis, Phys. Rev. B.  61, 13493 (2000).

18- Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors.
N. Dupuis and V.M. Yakovenko, Phys. Rev. B  61, 12888 (2000)

17- A unified description of static and dynamic properties of Fermi liquids.
N. Dupuis, Int. J. Mod. Phys. B  14, 379 (2000).

16- Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors.
N. Dupuis and V.M. Yakovenko, Europhys. Lett. 45, 361 (1999).

15- Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors.
N. Dupuis and V.M. Yakovenko, Phys. Rev. B  58, 8773 (1998)

14- Fermi liquid theory: a renormalization group approach.
N. Dupuis, Eur. Phys. J. B 3, 315 (1998).

13- Sign reversal of the Quantum Hall Effect and helicoidal field-induced spin density waves in quasi-one-dimensional organic conductors.
N. Dupuis and V.M. Yakovenko, Phys. Rev. Lett.  80, 3618 (1998).

12- Dimensional crossover and metal-insulator transition in quasi-two-dimensional disordered conductors.
N. Dupuis, Phys. Rev. B  56, 9377 (1997).

11- Metal-insulator transition in highly conducting oriented polymers.
N. Dupuis, Phys. Rev. B  56, 3086 (1997).

10- Renormalization Group approach to Fermi liquid theory.
N. Dupuis and G. Chitov, Phys. Rev. B  54, 3040 (1996).

9- Mean-field theory of a quasi-one-dimensional superconductor in a high magnetic field.
N. Dupuis, J. Phys. I (France)  5 1577 (1995).

8- Larkin-Ovchinnikov-Fulde-Ferrell state in quasi-one-dimensional superconductors.
N. Dupuis, Phys. Rev. B  51 9074 (1995).

7- Thermodynamics and excitation spectrum of a quasi-one-dimensional superconductor in a high magnetic field.   
N. Dupuis, Phys. Rev. B  50, 9607 (1994).

6- Superconductivity of quasi-one-dimensional conductors in a high magnetic field. 
N. Dupuis and G. Montambaux,Phys. Rev. B  49, 8993 (1994).

5- Quasi-one dimensional superconductors in strong magnetic field.
N. Dupuis, G. Montambaux, and C.A.R. Sà de Melo, Phys. Rev. Lett.  70, 2613 (1993).

4- Localization and magnetic field in a strongly anisotropic conductor.
N. Dupuis and G. Montambaux, Phys. Rev. B  46, 9603 (1992).

3- Magnetic field induced Anderson localization in a strongly anisotropic conductor.
N. Dupuis and G. Montambaux,  Phys. Rev. Lett.  68, 357 (1992).
 
2- Aharonov-Bohm flux and statistics of energy levels in metals.
N. Dupuis and G. Montambaux, Phys. Rev. B  43, 14390 (1991).

1- Electron minibands and Wannier-Stark quantization in an In0.15Ga0.85As-GaAs strained layer superlattice.
B. Soucail, N. Dupuis, R. Ferreira, P. Voisin, A.P. Roth, D. Morris, K. Gibb and C. Lacelle, Phys. Rev. B 41, 8568 (1990).
 

Other publications (proceedings, etc.)

14- Infrared behavior of interacting bosons at zero temperature [Proceedings of the International Conference on frustrated spin systems, cold atoms and nanomaterials (Hanoi, Vietnam, July 14-16, 2010)].
N. Dupuis, Mod. Phys. Lett. B 25, 963 (2011).

13- Infrared behavior of interacting bosons at zero temperature [Proceedings of the 19th International Laser Physics Workshop, LPHYS'10 (Foz do Iguaçu, Brazil, July 5-9, 2010)].
N. Dupuis and A. Rançon, Laser Physics 21, 1470 (2011).

12- Superfluid to Mott-insulator transition of cold atoms in optical lattices [Proceedings of the 5th International Workshop on Electronic Crystals, ECRYS 2008 (Cargèse, Corsica, France, August 24-30, 2008)].
N. Dupuis and K. Sengupta, Physica B  404, 517 (2009).

11- Superconductivity and Antiferromagnetism in Quasi-one-dimensional Organic Conductors [Invited paper for a special issue of Journal of Low Temperature Physics dedicated to the 20th anniversary of high-temperature superconductors].      
N. Dupuis, C. Bourbonnais, and J. C. Nickel, Fizika Nizkikh Temperatur  32, 505 (2006) (cond-mat/0510544).

10- Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: Slater vs. Mott-Heisenberg [Proceedings of the International Conference on Magnetism, ICM 2003, Roma, July 27-August 1, 2003] .
K. Borejsza and N. Dupuis, J. of Magnetism and Magnetic Materials  272-276, 946 (2004).

9- Field-induced spin-density-wave phases in TMTSF organic conductors: quantization versus non-quantization [Proceedings of the fifth International Symposium on Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM 2003) (September 21-36, 2003, Port-Bourgenay, France)].
N. Dupuis and K. Sengupta, J. Phys. IV (France)  114, 61 (2004).

8- Spin waves in the spiral phase of a dopped antiferromagnet: a strong-coupling approach.
N. Dupuis, cond-mat/0105063.

7- Sign Reversal of the Quantum Hall Effect and Helicoidal Magnetic-Field-Induced Spin-Density Waves in Organic Conductors [Proceedings of the International Workshop on electronic crystals (ECRYS99) (May 31-June 5, 1999, La Colle-sur-Loup, France)].
N. Dupuis and V.M. Yakovenko, J. Phys. IV (France)  9, Pr10-199 (1999).

6- Quasi-one-dimensional superconductors: from weak to strong magnetic field [Proceedings of the workshop Exactly Aligned Magnetic Field Effects in Low-Dimensional Superconductors (November 15-18, 1998, Kyoto, Japan)].
N. Dupuis, J. of superconductivity  12, 475 (1999).

5- Sign reversal of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in organic conductors [Proceedings of the conference on Strongly correlated systems (SCES98) (July 15-18, 1998, Paris, France)].
N. Dupuis and V.M. Yakovenko, Physica B 259-261, 1013 (1999).

4- Quasi-one-dimensional superconductor at high magnetic field [Proceedings of the Conference on Physical Phenomena at High Magnetic Field II (PPHMF-II) (Tallahassee, USA, May 1995), edited by Z. Fisk, L.P. Gor'kov, D. Meltzer, and R. Schrieffer (World Scientific, 1996)].
N. Dupuis

3- Quasi-one dimensional superconductors in strong magnetic field [Proceedings of the 20th International Conference on low temperature physics (LT-20) (Eugene, USA, 1993)]. 
G. Montambaux, N. Dupuis and C.A.R. Sà de Melo, Physica B  194-196, 1383 (1994).

2- Quasi-one dimensional superconductors in strong magnetic field. [Proceedings of the International Workshop on Electronic Crystals (ECRYS-93) (Carry Le Rouet, France, 1993)]
N. Dupuis, G. Montambaux, and C.A.R. Sà de Melo, J. Phys. I (France)  3, 311 (1993).

1- Localization, superconductivity and magnetic field in a quasi-1D conductor. [Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM'92) (Goteborg, Suède, 1992)]
N. Dupuis and G. Montambaux, Synthetic Metals  55, 2853 (1993).
 

 

Field theory of condensed matter and ultracold gases


This book provides a pedagogical introduction to the concepts and methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. After a thorough discussion of the basic methods of field theory and many-body physics (functional integrals, perturbation theory, Feynman diagrams, correlation functions and linear response theory, symmetries and their consequences, etc.), the book covers a wide range of topics, from the electron gas and Fermi-liquid theory to superfluidity and superconductivity, the magnetic instabilities in electron systems, and the dynamical mean-field theory of the Mott transition. The focus is on the study of model Hamiltonians, where the microscopic physics and characteristic energy scales are encoded into a few effective parameters, rather than first-principle methods which start from a realistic Hamiltonian at the microscopic level and make material-specific predictions. The reader is expected to be familiar with elementary quantum mechanics and statistical physics and some acquaintance with condensed-matter physics and ultracold gases may also be useful. No prior knowledge of field theory or the many-body problem is required.

                                   Vol. 1  (published by World Scientific)

Table of contents (short/long)

Functional integrals, symmetries, and correlation functions

1. Functional integrals
2. Symmetries 
3. Correlation and response functions

 Quantum many-body systems (I)

4. Fermi-liquid theory
5. The electron gas
6. Magnetism in lattice fermion systems
7. Superfluidity and superconductivity
8. Quantum magnetism
9. Baym-Kadanoff formalism

                                   Vol. 2 (to appear in 2025)

The renormalization group

10. Renormalization group and phase transitions (pdf)
11. The non-perturbative functional renormalization group

Quantum many-body systems (II)

12. Quantum phase transitions
13. Interacting bosons (pdf)
14. The Bose-Hubbard model and the superfluid--Mott-insulator transition (pdf)
15. Interacting fermions, bosonization and renormalization group

Quantum-Condensed-Matter field theory

Thursday 8.30am-12.30pm, Campus Jussieu 523 12-13

[This page will be updated as the lectures progress]

The course provides an introduction to some of the methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. The main focus will be on the coherent-state functional integral and its applications to systems of interacting bosons and fermions: superfluidity and superconductivity, Fermi-liquid theory, antiferrromagnetism and Mott transition in the Hubbard model, superfluid—Mott-insulator transition in the Bose-Hubbard model, etc.

Detailed program

Lecture notes

chapter 1: Functional integrals
chapter 3: Correlation and response functions (password required)
chapter 4: Fermi-liquid theory (password required)
chapter 6: Magnetism in lattice fermion systems (password required)
chapter 7: Superfluidity and  superconductivity (password required)
chapter 12 (partial): Quantum phase transitions

Recommended reading 

Useful reminders

Gaussian integrals
Fourier transforms
Second quantization
Coherent states
Response functions

Tutorial classes

1) Quantization of the harmonic chain (answers)
2) Functional integral for a non-interacting boson gas (answers)
3) Bogoliubov's theory of superfluidity (answers)
4) Superfluid--Mott-insulator transition in the Bose-Hubbard model (answers)
5) Fermi-liquid theory (answers)
6) BCS theory (answers)
7) Ferromagnetism in the Hubbard model: mean-field theory and collectives modes (answers)

Home work (questions, answers)

Exam (questions and answers)

 

 

 

 

 

 
  • Karol Borejsza (2000 - 2004): The 2D Hubbard model: a nonlinear sigma model approach
  • Christoph Nickel (2002 - 2004): Antiferromagnetism and superconductivity in quasi-one-dimensional conductors: a renormalization-group study
  • Adam Rançon (2009 - 2012): Quantum criticalilty and universality of a Bose gas near the Mott transition 
  • Thibault Debelhoir (2013 - 2016): Phase transitions in spin-one boson gases and frustated magnetic systems
  • Félix Rose (2014 - 2017): Dynamics and transport near a quantum critical point 
  • Romain Daviet (2018 - 2021): Disorder and interactions in one-dimensional quantum fluids 
  • Lucas Désoppi (2019 -2023 ; co-advisor: C. Bourbonnais, Sherbrooke university): Quantum criticality and transport in low-dimensional conductors 
  • Vincent Grison (2023- ): Low-dimensional disordered Bose fluids