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ABSTRACT 

In this paper we review some recent results on the kinetics of bimolecular chemical 
reactions, such as binary, recombination and trapping reactions, with participation of 
polymer chains. We consider both mean-field and many-particle approaches to the 
description of reaction kinetics in such systems, present explicit dependences describing 
evolution of particle concentrations and discuss the origins of anomalous kinetic behavior. 

INTRODUCTION 

Chemical reactions involving reactants which execute random motion 
represent an example of systems with dynamical essentially many-par- 
ticle behavior. An attempt to devise an adequate analytical description 
of the reaction kinetics is limited by the usual difficulties of genuine 
many-particle problems - infinite hierarchies of coupled nonlinear equa- 
tions, diverging perturbation-theory series or substantial importance of 
irreducible diagrams. Consequently, certain approximations or compli- 
cated statistical physics methods must be invoked in order to develop a 
tractable and reliable theory of transport-controlled chemical reactions. 
A great deal of effort has been devoted to the elaboration of such 
analytical approaches. Several excellent books [l-31, reviews [4-121 and 
a series of original papers [13-281 provide details of the numerous 
advances this field has experienced during the last eight decades. 
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Chemical reactions with participation of polymers is one of the most 
practically important areas among the general field of transport-control- 
led processes. Polymerization reactions, cyclization processes, polymer- 
supported catalysts, energy transfer in polymer matrix are a few typical 
examples. Reaction kinetics in polymer systems have been also widely 
studied within recent decades [29-311. A considerable progress has been 
gained in the understanding of chemical reactions taking place in poly- 
mer systems. This is due primarily to classical works [32-351 on the 
kinetics of cyclization processes, and works by de Gennes [31], who 
established the relation between anomalous kinetics of bimolecular 
chemical reactions in polymer systems and transport properties of poly- 
mers. 

In this paper we summarize some recent results on the kinetics of 
bimolecular transport-controlled reactions, described by the reaction 
schemes 

(I) A+A+P 

(II) A+B+P 

(III)A+C+C+P 

taking place in polymer systems. These include bimolecular reactions 
between active groups attached to flexible polymer chains (Fig. l), polym- 
erization and trapping reactions in polymer systems. This paper is by no 
means a complete review of results in the field of chemical reactions in 
polymer systems and it would require far too much space to make it so. 
For instance, we do not consider here the analysis of cyclization processes 
kinetics and address the reader to the original works on this subject 
[29,30,32-351. 

The present paper is organized as follows: in the first section we state 
the results of traditional approaches - the formal kinetic scheme and 
the Smoluchowski approach to the kinetics of reactions I-III taking place 
in the simplest chemical systems, i.e. systems in which spherical particles 
presented at small initial concentrations execute conventional diffusive 
motion and react when they “meet each other”. Although there exists a 
vast literature on this subject we have found it necessary to present their 
basic statements and results here, since the traditional approaches, 
especially the Smoluchowski approach, will be very useful for the expla- 
nation of different questions related to chemical kinetics in polymer 
systems. In Section 2 we briefly discuss the results of many-particle 
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Fig. 1. Chemical system with recombination reaction, A + B +P, involving active particles 
A and B attached to flexible polymer chains in polymer solution. 

Fig. 2. Trapping reaction in systems with polymerized traps. Open circles denote difTusive 
particles A. Solid circles are traps C attached to immobile polymer chains. 
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approaches to chemical reactions kinetics. In Section 3 we discuss the 
extensions of the Smoluchowski approach to the kinetics of reactions I-III 
taking place in polymer systems. We will consider reactions between 
active groups attached to warmlike polymers in concentrated or diluted 
polymer solutions (Fig. 11, kinetics of polymerization reactions in systems 
with transport limitations and kinetics of trapping-like reactions in 
systems with polymerized traps (Fig. 2). Finally, in Section 4 we present 
results of several many-particle considerations of reaction kinetics in 
polymer solutions. 

1. CONVENTIONAL APPROACHES TO CHEMICAL KINETICS IN THE 
“SIMPLEST” CHEMICAL SYSTEMS 

To establish notation, we begin with the definitions of the “simplest” 
chemical systems and standard treatments of the reaction kinetics in 
such systems. On base of the reaction scheme III we will discuss the 
results of the formal kinetic scheme and of the Smoluchowski approach, 
We will also mention the predictions of these approaches for the kinetics 
of binary (I) and recombination (II) reactions. More involved analysis of 
this subject and several important extensions to more complicated reac- 
tion schemes can be found in [1,4-6,13-H]. 

Consider a d-dimensional reaction bath of volume V (V + w, so that 
boundary effects can be neglected) with reactive species of two types - 
A and C. We assume that A and C are spherical and noninteracting. 
Particles diffuse freely in the reaction bath with well-defined diffusion 
constants DA and D, (solute is homogeneous everywhere and does not 
impose any restrictions on the diffusion). Thus, in the absence of reaction 
between A and C their dynamics are described by a diffusion equation. 

Whenever an A and a C come in contact at separation R (reaction 
radius) particle A is annihilated and the reaction product P is formed 
with some finite probability determining the reaction constant Kchem. The 
reaction constant Kchem describes the intrinsic properties of the elemen- 
tary reaction act. 

The evolution of local concentration of particles A (concentration at 
point r at time t) due to reaction and diffusion is governed by the following 
equation 
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where A, denotes d-dimensional diffusion operator (Laplacian). The first 
term in the right-hand-side of Eqn. (la) defines the loss of particles A due 
to trapping of A by C. The integration over rl accounts for the fact that 
reaction takes place when particles approach each other at fixed separa- 
tion distance R. The second term in the right-hand-side of Eqn. (1) 
describes the diffusive smoothing of spatial inhomogeneities in particles 
concentrations. These inhomogeneities can be macroscopic and micro- 
scopic. The macroscopic inhomogeneities can be introduced into the 
reactive system by the method of preparation of the initial mixture of 
reactants, e.g. initially particles can be generated in cascades or intro- 
duced by external source on the surface of the reaction bath. Microscopic 
inhomogeneities appear due to thermal fluctuations in particles concen- 
trations and in the reaction course. 

Concentration of traps C is not affected by the reaction act and changes 
only due to diffusion, 

aC&,t) 
at 

= DC Arc&t) (lb) 

Similar equations govern the evolution of local concentrations in the 
course of binary irreversible reaction (I), 

aCAht) = _ K 

at 
them drl CAht) cA( I r - rl I = RO + DA A$_&‘$) (2) 

and irreversible recombination reaction (II) 

acAkt) = _ K 

at 
chm drl CA@& Cd I r - q I = RO + DA ArCA (W 

aWr,t) = _ K 

at &em I drl CA( 1 r - rl I = %t) C&-A + DB A$&,t) (3b) 

The quantities which are observed experimentally are the mean 
concentrations of particles, 

CA&?(t) = (CA,&?)) 

where brackets stand for volume averages. However, evaluation of ana- 
lytical dependences which describe the temporal evolution of observables 
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turns out to be a complicated mathematical problem. If one writes down 
corresponding equations for the evolution of mean concentration, one 
finds that behavior of CA,&) is coupled to the behavior of pairwise 
correlation functions. For example, for the recombination reaction II 
averaging of Eqns. (3) yields, 

dC,@) dC,@) K 

- - - = - dt - dt 
ckm [CA(t) cB(t) + p&3( 1 h 1 = ft,t)] (4) 

where 

P&t) = (GC,(r,t) scE&r + h,t)) 

is the pair-wise A-B correlation function, h is correlation parameter, and 
EICAB(r,t) denote local deviations of particles concentrations from the 
mean values, 

=A,&-,t) = CA,&% - c&t) 

By definition, @CA,,+,t)) = 0, but the average product of local 
deviations, PM&t), is not zero. Equations describing the evolution of the 
pairwise correlations are coupled to the third-order correlation functions 
and so on. Therefore, one is faced with the infinite hierarchy of coupled 
differential equations. Moreover, even in the absence of macroscopic 
inhomogeneities initial concentrations of particles are perturbed by ther- 
mal fluctuations and one thus has random initial conditions to this 
hierarchy. In the remaining part of this section and in Section 2 we will 
consider different approaches to the solution of Eqns. (l-4) and discuss 
the behavior of the observables. 

1.1 Formal kinetic scheme 

Let us begin with the simplest approach to Eqns. (l-4). Suppose that 
the reaction constant Kchem is small enough, so that the elementary 
reaction act -reaction between A and C being at the separation distance 
R can be thought of as an essentially slower process as compared with 
the transport of particles to each other. ParticlesA and C meet each other 
many times before A is annihilated and the reaction product is formed. 
Under such conditions one can assume that the limiting stage of reaction 
is the elementary reaction act and, besides, that diffusion perfectly mixes 
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the species in the reaction bath. Therefore, one can neglect (not safely, 
as we will see below) fluctuations SC in spatial distributions of species, 
i.e. stipulate that everywhere in the reaction bath particles concentra- 
tions are equal to their mean values CA(t) and C, which depend on time 
only. Equations (1) and (2) then reduce to the “law of mass action” 

dW) K 
-=- &em cC CA(t) dt 

(5) 

with the intrinsic reaction constant Kchem calculated by means of stand- 
ard methods [1,2,7,19,25,26]. The solution of (5) (which is essentially 
d-independent since the diffusion operator is skipped) predicts a simple 
exponential decay of A particles, 

1% CA(t) Oc - &hem CCt 

For the reaction schemes I and II such an approach results in the 
following decay patterns. For the binary reaction one obtains 

CA@) Oc & (7) 
them 

for times t sufficiently large. Kinetics of the recombination reaction are 
sensitive to the relation between initial concentrations of A and B 
particles. In case of equal initial concentrations (further on we will term 
this case as IIa) the kinetics are governed by Eqn. (7). In the case of 
unequal initial concentrations (IIb) the minority component decays via 
the dependence in Eqn. (6) while for the majority component Eqn. (6) 
defines the long-time approach to the equilibrium concentration. 

1.2 Smoluchowski approach 

The formal kinetic scheme rests on the implicit assumption that the 
reaction process consists of two independent stages - transport of two 
reagents to each other and the elementary reaction act. Besides, it is 
assumed that these stages are comparable in the sense that diffusion of 
species or the transport stage can only modify the reaction constant but 
can not change the time dependence of particle concentrations. A natural 
question is to understand what are the actual limitations of random 
transport of particles and how they might control the kinetics of chemical 
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reactions, Tbis question has been first addressed by Smoluchows~ 1131 
in his classic study of the kinetics of coagulation in colloidal solutions. He 
proposed to account for the random (diffusive) transport of particles in 
the following manner. 

(a) Statements and results of Srn~~ucko~sk~ approach 
Let us suppose that one can neglect many-trap effects, e.g. screening 

of a given trap by traps placed in its vicinity. Then the initial problem 
can be reduced to the model with a single immobile trap of radius R placed 
in the “sea” of in~nitesimal diffusing particles A. At t = 0 particles are 
scattered uniformly throughout space. Particles A diffuse, with diffusion 
constant D, = D, + DA, and disappear as soon as they encounter the 
surface of the trap. The probability that particle A survives until time t 
is then defined by the diffusion equation 

WV) 
at 

= D+A$W) @a) 

subject to the following boundary conditions: P(r,t = 0) = P(r + -,t> = 1, 
and an absorbing boundary condition at separation distance R, 

P(r = R,t) = 0 @b) 

which mimics the reaction between species*. From the solution of Eqns. 
(8) one can compute the number of reaction events very directly. The 
apparent rate constant, or the Smoluchowski constant (SC), equals the 
diffusive current 

%rnoz@) = s,,, dS J(R,t); J(R,t) = -D+ 
~w,t) 

ar I& 
(9) 

integrated over the trap’s surface S(R). Evolution of CA(t) is then de- 
scribed by equation similar to the law of mass action but with the 
Smoluchowski rate constant 

d&(t) 
~ = - f&noz @) cc CA(t) 

dt 

* Within the assumption that Kchm = -. 



Consider next the behavior of SC in systems of different spatial 
dimensions. In three-dimensional (3d) systems the survival probability 
P(r,t> reaches after some time a steady state profile and, consequently, 
the diffusive current and K Sml(t) approach constant values as t tends to 
infinity. In 3d the complete time dependence of SC can be computed 

R 
KS&t) = 47cRD, I + dE 

[ 1 + 
(10) 

where the first term defines the steady state value and the second 
time-dependent term represents the transient regime associated with the 
formation of the depletion zone around the trap. The transient regime 
takes place until times t less than R2/D+. The decay patterns in 3d 
systems can be easily found. For (III) and (IIb) one obtains an exponential 
dependence of the form 

log CA(t) 0~ - 4tiD+Ct 11 + R(4xDt)-1’21 (11) 

while the kinetics of (I) and (IIa) are governed by an algebraic dependence 

CA(t) Oc 
1 

4nRD+t[l+ R(4dt)-1’2] 
(12) 

Therefore, in 3d systems the Smoluchowski approach predicts essen- 
tially the same time dependences of mean particles concentrations as the 
formal kinetic scheme, except the transient regime connected with the 
formation of the steady state rate constant in Eqn. (10). It means that in 
3d (in terms of the Smoluchowski approach) the reaction process can be 
represented in the form of two independent reaction stages and one can 
distinguish between kinetic-controlled reactions and diffusion-controlled 
reactions. 

However, there is a notable distinction between the predictions of the 
formal kinetic scheme and the Smoluchowski approach in case of low 
dimensional (d I 2) reaction systems. Let us note that the steady state 
form in Eqn. (10) is specifically 3d solution of the diffusion equation with 
Smoluchowski boundary conditions. If we consider the same problem in 
Id (or 2d) we find completely different behavior. There is no steady state 
profile around the reaction sphere but a hole, or depletion zone, which 
grows with time. This results in the anomalous behaviour of SC - it does 
not reach a steady state value as t + - but decreases with time as 
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Ksmol(t) 0~ (D+ lt)1’2, d = 1 (13a) 

R&&t) = D, llog(D+tlR2), D+t >> R2, d = 2 (13b) 

The behavior of the observables will thus depend essentially on the 
dimensionality of the reaction bath. In low dimensional systems one will 
obtain for I and IIa anomalous dependences 

CA(t)=-, d=l (14a) 

CA(t) = log (D+tlR2) / D+t , d = 2 (14b) 

and for III and IIb stretched-exponential decays of the form 

logC,(t) = - m, d=l (154 

lo&&> 0~ - D+t / log(D+t / R2) , d = 2 Mb) 

Therefore, assuming that Kchem = = and accounting for the random 
diffusive motion of reactive species we are led to a very different behavior 
as compared to the formal kinetic scheme predictions. A striking distinc- 
tion is that the form of decay functions does depend on the dimensionality 
of reactive systems. This observation leads to very important conse- 
quences. Let us consider the behavior of the rate constant in Eqn. (9) in 
systems with finite intrinsic rate constant Kchem It was proposed 1151 to 
account for the finite intrinsic rate by imposing another type of boundary 
condition to Eqn. (8) - a radiation boundary condition instead of the 
absorbing boundary condition in Eqn. (8b). Within such an approach one 
finds [15] from Eqns. (8,9) the “apparent” rate constant which accounts 
for both the diffusive transport of particles and the intrinsic reaction rate. 
This “apparent” rate constant was found [15] to obey the following 
“inverse resistivity” law 

1 1 1 - _ 
r = Kchen + Ksmol am 

(16) 

where KSmol is defined by Eqns. (10,13). It follows from Eqn. (16) that in 
3d, depending on the relation between constants, reaction can be either 
diffusion-controlled or kinetic-controlled. However, in low dimensions, 
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the long-time kinetics will be always diffusion-controlled since Ksmol 
tends to zero as t + 00, i.e. in low dimensional systems random transport 
of particles to each other has essentially higher “resistivity” than the rate 
of elementary reaction act. 

The final point which has to be mentioned is the question of what is 
the marginal dimension of the reactive system below which one can 
expect “anomalous” behavior of the Smoluchowski constant. In the con- 
sidered above case of the “simplest” chemical systems with diffusive 
reactants this marginal dimension d, is equal to 2. However, as we shall 
show below, d, = 2 is only a particular value which is associated with the 
particular type of random motion -conventional diffusion. In systems 
with reactions involving polymers d, will be greater than 2 and, in 
general, will depend on time. 

(b) Geometric interpretation of the Smoluchowski constant 
Next we would like to mention a geometric interpretation of the 

Smoluchowski constant, which is less familiar than the usual definition 
in Eqns. (8,9). 

Let us consider kinetics of trapping reactions on a d-dimensional 
lattice in which each lattice site can be a trap with probability C,. Let us 
suppose next that the random walk performed by particles A takes place 
in discrete time. Then the mean concentration of particles A is governed 
by [5,22,36,371 

CA(n) = C,(O) ((1 - Cc)‘(“)) (17) 

where the function S(n) is the number of distinct sites visited by A particle 
during time n; brackets denote the average both over all trap configura- 
tions and realizations of random walk. Equation (17) is exact but not very 
useful since the average cannot be taken explicitly and one has to resort 
to approximate methods and examine separately the behavior of CA(n) at 
small and large times n. The large-n behavior of CA(n) is dominated by 
many-particle effects and will be discussed in the next section. Here we 
consider a simple bound on CA(n) -the so-called Rosenstock approxima- 
tion [38], which describes quite well the behavior of CA(n) at small and 
intermediate “times” n 1371. Applying Jensen inequality to Eqn. (17) one 
gets 

$$+ 2 exp(log(l - CC> 6%) )I = exp(-Cc (S(n) )) 
A 
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A rigorous calculation of the average (S(n)) in lattices of arbitrary spatial 
dimension was performed in [39]. Curiously, it turns out that in all 
dimensions (S(n)) exhibits the same n-dependence as the Smoluchowski 
constant in Eqns. (10,131 integrated by time n from 0 to n. Besides, all 
the numerical factors coincide. Slightly more involved analysis [40,41,67] 
of the continuous-space analogue of S(n) - the volume V&) explored by 
a diffusive spherical particle of radius R during time t, has shown that, 
in all dimensions, the Smoluchowski constant is equal to 

K&&t) = 5 ( &dt) > (18) 

In the mathematical literature this volume is called ‘Wiener sausage”. A 
realization of ‘Wiener sausage” is depicted in Fig. 3. Such a definition of 
the Smoluchowski constant is, probably, less convenient for the compu- 
tation of KS,,&) in systems with conventional diffusion than its defini- 
tion in Eqns. (8,9). However, it will be very useful for the explanation of 
results concerning reactions involving polymers transport properties of 
which are non-diffusive. 

Therefore, particles concentrations can be represented as follows. For 
III and IIb the concentration decay is guided by 

Fig. 3. Wiener sausage. Volume explored by a diffusive spherical particle of radius R 
during time t. 
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and for I and IIa one has 
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(19) 

CA(t) cc ji$j (20) 

Let us also note that since the Rosenstock approximation turns out to 
be equivalent to the Smoluchowski approach, one can say that Eqns. 
(19,20) represent lower bounds on the decay laws, i.e. concentrations 
decay not faster than the dependences predicted by Eqns. (19,20). 

To close this section we would like to remark that for a long time the 
Smoluchowski approach was the basic starting point for the analytic 
treatments of kinetics in different chemical systems involving diffusive 
particles [l-6]. Subsequent works extended it in various directions, 
including the long-range potential interactions between particles of re- 
actants [14,42,43], examination of short and intermediate time correc- 
tions [l-6], especially in low dimensional systems, as well as the correc- 
tions caused by particle-solvent interactions and granularity of solvent 
[17-201. The Smoluchowski approach has been also extended for the 
description of reaction kinetics in fractal systems [12,22,44-47] and 
reversible chemical reactions [48-l. However, the basic idea that one can 
use the space-variable independent “law of mass action” and calculate 
the rate constant using Fick’s law with corresponding boundary condi- 
tions has always been kept. Therefore, it came as a great surprise that 
the Smoluchowski approach is in principle incorrect in describing the 
long-time kinetics of certain chemical reactions. The point is that for 
several reactions even small thermal fluctuations in particles concentra- 
tions drastically influence the long-time kinetics ultimately resulting in 
non-traditional behavior. In the next section we will consider two par- 
ticular reactive systems with fluctuation-induced long-time behavior 
which cannot be understood and reproduced in terms of conventional 
approaches. 

2. EFFECTS OF SPATIAL FLUCTUATIONS ON THE REACTION 
KINETICS IN THE “SIMPLEST” CHEMICAL SYSTEMS 

In this section we examine the influence of fluctuations in particles 
concentrations on the kinetics of bimolecular reactions I-III taking place 
in the “simplest” chemical systems. 
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2.1 Effects of fluctuations on the kinetics of recombination and binary 
reactions 

Let us first analyze the influence of fluctuations on the kinetics of the 
recombination reaction Ha. Consider a reaction bath with particles A and 
B, presented at equal mean concentrations C(O). Particles A and B diffuse 
and react when they approach each other at separation R. Suppose that 
initial spatial distributions of particles were perturbed by thermal fluc- 
tuations, so that fluctuations in particles concentrations are Gaussian 
and delta-correlated. Initial pairwise correlations (Eqn. (4)) are then 
given by 

PA‘,&O) = P&,0) = C(0) 6(h) ; P/&,0) = 0 

We begin with some illustrative estimates of the reaction kinetics in 
such a system and then present more subsequent approaches. 

Let us select in the reaction bath some spatial domain of linear size 4 
and corresponding volume cd. In an initial state with equal mean concen- 
trations of the two species, the numbers of A’s and B’s in this domain are, 
respectively, 

NJO) = C(0) (“l+ [C(O) yv2, A$@) = C(O) cd + Kw) sdP2 

where the first term stems from the contribution of the mean concentra- 
tion and the f terms represent typical fluctuations in particle number in 
a volume cd. 

Particle numbers in this domain evolve as follows. Until time tr = (2/D 

only those A and B react which were initially placed in the vicinity of each 
other. At times t greater than tr one can expect complete diffusive mixing 
of particles within this domain. Since particles disappear in pairs, the 
first terms in the latter equations will cancel and one will have a rest of 
particles of one type, which were initially presented in excess. This excess 
concentration is proportional to [C(O>(d] i’2. At t = tc such a behavior occurs 
in every domain of size 6, and, therefore, the entire reaction bath at time 
tc will be divided into domains < containing either A or B particles. 
Therefore, the mean concentration equals this local concentration, 

CA(t) = C&) Ot 
fluctuation of number of particles in the domain 

volume of the domain 
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As time evolves, greater and greater domains are involved since 
diffusion smooths inhomogeneities at larger and larger scales. One can 
assume that the typical domain’s size grows with time as a. Substitut- 
ing this scaling law into the latter equation one arrives at the following 
estimate [53-591 

C&) = CBW Oc cm 

This estimate of the typical behavior of particles concentrations due 
to spatial fluctuations indicates that in systems with spatial dimension- 
ality d less than 4 the decay of observables follows a slower time depend- 
ence as compared with the predictions of the formal kinetic scheme and 
the Smoluchowski approach. It means that spatial fluctuations in parti- 
cles distributions become essentially important over long times and the 
description of the recombination reaction kinetics in terms of the law of 
mass action with the chemical rate constant or the Smoluchowski rate 
constant is incorrect. 

Below we will present another approach to the description of the 
fluctuation-induced kinetics of recombination reaction (IIa), based on the 
analysis of the coupled equations describing the evolution of mean 
concentrations and hierarchy of correlation functions. As we have already 
mentioned, due to the non-linearity of the local reaction-diffusion equa- 
tions (l-3) the evolution of the observables is coupled to the evolution of 
the pairwise correlations. The pair-wise correlations are coupled to the 
third-order correlations. In turn, the latter are coupled to the fourth-order 
correlations and so on. Exact solution of this hierarchy is, of course, 
impossible and it has been clearly pointed out by earliest investigations 
[l-6]. However, one can devise an approximate method 1541 for dealing 
with this hierarchy. 

The system under consideration starts from the initial state which is 
characterized by Gaussian fluctuations. Diffusion of species can only 
smooth inhomogeneities and cannot give rise to the appearance of singu- 
larities in the fluctuation spectrum. Therefore, one deals with a system 
fluctuation spectrum which remains nearly Gaussian at all times. In view 
of this it seems natural to expect that, likewise for systems with Gaussian 
fluctuations, correlation functions of the fourth order decouple into the 
product of pairwise correlations. One can check that then the equations 
which govern the evolution of the third-order correlations have only 
trivial solutions, i.e. the latter are exactly equal to zero in the entire time 
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domain [60,61]. Therefore, within such an assumption one gets an en- 
closed, with respect to the average concentrations and the pairwise 
correlations, system of differential reaction-diffusion equations, which 
can be solved analytically. Similar arguments for the evaluation of Eqn. 
(21) were invoked in [45]. Moreover, it was proved that such an approach 
leads to the definition of the rigorous upper bound on the mean concen- 
tration and this bound differs from the exact result only by a numerical 
factor [40]. 

The long-time forms of the pair-wise correlation functions have been 
obtained in the case of equal particles diffusivities in 1541 and in the case 
of unequal diffusivities in [621. It was found that PAB( 1 h 1 = R,t) in Eqn. 
(4) at times t sufficiently large decreases diffusively 

P,<IW=W= - 
ao) 

(D+t)d'2 
cm 

Substituting (22) into (4) one arrives at the rate equation with the same 
structure as the “law of mass action” but with algebraically decreasing 
with time source term, which accounts for the evolution of the pairwise 
correlations. Due to the presence of the correlation-induced source term 
the long-time asymptotic solution of Eqn. (4) is no longer C(t) = l/t, but 
is governed by the decay of correlations [54], 

C(t) 0~ + P&k = R,t) = m (Dt)d’4 (23) 

i.e. is described by the asymptotic form in Eqn. (21). 
Next we would like to make several remarks on the approach in [54]. 

At long times Eqn. (4) predicts a correct fluctuation-induced behavior of 
the observables. However, at intermediate times this approach leads to 
the formal kinetic scheme result irrespective of the relation between 
K chm and SC. This obvious shortcoming is caused by the approximation 
invoked for the enclosure of the reaction-diffusion equations. In fact, for 
small values of h the third order correlations are not equal to zero. It was 
shown in [60,61] that small-h behavior of the third-order correlation 
functions is very important for the description of small and intermediate 
time behavior of the observables. Taking into account small-h behavior 
of the third-order correlations one arrives at the correct Smoluchowski-- 
like renormalization of the reaction constant. Eventually, one obtains the 
modified rate equation of the form [60,611 
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dC(t) &~rrdh.em -- 
dt - - KSmol + Kchem 

[C2@) + P( 1 h 1 = WI 

which describes both the long and intermediate time behavior correctly. 
A similar approach, modified with respect to the physical conditions, was 
subsequently applied for the description of many-particle effects in the 
kinetics of reactions with different types of initial correlation spectra 
[47,60,61] involving charged particles [60,63], reversible chemical reac- 
tions [60-65] and reactions in fractal media [47,60]. 

Therefore, we have shown that the long-time kinetics of IIa are driven 
by the evolution of the pairwise correlations. The obtained results repre- 
sent some new type of reaction kinetics mechanism: correlation-induced 
kinetics. In this sense the term “diffusion-controlled” kinetics becomes 
slightly meaningless and one should distinguish between “diffusion-con- 
trolled” kinetics in terms of the Smoluchowski approach and “diffusion- 
controlled” correlation-induced kinetics. 

It is worthwhile mentioning that “correlation-induced” kinetics are 
rather sensitive to the physical conditions. The correlation-induced slow- 
ing down of the recombination reaction kinetics is supported mainly by 
two different factors: sign of relevant correlation function (in the case 
under consideration observables are coupled to the A-B correlation 
function) and the rate at which these correlations decay. For IIa reaction 
the A-B correlations are negative, i.e. particles of unlike species tend to 
repel each other (in contrast, correlation functions of like species, say, 
A-A correlations, are positive, i.e. like species segregate). Since the time 
derivative of mean concentration (Eqn. (4)) is proportional to -Pm(t) > 0 
the negative correlations slow down the decrease of mean concentration. 
Besides, it is very important that correlations decay diffusively, i.e. as 
td12, and thus have higher “resistivity” with respect to reaction than the 
intrinsic rate and the Smoluchowski mechanism. It means that diffusion 
is an ineffective mechanism of mixing and fails to smooth spatial fluctua- 
tions. As a consequence, correlations control the elementary reaction act 
and thus the kinetics of the recombination reactions. However, if we 
consider systems in which, initially, particles A and B were distributed 
not independently of each other but presented in correlated AB pairs we 
find completely different behavior. Pairwise A-B correlations are again 
negative, i.e. slow down the reaction kinetics, but do not change the 
kinetic law, since Pm(t) decays faster than diffusively, Pm(t) = -t-ldi2. 

Long-time solutions of Eqn. (4) are thus described by either the formal 
kinetic scheme or Smoluchowski approach (depending on the spatial 
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dimensionality and the relation between rate constants) while correla- 
tions induce only vanishing with time corrections. 

For the irreversible binary reaction I one can also evaluate the analo- 
gous closed reaction-diffusion equations, which account for the evolution 
of the pair-wise correlations in the system. However, in contrast to the 
recombination reaction, the behavior of the mean particles concentration 
obeys the mean-field decay laws at all times. The reason for such a 
behavior is as follows: mean concentration of A particles is coupled to the 
A-A correlation function, which is always positive and thus can only 
accelerate the reaction kinetics. But, in this case, correlations decrease 
as t-2df2, i.e. at a slower rate than the square of the dependence in Eqn. 
(7). Therefore, mean-field theory prevails and correlations give rise only 
to the vanishing correction terms. 

Let us also make an important remark that, within the descriptions 
in terms of conventional approaches - the formal kinetic scheme and the 
Smoluchows~ approach, there is no difference in the kinetic behavior of 
the binary reaction and the kinetics of recombination reaction with equal 
initial concentrations. Both approaches predict the same type of time 
dependences for I and IIa. However, this distinction exists and stems from 
the behavior of correlations in the reactive system. For recombination 
reaction these correlations are decisive at long times and govern the 
long-time reaction kinetics, while for the binary reaction correlation 
effects are irrelevant. 

2.2 Efsrects of ~uct~ati~ns on the Kinetics of trapping reactions 

Trapping reaction III exhibits a fluctuation-induced behavior only in 
the particular case when traps are immobile, i.e. D, = 0, and randomly 
scattered in space [66-711, Below we will present an estimate of fluctua- 
tion-induced asymptotics of CA(t) using the “optimal fluctuation” method. 

Random spatial ~st~bution of traps is characterized by essential 
fluctuations in the trap’s local concentration. There are some regions with 
anomalously high concentration (greater than mean value C,) and, at 
the same time, domains with anomalously low concentration of traps (Fig. 
4). If one assumes Poisson distribution of traps in space the probability 
of having a spherical void (Fig. 4) of radius c with no traps at all will be 
given by 

(24) 
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L 

Fig. 4. Trap-free void in system with randomly placed immobile traps. 

where the term in the exponent is equal to the mean number of traps in 
the void of size C,. Next, let us imagine one particle A which has occurred 
at zero time at the center of a trap-free void. The particle diffuses freely 
in such a void until it reaches the void’s boundary. One can think that 
trapping occurs as soon as it reaches the boundary. The probability that 
this particle A survives until time t is then the probability that the 
diffusive particle will remain inside the void until time t. The latter reads 

P(<,t) 0~ exp(-Dt / c2) (25) 

Suppose next that one has some concentration of A particles. Apparently, 
at long times only those particles will survive that have appeared initially 
in sufficiently large trap-free voids. One can write the following estimate 
for the mean concentration of A particles, 
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where averaging extends over all voids, i.e. 

d-1 exp L-C, c”E - Dt / c2] 

The integrand in the latter equation is a bell-shaped function and one 
can analyze the behavior of the integral using the steepest descent 
method. The maximum of the integrand is approached at 5 = c*(t) (void 
of “optimal size” at time t), which grows with time in proportion to t”(d+2). 

Replacing the integrand by the Gaussian centered at c*(t) and integrat- 
ing, one arrives at the decay form [66-711 

oc - (r(t))d oc - C$‘d+2 (Dt)d’d+2 (27) 

which exhibits a slower time dependence than that predicted by the 
conventional approaches (Eqns. (11) and (15)). This behavior is domi- 
nated essentially by many-trap effects and cannot be understood on the 
basis of the mean-field theories. 

2.3 Estimates of the crossover times and reaction depths 

For 3d reactive systems let us estimate the “crossover” time tcros from 
the mean-field behavior predicted by standard approaches to the fluctua- 
tion-induced asymptotic forms. We begin by estimating the time when 
the Smoluchowski dependence in Eqn. (12) is changed by fluctuation-in- 
duced asymptotic form (21). On comparing these decay laws we find that 
this time is of the order of t,,, = R2/Ds2, E = C(0)R3, i.e. is inverse 
proportional to the square of the initial volume fraction E of reactants 
and, thus, in diluted systems can be very large. The more informative 
parameter is the reaction depth which defines the concentration of 
particles present in the system at time t,,,. For the recombination 
reaction the reaction depth at time t = t,,, is given by C(t,,)/C(O) 0~ E. It 
means that an extremely small amount of species will survive until time 
t c~~‘os, i.e. conventional approaches will correctly describe the reaction 
kinetics during a large time domain and, moreover, of the conversion of 
the bulk of reactive species. Only a very small amount of active particles 
will decay via the fluctuation-induced law in Eqn. (21). 
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In the trapping problem the situation is even worse (from the view- 
point of many-particle effects). The crossover time depends algebraically 
on the volume fraction sc of traps, t,, = R2/D~&‘2 but the amount of 
particles A surviving until this time is exponentially small, Ct~~~~)/C(O) 
0~ exp(-&E1’2). To our knowledge, there is no experimental evidence of 
observation of anomalous fluctuation-induced laws in three-dimensional 
systems. In low-dimensional systems the crossover time is smaller and 
the amount of particles surviving until this time is greater than in three 
dimensions. The crossover from the dependences predicted by the con- 
ventional approaches to the fluctuation-induced asymptotics have been 
observed in numerical simulations [44,45,55-581 and also experimentally 
[72-741. 

Summing up the results presented in this section, we conclude that 
~uctuations, ra~do~ess and many-panicle effects can influence signifl- 
cantly the kinetics of chemical reactions and lead to non-traditional 
behavior. The two particular cases we have mentioned are not the only 
examples of reaction schemes in which correlation effects are important. 
For example, recent studies of reversible reactions I-III have indicated 
that irrespective of the physical conditions - e.g. different initial rela- 
tions between mean particles concentrations, charged or neutral reactive 
species, different types of initial correlation spectra - the long-time 
kinetics are governed by fluctuation effects. Mean-field considerations, 
based on the extensions of the Smoluchowski approach predict an expo- 
nential relaxation of particle concentrations to their equilibrium values. 
It was recognized that in contrast to the mean-field predictions, particle 
concentrations approach the equilibrium as a power-law [21,60-65,751 
as a consequence of fluctuation effects. Some alternative treatments of 
reversible reaction kinetics leading to the power-law long-time behavior 
are presented in [28,76-791. 

These fluctuation-induced deviations from the traditional behavior 
are, probably, of more theoretical than practical interest since they can 
only be observed at very large times when the bulk of reactive species is 
deactivated. However, as we set out to show in the remaining part of this 
paper, effects of such a type become extremely important from the earliest 
stages of reaction in systems in which particles execute subdiffusive 
random motion or the interparticle correlations are enhanced by the 
geometrical factors. 
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3. EXTENSIONS OF THE SMOLUCHOWSKI APPROACH TO THE 

REACTION KINETICS IN POLYMER SYSTEMS 

In this section we will consider extensions of the Smoluchowski ap- 
proach to the kinetics of transport-controlled reactions in systems with 
polymers. In the first part of this section we will present results on the 
kinetics of bimolecular chemical reactions I-II involving active particles 
attached to passive polymers (Fig. 1). This analysis was first performed 
by de Gennes in his classic papers 1311 on the kinetics of diffusion-con- 
trolled processes in dense polymer systems. In the second part we will 
extend the Smoluchowski-de Gennes approach for the description of 
homopolymerization reactions in systems with transport limitations. 
Finally, in the third part we will examine kinetics of trapping reactions 
III in systems with diffusive monomeric particles A and polymerized 
traps (Fig. 2). 

3.1 De Gennesj approach to the kinetics of bimolecular reactions with 
participation of polymers 

Consider kinetics of chemical reactions involving chemically active 
groups which are attached to long flexible polymer chains (one active 
group per chain) in polymer solution (Fig. 1). Polymers migrate and thus 
active particles also migrate. Reaction between active particles occurs 
when they approach each other at separation R. 

The first analytic description of reaction kinetics in such systems was 
proposed by de Gennes 1311 who has’ reconsidered and generalized the 
Smoluchowski approach in order to incorporate the effects of polymers 
on the reaction process. He has shown that behavior of the Smoluchowski 
rate constant is controlled entirely by the form of random function (xz<t>), 

which describes the mean-square displacement of an active group at- 
tached to a polymer chain. Here we will illustrate his results using a 
conceptually related approach based on Eqn. (18). 

(a) Behavior of the Smoluchowski constant in case of non-diffusive 
random motion 

In de Gennes’ picture the crucial distinction between the reactions in 
the “simplest” chemical systems and the systems with active particles 
attached to polymer chains stems from the fact that transport charac- 
teristics of active groups involved are quite different. In the “simplest” 
chemical systems particles execute conventional diffusive motion with 
the mean square displacement growing in time as (X?(t)) = t. The motion 
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of particles attached to flexible polymer chains is also random but has a 
more complicated nature than conventional diffusion and is dependent 
on different factors, such as the chain’s length L, the chain’s internal 
relaxation modes, quality of the solvent, concentration of polymers and 
entanglement effects. As a rule, the mean square displacement of a 
polymer segment, i.e. of an active particle, exhibits sublinear (subdif- 
fusive) growth with time 

(X2(t) ) oc t”, v < 1 (28) 

for times t less than tChr = Lp, where the exponents v and p depend on 
the above-mentioned factors. Only at times t greater than tchar does the 
motion of the active particle become diffusive, i.e. the diffusive law (X2(t)) 
DC D(L)t is restored, with, however, the diffusion constant being a decreas- 
ing function of the chain’s length L. 

Let us estimate the volume VR(t) (Fig. 3) explored by a particle which 
executes random walk characterized by the mean square displacement 
in Eqn. (28). The only parameter that controls the behavior of this 
function is the value p= dv/2. Depending on the value of ~1, p > 1 or 1 c 
1, the volume V’(t) exhibits two substantially different types of growth, 
connected with different statistics of returns (recurrency) of random walk 
executed by particle. In the first case, when lo. > 1, the mean number of 
returns to the starting point (or any other point of the trajectory) tends 
to the constant value as time tends to infinity. If one examines how 
random walk with such properties fills the spherical volume Vdt) of 
radius m (Eqn. (28)), one finds that the volume of the Wiener 
sausage is essentially smaller than the volume V’t), i.e. the particle 
explores only a small part of the volume VR(t). This type of motion was 
called by de Gennes “non-compact exploration”. In the opposite case, 
when the parameter p c 1, the mean number of returns to any point of 
the trajectory grows with time as tl+. Therefore, during time t the 
particle visits nearly all the points in the volume Vdt), i.e. VR(t) = Vx<t>. 
This case was called the case of “compact exploration”. In the case of 
non-compact exploration V&) grows linearly with time. In the case of 
compact exploration V’(t) grows sublinearly with time, V’(t) 0~ P. 

Employing Eqn. (18) one gets the following estimate for the time-de- 
pendence of the Smoluchowski constant in the cases of non-compact and 
compact explorations respectively 

Ksml(t) 4 constant, t + 00, p > 1 (29) 
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Let us now return to the case of diffusive particles, considered in 
Section 1. In 3d one has p = 312 and, thus, the case of non-compact 
exploration with SC which tends to the constant value as t + 00 (10,29). 
In Id systems the value of p is less than unity and we have the case of 
compact exploration with SC being the decreasing function of time. From 
the results of Section 1 one can infer that in the marginal case p. = 1, (d, 
= 2/v, one will have the logarithmic decrease of SC. Similar ideas, but 
otherwise stated, were invoked for the description [44--47] of bimolecular 
reactions taking place in fractal systems. In such systems, characterized 
by non-integer spatial dimension Df, the random motion of particles is 
characterized by anomalous diffusion law, similar to that in Eqn. (28). In 
the generally accepted notations it is written as J@)+t) = t, where D, is 
the so-called fractal dimension of random walk. For the conventional 
diffusive motion taking place in systems with integer dimensionality D, 
= 2. An analysis of SC behavior leads to Eqn. (30) with l.~ = Df/Dw, d, = 
D,. This dependence has been confirmed by numerical simulations of the 
reaction kinetics taking place in fractal systems [12,44,45]. 

Finally, let us note that anomalous behavior of SC in systems with l.~. 
< 1 is also the consequence of fluctuations in spatial distributions of 
reactants [801. However, these fluctuations have quite a different nature 
compared with the fluctuation states considered in Section 2. Below we 
will illustrate this statement using the same type of arguments which 
were employed for evaluation of the estimate in Eqn. (21). Consider a 
d-dimensional system with binary reaction, A +A + P, involving particles 
A which execute random walk characterized by Eqn. (28) and react when 
they meet each other with unit probability (Kchem = ->. Consider next in 
the reaction bath some spherical region of radius 6 and volume cd 
containing some amount of particles A. At time tc = 5% one can expect a 
complete mixing of particles A in this region. Therefore, at time tc all 
particles A presented in this region will react. Therefore, there will be no 
particles A if the initial number of particles was odd and a single A 
particle, if this number was even. At time tr such a behavior occurs in 
every region of size 5. Thus, particle concentration will be C = l/cd. If 
spatial dimensionality d is less than d, = 2/v the size < will grow with 
time as c = t”“, and, therefore, C(t) 0~ l/tdv’2. The Smoluchowski constant 
is the derivative KS,&) = d(l/C(t))/dt 0~ tll-l, i.e. one recovers the result 
in Eqns. (30). Thus, the fluctuation states which support an anomalous 
behavior of particles concentrations and the Smoluchowski constant in 
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systems with ~1 5 1 are the fluctuations of the odd-even number of 
particles in certain volumes. 

(b) Rouse and reptation models of polymer dynamics 
Let us now discuss the possible values of the parameter v in the case 

of reactions involving active particles attached to warmlike polymer 
chains. In [311 de Gennes has considered two models of polymer chain 
dynamics - the Rouse model [811 and the reptation model 182-841. 

In the Rouse model the polymer chain of length L is represented as a 
set of N beads successively connected by harmonic springs. The mean 
distance between beads is equal to I, L = IN. Each bead is subject to 
uncorrelated random forces (Langevin source) which mimic the effect of 
solvent on the chain’s dynamics. If one tags one bead of a Rouse chain, 
e.g. by placing an active group, and follows its motion, the observed 
behavior of the mean square displacement will be as follows. For times t 

less that tchar 0~ L2, p = 2; the mean square displacement will be governed 
by Eqn. (28) with v = l/2. For times greater than tchar the mean-square 
displacement will be described by diffusive law, i.e. by Eqn. (28) with v = 
1 and L-dependent diffusive constant. Combining these expressions and 
Eqns. (29,301 one obtains the following results, 

KSmol(t) = t-1+d’4, t I tchar (31) 

and at times greater than the characteristic time SC is defined by Eqns. 
(10,13) with, however, the reaction radius equal to the polymer’s gyration 
radius, R = Lv2, and the diffusion constant D(L) = L-l. Therefore, the 
Smoluchowski-de Gennes approach predicts that the steady state SC 
decreases with L as 1 /c. 

Therefore, one finds that in systems with particles of reactants at- 
tached to Rouse polymers the reaction kinetics follows an anomalous 
behavior within a large time domain t c tchar = L2. This behavior is 
described* by Eqns. (19,201 with V’(t) 0~ p4. At long times, i.e. times 
greater than tchar the decay of particle concentrations is described by the 
dependences in Eqns. (11,12,14,15) with D = l/L and R = L*2. 

* The intermediate time behavior of I and IIa described by Eqn. (20), CA(~) = l/td4, is 
specific for bimolecular reaction involving active particles attached to Rouse polymers 
and should not be confused with the fluctuation-induced long-time dependence in Eqn. 
(21), describing IIa reaction involving monomeric particles. Equation (20) is essentially 
mean-field result and the coincidence of its functional form with Eqn. (21) is accidental. 
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The second case considered in [311 is the model of reptation - an 
approximate description of the dynamics of a polymer chain in the 
presence of fixed randomly placed obstacles. The intrinsic properties of 
the polymer are represented by the Rouse model, i.e. beads connected by 
harmonic springs and being under the action of Langevin delta-corre- 
lated source. The obstacles impose topological constraints on the chain’s 
motion -the chain can cross neither of them. This model was formulated 
by de Gennes [821 and was subsequently applied to melts and solutions 
by Doi and Edwards [XI]. The reptation picture of the chain’s motion is 
based on the following consideration. For a given conformation of a 
polymer one can draw a primitive path, i.e. the shortest path connecting 
the two ends of the chain with the same topology as the chain itself 
relative to the obstacles. The motion of the chain in the direction perpen- 
dicular to the primitive path is strongly hindered by obstacles and occurs 
primarily along the primitive path with new regions explored only by the 
ends of the chain. Such a type of polymer chain motion was called 
“reptation”. The reptation picture predicts the following behavior of the 
tagged bead of a polymer chain. At the intermediate time (t < tChdr = L3, 
i.e. is greater than that in the Rouse model) the bead’s mean square 
displacement is guided by Eqn. (28) with v = l/4. At times greater than 
t char the conventional diffusive behavior (v = 1) is established with the 
diffusion coefficient D(L) = 1/L2. 

Therefore, if one considers the reaction kinetics in systems with 
reptation motion of polymers, one will obtain the following results for the 
Smoluchowski constant 

K&l,&) Oc t- 1+d’8, t I tchar (32) 

and Eqns. (10,13) (with D = Lm2 and R = Lu2, i.e. in three dimensions 
K s?rwl 0~ L-3/2) for times greater than the characteristic time. Conse- 
quently, the reaction kinetics at times t < tchar will be governed by Eqns. 
(19,20) with V&) growing as t d8 At long times the decay of particles . 

concentrations will be governed by dependences in Eqns. (1 l-15) with D 
0~ LT2 and R = Lu2. 

Considered models of polymer dynamics are quite realistic. Measure- 
ments of tracer diffusion coefficients and of viscosities (e.g. [861> in melts 
of polymers with a sufficiently low value of L, as well as numerical 
simulations [87,88], show molecular weight dependences and the inter- 
mediate times dynamics of polymers that are consistent with predictions 
of the Rouse model. The reptation picture has proven to be highly 
successful in describing the dynamics of entangled flexible chain poly- 
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mers in concentrated solutions of sufficiently long chains [89]. On the 
other hand, some recent numerical and analytical analysis of polymer 
dynamics in porous media indicate [88] the appearance of some devia- 
tions from the predictions of these models. It was found that the maximal 
relaxation time (tchar in our notations) grows with L at a faster rate than 
is predicted by the reptation model, tchar 0~ L2. It was conjectured [90] that 
this dependence can be even exponential strong due to effects of temporal 
trapping of polymers in random cavities with anomalously low porosity. 
Consequently, the dependence of the diffusion constant on the chain’s 
length can be stronger and the mean square displacement smaller than 
is predicted by the Rouse and the reptation models. This question is not 
yet completely understood and requires a careful experimental or ana- 
lytical analysis. In any case, the Smoluchowski-de Gennes approach is 
quite general and is not restricted to these particular models. Therefore, 
experiments on the reactions kinetics in systems with polymerized active 
particles can serve as an additional tool for characterizing polymer 
dynamics in disordered media. 

To conclude this section, we have illustrated the results of the 
Smoluchowski-de Gennes approach to the kinetics of bimolecular reac- 
tions involving active particles, which do not diffuse freely in the reaction 
bath but are attached to polymers in polymer solution. We have shown 
that this approach predicts an anomalous kinetic behavior as compared 
with the kinetics in the simplest chemical systems. At the intermediate 
times this anomalous behavior is associated with the internal relaxation 
times of the macromolecules and, as a consequence, with non-diffusive 
random motion of reactants. Let us emphasize the crucial point that in 
the case of “compact exploration” motion the rate constant is independent 
of the reaction radius and decreases with time. Therefore, as we have 
mentioned in Section 1, the behavior of the apparent rate constant is 
controlled only by random transport of the reactive species to each other 
and the chemical rate is irrelevant. This is the reason for inferring [31] 
that kinetics of bimolecular reactions involving particles attached to 
polymers are transport-controlled. Within the large-t limit, i.e. at times 
greater than the maximal relaxation times of the macromolecules, in 3d 
systems rate constants approach steady state values. However, these 
values are inversely proportional to the powers of polymer lengths L and, 
therefore, KSmol can be essentially smaller than chemical rate Kchem and 
hence control reaction kinetics. The decay laws at large times are char- 
acterized by Smoluchowski-like time dependences in Eqns. (11,12,14,X) 
with L-dependent reaction radius and diffusion constant. 



28 

3.2 Polymerization reactions in systems with transport limitations 

The polymerization process is described by the following reaction 
scheme 

AN + AM -+ AN+M 

i.e. is the set of parallel bimolecular binary reactions involving different 
molecules AN, where AN stands for a polymer of the molecular weight N 
(an N-mer). 

The state of the system is characterized by the molecular weight 
distribution (MWD), P(N,t). This property defines the probability (or 
concentration) of having an N-mer at time t. The temporal evolution of 
P(N,t) is guided by the kinetic coagulation equation 

dP(N,t) 1 

at 
= 5 c Pt&t) P(J,t) W,4 - P(N,tl c P(J,t) WN,J) 

I+J=N J=l 

(33) 

where K&J) is the overall rate at which an I-mer reacts with a J-mer. 
The form of K&J) is controlled by two factors. One of them is the 

chemical rate, which defines the elementary reaction act - synthesis of 
a large macromolecule from two smaller polymers being at contact. This 
rate is dependent on the particular details of the process-activation 
barrier, molecular weights of polymers and a number of active groups in 
a polymer. The second factor stems from the transport limitations - in 
order to react polymers have to meet each other within a random 
migration process. 

The effects of transport limitations on the kinetics of polymerization 
reactions have been the focus of interest for a long time. In [91-931 it was 
mentioned that the behavior of P(N, t) in systems with randomly movable 
polymers must be quite different to that in systems with perfectly stirred 
macromolecules. In systems with transport limitations smaller molecules 
migrate at a faster rate than the larger ones and thus have a higher 
probability of reacting. This must result in a depletion of small molecules 
in the system. For very long chains again there is a deficit because their 
diffusivities are very small. Therefore, it is expected that the MWD is a 
bell-shaped function of the molecular weight N centered around the most 
probable polymer weight N(t), which grows with time. In this chapter we 
explore the Smoluchowski-de Gennes approach and an idea of “compact 
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exploration” motion of active groups involved, in order to obtain the 
kinetic description of homopolymerisation reactions in 3d systems with 
transport limitations. We set out to show that within such an approach 
the forms of P(N,t) can be found analytically [941. 

Using the results of the Smoluchowski-de Gennes approach, we as- 
sume that the influence of polymer transport on the polymerization 
kinetics can be captured by introducing to the Smoluchowski constant 
the parameters that are specific for polymers, i.e. we stipulate that the 
Smoluchowski constant has its usual form in Eqn. (lo), i.e. Ks,,.Jl,J> 0~ 
R(I,J)D(I,J), where D(I,J) is the sum of diffusion coefficients of an I-mer 
and a J-mer, D(I,J) = D(I) + D(J); and the reaction radius R(I,J) is the 
sum of polymers’ gyration radii, R(I,J) = RQ + R(J), R(J) = 2. Such an 
assumption is also supported by recent calculations of the Smoluchowski 
constant in a system of long rod-like molecules [93]. As we have seen from 
the Rouse and reptation models of polymer dynamics, the diffusivity of a 
polymer is a decreasing function of its molecular weight. In our consid- 
eration we stipulate that it is either an algebraic function, D(fl= I-J’, with 
p > z, or a stretched-exponential function [go], 00 = exp(-dq) with Q > 0. 

Correspondingly, the Smoluchowski constant depends on I and J as 

with 

fi=I-T a=p-z>O (34) 

or 

fi = exp(- dq) (35) 

Let us next estimate the resistivity of the elementary act and transport 
of polymers to each other. Suppose that the system under consideration 
starts from the initial monodisperse distribution, 

FyN,t = 0) = 6,Jv W-3 

where &la is the Kroneker delta, i.e. initially only monomeric particles 
are present in the system. Suppose next that for monomers Kch,,(l,l) cc 
KSmol(l,l). As time evolves small molecules react and form larger ones, 
so that there appears some typical size of the macromolecules I(t) corre- 
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spondent to the time scale. Let us note that the Smoluchowski constant 
decreases with an increase of the polymer’s weight, while the chemical 
constant under most conditions increases with an increase of the molecu- 
lar weight. It means that after some time t*, such that K&,(l(t*),l(t*)) = 
Ks,,,(l(t*),I(t*)), the transport of macromolecules to each other will gain 
a progressively higher resistivity than the chemical rate, i.e. kinetics of 
polymerization will be controlled by the Smoluchowski constant and thus 
transport-controlled. Therefore, we stipulate that polymerization kinet- 
ics, at sufficiently large times, are described by Eqn. (33) with 

given by either Eqn. (34) or by Eqn. (35). 
The solutions of equations similar to Eqn. (33) have been analysed 

using scaling arguments in [95,96] for algebraically decreasing kernels 
in Eqn. (34). However, it turns out [94] that Eqn. (33) can be solved 
explicitly for arbitrary kernels fl, which decrease with an increase of I. It 
was found [94] that the MWD P(N,t) has the multinomial form 

(37) 

where the prime means that the summation extends over all possible 
integer and positive solutions (aN) of the Diophant equation 

lal+2a2+3a3+...+NaN=N 

and the function 

l-J=- 
exp [- W fJ 

J 

The time scale Z’(t) is given by Z’(t) = & M&W, M,-,(t) being the zeroth 
moment of the MWD 

The evolution of M,(t), in turn, is governed by the closed non-linear 
equation 
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aM,<T> 
?lT 

= - M,(T) j d-x F(x) 

0 

O” exp(-J=--TfJ) 
c J 
J=l 

(38) 

where F(z) and fJ are related to each other by Laplace transformation 

The large-T solutions of Eqn. (38) can be found as follows. For the 
algebraic dependence in Eqn. (34) one has asymptotically 

dM,(T) M&9 
DC-- 

dT aT 

This differential equation can be integrated, MT(t) oc If-, dt M,(t), and 
yields, 

M,(t) oc t - l’(l+@ (39) 

This is exactly the result obtained by means of scaling arguments in 
[95,96]. Let us also examine the form of the MWD in the limit of small 
molecular weights N (or large times). The large-T behavior of P(N,T) is 
supported by the term with the smallest eigenvalue, i.e. by the solution 
{uN} of the Diophant equation with the configuration ak = 0, k = 1,2,..., 
N-l;aN= 1. For this, P(N,T) reads, 

P(N,W)) = M,(t) 
exp [ - T(t)WT 

1 

At large-t limit, T(t) = t “(l+a), the MWD takes the scaling form and can 
be expressed as a function of only one variable X = NM,(t). For X << 1, 
the solution of Eqn. (33) is the following bell-shaped function 

WV,0 = J&t) 
exp (-X-“) 

x 

This result also coincides with the scaling prediction [95,96]. 
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For the case of purely exponential kernels (Eqn. (35) with q = 1) 

d&,(T) W,(T) 
dT =-Tlog(T) 

Being integrated it yields the following relation between M,(T) and T, 
M,-,(T) = l/log(T), and, consequently, entails the following large-t behavior 

M,,(t) = 1 
log(t) 

Finally, for stretched-exponential kernels we obtain 

M,(t) = ’ 
log1’4(t) 

(40) 

(41) 

Therefore, we have shown that transport limitations can influence 
dramatically kinetics of polymerization reaction. They slow down the 
decay of the concentration of different polymers, M,(t), as compared with 
the systems without transport limitations* and thus slow down growth 
of the average polymer size. Besides, the presence of transport limitations 
results in the change of functional form of the molecular weight distribu- 
tion: it becomes a bell-shaped function of N, in contrast to the monotonic 
dependence in systems without transport limitations. 

3.3 Trapping reactions in polymer systems. Mean-field approach 

Consider a frozen polymer solution in which immobile polymers are 
presented at mean concentration n,h. Each polymer of length L contains 
N traps C. The mean distance between particles along the chain is 1 = 
L/N. We assume that N is sufficiently large so that spatial distribution 
of particles C follows the spatial distribution of polymer chain segments, 
i.e. if the polymer’s gyration radius scales with chain length L as 
(R:(L)) 0~ L% it scales also with N as (I@/)) = N2”. Suppose next that one 
has some concentration of monomeric particles A, which diffuse freely 
and are annihilated as soon as they approach at distance R any trap C 
placed at any polymer (Fig. 2). Here we will examine the kinetics of 
trapping reactions in such systems in terms of a mean-field 

* K(Z,J) is nonvanishing function of Z and J and MO(t) decays not slower than l/t. 
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Smoluchowski-like approach. Let us assume that concentration of poly- 
mers is small enough so that polymers do not overlap and one can neglect 
screening of traps placed on one polymer by traps placed on other 
polymers. Then, following Smoluchowski, we write the mean concentra- 
tion of particles A as 

at) - = exp 
C(0) 

t dt Ks,,JN,t) 
I 

(42) 

where K,,,.J N,t) is the rate at which diffusive particles A react with a 
single polymer chain containing N absorbing beads C. To calculate this 
rate constant we employ the usual Smoluchowski scheme in Eqns. (8) 
with the modified absorbing boundary condition in Eqn. (8b). In case of 
N traps this boundary condition has zero probability of finding a particle 
A at the surface S(R,) of any ith trap, 

N 

P r c C S(R,), t = 0 I 1 i=l 

The Irate K sml(N, t) is then defined as the sum of fluxes through N reaction 
spheres 

K&,&W = D 5 j VP(r,t) dS(Ri) 
i=l 1 r-ri 1 =R 

where ri is the radius-vector of ith trap. 
Two different approaches to the solution of diffusion equation with 

absorbing boundary conditions on surfaces of N traps arranged in poly- 
mer chain have been proposed [97,98]. The first is based on the random- 
phase approximation and the second on the renormalization group analy- 
sis. Both of them lead to the same result for the rate constant. It was 
found that [97,981 

Ksmol(N,t + -) 0~ R D N’12 (43) 

i.e. it occurs that for traps arranged in a polymer chain the Smoluchowski- 
like rate constant grows at a rate that is sublinear in N. It means that 
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correlations in trap placement induce strong screening eff&cts. Curiously 
enough, this result contradicts apparently quite reasonable intuitive 
arguments. Namely, the mean radius of coil grows with N as m, and 
correspondingly, the mean concentration of traps (segments) drops with 
N as Nld2, i.e. as l/sin three dimensions. Therefore, it seems natural 
to expect that traps do not screen each other, and the overall rate constant 
Ksml(N, t) is the SC in Section 1 multiplied by N. However, it occurs that 
the correlations in the trap placement lead to strong screening which has 
the effect of drastically decreasing the rate constant, i.e. enhancing the 
survival probability of particles A. 

For non-Gaussian chain conformations with z f l/Z it was found that 
[971 

i.e. is simply propo~ional to the radius of gyration. Therefore, it occurs 
that a polymer chain containing N traps is effectively one large trap of 
radius Nz. 

We close this part with an estimate of time-dependent corrections to 
the Smoluchowski-like rate constant in Eqn. (43). It was found that in 
the case of a Gaussian polymer chain the Smoluchows~-like constant 
has the usual form 

l/2 K&&N,t) 0~ 4 z R D N 1 + 
J$#/2 

(flQ1/2 + *** 
I 

with the only difference that the time-dependent correction term is 
proportional not to the trap’s radius R, but to a much greater value - 
the effective radius of a polymer chain. Thus, in contrast to the systems 
with monome~c traps, one can expect the appearance of the kinetic stage 
described by stretched-exponential pattern 1971 

c(t) ____ = exp (- n,h N R2m) 
C(O) 

(44) 

which will be valid until times of order R2N/D. 
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4. INFLUENCE OF FLUCTUATION EFFECTS ON THE REACTION 
KINETICS IN POLYMER SYSTEMS 

4.1 Kinetics of truppi~ reactions in systems of polymerized Pups 

In this section we will reconsider from the viewpoint of many-chain 
effects the model in (3.3) - trapping reaction in the presence of polym- 
erized traps (Fig. 2). Here the concentration of polymers is not assumed 
to be small and the chains can overlap each other. In our analysis we will 
extend simple estimates of Section 2, based on the optimal-fluctuation 
method, to the system under consideration. 

(a) Calculation of the distribution function of polymer-he voids in a 
frozen polymer solution 

We begin with the calculation of the void (chain-free) size distribution 
[99] in a solution of frozen polymer chains (Figs. 5 and 6), presented at 
mean concentration rich. Each chain contains N beads and has a radius 
of gyration (R:(N) ) = N22. 

Fig. 5. Random polymer-free void in polymer solution. 
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Fig. 6. Lattice picture of frozen polymer solution. This realization was built as follows: 30 
lattice sites were chosen at random. Next, from each of these sites we have “grown up” 
freely-jointed chains (random walk trajectories) inning 3000 segments each. No 
excluded volume effects were taken into account. Polymer substrata occupies 40 per cent 
of Iattice sites. 

The probability PUOi&ZV) of having a polymer-free void of radius 5 can 
be written formally as a product of two components 

where the first multip~er is the probability of having no chain ends in 
the void. For mutually-independent chains the distribution of their ends 
is Poisson and one has for Pen&) the usual negative exponential form 
similar to that in Eqn. (241, Pen&) = exp(-nChc% The second multiplier 
in (45) is more complicated. It defines the conditional probability that 
neither chain of length IV, with its end being randomly distributed outside 
the void, crosses the void’s surface. The precise form of this function can 
be understood if we formulate its definition in a slightly different fashion. 
Let us first consider the case of Gaussian chains. 

Suppose that one has a single immobile sphere of radius 6 placed in 
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the “sea” of infinitesimal particles C, distributed initially with some mean 
concentration nch outside the sphere. Particles C diffuse with diffusion 
coefficient Z2/2d. Let us next suppose that this sphere is a particle A and 
it disappears as soon as any of the C particles reach its surface. In the 
literature on chemical kinetics this problem is called target reaction (see, 
e.g. Ref. [37]) and it is well known that the Smoluchowski approach 
entails an exact result for the survival probability of the target particle. 
One can see that the probability that neither of the Gaussian polymers 
of length IN presented at mean concentration n& crosses the surface of 
the spherical volume of radius c and the survival probability of the target 
particle of radius 6 in the presence of diffusive traps are equivalent to 
each other. Therefore, we can infer that [991 

r N 1 

(46) 

where Ksno2(N) is usual SC in Eqns. (10,13) (up to the change of notations 
t + N and R + <). Therefore, for 3d solutions of frozen Gaussian chains 
the probability of having a polymer-free void of radius 6 is equal to 

(47) 

Let us stress several important features of the obtained expression 
(47). It shows that on large scales << 2 m) void-size distribution is a 
negative exponential, i.e. on large scales the polymer solution can be 
viewed as a Poisson ensemble of immobile point particles, presented at 
mean concentration rich. In contrast, below the correlation length ZNy2 
the distribution is fractal. If one compares the probability of having a void 
of radius < in polymer solution with n,fl beads and the same probability 
in a system with Poisson distribution of free beads, presented at the same 
mean concentration Cc = nchN, one finds that this probability is much 
greater in polymer solutions. It can be seen, for example, from our Fig. 6 
which represents typical realizations of Gaussian polymers on a two-di- 
mensional surface. Due to the “interconnection” of traps into polymer 
chains the polymer-free voids are much more pronounced than in systems 
with random placement of independent point traps.,In the next section 
we will see how this circumstance affects the kinetics of trapping reac- 
tions in polymer solutions. 
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Similar calculations are also possible for two-dimensional systems of 
Gaussian chains. In 2D solutions of Gaussian polymers the void-size 
distribution has a more complicated form* and was analyzed in [loo]. 

To analyze the forms of the void-size distribution in systems with 
arbitrary chain conformations, where the exponent z is not necessarily 
equal to l/2, we again employ the Smoluchowski-de Gennes approach 
elaborated for the description of the reaction kinetics with non-diffusive 
random motion of reactants (here 22 is an analogue of the dynamic 
exponent v), i.e. assume the validity of Eqn. (18) and represent 
IN Ksmol(N)dN as the volume visited by a spherical particle of radius C, 
during time N. For polymers in a coil phase we have the case of non-com- 
pact exploration, since dz is always greater** than 1, and thus the 
Smoluchowski-like constant K,,,,(N) will approach some N independent 
value for N sufficiently large and will depend essentially on 5. Making 
use of the blob-like estimate in [99] or Eqn. (111.23) in [31], K, one obtains 
the following dependence 

N 

I Ksmol(N) dN = Nl”’ 6 d - $ 

0 

and, consequently, the void-size distribution can be written as (for dz > 
1) 

To close this part let us make several remarks on the distribution 
function in Eqn. (48). The derivation of Eqn. (48) is based on the uncon- 
trollable and rather questionable assumption that polymers are mutu- 
ally-independent. In principle, the repulsion between coils or excluded 
volume effects might change its functional form. However, Eqn. (48) 
reproduces several results well-known for real polymer systems. For 
instance, let us estimate the average void-size (or the correlation length) 
in the case of very concentrated polymer solutions, when the volume 

* The result in Eqn. (13) is useless since it corresponds to the limit of very small voids, 

<<<IKW e are interested in the behavior of the 2D Smoluchowski constant at the 

entire “time” domain N. 
** Except the case of Gaussian polymers in two-dimensional systems when dz = 1. 
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fraction of polymers is high n,,Z3N = 1. In accord with the Flory theorem 
R(N) 0~ Nu2, i e z = l/2, and one then obtains from the normalized Eqn. 
(48) (0 0~ lIn,$N. This is the correct result for the correlation length in 
polymer melts 183,841. Consider next the case of semidilute solutions, 
C* < nChZ3N < 1, C* is the concentration at which chains begin to overlap 
each other. In semidilute solutions chains are swollen and are charac- 
terized by R(N) 0~ Nz with z = 3/(d+2) being the Flory exponent. Equation 
(48) predicts that in 3d solutions the average void size behaves as (0 = 
(~~~~3~~~. Th is is again a well confirmed result 183,841 for the correla- 
tion length in semidilute polymer solutions. In the case of diluted solu- 
tions Eqn. (48) is also correct. 

Finally, let us notice that l/z is the fractal dimension of the polymer 
chain and if we rewrite Eqn. (48) as 

it will describe the distribution of voids in d-dimensional space with 
randomly placed, with mean concentration nfict, fractals of mass N and 
dimensionality DP 

(3) Many-chain effects in trapping reactions 
We are now in a position to extend the analysis of many-trap effects, 

presented in Section 2, to the examination of trapping kinetics in polymer 
systems (Fig. 2). hollowing 166-681 we represent the concentration of 
particles A at time t as 

where the average is taken over all cavities; P”oid(rJV) is defined by our 
Eqn. (48) and P(c,t) (Eqn. (25)) is the probability that a particle located 
in the spherical cavity of radius { until time t does not reach its boundary. 
Therefore, one has to analyze the behavior of the following integral 

CM - 
c(o)= I c dL d-1 exp [- nCh cd - TZ~~NZ~‘~ C, d-1” - Dt / 6 2] 

0 

(49) 

This analysis can also be perfbnned using the steepest descent 
method. First of all let us consider the limit of very large times, Dt >> 
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,chNZ(d+2). Within this limit the second term in the exponent is small 
compared with the first one and the integral in Eqn. (49) casts into the 
form (27). Thus one arrives at the universal long-time decay which stems 
from the large-scale properties of polymer solutions (is independent of 
the chain’s conformations and thus of the chain length iV) and is quite 
similar to the decay found for the system of uncorrelated point traps 

oc _ $d+2(Dt)d/d+2 60) 

The important difference is, however, that the factor in the exponent is 
proportional to the power of the concentration of polymers, but not to the 
actual concentration of traps nchN. In this regime each polymer acts 
effectively as a single trap. 

Consider next the intermediate time behavior. At intermediate times, 
conversely, the second term in the exponent dominates and one obtains 
a conformation-dependent decay law of the form 

oc _ (n 
C 

gyzl(zd+2z-1) (Dq(zd-l)/(zd+2z-1) (51) 

For example, in the case of 3d solution of Gaussian polymers Eqn. (51) 
predicts 

0~ - (nchN)2’3 (Dt) l/3 

and for 3d solutions of swollen coils 

= - (nchN)3'5 (Dt) 215 

(52) 

(53) 

These decay laws exhibit substantially slower behavior than the 
universal long-time dependence in Eqns. (27,50). 

Let us present some estimates of the crossover times and reaction 
depths. Consider the case of 3d concentrated polymer solutions, i.e. 
Gaussian chains presented at high concentration, so that the volume 
fraction of polymers @ is near unity, 9 = 1. Summing up the results 
presented in Sections 3 and 4 one can expect the following kinetic 
scenario. At small times the decay is governed by the transient mean-field 



41 

dependence in Eqn. (44), associated with the formation of the depletion 
zone around each chain. We will call this regime A. At greater times, i.e. 
times at which the Smoluchowski-like constant approaches a steady- 
state value in Eqn, (43) the decay of particles concentration will be purely 
exponential (regime B). At greater times one can expect the appearance 
of conformation-dependent stretched-exponential dependence in Eqn. 
(52) associated with many-chain effects (regime C), which, in the limit of 
very large times will be followed by the universal dependence in Eqn. (50) 
(regime D). However, it turns out that in the concentrated polymer 
solutions this scenario does not work. First we estimate the time at which 
the steady state mean-field regime B is established. This time grows 
linearly with N, DtA+,B = N. Next, comparing the exponents in the steady 
state mean-field dependence (B) and the intermediate time fluctuation- 
induced behavior (C) we find that tB+c = @4+m1’z. Therefore, for concen- 
trated solutions of Gaussian polymers the steady state mean-field de- 
pendence (B) will not exist, since tBdc -cc tA_.+B. The crossover time tA.+c 

0~ r)-2 is also small in the concentrated solutions and, therefoie, the 
transient mean-field dependence A can hardly be observed. Thus, in the 
concentrated solutions ~uctuation-induced laws will describe the kinetics 
of trapping reactions over the entire time domain. The crossover time 
from the conformation-dependent law in Eqn. (52) to the universal decay 
in Eqn. (50) is of the order of tC+D 0~ w/2, i.e. can be very large if N is 
large, Besides, the correspondent reaction depth is exponentially small, 
C(t~~~)/C(O) = exp(-+@), i.e. one can infer that the bulk of particles A 
will be trapped via the confo~ation-dependent law in Eqn. (52). The 
numerical simulation results 11001 confirm the fluctuation-induced decay 
forms and show that they are valid beginning from the earliest stages of 
reaction. In the case of diluted polymer solutions the volume fraction of 
polymers appears as an additional controlling parameter and the succes- 
sion of regimes A -+ B + C + D can be, in principle, observed depending 
on the relation between N and Cp. 

4.2 Influence of fluctuations on the kinetics of recombination reactions 
in polymer systems 

Here we will present simple estimates of the magnitude of fluctuation 
effects in the kinetics of recombination reactions (IIa) involving reactive 
particles attached to polymers. Let us note that arguments invoked for 
the derivation of the estimate in Eqn. (21) are still valid and the behavior 
of particle concentrations is dominated by ~uctuations of the difference 
between numbers of A and B particles in certain domains. However, 



42 

“compact exploration” motion of particles drastically changes the forms 
of fluctuation-induced decay in Eqn. (21). The point is that the growth of 
the domain’s size with time is completely different from that in systems 
with conventional diffusion of reactive species. In the case of non-diffu- 
sive random motion of particles the intermediate-time growth of 6 will be 
guided by Eqn. (28), i.e. 6 0~ tv’2 with v = l/2 for Rouse polymers and v = 
l/4 for reptation model*. At times greater than tchar = fl with 8 = 2 for 
the Rouse model and 8 = 3 for reptation model the diffusive growth is 
restored, < = m Therefore, the modified due to anomalous transport 
properties of reactants fluctuation-induced behavior in Eqn. (21) will be 
characterized by the following dependences. At times less than tchar 

c(t) oc dq6ytdv’4 

and at greater times (t 2 tchar) 

c(t) = G@yN@-1)‘4 tdf4 65) 

Next, let us estimate the crossover times between the mean-field 
kinetics predicted in [31] and fluctuation-induced asymptotic forms in 
Eqns. (5455). One can expect the following succession of dynamical 
regimes in 3d systems. The first stage will be governed by the mean-field 
“compact exploration” regime (A), C(t) 0~ C(0)t-3v’2, Eqn. (31). At greater 
times this dependence will be followed by mean-field dependence, C(t) 0~ 
flltwl, associated with the steady state Smoluchowski constant (regime 
B). Eventually, one expects the appearance of the fluctuation-induced 
dependence in Eqn. (54) (regime C) which will be followed by the long- 
time asymptotic form in Eqn. (55) (regime D). The crossover time from A 
to B is simply tchar which grows with N as N@. Comparing A and Eqn. (54) 
we find that this decay becomes comparable at much less time tA+,c 0~ 

E~‘~“, where E is the initial volume fraction of reactants. Therefore, we 
infer that stage B simply does not exist. Besides, time tA+c is very small 
and regime A can hardly be observed as an intermediate asymptotic form. 
Thus, we can conclude that in the systems under consideration fluctua- 
tion-induced laws in Eqns. (54,55) will describe reaction kinetics over the 
entire time domain. 

* Of course, the decay of correlation functions is also affected by “compact exploration” 
motion of active particles. At the intermediate times PA.&) decays as P&t) 0~ -l/f. 
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5. CONCLUSIONS 

To summarize, we have considered different types of chemical bi- 
molecular reactions involving polymer chains. These are binary and 
recombination reactions with particles of reactants attached to movable 
polymers in polymer solutions and trapping reaction in systems with 
polymerized traps. We have discussed both mean-field considerations,‘ 
based on the Smoluchowski-de Gennes approach, and many-particle 
treatments associated with spatial fluctuations in particle concentrations. 

The guideline of this paper is the idea of “compact” and “non-compact 
exploration” types of random motion proposed by de Gennes in his paper 
[31] on the kinetics of chemical reactions involving polymers. Here we 
have based most of our analysis on this approach. We have shown that 
it is fruitful not only for the kinetic description of mean-field behavior, 
but also for the estimates of fluctuation effects and fluctuation-induced 
kinetics and provides a clear picture of the underlying physics. 

We have illustrated, in terms of mean-field considerations, that the 
presence of polymers essentially influences reaction kinetics, ultimately 
resulting in non-traditional anomalous behavior as compared to the 
systems of monomeric reactants executing conventional diffusive motion. 
The origin of this distinction is caused by specific transport properties of 
polymers (“compact exploration”) and essential correlations which poly- 
mers introduce into the reactive systems. Besides, we have shown that 
the presence of polymers drastically enhances fluctuation effects. In 
contrast to the systems of monomeric particles in which such type of 
effects influences only the long-time asymptotic behavior, in polymer 
systems many-particle effects become decisive from essentially earlier 
times and dominate the conversion of the bulk of reactive species. 
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