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q Rigidity transitions and compositional trends

q Intermediate phases and non-mean field rigidity

q « Topological engineering » (Mauro-Gupta theory)

q MD based rigidity theory and applications

Numerical simulations and Rigidity of glasses – II

Optimizing glass = finding anomalies 
with composition



Molecular network (contraint counting)
• Atoms

•Covalent bonds
•Stretching and bending interactions

A) Constraint theory

Mechanical structure
• Nodes
• Bars

•Tension

Basic idea: An analogy with mechanical structures (Maxwell)
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Stretching constraints aij

r/2

Bending constraints bijk

2r-3

1. Enumeration of	mechanical constraints
Consider a	r-coordinated atom

q If	r=2,	there is only one	angle.	
Each time,	one	adds a	bond,	one	needs to	define 2	new	angles

q We consider a	system	with N	species of	concentration	nr.	

The	number of	constraints per	atom is :
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J.C. Phillips, JNCS 1979



q We introduce the network mean coordination number

e.g. accessed from the Bhatia-Thornton pair distribution function gNN(r)

q Then nc can be simply rewritten as :

q Invoking the Maxwell stability criterion for isostatic structures nc=D=3
we find a stability criterion for:

or : 

q Networks with nc<3 are underconstrained (flexible). With nc>3, they are 
overconstrained

q Important quantity: number of floppy (deformation) modes : f=3-nc
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Stretching        Bending

2.	Rigidity transition:

q Amorphous silicon and	harmonic potential

q RANDOM Bond	depletion (<r>	decreases)	on	a-Si.

q Calculation of	the	eigenmodes (vibrational
frequencies)	of	the	system

q Example of	simple	eigenmode calculation:	
the	linear chain

A)	CONSTRAINTS	AND	RIGIDITY	TRANSITIONS



q Force	acting	on	spring j:

q Newton’s law gives:	

with frequencies

q Normal	mode	solution	:

which actually reduces the	problem to		an	eigenvalue (W)	problem:

q More	general:	normal	modes=eigenvalues W of	the	dynamical matrix



2.	Rigidity transition:

q Thorpe	(1983)	found that bond	depleted a-Si	with mean coordination	
number <r>	<	2.385	contain zero frequency normal	(floppy)	modes	W.

q Their number f (rank of	the	W=0	block	of	the	dynamical matrix)	scales as	

><-=-= rNf c 2
563

q Flexible	to	rigid elastic phase	transition
Ø Control	parameter <r>
Ø Order parameter f

q Power-law Cii=(<r>-2.4)p (p=1,5)	in	the	stressed
rigid phase.	Elastic phase	transition.

q Isostatic glass	nc=3	is at the	R	transition
He and Thorpe, PRL 1985



Examples of application:

q GexSe1-x glasses: 
Ge is 4-fold and Se is 2-fold.

v Ge has 2r-3=5 BB and r/2=2 BS constraints
v Se has 1 BB and 1 BS constraint

v nc=2(1-x)+7x=2+5x
v Stability criterion for nc=3 i.e. for x=0.2

v Mean coordination number at 20% Ge

Ge20Se80=GeSe4 glasses are isostatic

�̅� = 𝑟@A𝑥 + 𝑟CA 1 − 𝑥 = 	4𝑥 + 2 1 − 𝑥
= 2.4

Varshneya et al. JNCS 1991

Ge-Se
Ge-Sb-Se

Playing with numbers…can be a dangerous game !



1979-2000: Anomalies at <r>=2.4

Chalcogenide network glasses
r(Se)=2 ,  r(Ge)=4

GexSe1-x
Ge-Sb-Se, Ge-As-Se, etc…

Varshneya et al., JNCS 1991

Boehmer and Angell, PRB 1994



Binary oxides : (1-x)SiO2-xNa2O

q Depolymerization with addition of Na. 
r(Q4)=4 ,  r(Q3)=3, 

q Silica and germania: rigidity under
pressure under pressure

Micoulaut, Am. Mineral. 2008
Vaills et al. JPCM 2005

Trachenko et al., PRL 2005

SiO2-Na2O
SiO2-K2O



• Raman vibrational thresholds at <r>c

• Minimum in activation energy for 
stress relaxation at <r>c (Ge-As-Se)

• Network packing. Molar volumes 
become minimum (Ge-Se)

• Minimum in activation energy for 
viscosity (Ge-As-Se)

• Insulator-Metal transition pressures 
change régime

Phillips-Thorpe rigidity theory … a survey

BUT…
• Is it too simple ? Or simply elegant ?

- simplified interactions
- restricted to chalcogenides ?
- are bond depleted networks realistic ?

• «Horizontal axis» theory

• VDOS nightmare
- survival of floppy modes at high <r>

- T=0 theory

- E(floppy)=4 meV

- weak evidence for anomalies in C11, C44

• Connection with MD ?

Kamitakahara et al. PRB 44, 94 (1991)



B.	INTERMEDIATE	PHASE

Experimentally
Picture	of	rigidity transitions	has	been	changed in	depth during the	last	decade.

Calorimetric measurements (modulated DSC)



q Use	of	modulated differential scanning	
calorimetry (MDSC)	across the	glass	
transition	

q Allows for	the	definition of	2	heat flows
- Reversible (DCp)
- Non-reversible
Non-reversing enthalpy (DHnr)	

Georgiev et al. PRB (2003)

nonrevrevT HHH !!! +=

Modulated DSC and reversibility windows

Reversibility window

B.	INTERMEDIATE	PHASE



q Since the	RW	is found between the	flexible	and	
the	stressed rigid phase,	it is also often called
the	« Intermediate phase ».

q Non-mean field phase	otherwise one	would
have	the	single	<r>=2.4	transitions.

q Central	idea:	stress	avoidance under increasing
cross-linking density.	Network	self-organization

Adaptation,	optimization,…

q Nearly vanishing of	DHnr at Tg
q Stress	free	character (Pc minimum,	Raman)
q Vibrational thresholds (Raman,	IR)

q Generic (chalcogenides,	oxides)
Wang	et	al.,	PRB	2005

Remarkable properties for selected glass 
compositions



Bauchy et al. Nature Comm. 6, 6398 (2015)



“Marginality of non-reversible component of
complex heat flow in MDSC experiments does
not necessary reflect self-organized
intermediate phase.”
PSS 2011

« However, that (mDSC) measurement
might also be subjected to a large experimental 
uncertainty.” 
PRB 2009

“The observation of the reversibility window
might be an experimental artifact.” 
PRB 2009

A subject which has not been without controversy…

Micoulaut, Bauchy, PSS 2013



Why has	the	RW	been	missed before ?
Three experimental conditions	have	to	be met

Tiny compositional changes

Sample purity (dryness)

Homogeneity
Alloying time+
Raman	profiling

Senapati, JNCS 1991

Bhosle et al., IJAGS 2012

Na2O(at%)



Ageing

Not « no ageing » but « weak ageing »

Chakravarthy et al. JPCM (2005)

PxGexSe1-2x

AsxSe1-x

Georgiev et al. JOAM (2003)

IP

isostatic

stressed



Fragility and relaxation

q Intermediate phase melts display anomalous
relaxational properties.

Ø the smallest measured fragilities
(M=15). Silica (SiO2) has M=20-28

Ø Minimum in Kohlrausch exponent b.
Ø Jump distances in solid electolytes

Gunasekera et al. JCP 2013

Micoulaut et al. PRB 2009

Micoulaut, Malki, PRL 2010



B.	INTERMEDIATE	PHASE

Theory beyond the mean-field estimate ?

q Obvious link with the mean-field rigidity transition (<r>=2.4)

q Central idea: Self-organization or stress avoidance

q Strategies
q Lattice models : Normal mode analysis of self-organized networks

Thorpe (2000), Mousseau (PRE 2006), Wyart (PRL 2013)

q Cluster expansions
Micoulaut (2003)

q MD simulations
See below



CLUSTER	EXPANSIONS

q Build size	increasing bond	models (clusters)	and	use	constraint counting algorithms.

q The	basic	level (the	local	structure)	gives the	mean-field result

avoid

accept





LATTICE	MODELS
Analogy with simulations	on	triangular
networks

q Single	RT:	Bonds	removed
randomly+eigenmode analysis.

q Decomposition of		the	network	into	rigid	
clusters	+	determination	of		all	stressed	
rigid	regions.

q Self-organization:	bonds	added in	a	
flexible	region of	the	network	are	
accepted	only	if	this	leads	to	isostatically
rigid clusters	(and	not	stressed rigid).	

q Two transitions:	rigidity and	stress.	Both
coalesce	in	random networks

q Temperature effect
Brière	et	al.	PRE	2006
Le	and	Wyart,	PRL	2013

Thorpe et al. JNCS 2000



C) Constraints and thermodynamics

q Hamiltonian of a system containing f floppy modes with zero frequency energy:

q Out of which can be calculated a partition function:

q Floppy modes are cyclic variables of H

q Provides a channel in the potential energy
landscape (PES) since the energy does not 
depend upon a change in a floppy mode 
coordinate

Naumis, PRB 2000, 2005



Constraints and thermodynamics: 

q For a given inherent structure (local minimum of 
the PES), the number of channels is given by f.

q Entropy due to floppy modes (available phase space
to visit). 

q At fixed volume, W(E,V,N) is proportional to the 
area defined by the surface f constant E. S=kBlnW

)/ln(3 0VVNkfS B»

f=0

f non zero

Naumis, Phys. Rev. E71, 026114 (2005).



Basics
q Gupta & Mauro (2009) generalization of  the Phillips approach by inclusion of 

temperature-dependent constraints:

q Required parameters:
q Ni(x): mole fraction of each network-forming species i
q wi,a: number of a-type constraints for each species i
q qa(T): temperature-dependent rigidity of constraint a

Gupta & Mauro, J. Chem. Phys. 130, 094503 (2009)

Mauro, Gupta, Loucks, J. Chem. Phys. 130, 234503 (2009)

D) Temperature dependent constraints
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Steps
1. Identify and count the number of network-forming species as a function of 

composition

2. Identify and count the number of constraints associated with each of those 
species

3. Rank the constraints in terms of their relative strength (onset temperature)

4. Connect the change in degrees of freedom (f = d – n) with change in specific 
property of interest

D) Temperature dependent constraints



q Applied to borate glasses Na2O-B2O3

q Addition of modifier oxide to B2O3 can cause
Ø boron coordination change
Ø formation of NBO

q Remember of simple bond models for alkali borates for x>0.33

B
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Step 1: Model the local structure as a function of composition

D) Temperature dependent constraints

𝑁/ 𝑥 = 5(5H4I)
J(I4H)

								𝑁5 𝑥 = I4/H 
I4H

								𝑁K 𝑥 = 54KH 
J(I4H)



q Complete statistics
x>0.33

x<0.33

Step 1: Model the local structure as a function of composition

D) Temperature dependent constraints

𝑁/ 𝑥 = 5(5H4I)
J(I4H)

								𝑁5 𝑥 = I4/H 
I4H

								𝑁K 𝑥 = 54KH 
J(I4H)

𝑁5 𝑥 = 1 − 𝑅 = 1 − H
I4H

= I4/H
I4H

𝑁K 𝑥 = 𝑅 =
𝑥

1 − 𝑥
qCan sometimes be re-expressed in terms of bonding 
oxygens (those participating to the network 
connectivity, i.e. NB=4 on a B4).

Mauro et al. JCP 2009



qα: B-O and MNB-O linear (BS) constraints
Ø Two a constraints at each oxygen 

q β: O-B-O angular constraints
Ø Five β constraints at each Q4 unit.
Ø Three at each Q3 unit.

q γ: B-O-B and B-O-M(NB) angular constraints
Ø One g constraint at each bridging oxygen

q µ: modifier rigidity (due to clustering)
Ø Two µ constraints per NBO-forming Na atom

Each involves an onset temperature at which q(T) becomes active for T<Tonset

Similar procedure for borosilicates

D) Temperature dependent constraints
Step 2: Count constraints on each atom (borates)
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• Constraints become rigid as temperature is lowered

– Onset temperatures:

Smedskjaer, Mauro, Sen, Yue, Chem. Mater. 22, 
5358 (2010)
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D) Temperature dependent constraints
Step 3: Ranking of constraints according to temperature



Temperature-Dependent
Constraint Model

Structural Information

Naumis Floppy
Mode Analysis

Adam-Gibbs Relation

Fraction of Network-
Forming Species, N(x)

Topological Degrees of 
Freedom, f(T,x)

Configurational
Entropy, Sc(T,x)

Utimate goal: Tg(x), m(x), Cp(x)

Viscosity, h(T,x)

D) Temperature dependent constraints

Step 4: Calculating properties…the roadmap



D) Temperature dependent constraints

Step 4: Calculating properties

A. Use Adam-Gibbs definition of viscosity

B. Use the fact that Tg is the reference temperature at which h=1012 Pa.s. Since h
is constant for any composition, we can write:

C. Remember that Naumis’ model leads to Sc # f (floppy modes).

D. This allows writing:



D) Temperature dependent constraints

Step 4: Calculating properties

Establishing a new viscosity fitting formula 
(MYEGA)

Simple two-state model assuming that f(HT)=3 and 
f(LT)=0 (no topological degrees of freedom in the 
glass)

No divergence found at HT (AM) or at LT (VFT) Mauro et al. PNAS (2009)



D. Remember the definition of fragility :

E. Using Naumis’ definition, once more, one obtains:

F. Application to sodium borates

D) Temperature dependent constraints

Step 4: Calculating properties



• Na sets up a locally rigid environment, whereas Ca does not

• Prediction of fragility with only one fitting parameter (ntobs)
Smedskjaer, Mauro, Sen, Yue, Chem. Mater. 22, 5358 (2010)
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D) Temperature dependent constraints

Results: Fragility and Tg variation of calcium borate glasses



q Tg of a borate glass can be predicted from that of a silicate glass with f(x,y,z,T) as the only 
scaling parameter 

q Fragility: onset temperatures Tβ,Si and Tµ are treated as fitting parameters (1425 K)
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Smedskjaer et al., J. Phys. Chem. B 115, 12930 (2011)

D) Temperature dependent constraints

Results: Fragility and Tg variation of sodium borosilicate glass



D) Temperature dependent constraints

Results: Tg and fragility variation of alkali phosphate glass

Rodrigues et al. J. Non-Cryst. Solids 405 12 (2014)
Hermansen et al. JCP 140, 154501 (2014)



q Idea: critical number of constraints (ncrit) must be present for material to 
display mechanical resistance
Ø n = 2: rigidity in one dimension (Se)
Ø n = 3: rigidity in three dimensions (SiO2)
Ø n = 2.5: rigid 2D structure (graphene)→ ncrit

q Proposal: hardness is proportional to the number of 3D network constraints at 
room temperature

?

D) Temperature dependent constraints

Results: Calculating the hardness from constraints



• Glass hardness can be predicted from the average number of room 
temperature constraints, with only an unknown proportionality 
constant (dHV/dn)
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Smedskjaer, Mauro, Yue, PRL 105, 115503 (2010)

D) Temperature dependent constraints

Results: Hardness Hv in borates and borosilicates



• γ and µ constraints have a negligible impact on fragility, 
whereas the βB constraints are the main contributors

• α and γ constraints contribute significantly to hardness 

Origins of Properties (borosilicates)
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D) Temperature dependent constraints



q Topological engineering: exploring new composition spaces where glasses 
have not yet been melted

q Difference in scaling is due to T-dependence of constraints
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D) Temperature dependent constraints

Results: Quantitative designe of glasses (borates)



D.	MD	BASED	RIGIDITY	THEORY

1.We start from the	estimation	of	constraints:

Questions	and	limitations	
q Phase	separation ?	Isolated molecular units,	As-Ge-S,…

q Coordination	number,	always 8-N	?
CN(Na)=5	in	silicates,	
CN(As)=4	in	certain	As-Se and	P-(Se,S)	compositions,…
Delocalisation,	non-directional (ionic)	bonding…

q Count	all	interactions	(constraints)	?
Broken Si-O-Na	angular constraints in	oxides,…
Thermally activated broken constraints (Mauro-Gupta)

q nc at all	thermodynamic conditions	(T,P,x)
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Salmon JNCS 1999 - Rao et al. JNCS 1998- Penfold, Salmon PRL 1991 – Massobrio et al. JPCM 2000, Petri, Salmon, 
Howells, JPCM 1999, Massobrio et.al PRB 2009, Micoulaut et al. PRB 2009

Structure Factors Pair Correlation Functions

𝐶𝑁 = 	𝜌4π𝑟/ P𝑔 𝑟 𝑑𝑟
%

S

Need to have a good starting MD generated structural model

GexSe100-x



Straightforward in	oxydes	and	
4	neighbours around Ge,Si

v two local	environments for	Ge
v CN(Te)	>2

Ge1Sb2Te4

Micoulaut et al.  PRB 2010

2.	General	idea:	

q Generate atomic trajectories for	a	given system	at (x,P,T)	using Molecular
Dynamics	simulations	(classical or	First	Principles)

q Compute from these trajectories
1.	bond-stretching	(#	nb	of	neighbours or	neighbor distribution)



Estimate of	bond-bending from partial	bond	angle	
distribution	(PBAD)	Pi(q)	
with i<N(N-1)/2	arbitrary for	a	given atomic j0k	triplet

•Splitting the	BAD	into contributions	from neighbours.
•Compute the	second	moment	(si ,	sometimes fwhm)	of	
each PBA	Distribution.

d1
d2

d3
d4

d5 N first neighbor distance distrib.

• N(N-1)/2	bond	angles	analyzed
(102),	(103)	…	(304)	…	(N-1	0	N)

Peugeot	labelling

• Not	all	are	independent !

s
ss

s

q Compute from these trajectories
1.	bond-bending (work on	angles)

𝜃U/ = P𝜃/𝑃U 𝜃 𝑑𝜃
�

�

𝜎U/ = 𝜃U/ − 𝜃U /



Ge-centred PBAD in GeO2 for arbitrary N=6



Ge-centred PBAD in GeO2 for arbitrary N=6

Large sqij: broken constraint. Weak restoring force that maintains a mean
angle fixed



GeO2
Large	O-centred angular motion
Tetrahedral angle	(109o)	well defined

GeSe2
Bimodal	(ES	vs	CS)	Se-centred distribution
Tetrahedral angle	well defined and	broader

PBADs for	tetrahedral network	glasses

ES CS



•Angular counting from MD 
matches direct Maxwell 
counting

• 6 Ge,Si angles have a low
standard deviation (but only 5 
independent)

• Equivalent tetrahedral anglular
excursion in oxides (rigid
tetrahedron).

• Increased angular distorsion in 
chalcogenides (s is not 
constant). 

• 1 Se angle with a low s in 
GeSe2

Standard	deviations for	tetrahedral network	glasses



•Rigidity (increasing Ge)	affects	mostly the	Ge	intra-tetrahedral motion.	
Stress	transition	leads to	an	asymetric intra-tetrahedral angular motion	involving
the	neighbour 4.	 Weak changes	in	sSe

•Flexible	GeSe9 and	IP	GeSe4 and	GeSe3:	similar to	oxides:	s=const,	rigid tetrahedra

Standard	deviations and	rigidity transitions



q Angular constraints are intact only for Si and 
BO

Clear gap between s(Si), s(BO) 
and s(Na) and s(NBO)

Focus	on	bond-bending constraints

Silicates

BO

NBO

Bauchy et al, JNCS 2011

SiO2-2Na2O



Using rigidity and molecular simulations



Non-monotonous Diffusion !

Diffusivity markedly decreases 

between 18-22 % Ge

Expectation : 
Mobility decreases as Ge 

content increases

Ge-Se: Constraints+Dynamics of liquids



Relaxation times make 
maximum around rigidity 

thresholdNon-monotononous relaxation 
processes at 1050 K

Ballistic

Slow 
Relaxation

Intermediate Scattering Factor

Ge-Se: Constraints+Dynamics of liquids



Mean Field prediction is well reproduced 

At 300 K  but constraints soften at high 

temperature

Weak variation of Ge BB at 

the rigidity transition

nc = 5x + 2

Ge-Se: Constraints+Dynamics of liquids



Homogenous distribution of Ge BB constraints at 22 % where the atomic 

mobility is minimum at 1050 K

Slabs with 3.4 Å thickness at 1050 K 

are investigated in terms of  spatial 

distribution of Ge BB constraints.

Ge-Se: Constraints+Dynamics of liquids



MYEGA 
Equation

VFT Equation

Minimum fragility is 

attained at the rigidity 

transition 

Fragilities of many glassy network

forming melts show a global minima when

scaled to isostatic composition

Ge-Se: Constraints+Dynamics of liquids

Fragility



Liquid-glass transition of NS2 liquids

q Reproduction of the glass 
transition phenomenology

q Cooling: faster cooling
(q=dT/dt) freezes glass in at 
higher temperature

q Well defined fictive temperature

q With heating, a hysteresis loop 
is found, and originates a heat 
capacity “overshoot” at the glass 
transition.

q=1 K/ps

Reversibility in glasses



Reversibility in glasses

Tg cooling-annealing cycle in NPT 
Ensemble

q Same anomalies in NPT Ensemble. Volume recovery for 
selected pressures.

q Enthalpy minimum in a pressure window found between ~3 
GPa < P < 12 GPa.



q In the pressure window 
(2000K) : 

- minimum of viscosity
- maximum of O/Si 
diffusion 

q Similar features 
(diffusivity anomaly as 
in d-SiO2 or d-H2O, 
Debenedetti et al. , Nature 
(2000)

q Ease of diffusion (i.e. 
relaxation) related to 
reversibility.

Link with transport properties: diffusion and viscosity
Diffusion (msd) and viscosity (Green-Kubo, Stress auto-correlation)

Reversibility in glasses

M. Bauchy, M. Micoulaut, Phys. Rev. Letters 110, 095501 (2013).



Reversibility in glasses
Effect of rigidity

q At P=0, the NS2 glass is 
flexible (Rigid to Flexible 
transition for 20% Na2O)

q In the Pressure window, 
saturation of nc to a limiting 
value nc ~3.

q Isostatic character of the 
network 

n c



Reversibility in glasses
Effect of rigidity q Detail: With increase of pressure, 

stretching constraints (BS) and stress 
increase.

q Linked with increase of Si and O 
coordination.

q Softening of the bending (BB) 
constraint to avoid pressure-induced 
stress. 

q Network adaptation only possible up 
to a certain point.

The reversibility of the glass transition, and the underlying anomalies are 
driven by the adaptive isostatic nature of the base network. 

P (GPa)



Reversibility in glasses

q Isostatic (nc=3) glass transitions 
display an ease to reversibility.  

Reversibility: at a fixed cooling/heating
rate, the energy/volume hysteresis is
minimum. 
OPTIMAL RELAXATION

q Thermal anomalies are linked with
anomalies in transport in the liquid
and with structural anomalies in the 
glass. 

q Upon increasing stress, the system adapts to maintain as long as 
possible the isostatic character of the network. 



Reversibility in glasses

q Enhanced ease for relaxation 
(minimum of the activation energies 
for (D,h)) for nc~3 

(in the pressure window 3 < P < 12 GPa).

q Relaxation time also minimizes 

q Enhanced relaxation



• Link with structure
• First sharp diffraction peak (FSDP) of partial Sij(k)

• Correlation lengths are minimal
• Coherence length (Sherer equation)
are maximal : IP has large domain sizes
• Also obtained in As-Se glasses 

Reversibility in glasses

Micoulaut et al. 250, 976 (2013) 
Bauchy et al. PRL110, 095501 (2013)
Bauchy et al. PRL 110, 165501 (2013)



Reversibility in glasses

Are these constraints
homogeneously distributed ?

Do they impact more subtle
aspects of dynamics ?
Dynamic heteroegenities

sq(BO)
Bauchy et al. EPL 2013

Micoulaut et al. PRL 2017



Extending the rigidity theory to complex materials

Ca/Si = 1.09 Ca/Si = 1.89C-S-H cement models

150 different samples
with varying Ca/Si ratio 

:
From 1.09 to 2.05

Around 500 atoms
ReaxFF potential
(reaction with water) Crystalline Amorphous

Rigidity transition in cement

M. Pellenq et al. JCP 2005
Bauchy et al. JCP 140, 214503 (2014)



• Rigidity transition at Ca/Si = 
1.5 (isostatic)

• Rigid at low Ca/Si ratio 
• Flexible at high Ca/Si ratio

• Change of the slope at the 
rigidity transition

• Transition mostly driven by 
bond-bending constraints
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Rigidity transitions in cement



Mechanical properties and rigidity

Mauro and Varshneya, J.Am. Ceram. Soc. 90, 192 (2007).

Mechanical behaviour of Ge-Se (classical MD)

Nanoindentation as a function of Ge content
Loading and unloading

Anomalies found for isostatic glasses



Mechanical properties and rigidity

Bauchy et al. Acta Mater. 121, 234 (2016)
Bauchy et al. PRL 114 (2015) 125502

Mechanical behaviour contrasted to nc

• Rigidity status (nc) is controlled by pressure
• Application to NS2 and CSH (cement)
• Numerical tensile experiments



Fracture toughness and rigidity

Isostatic systems
• Maximum fracture toughness

• Rigidity transition coincides with a
ductile-to-brittle transition.

• Network is rigid but free of eigen-stress
and features stress relaxation through
crack blunting, resulting in optimal
resistance to fracture.

Données GS: 
Guin et al. J.AM.Ceram. Soc (2002)



Irradiation in quartz

Irradiation-induced damage in quartz investigated from rigidity theory
• MD simulations of quartz by high energy ballistic (irradiation) motion

vO linked with deposited energy E (strategy J.M. Delaye, JNCS 2001)
• MD based constraint counting
• Relating MD calculated properties to nc. 

Wang et al. JNCS 463 (2017) 25



Evidence of a rigid-to-flexible rigidity transition 
• Arises from the simultaneous loss of atomic eigenstress and 

onset of network flexibility
• Link with structural signatures (FSDP)

Irradiation in quartz

Wang et al. JNCS 463 (2017) 25



Conclusion:

q Rigidity transitions provide an interesting framework for the 
understanding of compositional trends in glasses

q Optimizing properties from the inspection of anomalous behaviors
(maxima and minima)

q Various means can serve to bring a complex system from flexible to rigid
Composition, pressure, irradiation, ion strengthening,…

q Adaptative isostatic window (a thermodynamic phase ?) with surprising
properties (highly debated research). Design new applications ?

Ø Weak ageing phenomena. Stable glasses.
Ø Space-filling tendencies, Fragility anomalies (not always,…)
Ø Experimental challenge (sample preparation)

q MD based constraint theory leads to an atomic scale insight and links 
with various properties (transport, structure, mechanics, conduction,…)

M. Micoulaut, Advances Phys. X (2016). Open


