Ab Initio Molecular Dynamics Simulations in Liquids and Glasses Basics and Applications - II

Matthieu Micoulaut

Sorbonne Université matthieu.micoulaut@sorbonne-universite.fr

IYOG Graduate Course on the Structures of Glass November 3, 2022

Outline - Application to Liquids and Glasses

 A case study : Binary Chalcogenides Effect of the electronic model Thermal history effects Structure and Dynamics

2 Properties from the electronic treatment

Infrared spectrum Raman scattering Electronic density of states

EFFECT OF THE ELECTRONIC MODEL

Massobrio, Pasquarello and Car, JACS 121 (1999)

Nature of chemical bonding :

- In chalcogenides (e.g. GeSe₂ or GeS₂), presence of homopolar defects.
- Charge transfer. From covalent character to metallic. Change with temperature.
- From LDA to GGA :
 - Depletion of Ge valence charge and charge accumulation around Se indicates ionic character of the bonding. Lobes → covalent contribution to the bonding character. Increased ionic character with GGA
 - 50% (LDA) and 63% (GGA) Ge are 4-fold in l-GeSe₂. Too high metallic character.

Figure 3. Average Se-coordination of Ge atoms in liquid GeSe₂ as a function of the radius of the coordination sphere in the (a) LDA and (b) GGA. The coordination is defined as the number of nearest neighbors in the coordination sphere.

EFFECT OF THE ELECTRONIC MODEL

Effect of the XC functional :

- In I-GeSe₂, increase of the pseudo-gap between C and V band when moving from PW (metallic character, electron gas) to BLYP (fitted on molecules).
- Increases the Ge tetrahedral coordination number and 2-fold for Se. Decrease the number of CN defects.
- Increases the number of Ge-Ge and Se-Se homopolar bondings. Increased structuration.

Micoulaut and Massobrio, JOAM 11 (2009)

EFFECT OF THE ELECTRONIC MODEL

Effect of the XC functional + dispersion :

- In a-GeTe₄, similar features on structure encoutered.
- BLYP favors a tetrahedral network, in contrast with PBE (octahedral+tetrahedral Ge).
- Dispersion corrections (VdW) cure a so-called Ge-Te "bond distance problem".

$$E_{disp} = -s_6\sum_{i}\sum_{j}rac{C_{ij}}{R_{ij}^6}f_{damp}(R_{ij})$$

Bouzid et al. PRB 92 (2015)

THERMAL HISTORY EFFECTS

Deng and Du, JCP 148 (2018)

- Effects of system size (10⁷) and cooling rate of the simulation process (10⁸ K/s-10¹⁵ K/s) in classical MD simulations are well known and documented
- Properties depend on the thermal history.
- Effects even more problematic in ab initio MD.
 - N=100-1000 atoms, 100 ps, 10¹³-10¹⁶ K/ps
 - N=480 glassy GeSe₂, 350 ps \rightarrow 56 years single CPU !!!

THERMAL HISTORY EFFECTS

Averages over inherent structures

 Liquids visit many configurations prior to 10-100 K/ps quenching followed by structural relaxation

- Produce independent quenches to generate inherent structures (local minima of the potential energy landscape)
- Average the glass structures for reliable results

C. Yildirim, PhD Thesis (2017)

THERMAL HISTORY EFFECTS

Micoulaut, Pethes and Jóvàri (2022)

Are there alternatives for saving time?

- 1 Reverse Monte Carlo
 - Glass configuration prepared by RMC. Then, DFT investigation.
 - Pros: Time saving. Increased match with experimental structure (?).
 Cons: Unphysical model structure without relaxation events during the quenching (energy barriers).
 - RMC refinment : DFT quench to 300 K \rightarrow RMC \rightarrow DFT investigation.
- Olassical MD prior to DFT study
 - Valid for oxides. But for chalcogenides ?

STRUCTURE AND DYNAMICS

Bauchy, Kachmar and Micoulaut, JCP 141 (2014)

1 Ge_xSe_{1-x} , As_xSe_{1-x} or Ge_xS_{1-x}

- Accurate glass structures, in excellent agreement with scattering experiments.
- Presence of homopolar defects (Ge-Ge, As-As, Se-Se, S-S).

STRUCTURE AND DYNAMICS

Yildirim, Raty and Micoulaut, Nature Comm. 7 (2016)

Bauchy et al. PRL 110 (2013)

Ge_xSe_{1-x}, As_xSe_{1-x} or Ge_xS_{1-x}

- Accurate glass structures, in excellent agreement with scattering experiments.
- Presence of homopolar defects (Ge-Ge, As-As, Se-Se, S-S).
- Anomalies in dynamic properties

STRUCTURE AND DYNAMICS

Yildirim, Raty and Micoulaut, JCP 148 (2018)

Wezka et al. PRB 90 (2014)

Ge_xSe_{1-x}, As_xSe_{1-x} or Ge_xS_{1-x}

- Accurate glass structures, in excellent agreement with scattering experiments.
- Presence of homopolar defects (Ge-Ge, As-As, Se-Se, S-S).
- Anomalies in dynamic properties

2 Densified chalcogenides

- Coordination and geometry change with pressure
- Evidence of polyamorphism

INFRARED SPECTRUM

Different methods can be used:

- **1** Finite electric field (ϵ) method (Umari and Pasquarello, PRL 89 (2002))
 - One adds into the functional a term $E_{ion} = -\epsilon \cdot \mathbf{P}_{ion}$ with

$$\mathbf{P}_{ion} = \sum_{i} Z_i \cdot \mathbf{R}_i$$

• Dynamic Born charge tensors $Z^* = F_{\epsilon}/\epsilon$ give acces to IR spectrum.

- 2 Linear response theory (DFT perturbation theory, Putrino and Parrinello, PRL 2002)
 - Similarly to the calculation of e.g. transport coefficients in linear response theory (autocorrelation functions)
 - One considers consider the response of the system under a small perturbation through response (Green) functions coupled to an excitation at frequency ω .

INFRARED SPECTRUM

Courtesy of R. Vuilleumier (ENS)

- Perturbation to the Hamiltonian is : —M.E with M the dipolar momentum.
- Using linear response theory, one can show that the infrared absorption is :

$$\epsilon_{2}(\omega) = \frac{2\pi}{3Vk_{B}T}\int_{-\infty}^{\infty} e^{-i\omega t} \langle \mathbf{M}(t).\mathbf{M}(0) \rangle dt$$

• Real part from Kramers-Krönig relations:

$$\epsilon_1(\omega) = \frac{2}{\pi} \int_0^\infty \frac{\Omega \epsilon_2(\Omega)}{\Omega^2 - \omega^2} d\Omega$$

INFRARED SPECTRUM of Ge-Se GLASSES

M. Micoulaut et al. PRB 88 (2013)

INFRARED ANALYSIS OF As₂Se₃

M. Micoulaut and P. Boolchand Front. Mat. 6 (2019)

Signatures of coordination defects can be decoded from the analysis of the infrared spectra of liquid and glassy As₂Se₃.

Presence of a defect line at $350-400 \text{ cm}^{-1}$ compatible with the presence of four-fold As

M. Micoulaut (SU)

15/22

RAMAN SCATTERING

Polarisation induced by electric field **E** : $\mathbf{M} = \stackrel{\leftrightarrow}{\chi} \mathbf{E}(t) = \stackrel{\leftrightarrow}{\chi} \mathbf{E}_m \cos \omega_L t$

$$\overset{\leftrightarrow}{\chi} (\{R\}) = \overset{\leftrightarrow}{\chi} (\{R_0\}) + \left(\{R\} - \{R_0\}\right) \frac{\partial \overset{\leftrightarrow}{\chi}}{\partial \{R\}} + \dots$$

Harmonic approximation of the lattice dynamics: $\{\mathbf{R}\} - \{\mathbf{R}_0\} \simeq u \cos \omega_{vib} t$

$$\mathbf{M} = \stackrel{\leftrightarrow}{\chi} (\{R_0\}) \mathbf{E} \cos \omega_L t + \frac{1}{2} \frac{\partial \stackrel{\leftrightarrow}{\chi}}{\partial \{R\}} \mathbf{E}_m u \Big[\cos(\omega_L + \omega_{vib}) t + \cos(\omega_L - \omega_{vib}) t \Big]$$

RAMAN SCATTERING

Raman cross section

Lazzeri and Mauri, PRL 90 (2003)

$$\frac{d\sigma}{d\Omega} \propto V\left(\frac{\omega_L}{c}\right)^4 \sum_{\textit{vib}} \left| \mathbf{e}_s. \frac{\partial \stackrel{\leftrightarrow}{\chi}}{\partial \{ \boldsymbol{Q}_{\textit{vib}} \}} \cdot \mathbf{e}_L \right|^2 \frac{\hbar}{2\omega_{\textit{vib}}} \cdot \boldsymbol{A}_{\textit{vib}}$$

with Raman susceptibility :

$$\frac{\partial \stackrel{\leftrightarrow}{\chi}}{\partial \{ \boldsymbol{Q}_{\textit{vib}} \}} = \sum_{l} \frac{\boldsymbol{e}_{\textit{vib}}^{l}}{\sqrt{M_{l}}} \cdot \frac{\partial \stackrel{\leftrightarrow}{\chi}}{\partial \boldsymbol{\mathsf{R}}_{l}}$$

and Raman tensor :

$$\frac{\partial \stackrel{\leftrightarrow}{\chi}}{\partial \mathbf{R}_{I}} = \frac{\partial \chi_{\mu\nu}}{\partial \mathbf{R}_{I}} \propto \frac{\partial^{2} F_{I}}{\partial E_{\mu} \partial E_{\nu}}$$

Alternative : Linear response theory from polarizability tensor :

Putrino and Parrinello, PRL 88 (2002)

$$\stackrel{\leftrightarrow}{\alpha} = \alpha_{\mu\nu}(t) = -\frac{\partial \mathbf{P}_{\mu}}{\partial \mathbf{E}_{\nu}} \equiv \frac{\partial^2 E}{\partial \mathbf{E}_{\mu} \partial \mathbf{E}_{\nu}}$$

RAMAN SCATTERING

Putrino and Parrinello, PRL 88 (2002)

RAMAN SCATTERING

Kilymis et al. PRB 99 (2019)

- Excellent reproduction of the Raman spectra
- Sodium silicates: Atomic scale contribution or contribution of identified species
- Beyond experimental Gaussian deconvolution
- More details: P. Giannozzi et al., JPCM 21 (2009) http://www.quantum-espresso.org

ELECTRONIC DENSITY OF STATES

- Computation of the KS eigenstates allows to obtain electronic density of states.
- Directly comparable with experiments from X-ray photoemission spectroscopy (XPS) for the valence band and with inverse photoemission for the conduction band.

Micoulaut et al. PRB 104 (2021)

ELECTRONIC DENSITY OF STATES

- Computation of the KS eigenstates allows to obtain electronic density of states.
- Directly comparable with experiments from X-ray photoemission spectroscopy (XPS) for the valence band and with inverse photoemission for the conduction band.
- Details from atomic structure (species, coordination defects,...) provides insight.

Prasai and Drabold, PRB 83 (2011)

Micoulaut and Flores-Ruiz, (2022)

Conclusion

- Ab initio methodology well established for glasses and liquids.
- Access to structure and dynamics (\propto classical MD) for covalent and semi-metallic systems.
- New properties can be calculated from ab initio simulations (Raman, IR, XPS, ...) in order to establish structure-property relationships.
- Atomic scale insight into vibrational spectra
- Possibility to investigate properties of chalcogenides or densified glasses
- Applications in optoelectronics where electronic phenomena are clearly at play.

Merci à : Steve Martin, Jincheng Du