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Some preliminary remarks...

• Classical force-fields carry their own
and intrinsic limitations.

Vij(r) =
qiqj

r
+ Aije−r/ρij −

Cij

r

• Force-fields are not always available for
a given system (composition) or
thermodynamic condition (high
pressure).

• No information available on the nature of the chemical bonding

• How to treat explicitly charge transfer in covalent systems
(chalcogenides) ?

• Description of spectroscopic/electronic properties in relationship with
atomic structure (Raman, IR, XPS,. . . )
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Some preliminary remarks...

• Some glass systems display broken
chemical order.

• Classical force-fields do not account for
such defects.
− Ge-Te (phase change), Ge-Se or As-Se
− HP-SiO2

• Systems with small band gaps undergo
semiconducting to metallic transitions :
As2Te3, GeTe,...

Figure: *

P. Vashishta
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Basics

FINDING APPROXIMATIONS

The starting point : the Schrödinger equation

HΨ = EΨ (1)

for a system with N atoms and n electrons.

For large systems, there are basically two options :

• Adiabatic approximation : e− move faster than the nuclei which can
be considered as fixed.

• Mean-field approximation for the e− – e− interaction (density
functional theory,DFT).
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Basics

FINDING APPROXIMATIONS

We write the Hamiltonian for molecules or solids. It contains the
interaction and the kinetic energy of N atoms (nuclei of mass M) at
positions Rl and n electrons of mass m at positions ri .

H =
n∑

i=1

P2
i

2m
+

1
2

n∑
i ̸=j

e2

|ri − rj |
−

n∑
i=1

N∑
l=1

Zle2

|ri − Rl |
+

N∑
l=1

P2
l

2Ml
+

1
2

N∑
k ̸=l

Zk Zle2

|Rk − Rl |

A useful form with standard identification

H = Te({p}) + Vee({e}) + VeN

(
{r}, {R}

)
+ TN({P}) + VNN({R})

Electronic kinetic E e – e potential e – nucleus potential nuclear kinetic E nucleus-nucleus potential
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Basics

FINDING APPROXIMATIONS

We solve the the Schrödinger equation : HΨ(i,l)(r ,R) = E(i,l)(r ,R)

Adiabatic approximation : Since M= 2000 me, there are 2 different
timescales involved : electrons and nuclei (ions)
• Vibrational excitations : ℏω ≃10 meV
• Electronic excitations : ℏω ≃1 eV

Since τions ≫ τe, on the timescale of electrons, ions can be considered as
frozen.

Consequence : The wavefunction can be split in 2 parts

Ψ(i,l)(r ,R) = χ(i,l)(R)Φe(r ,R)[
Te + Vee + VeN(R) + VNN(R)

]
Φe(r ,R) = Ee(R)Φe(r ,R)[

Tn + Ee(R)

]
χ(i,l)(R) = Ei,eχ(i,l)(R)
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Basics

FINDING APPROXIMATIONS

1 Φe(R) is the ground state electronic wavefunction of the electronic
Hamiltonian at fixed configuration (parameter) R.[

Te + Vee + VeN(R) + VNN(R)

]
Φe(r ,R) = Ee(R)Φe(r ,R)

to obtain Φe(R) and Ee(R) (Born-Oppenheimer energy surface).
2 Knowing Ee(R), one solves[

Tn + Ee(R)

]
χ(i,l)(R) = Ei,eχ(i,l)(R)

to obtain χ(i,l)(R) and Ei,e.
Common approximations :
• At LT, harmonic approximation. χ(i,l)(R) only non-zero around :

Ee(R) ≃ Ee(R0) +
1
2!
(R − R0)

2 ∂
2El(R)

∂R2 + ...

• At HT, nuclei behaves as a classical particle : M d2R
dt2 = −∂Ee(R)

∂R
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Solutions of the electronic Hamiltonian

Reducing complexity : We want to compute Φe(r ,R)=Φe(r1, r2, r3, ...rn,R)

• Discretize space of each variable on a grid of NG grid points. To define
Φe, one needs (NG)

n values ! Many body problem

• Many properties can be reproduced by an independent electron
approach (i.e. single particle). In this case, a single particle
wavefunction needs only n × NG variables (Hartree-Fock).

• How do we construct an ab-initio independent electron approach of
the total energy of the ground state ?

• Many static and quasistatic properties can be obtained as derivatives
of the total energy :

Force: −∂E(R)
∂R Dynamic matrix: ∂2E(R)

∂Ri∂Rj
Polarisation: −∂E(R)

∂Eelec
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Solutions of the electronic Hamiltonian

Reminder from Hartree-Fock : ab initio single particle approach for the
total energy. Variational method with exact Hamiltonian and an
approximate wavefunction.

EHF = minΦHF ⟨ΦHF |H|ΦHF ⟩ ≥ Eexact (2)
with

ΦHF (r1, r2, ...rn) =
1√
n!

∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) ... ψn(r1)
ψ1(r2) ψ2(r2) ... ψn(r2)
... ... ... ...

ψ1(rn) ψ2(rn) ... ψn(rn)

∣∣∣∣∣∣∣∣
Single Slater determinant. Exact solution for an independent electron
Hamiltonian with non-degenerate ground state.

To do better, we change the Hamiltonian
• System with interacting electrons in a potential Vext(r)
• Instead : System with non-interacting electrons in a fictitious potential

V ′
ext(r) ̸= Vext(r) with same total energy and same electronic density.

M. Micoulaut (SU) Ab initio in glasses IYOG Course 13 / 42



Density functional theory
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Density functional theory

STARTING FEATURES

• The electronic density is the basic variable.

• N interacting electrons in an external potential Vext(r) in a unique non
degenerate GS:

n(r) = N
∫ ∫ ∫

Ψ∗
GS(r, r2, ...rN)ΨGS(r, r2, ...rN)d3r2.r3...rN

• Hohenberg-Kohn theorem : It is shown that V ′
ext(r) = Vext(r)+cst

where V ′
ext(r) is the most general potential and n(r) is the GS density.
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Density functional theory

• Definition : The DFT functional is given by :

F [n] = ⟨ΨGS|T
[n]
e + V [n]

ee |ΨGS⟩

with : N =
∫

n(r)d3r. The energy of the system is given by :

E [n] = F [n] +
∫

n(r)Vext(r)d3r

and minimized by the ground state density E [nGS] = EGS .

• Kohn-Sham approach : Given an interacting GS charge density nGS(r)
of a N electron system.

• There exists just one external potential VKS(r) for a non-interacting N
electron system with GS state density nGS(r)

• Defines a Kohn-Sham (single particle) Hamiltonian :

HKS =
P2

2m
+ VKS(r)
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Density functional theory

The solutions (eigenvectors |Ψi
KS⟨, energies ϵiKS) of the KS Hamiltonian

satisfy :

n(r) = 2
N/2∑
j=1

⟨Ψj
KS|r⟩⟨r|Ψ

j
KS⟩

out of which 2 news quantities can be defined :
• The kinetic energy of the KS system

T0[n] = 2
N/2∑
j=1

〈
Ψj

KS

∣∣∣∣ P2

2m

∣∣∣∣Ψj
KS

〉
It is not the kinetic energy part of the real interacting system but the
fictious non-interacting one !

• The Hartree Coulomb interaction (”classical” form)

EH [n] =
1
2

∫ ∫
d3rd3r′

e2n(r)n(r′)
|r − r′|
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Density functional theory

By definition, the exchange-correlation functional is :

EXC [n] = F [n]− T0[n]− EH [n]

with the total energy given by :

E [n] = T0[n] + EH [n] + EXC [n] +
∫

n(r)Vext(r)d3r

= T0[n] + EKS[n]

Conclusion
Most of the difficult (and approximation) part is hidden in EXC !
The choice of EXC dramatically impacts structural properties of the glass.
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Density functional theory

EXCHANGE CORRELATION

We want to calculate :

EXC [n] =
1
2

∫
n(r)d3r

∫
d3r′

nXC(r, r′ − r)
|r − r′|

with :
nXC(r, r′ − r) = n(r′)

∫
dλ[g(r, r′, λ)− 1]

involving the pair correlation function g(r, r′, λ) of a system with density
n(r) and electron-electron interaction λ.

• Classically, one would have P(r, r′) ≃ n(r)n(r′) (Hartree-Coulomb
energy). But this neglects the possibility of (spin) symmetry (Pauli
exchange interaction).

• nXC is the exchange-correlation hole, a QM zone surrounding every
electron in an interacting system that reduces the probability P(r, r′)
of finding other electrons within the immediate vicinity.
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Density functional theory

EXCHANGE CORRELATION

Approximations :
• Local density approximation (LDA) :

EXC [n] ≃ ELDA
XC [n] =

∫
n(r)ϵ(n(r))d3r

• ϵ(n(r)) is just a function of the local electronic density.
Exchange-correlation energy/electron of a homogeneous interacting
electron gas. Exact.

• Allows reproducing shell structure of atoms, bond lengths, vibrational
frequencies.

• Generalized gradient approximation (GGA) :

EGGA
XC [n] =

∫
d3r f

(
n(r),∇n(r)

)
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Density functional theory

EXCHANGE CORRELATION

• EXC builds on reasonable electronic models, often broken up into
exchange and correlation functionals :

EXC [n] ≃ EX [n] + EC [n]

Several expressions for the correlation energy (fitted to results of
accurate QMC calculations, e.g. uniform electron gas).

EGGA
X [n] =

4
3

(
3n(r)
π

)1/3

−
∑
σ

F (sσ)n4/3
σ (r)d3r

with, e.g. :
FBecke =

βsσ
1 + 6βsσsinh−1sσ

• Various contributions. Complicated expressions. Usually refereed by
their abbreviations : Becke-Perdew-Wang (BPW91), BLYP, PBE, etc. ...

• Hybrid functionals (HF treatment of exchange energy)
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Density functional theory

EXCHANGE CORRELATION

Remember : GGA provides better geometries for weak bonds which are
too short in LDA.

Solid aLDA (Å) aGGA (Å) aexpt (Å)
Na 4.05 4.20 4.23
NaCl 5.47 5.70 5.64
Al 3.98 4.05 4.05
Si 5.40 5.47 5.43
Ge 5.63 5.78 5.66
GeAs 5.61 5.76 5.65
Cu 3.52 3.63 3.60
W 3.14 3.18 3.16

Perdew et al. PRL 82 (1999)
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Density functional theory

EXCHANGE CORRELATION

• Modelling of such XC functionals
beyond the scope of this lecture.

• Many functionals available which are
more or less appropriate for a
particular glass/liquid system.

• Importance of GGA for the reproduction
of intermediate range ordering in
glass-forming liquids.

Massobrio, Pasquarello and Car, JACS 121 (1999)
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Density functional theory

EXCHANGE CORRELATION

• Modelling of such XC functionals
beyond the scope of this lecture.

• Many functionals available which are
more or less appropriate for a
particular glass/liquid system.

• Importance of GGA for the reproduction
of intermediate range ordering in
glass-forming liquids.

Micoulaut, Vuillemier and Massobrio. PRB 79 (2009)

Micoulaut and Massobrio, JOAM 11 (2009) (2009)
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Density functional theory

EXCHANGE CORRELATION

• Modelling of such XC functionals
beyond the scope of this lecture.

• Many functionals available which are
more or less appropriate for a
particular glass/liquid system.

• Importance of GGA for the reproduction
of intermediate range ordering in
glass-forming liquids.

• Additional correction (dispersion forces)

Edisp = −s6

∑
i

∑
j

Cij

R6
ij

fdamp(Rij)

Micoulaut et al. PRB 96 (2017)
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Density functional theory

EXCHANGE CORRELATION... IN SUMMARY

• Libraries of functionals routinely available.

• Aspects of accuracy problems encountered with classical force fields
are also present in DFT calculations.

• Electronic treatment of the chemical bonding should not be
overlooked.

• Check/compare your “candidate” functional with respect to
experiments and results from other published functionals.
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Implementation

PLANE WAVES

We are now trying to obtain the ground state (GS) energy and the
electronic density

EGS
GGA = minΨKS

i
HKS(Ψ

KS
i ,n(r))

• In quantum chemistry, one often expands ΨKS
i on a finite basis

(Hilbert space, tight-binding), e.g. with atomic orbitals:∣∣∣∣ΨKS
i

〉
=

∑
I

∑
n

C i
I,n|ΦI,n⟩

• Advantages: smart basis and small size. Properties are calculated in
terms of atomic orbitals.

• Disadvantages : Basis depends on atomic positions. No systematic
way to increase the basis size (precision). Delocalized states in an
empty region are hard to describe (e.g. crystal vacancy).
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Implementation

PLANE WAVES

Plane wave basis set : Alternative for periodic systems : the basis
functions of ΨKS

i can be expanded as plane waves.

ΨKS
i ∝

∑
G

ci(G)eiG.r

with G a vector of the reciprocal lattice.

G = i.
2π
Lx

+ j.
2π
Ly

+ k.
2π
Lz

• Infinite sum is the FT of the wavefunction.
• Advantages: Basis covers all space uniformly. Does not depend on

positions (weak bonds), fast evaluation (FFT). Improvement related to
a cutoff value Ecutoff .

• Disadvantages: Large number of basis needed. Wavefunction in the
chemical bond region varies too rapidly (pseudopotentials).
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Implementation

PLANE WAVES A crucial parameter : Ecutoff

• Kinetic energy associated with
plane waves (PW, T0 ∝ 1/2∂2

x ):

Ecutoff =
1
2

G2
max

• Volume of the sphere containing
all PW, volume occupied by a
single PW :

V =
4π
3

G3
max VPW =

2π
Ω

• Number of PWs :

NG ∝ ΩE3/2
cutoff

Properties converge with increasing cutoff value !
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Implementation

PSEUDOPOTENTIALS
• Concept related to replacing the effects of the core electrons with an

effective (pseudo) potential. Just the outer shell electrons participate
in the chemical bonding.

• The pseudopotential generation procedure starts with the solution of
the atomic problem (all electrons) using the Kohn-Sham approach.

• Once the KS orbitals are obtained, one makes an arbitrary distinction
between valence and core states.

• The core states are assumed to change very little due to changes in
the environment so their effect is replaced by a model potential
derived in the atomic configuration and it is assumed to be
transferable.

• Outside the core region, the pseudo-wavefunction coincides with the
all electron calculation.
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Implementation

PSEUDOPOTENTIALS
• General conditions for pseudo-potential

generation
1 All-electron and pseudo eigenvalues

agree for the reference configuration.
2 AE and PS wavefunctions agree beyond

a certain cutoff value, rc .

• Two opposing considerations :
1 Good transferability small rc.
2 Large rc smoother pseudopotentials.

Hamann, et al. PRL 43, 1494 (1979).

A good pseudopotential is one that strikes a balance between these two
contraints.
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Ab initio molecular dynamics

AB INITIO MOLECULAR DYNAMICS

We would now like to follow the positions R of the ions with time, in order
to obtain the dynamics of liquids and glasses or to obtain vibrational
dynamics (VDOS, IR,...). Two possible approaches :

• Minimization technique: Integration of the ion motion with ∆t fixed
by the largest ion frequency. After each ion move, re-minimization of
Ψ. Born-Oppenheimer MD

mi R̈i = − ∂

∂Ri
minΨ⟨Ψ|H|Ψ⟩

• Fictitious ion dynamics: Separation of the dynamics into ion
(classical) and electronic (fictitious) dynamics. Newton’s equation of
motion for the ions is solved. Car-Parrinello MD
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Ab initio molecular dynamics
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Ab initio molecular dynamics

CAR PARRINELLO MOLECULAR DYNAMICS

Reminder : Equations of motions from classical MD for N atoms with
position Ri

L
(

Ri , Ṙi

)
= T0

(
Ṙi

)
− V

(
Ri

)
From the momentum pi = ∂L/∂Ṙi and force Fl = ∂L/∂Ri , one recovers
Newton’s equations from the Euler-Lagrange equation as :

d
dt

∂L
∂Ṙi

=
∂L
Ri

pi = − ∂V
∂Ri

mi R̈i = Fi
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Ab initio molecular dynamics

CAR PARRINELLO MOLECULAR DYNAMICS

Postulated Lagrangian by Car and Parrinello (1985):

L =
∑

I

1
2

MIv2
I +

∑
i

1
2
µi⟨Ψ̇i |Ψ̇i⟩ − E

[
{Ψ}, {R}

]
+
∑

ij

Λij

(
⟨Ψi |Ψj⟩ − δij

)
nuclear electron potential orbital

kinetic energy ”kinetic energy” energy orthogonality (L.M)

From Lagrangian mechanics, one obtains the equations of motion :
d
dt
∂L
∂v

=
∂L
∂R

MIR̈ = −∂V
∂R

d
dt

∂L
∂⟨Ψ̇i |

=
∂L
∂⟨Ψi |

µi |Ψ̈i⟩ = − ∂V
∂⟨Ψi |

+
∑

j

Λij |Ψj⟩

Decoupling between a ”real” ion dynamics (mass MI ) and the fictitious
electronic dynamics (mass µi ).
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Ab initio molecular dynamics

THE CAR PARRINELLO MOLECULAR DYNAMICS RECIPE

1 For a given set of {RI}, within DFT minimize V [ΨKS] to obtain ΨGS
KS .

V
(
{RI}

)
= minΨ V

[
{ΨKS}, {RI}

]
2 Compute the forces on the ions from :

FI = − ∂

∂RI
V
(
{RI}

)
3 Move the ions with Newton’s equation
4 Integration with Verlet algorithm to get a trajectory

RI(t +∆t) + RI(t −∆t) = 2RI(t) +
FI

MI
(∆t)2
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Ab initio molecular dynamics

THE CAR PARRINELLO MOLECULAR DYNAMICS RECIPE

• CPMD simulations of 249 atom
Ge10As10Se80

• ∆t=5 a.u. (0.24 fs), L=17.98 Å.
• Ecutoff = 20 Ry ,BLYP,µ=2000 a.u.
• Kinetic energy Te of the electrons

(electronic sub-system) remains small.
• Kohn-Sham energy EKS equivalent to

V (r) in classical MD.
• Eclassic = EKS+ionic kinetic energy
• EH = Eclassic + Te, the conserved

parameter in CPMD
• Total energy EH conserved.
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Ab initio molecular dynamics

CAR PARRINELLO VERSUS BORN-OPPENHEIMER
Simulations performed on liquid (1000 K) 93 B2O3 - 7 Li2O (N=146 atoms)

Method Time step Convergence Conservation Time
(a.u.) (a.u.) (a.u./ps) (s)

CP 5 - 6× 10−8 30 270
CP 7 - 1× 10−7 21 648
CP 10 - 3× 10−7 15 088

BO 10 10−6 1× 10−6 155 492
BO 50 10−6 1× 10−6 38 709
BO 100 10−6 6× 10−6 21 088
BO 100 10−5 1× 10−5 15 558
BO 100 10−4 1× 10−3 9 934

Table: Timing in CPU seconds and energy minimization for 1 ps trajectory
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Ab initio molecular dynamics

FICTITIOUS MASS OF THE ELECTRON (ADIABATICITY PARAMETER)

• Meaning: µ is non-physical parameter controlling the time-scale of
the ”classical” CP electronic dynamics.

• An optimal value permits to stay near the Born-Oppenheimer surface:
an diabaticity separation between electronic and ionic motion.

• The electron ”subsystem” must be kept ”cold” (thermostats). In this
case, the e-system remains close to GS and Te is small.

• To avoid energy exchange between the nuclear and orbital degrees of
freedom, power spectra should not overlap.

ωij =

√
2(EKS

i −EKS
j )

µ ωmin
e ≃

√
2(Elumo−Ehomo)

µ =
√

2Egap
/µ ≫ ωMax

ions
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Ab initio molecular dynamics

FICTITIOUS MASS OF THE ELECTRON (ADIABATICITY PARAMETER)

• Ecutoff , Egap, µ and timestep ∆tmax
are related.

• The highest frequency for the
subsystem also depends on µ
and constrains the maximum
allowed MD timestep:

∆tmax ∝ 1
ωMax

e
∝

√
µ

Ecutoff

• Commonly used values :
µ=300-2000 a.u. ∆t=0.1-0.2 fs.
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Practical

HOW TO GET STARTED

1 What you need to specify to run a DFT computation.
• Coordinates
• Exchange-correlation functionals: BLYP, PW, HS06, PBE...
• Corresponding pseudpotentials

2 Packages
• CPMD or Quantum Espresso (CP2K)
• ABINIT
• VASP
• Wikipedia : List of quantum chemistry and solid-state physics software

3 Lectures
• Detailed course on quantum chemistry, DFT, and ab initio methods.
• CECAM tutorials www.cecam.org

4 Analysis tools (similar to classical MD).
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Practical

CONCLUSION

• Ab initio methods allow to investigate glass properties using atomic
number as only input.

• Theoretical background provided by density functional theory (DFT).

• Additional approximations are needed to make DFT useful and
applicable.

• Combination of DFT with dynamics through different techniques
(minimisation, fictitious dynamics).

• Next: Application of ab initio methods to liquids and glasses
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