Numerical simulations and Rigidity of glasses – II

Matthieu Micoulaut (UPMC)

Rigidity transitions and compositional trends
 Intermediate phases and non-mean field rigidity
 « Topological engineering » (Mauro-Gupta theory)
 MD based rigidity theory and applications

Optimizing glass = finding anomalies with composition

A) Constraint theory

Basic idea: An analogy with mechanical structures (Maxwell)

A) CONSTRAINTS AND RIGIDITY TRANSITIONS

□ If r=2, there is only one angle. Each time, one adds a bond, one needs to define 2 new angles

 \Box We consider a system with N species of concentration n_r .

The number of constraints per atom is :

$$n_{c} = \frac{\sum_{r\geq 2}^{N} n_{r} (\frac{r}{2} + (2r - 3))}{\sum_{r\geq 2}^{N} n_{r}}$$

J.C. Phillips, JNCS 1979

☐ We introduce the network mean coordination number

$$\bar{r} = \frac{\sum_{r\geq 2}^{N} r n_r}{\sum_{r\geq 2}^{N} n_r}$$

e.g. accessed from the Bhatia-Thornton pair distribution function $g_{NN}(r)$

D Then n_c can be simply rewritten as :

$$n_{c} = \frac{\sum_{r\geq 2}^{N} n_{r}(\frac{r}{2} + (2r-3))}{\sum_{r\geq 2}^{N} n_{r}} = (\frac{\bar{r}}{2} + (2\bar{r} - 3))$$

□ Invoking the Maxwell stability criterion for isostatic structures $n_c=D=3$ we find a stability criterion for: $(\bar{r} + (D - D))$

or:
$$\bar{r} = \frac{12}{5} = 2.4$$

 $n_c = (\frac{\bar{r}}{2} + (2\bar{r} - 3)) = 3$

- □ Networks with $n_c < 3$ are underconstrained (flexible). With $n_c > 3$, they are overconstrained
- □ Important quantity: number of floppy (deformation) modes : $f=3-n_c$

A) CONSTRAINTS AND RIGIDITY TRANSITIONS

2. Rigidity transition:

Amorphous silicon and harmonic potential

RANDOM Bond depletion (<r> decreases) on a-Si.

- Calculation of the eigenmodes (vibrational frequencies) of the system
- Example of simple eigenmode calculation: the linear chain

D Force acting on spring j: $F_i = -k_s(q_i - q_{i-1}) - k_s(q_i - q_{i+1})$ \Box Newton's law gives: $\ddot{q}_i - \widetilde{\omega}^2 (q_{i-1} - 2q_i + q_{i+1}) = 0$ with frequencies $\widetilde{\omega}^2 = k_s/m$ \Box Normal mode solution : $q_i = q_{0,i} e^{i\Omega t}$ $\Omega^2 q_{0,i} + \widetilde{\omega}^2 (q_{0,i-1} - 2q_{0,i} + q_{0,i+1}) = 0$ which actually reduces the problem to an **eigenvalue** (Ω) problem: $\begin{pmatrix} 2\widetilde{\omega}^2 - \Omega^2 & -\widetilde{\omega}^2 & 0 & 0 \\ -\widetilde{\omega}^2 & 2\widetilde{\omega}^2 - \Omega^2 & -\widetilde{\omega}^2 & 0 \\ 0 & -\widetilde{\omega}^2 & 2\widetilde{\omega}^2 - \Omega^2 & -\widetilde{\omega}^2 & \cdots \\ 0 & 0 & -\widetilde{\omega}^2 & 2\widetilde{\omega}^2 - \Omega^2 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \begin{bmatrix} q_{0,1} \\ q_{0,2} \\ q_{0,3} \\ q_{0,4} \\ \vdots \end{bmatrix} = 0$

 \Box More general: normal modes=eigenvalues Ω of the dynamical matrix

2. Rigidity transition:

Thorpe (1983) found that bond depleted a-Si with mean coordination number <r> < 2.385 contain **zero frequency normal (floppy) modes** Ω.

Their number f (rank of the Ω =0 block of the dynamical matrix) scales as

$$f = 3 - N_c = 6 - \frac{5}{2} < r >$$

Flexible to rigid elastic phase transition

- Control parameter <r>
- Order parameter f
- □ Power-law C_{ii}=(<r>-2.4)^p (p=1,5) in the stressed rigid phase. Elastic phase transition.

Isostatic glass n_c=3 is at the R transition

FIG. 1. Elastic modulus C_{11} with $\beta/\alpha = 0.2$ in units where $\alpha = 4a$ and as a function of the mean coordination $\langle r \rangle$. The three symbols are for three different series of random networks. The inset shows the number of zero-frequency modes f (averaged over three networks) compared to the result of the mean-field theory [Eq. (3)] shown by a straight line.

He and Thorpe, PRL 1985

Examples of application:

Ge_xSe_{1-x} glasses: Ge is 4-fold and Se is 2-fold.

- ✤ Ge has 2r-3=5 BB and r/2=2 BS constraints
- ✤ Se has 1 BB and 1 BS constraint
- nc=2(1-x)+7x=2+5x
 Stability criterion for n_c=3 i.e. for x=0.2

✤ Mean coordination number at 20% Ge

$$\bar{r} = r_{Ge}x + r_{Se}(1-x) = 4x + 2(1-x)$$

= 2.4

Ge₂₀Se₈₀=GeSe₄ glasses are isostatic

x=0.26 Ge

Π

Varshneya et al. JNCS 1991

Π

Playing with numbers...can be a dangerous game !

Chalcogenide network glasses r(Se)=2, r(Ge)=4

$$Ge_xSe_{1-x}$$

Ge-Sb-Se, Ge-As-Se, etc...

Fig. 6. Dependence of molar volume on $\langle r \rangle$ for binary Ge–Se and temperature for the binary and tempara represented by \blacksquare and

18.6 18.4 18.2

18.0

and ternary Ge-Sb-Sc systems. The molar volume at room temperature for the binary and ternary are represented by \blacksquare and \blacktriangle , respectively. The molar volume values for the binary glasses given by Ota et al. [11] are represented by \blacklozenge and those for the ternary glasses given by Savage et al. [23] are represented by \blacklozenge . The curves are drawn as a guide to the eye. The maximum measured error is 0.5%.

1979-2000: Anomalies at <r>=2.4

Fig. 10. ΔC_p versus $\langle r \rangle$ for binary Ge–Se and ternary Ge–Sb–Se systems. The ΔC_p values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 1.8%.

Fig. 4. Liquid state thermal expansion coefficient, α_L , versus $\langle r \rangle$ for the binary Ge–Se and ternary Ge–Sb–Se systems. The α_L values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 3.5%.

Boehmer and Angell, PRB 1994

Varshneya et al., JNCS 1991

Binary oxides : (1-x)SiO₂-xNa₂O

□ *Depolymerization* with addition of Na. $r(Q^4)=4$, $r(Q^3)=3$,

Silica and germania: rigidity under pressure under pressure

Phillips-Thorpe rigidity theory ... a survey

- Raman vibrational thresholds at $< r >_c$
- Minimum in activation energy for stress relaxation at <r>
 _c (Ge-As-Se)
- Network packing. Molar volumes become minimum (Ge-Se)
- Minimum in activation energy for viscosity (Ge-As-Se)
- Insulator-Metal transition pressures change régime

Kamitakahara et al. PRB 44, 94 (1991)

BUT...

- Is it too simple ? Or simply elegant ?
 - simplified interactions
 - restricted to chalcogenides ?
 - are bond depleted networks realistic ?
- «Horizontal axis» theory
- VDOS nightmare
- survival of floppy modes at high <r>
- T=0 theory
- E(floppy)=4 meV
- weak evidence for anomalies in C_{11} , C_{44}
- Connection with MD ?

B. INTERMEDIATE PHASE

Experimentally

Picture of rigidity transitions has been changed in depth during the last decade.

Calorimetric measurements (modulated DSC)

Journal of Optoelectronics and Advanced Materials Vol. 3, Nr. 3, September 2001, p. 703 - 720

AWARD BORIS T. KOLOMIETS

DISCOVERY OF THE INTERMEDIATE PHASE IN CHALCOGENIDE GLASSES

P. Boolchand, D. G. Georgiev, B. Goodman^a

Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0030 ^aDepartment of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011

We review Raman scattering, Mössbauer spectroscopy and T-modulated Differential Scanning Calorimetry experiments on several families of chalcogenide glasses. Mean-field constraint theory, and numerical simulations of the vibrational density of state (floppy modes) in random

B. INTERMEDIATE PHASE

Modulated DSC and reversibility windows

Georgiev et al. PRB (2003)

Use of modulated differential scanning calorimetry (MDSC) across the glass transition

$$\dot{H}_{T} = \dot{H}_{rev} + \dot{H}_{nonrev}$$

□ Allows for the definition of 2 heat flows

Remarkable properties for selected glass compositions

- Since the RW is found between the flexible and the stressed rigid phase, it is also often called the « Intermediate phase ».
- Non-mean field phase otherwise one would have the single <r>=2.4 transitions.
- Central idea: stress avoidance under increasing cross-linking density. Network self-organization Adaptation, optimization,...
- **D** Nearly vanishing of ΔH_{nr} at Tg
- Stress free character (P_c minimum, Raman)
- Vibrational thresholds (Raman, IR)

Generic (chalcogenides, oxides)

Wang et al., PRB 2005

A subject which has not been without controversy...

"Marginality of non-reversible component of complex heat flow in MDSC experiments does not necessary reflect self-organized intermediate phase." PSS 2011

« However, that (mDSC) measurement might also be subjected to a large experimental uncertainty." PRB 2009

"The observation of the reversibility window might be an experimental artifact." PRB 2009

Micoulaut, Bauchy, PSS 2013

Why has the RW been missed before ?

Three experimental conditions have to be met

Tiny compositional changes

Fig. 4. Liquid state thermal expansion coefficient, α_L , versus $\langle r \rangle$ for the binary Ge–Se and ternary Ge–Sb–Se systems. The α_L values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 3.5%.

Ageing

Not « no ageing » but « weak ageing »

Chakravarthy et al. JPCM (2005)

Georgiev et al. JOAM (2003)

Micoulaut et al. PRB 2009

Fragility and relaxation

Intermediate phase melts display anomalous relaxational properties.

- the smallest measured fragilities (M=15). Silica (SiO₂) has M=20-28
- Minimum in Kohlrausch exponent β.
 Jump distances in solid electolytes

FIG. 6. Variations in the Kohlrausch stretched exponent $\beta(x)$ as a function of the AgI concentration x in $(AgPO_3)_{1-x}$ - $(AgI)_x$ glasses.

Micoulaut, Malki, PRL 2010

Gunasekera et al. JCP 2013

B. INTERMEDIATE PHASE

Theory beyond the mean-field estimate ?

Obvious link with the mean-field rigidity transition (<r>=2.4)

Central idea: Self-organization or stress avoidance

- □ Strategies
 - □ Lattice models : Normal mode analysis of self-organized networks Thorpe (2000), Mousseau (PRE 2006), Wyart (PRL 2013)
 - Cluster expansions Micoulaut (2003)
 - MD simulations See below

CLUSTER EXPANSIONS

Build size increasing bond models (clusters) and use constraint counting algorithms.

□ The basic level (the local structure) gives the mean-field result

LATTICE MODELS

Analogy with simulations on triangular networks

- Single RT: Bonds removed randomly+eigenmode analysis.
- Decomposition of the network into rigid clusters + determination of all stressed rigid regions.
- Self-organization: bonds added in a flexible region of the network are accepted only if this leads to isostatically rigid clusters (and not stressed rigid).
- Two transitions: rigidity and stress. Both coalesce in random networks
- Temperature effect Brière et al. PRE 2006 Le and Wyart, PRL 2013

Thorpe et al. JNCS 2000

C) Constraints and thermodynamics

□ Hamiltonian of a system containing f floppy modes with zero frequency energy:

$$H = \sum_{j=1}^{3N} \frac{P_j^2}{2m} + \sum_{j=1}^{3N(1-f)} \frac{1}{2} m \omega_j^2 Q_j^2$$

□ Out of which can be calculated a partition function:

□ Floppy modes are cyclic variables of H

$$Z = \int \cdots \int \prod_{j=1}^{N} dP_j dQ_j e^{-H/kT}$$
$$= \left(\frac{2\pi mkT}{h^2}\right)^{3N/2} \prod_{j=1}^{3N/2} \left(\frac{2\pi kT}{m\omega_j^2}\right)^{1/2}$$

Provides a channel in the potential energy landscape (PES) since the energy does not depend upon a change in a floppy mode coordinate

Naumis, PRB 2000, 2005

Constraints and thermodynamics:

- \Box For a given inherent structure (local minimum of the PES), the number of channels is given by f.
- Entropy due to floppy modes (available phase space to visit).
- □ At fixed volume, Ω(E,V,N) is proportional to the area defined by the surface f constant E. S=k_BlnΩ

$$S \approx f 3Nk_B \ln(V/V_0)$$

Naumis, Phys. Rev. E71, 026114 (2005).

Basics

□ Gupta & Mauro (2009) generalization of the Phillips approach by inclusion of temperature-dependent constraints:

$$n(T, x) = \sum_{i} N_{i}(x) \sum_{\alpha} w_{i,\alpha} q_{\alpha}(T)$$

□ Required parameters:

 \square $N_i(x)$: mole fraction of each network-forming species *i*

 $\square w_{i,\alpha}$: number of α -type constraints for each species *i*

 $\Box q_{\alpha}(T)$: temperature-dependent rigidity of constraint α

Gupta & Mauro, J. Chem. Phys. 130, 094503 (2009) Mauro, Gupta, Loucks, J. Chem. Phys. 130, 234503 (2009)

 $q_{\alpha}(T)$: temperature-dependent rigidity of constraint α

Steps

- 1. Identify and count the number of network-forming species as a function of composition
- 2. Identify and count the number of constraints associated with each of those species
- 3. Rank the constraints in terms of their relative strength (onset temperature)
- 4. Connect the change in degrees of freedom (f = d n) with change in specific property of interest

<u>Step 1</u>: Model the local structure as a function of composition

- \Box Applied to borate glasses Na₂O-B₂O₃
- \Box Addition of modifier oxide to B₂O₃ can cause
 - boron coordination change

 \Box Remember of simple bond models for alkali borates for x>0.33

$$N_2(x) = \frac{3(3x-1)}{5(1-x)} \qquad N_3(x) = \frac{1-2x}{1-x} \qquad N_4(x) = \frac{3-4x}{5(1-x)}$$

Step 1: Model the local structure as a function of composition

Complete statistics

$$x > 0.33$$
 $N_2(x) = \frac{3(3x-1)}{5(1-x)}$ $N_3(x) = \frac{1-2x}{1-x}$ $N_4(x) = \frac{3-4x}{5(1-x)}$
 $x < 0.33$ $N_3(x) = 1 - R = 1 - \frac{x}{1-x} = \frac{1-2x}{1-x}$

$$N_4(x) = R = \frac{x}{1-x}$$

□Can sometimes be re-expressed in terms of bonding oxygens (those participating to the network connectivity, i.e. N_B =4 on a B4).

$$N(Q^{4}) = \begin{cases} \frac{2x}{5-4x}, & x \le \frac{1}{3}, \\ \frac{6-8x}{31-38x}, & \frac{1}{3} < x \le \frac{1}{2}, \end{cases} \qquad N(O^{B}) = \begin{cases} \frac{3-2x}{5-4x}, & x \le \frac{1}{3}, \\ \frac{21-28x}{31-38x}, & \frac{1}{3} < x \le \frac{1}{2}, \end{cases} \qquad O^{2}$$

Mauro et al. JCP 2009

.5

0.7

0.6

0.5

0.4

0.3 ·

Bridging Oxygen

 O^3

f Network-Forming Species

<u>Step 2</u>: Count constraints on each atom (borates)

- $\Box \alpha$: B-O and M^{NB}-O linear (BS) constraints
 - > Two α constraints at each oxygen
- \square β : O-B-O angular constraints
 - > Five β constraints at each Q⁴ unit.
 - > Three at each Q^3 unit.
- \Box γ : B-O-B and B-O-M^(NB) angular constraints
 - \succ One γ constraint at each bridging oxygen
- \square μ : modifier rigidity (due to clustering)
 - > Two μ constraints per NBO-forming Na atom

Each involves an onset temperature at which q(T) becomes active for T<T_{onset} Similar procedure for borosilicates

<u>Step 3</u>: Ranking of constraints according to temperature

$$T_{\gamma} < T_{\beta} < T_{\mu} < T_{\alpha}$$

• Constraints become rigid as temperature is lowered

– Onset temperatures:

Smedskjaer, Mauro, Sen, Yue, *Chem. Mater.* 22, 5358 (2010)

<u>Step 4</u>: Calculating properties...the roadmap

<u>Step 4</u>: Calculating properties

A. Use Adam-Gibbs definition of viscosity

$$\log_{10} \eta(T,x) = \log_{10} \eta_{\infty} + \frac{B(x)}{TS_c(T,x)}$$

B. Use the fact that T_g is the reference temperature at which $\eta = 10^{12}$ Pa.s. Since η is constant for any composition, we can write:

$$\frac{T_g(x)}{T_g(x_R)} = \frac{S_c[T_g(x_R), x_R]}{S_c[T_g(x), x]}$$

- C. Remember that Naumis' model leads to $S_c \# f$ (floppy modes).
- D. This allows writing: $\frac{T_g(x)}{T_g(x_R)} = \frac{f[T_g(x_R), x_R]}{f[T_g(x), x]} = \frac{d n[T_g(x_R), x_R]}{d n[T_g(x), x]}$

<u>Step 4</u>: Calculating properties

Establishing a new viscosity fitting formula (MYEGA)

$$\log_{10}\eta(T, x) = \log_{10}\eta_{\infty}(x) + \frac{B(x)}{TS_{c}(T, x)}$$

Simple two-state model assuming that f(HT)=3 and f(LT)=0 (no topological degrees of freedom in the glass) (-H(r))

$$f(T, x) = 3\exp\left(-\frac{H(x)}{kT}\right)$$

$$\log_{10}\eta(T, x) = \log_{10}\eta_{\infty}(x) + \frac{K(x)}{T} \exp\left(\frac{C(x)}{T}\right)$$

$$\log_{10} \boldsymbol{\eta}(T) = \log_{10} \boldsymbol{\eta}_{\infty} + (12 - \log_{10} \boldsymbol{\eta}_{\infty})$$
$$\frac{T_g}{T} \exp\left[\left(\frac{m}{12 - \log_{10} \boldsymbol{\eta}_{\infty}} - 1\right)\left(\frac{T_g}{T} - 1\right)\right]$$

No divergence found at HT (AM) or at LT (VFT)

Mauro et al. PNAS (2009)

<u>Step 4</u>: Calculating properties

D. Remember the definition of fragility :

$$m(x) \equiv \left. \frac{\partial \log_{10} \eta(T, x)}{\partial [T_g(x)/T]} \right|_{T=T_g(x)}$$

E. Using Naumis' definition, once more, one obtains:

$$m(x) = m_0 \left(1 + \left. \frac{\partial \ln f(T, x)}{\partial \ln T} \right|_{T = T_g(x)} \right)$$

F. Application to sodium borates

$$n(T_g(x), x) = \begin{cases} \frac{12 - 6x}{5 - 4x}, & x \le \frac{1}{3}, \\ \frac{96 - 138x}{31 - 38x}, & \frac{1}{3} < x \le \frac{1}{2} \end{cases} \qquad T_g(x) = \begin{cases} \frac{1}{5} \left(\frac{5 - 4x}{1 - 2x}\right) T_g(0), & x \le \frac{1}{3}, \\ \frac{1}{11} \left(\frac{31 - 38x}{8x - 1}\right) T_g\left(\frac{1}{3}\right), & \frac{1}{3} < x \le \frac{1}{2}, \end{cases}$$
<u>Results</u>: Fragility and Tg variation of calcium borate glasses

- Na sets up a locally rigid environment, whereas Ca does not
- Prediction of fragility with only one fitting parameter (vt_{obs})

Smedskjaer, Mauro, Sen, Yue, Chem. Mater. 22, 5358 (2010)

<u>Results</u>: Fragility and Tg variation of sodium borosilicate glass

- \Box T_g of a borate glass can be predicted from that of a silicate glass with f(x,y,z,T) as the only scaling parameter
- □ Fragility: onset temperatures $T_{\beta,Si}$ and T_{μ} are treated as fitting parameters (1425 K)

Smedskjaer et al., J. Phys. Chem. B 115, 12930 (2011)

<u>Results</u>: Tg and fragility variation of alkali phosphate glass

Hermansen et al. JCP 140, 154501 (2014) Rodrigues et al. J. Non-Cryst. Solids **405** 12 (2014)

<u>Results</u>: Calculating the hardness from constraints

- □ Idea: critical number of constraints (n_{crit}) must be present for material to display mechanical resistance
 - ightarrow n = 2: rigidity in one dimension (Se)
 - > n = 3: rigidity in three dimensions (SiO₂)
 - > n = 2.5: rigid 2D structure (graphene) → n_{crit}
- Proposal: hardness is proportional to the number of 3D network constraints at room temperature

$$H_V(x, y) = \left(\frac{dH_V}{dn}\right) [n(x, y) - n_{\text{crit}}]$$
$$= \left(\frac{dH_V}{dn}\right) [n(x, y) - 2.5].$$
?

<u>Results</u>: Hardness H_v in borates and borosilicates

• Glass hardness can be predicted from the average number of room temperature constraints, with only an unknown proportionality constant (dH_V/dn)

Smedskjaer, Mauro, Yue, PRL 105, 115503 (2010)

Origins of Properties (borosilicates)

- γ and μ constraints have a negligible impact on fragility, whereas the $\beta_{\rm B}$ constraints are the main contributors
- α and γ constraints contribute significantly to hardness

Smedskjaer, Mauro, Youngman, Hogue, Potuzak, Yue, J. Phys. Chem. B 115, 12930 (2011)

<u>Results</u>: Quantitative designe of glasses (borates)

- **Topological engineering**: exploring new composition spaces where glasses have not yet been melted
- Difference in scaling is due to *T*-dependence of constraints

D. MD BASED RIGIDITY THEORY

1. We start from the estimation of constraints:

$$n_{c} = \frac{\sum_{r \ge 2} n_{r} [r / 2 + (2r - 3)]}{\sum_{r \ge 2} n_{r}} = \frac{\overline{r}}{2} + 2\overline{r} - 3$$

Questions and limitations

Phase separation ? Isolated molecular units, As-Ge-S,...

Coordination number, always 8-N?

CN(Na)=5 in silicates, CN(As)=4 in certain As-Se and P-(Se,S) compositions,... Delocalisation, non-directional (ionic) bonding...

Count all interactions (constraints) ?

Broken Si-O-Na angular constraints in oxides,... Thermally activated broken constraints (Mauro-Gupta)

□ n_c at all thermodynamic conditions (T,P,x)

Need to have a good starting MD generated structural model

Salmon JNCS 1999 - Rao et al. JNCS 1998- Penfold, Salmon PRL 1991 – Massobrio et al. JPCM 2000, Petri, Salmon, Howells, JPCM 1999, Massobrio et.al PRB 2009, Micoulaut et al. PRB 2009

2. General idea:

Generate atomic trajectories for a given system at (x,P,T) using Molecular Dynamics simulations (classical or First Principles)

□ Compute from these trajectories

Compute from these trajectories**1. bond-bending (work on angles)**

N first neighbor distance distrib.

• N(N-1)/2 bond angles analyzed (102), (103) ... (304) ... (N-1 0 N)

Peugeot labelling

• Not all are independent !

Estimate of bond-bending from partial bond angle distribution (PBAD) $P_i(\theta)$

with i<N(N-1)/2 arbitrary for a given atomic j0k triplet

•Splitting the BAD into contributions from neighbours.

•Compute the second moment (σ_{ι} , sometimes fwhm) of each PBA Distribution.

$$\langle \theta_i^2 \rangle = \int \theta^2 P_i(\theta) d\theta \qquad \sigma_i^2 = \langle \theta_i^2 \rangle - \langle \theta_i \rangle^2$$

Ge-centred PBAD in GeO₂ for arbitrary N=6

Ge-centred PBAD in GeO₂ for arbitrary N=6

Large $\sigma_{\theta ij}$: broken constraint. Weak restoring force that maintains a mean angle fixed

0.004 0.003 0.002 0.001 80 20 60 160 100 120 140 180 0.008 0.007 Ge 103 0.006 104 9:206 0.005 0:304 · 106 11:305 0.004 6: 203 12:306 7:204 0.003 8:205 14:406 0.002 --- 15: 506 0.001 80 100 Angle (deg) 20 40 60 120 140 160 180 GeO,

Large O-centred angular motion Tetrahedral angle (109°) well defined

$\begin{array}{c} 0.0015 \\ 0.001 \\ 0.0005 \\ 0 \\ 0 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \\ 120 \\ 140 \\ 160 \end{array}$

GeSe₂

Bimodal (ES vs CS) Se-centred distribution Tetrahedral angle well defined and broader

100

120

140

CS

Se

160

Ge

180

180

PBADs for tetrahedral network glasses

Standard deviations for tetrahedral network glasses

•Angular counting from MD matches direct Maxwell counting

- 6 Ge,Si angles have a low standard deviation (but only 5 independent)
- Equivalent tetrahedral anglular excursion in oxides (rigid tetrahedron).
- Increased angular distorsion in chalcogenides (σ is not constant).
- 1 Se angle with a low σ in GeSe₂

Standard deviations and rigidity transitions

- •**Rigidity (increasing Ge) affects mostly the Ge intra-tetrahedral motion.** Stress transition leads to an asymetric intra-tetrahedral angular motion involving the neighbour 4. Weak changes in σ_{se}
- •Flexible GeSe₉ and IP GeSe₄ and GeSe₃: similar to oxides: σ=const, rigid tetrahedra

Silicates

Using rigidity and molecular simulations

between 18-22 % Ge

$$\langle r_{\alpha}^{2}(t) \rangle = \frac{1}{N_{\alpha}} \langle \sum_{i=1}^{N_{\alpha}} |\mathbf{r}_{i}(t) - \mathbf{r}_{i}(0)|^{2} \rangle$$

Expectation : Mobility decreases as Ge

content increases

Mean Field prediction is well reproduced At 300 K but constraints soften at high

Weak variation of Ge BB at

the rigidity transition

Homogenous distribution of Ge BB constraints at 22 % where the atomic

mobility is minimum at 1050 K

glassy network forming melts show a global minima when

Liquid-glass transition of NS2 liquids

- Reproduction of the glass transition phenomenology
- Cooling: faster cooling (q=dT/dt) freezes glass in at higher temperature
- □ Well defined fictive temperature
- With <u>heating</u>, a hysteresis loop is found, and originates a heat capacity "overshoot" at the glass transition.

Tg cooling-annealing cycle in NPT

Same anomalies in NPT Ensemble. Volume recovery for selected pressures.

□ Enthalpy minimum in a pressure window found between ~3 GPa < P < 12 GPa.

0.3

(10⁻⁵ cm

Link with transport properties: diffusion and viscosity

Diffusion (msd) and viscosity (Green-Kubo, Stress auto-correlation)

4

- □ In the pressure window (2000K) :
- minimum of viscosity
- maximum of O/Si diffusion
- Similar features

 (diffusivity anomaly as in d-SiO₂ or d-H₂O,
 Debenedetti et al., Nature (2000)
- $(a)_{F^2}^{(a)} (b)_{F^2}^{(a)} (c)_{F^2}^{(a)} (c)_{F^2}^{($
- Ease of diffusion (i.e. relaxation) related to reversibility.

M. Bauchy, M. Micoulaut, Phys. Rev. Letters <u>110</u>, 095501 (2013).

Effect of rigidity

□ At P=0, the NS2 glass is flexible (Rigid to Flexible transition for 20% Na₂O)

□ In the Pressure window, saturation of n_c to a limiting value nc ~3.

Isostatic character of the network

- Detail: With increase of pressure, stretching constraints (BS) and stress increase.
- □ Linked with increase of Si and O coordination.
- Softening of the bending (BB) constraint to avoid pressure-induced stress.

The reversibility of the glass transition, and the underlying anomalies are driven by the adaptive isostatic nature of the base network.

□ Isostatic (n_c=3) glass transitions display an ease to reversibility.

Reversibility: at a fixed cooling/heating rate, the energy/volume hysteresis is minimum. OPTIMAL RELAXATION

Thermal anomalies are linked with anomalies in transport in the liquid and with structural anomalies in the glass.

□ Upon increasing stress, the system adapts to maintain as long as possible the isostatic character of the network.

Link with structure

• First sharp diffraction peak (FSDP) of partial $S_{ij}(k)^{23}$

- Correlation lengths are minimal
- Coherence length (Sherer equation) are maximal : IP has large domain sizes
- Also obtained in As-Se glasses

Micoulaut et al. 250, 976 (2013) Bauchy et al. PRL110, 095501 (2013) Bauchy et al. PRL 110, 165501 (2013)

Are these constraints homogeneously distributed ?

Do they impact more subtle aspects of dynamics ? *Dynamic heteroegenities*

Micoulaut et al. PRL 2017

Rigidity transition in cement

Extending the rigidity theory to complex materials

C-S-H cement models

150 different sampleswith varying Ca/Si ratio:From 1.09 to 2.05

Around 500 atoms ReaxFF potential (reaction with water)

Crystalline

Amorphous

M. Pellenq et al. JCP 2005 Bauchy et al. JCP 140, 214503 (2014)

Rigidity transitions in cement

- Rigidity transition at Ca/Si = 1.5 (isostatic)
- Rigid at low Ca/Si ratio
- Flexible at high Ca/Si ratio
- Change of the slope at the rigidity transition
- Transition mostly driven by bond-bending constraints

Mechanical properties and rigidity

Mechanical behaviour of Ge-Se (classical MD)

Nanoindentation as a function of Ge content Loading and unloading

Anomalies found for isostatic glasses

Mauro and Varshneya, J.Am. Ceram. Soc. 90, 192 (2007).

2.6

2.8

3.0

Mechanical properties and rigidity

Mechanical behaviour contrasted to n_c

- Rigidity status (n_c) is controlled by pressure
- Application to NS2 and CSH (cement)
- Numerical tensile experiments

Bauchy et al. Acta Mater. <u>121</u>, 234 (2016) Bauchy et al. PRL 114 (2015) 125502
Fracture toughness and rigidity

Données GS: Guin et al. J.AM.Ceram. Soc (2002)

Isostatic systems

- Maximum fracture toughness
- Rigidity transition coincides with a ductile-to-brittle transition.

 $B=2\gamma_s/G_c$,

• Network is rigid but free of eigen-stress and features stress relaxation through crack blunting, resulting in optimal resistance to fracture.

Irradiation in quartz

Irradiation-induced damage in quartz investigated from rigidity theory

- MD simulations of quartz by high energy ballistic (irradiation) motion v₀ linked with deposited energy E (strategy J.M. Delaye, JNCS 2001)
- MD based constraint counting
- Relating MD calculated properties to n_c.

Wang et al. JNCS 463 (2017) 25

Irradiation in quartz

Evidence of a rigid-to-flexible rigidity transition

- Arises from the simultaneous loss of atomic eigenstress and onset of network flexibility
- Link with structural signatures (FSDP)

Wang et al. JNCS 463 (2017) 25

Conclusion:

- Rigidity transitions provide an interesting framework for the understanding of compositional trends in glasses
- Optimizing properties from the inspection of anomalous behaviors (maxima and minima)
- Various means can serve to bring a complex system from flexible to rigid Composition, pressure, irradiation, ion strengthening,...
- □ Adaptative isostatic window (a thermodynamic phase ?) with surprising properties (highly debated research). Design new applications ?
 - ➢ Weak ageing phenomena. Stable glasses.
 - Space-filling tendencies, Fragility anomalies (not always,...)
 - > Experimental challenge (sample preparation)
- □ MD based constraint theory leads to an atomic scale insight and links with various properties (transport, structure, mechanics, conduction,...)

M. Micoulaut, Advances Phys. X (2016). Open