LECTURE 11 : GLASSY DYNAMICS
- Intermediate scattering function
- Mean square displacement and beyond
- Dynamic heterogeneities
- Isoconfigurational Ensemble
- Energy landscapes




A) INTERMEDIATE SCATTERING FUNCTION

Instead of considering correlations in space, one can perform a studyprooal space,
l.e. in Fourier components.

O The intermediate scattering functionis defined as the Fourier transform of the Van

Hove function: F(k, t) _ /de(r7t)e—ik.rt

out of which, can be defined a self and a distinct part:
F,(k,t) = [ dkG(r,t)e """

Fd(k, t) — /ded(r,t)e_ikrt

Instead of Fourier transform, these functions can be also directly cothfpate the
atomic trajectories.

N N

N
1
F.(k,t) = %<Z explik. (r;(t) — 1 (0)]> Fa(k,t) = & Z (explik. (1 (t) — 1 (0)])
k=1

1j=1

j=1




1. Self part (incoherent intermediate scattering fundbon):

N

1 .
Rk t) = —| ) explik. (r;(6) = 1(0)]
j=1
d F(k,t) can be directly compared to experiments from inelastic neutron or X-
ray scattering.

d F(k,t) characterizes the mean relaxation time of the systssa (ander
F.(k,t) can be used to define a relaxation time). Spatial fluctuatbfrs(k,t)

provides information on dynamic heterogeneities
(0] 4\ ballistic regime

Q Short times : balistic régime
Boson peak

O Intermediate times: cage motion
(B relaxation) —> B—relaxation

microscopi low T

O Long times: Particles leaving cages.
Kohlrausch (stretched exponential) g

behavior. >
Ioi‘tl

u—relaxation
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Slowing down of the dynamics: a more universal behavior...

Experiments on bidimensional
granular packing
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FIG. 1 (color online). On the left: F(k, 1) as a function of time
SR T T T T, for different odd values of the wave vector k = 1,3, ..., 29 from
1000 10 10°  10®° 107 top to bottom (as indicated by the arrow and the increasing
time [MCS] k /). The black lines are fits of the form exp[ —(t/7(k))#*]. On

the right: 7(k) (top) and B(k) (bottom) as a function of k.
Chaudhuri et al. AIP Conf. 2009

Dauchot et al. PRL 2006




2. Distinct part (coherent intermediate scattering furction):
N N
1
Fall,t) =+ > ) (explik. (r;(6) = 7, (0)])
k=1j=1

4 F4(k,t) can be measured in coherent inelastic neutron or x-ray scattering
experiments (K=Kiiq-Kinal)-

O Fluctuations of F{k,t) give information about dynamical heterogeneities.
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B) MEAN SQUARE DISPLACEMENT AND BEYOND

Remember: The mean square displacement is defined as 1 N,
- Performed in NVE or NVT. ([Ar; (t)]2> - —2 (|ri(3‘) — Ff(0)|2>j
- do not use periodic boundary conditions N i=i

Gives a direct description of the dynamics.

A-B Lennard-Jones liquid
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B) MEAN SQUARE DISPLACEMENT AND BEYOND

160

Diffusive régime O~ 0 0O
Long times OO0

msd~t
Short time




B) MEAN SQUARE DISPLACEMENT AND BEYOND

Remember: The diffusion constant (Einstein relation) is defined as:

D = li lim (H)]%)
= A 6 dt L

oo
or from the velocity auto-correlation functions D = % f (v;(0) - v;(2)) dt
0

Interesting alternative: ) — lim l(vi (0) - Ar;(1)).
—00 3

O Diffusion constant measures the extent to which a parucle-almgiocity vi(0) biases
its longtime displacemedr; in the same direction.

O For an isotropic medium (liquids), can be written as the integajaht probability
distribution of initial velocity and final displacement.

O Diffusion can be written as D= lim //vo - Ax - P(vo, Ax)dvodA x

At—00
and computed over MD time intervals




A) MEAN SQUARE DISPLACEMENT AND BEYOND

D = lim /[Uo-Ax-P(Uo,Ax)dU()dAx

At— 00

O At short times (hot liquid), the ballistic motion of particles spatially correlated
(Maxwell-Boltzmann distribution f(v)).

O At very long times (low temperature), particles lose memotthaf original positions

and velocities, and any spatial heterogeneity in the displaceraeamspgly averaged
Oout.

O The presence of dynamic heterogeneity implies the existence reamediate time
scale, dependent on the temperature, which reveals clusterinppgdeparticle
mobility.

O For purely random diffusion, one has (solution of Fick’s law):

P(Ar) 1 —|Ar;|?
r;) = exp| ——
8 DA P\ ADA:




B) MEAN SQUARE DISPLACEMENT AND BEYOND

P(Ar) 1 —|Ar;|?
r;) = exp|l ————
8z DA P\ 4DA:

O At short times (hot liquid), since one has a Maxwell-Boltzmanmibligton f(v) and
alsoAr=vAt, P is also Gaussian.

32 P
P(Ar) m —m|Ar;|
r,) = €X
2ks T (AD)2 P\ okeT (A1)

0 For moderate to deeply supercooled liquids, the intermediate-time baha{/P
becomes substantially non-Gaussian, reflecting the effectsgddtparticles and the
presence of dynamic heterogeneity.

4
4 Reflected in aon-Gaussian parameter o, (At) = S{Ar(AL)) —1

5(Ar(At)?)2

O For a truly Gaussian distribution iy a, =0

4 a,(0)=0andfor At — o0




B) MEAN SQUARE DISPLACEMENT AND BEYOND

1.6

N
= 14 | T=0451

d On the time scale at which the motion ¥ ,,] LI liquid
of the particles is ballistic, 10]
0z =0 o]

O Upon entering the intermediate time |
scales §-relaxation) o, starts to |
Increase.

d On the time scale of therelaxation,
a, decreases to its long time limit,
Zero.

d The maximum value af, increases
with decreasing T. Evidence that the : :
dynamics of the liquid becomes more B e
heterogeneous with decreasing T.

102 10" 10° 10" 10° 10
t (ps)
Matharoo et al. PRE 2006




C) DYNAMIC HETEROGENEITIES

O Observation: Particles in deep supercooled
liquids behave very differently at the same
time.

» Most of the particles are E. Weeks et al. Science 2000
characterized by a extremely slow
evolution.

» A small part evolves more rapidly.

» Do these “rapid” regions have a
collective behavior ?

» Seen experimentally in colloidal
hard sphere suspension (most

i “; y
mobile particles highlighte_ .' i oo 2y




C) DYNAMIC HETEROGENEITIES

Q Other example: Granular fluid of beads
showing different mobilities

O The characterization ddynamical
Heterogeneitiesshows evidence of @llective
behaviour

O Needs to build more suitable correlation
functions. No signature of heterogeneous X RELtr
dynamics from g(r) or S(k) or even the msd. e

Increasing mobility ——

0 Consider the liquid of N particles occupying

volume V with density Keys et al. Nature Phys. 2007

N
;o(r,r)=g1 S(r—ry(1))




C) DYNAMIC HETEROGENEITIES

O Measure of the number obVerlapping” particles in two configurations separated by a
time intervalt (time-dependent order parameter ):

Q,(1)= f dridr,p(r;,0)p(r;,1)6(r; —r;)

N N
=; ,Zl 8(r;(0)—r;(1)),

out of which can be defined a fluctuation (time-elegent order parametgy(t):

}
¥i0="5 1020y (0,07

which expresses with a four-point time-dependenstdy correlation function
Gu(r1,2 03,04, 1):

BV
X4(1)= N2 f dr dr,dr;dryG,(r),ry,r3,14,1)




C) DYNAMIC HETEROGENEITIES
BV
X{{(z‘)Evf drdr,drydr,G,(r, 1,13, ,1)
O Four-point time dependent density correlation :
Ga(ry,r,13,14,1)
=(p(r1,0)p(r;,1)8(r; —1;3)p(1r;3,0)p(ry,1) 6(r;—14))
—(p(r,0)p(ry,2) (x| —1r3))
X{p(r3,0)p(ry,1)8(r;—ry)), 1

which can be reduced (isotropic media) to a fumagg(r,t).

d Meaning of G,(r,t): Measures correlations of motion between 0 and t
arising at two points, 0 and r.

d Meaning of the dynamic susceptibilityy,(t): Typical number of
particles involved in correlated motion (volumelod correlated clusters)




C) DYNAMIC HETEROGENEITIES

O Critical phenomena language: assuming the existehaeingle
dominant length scalg,, one expects for large distances to have :

Ga(r;t) ~ A(t)[exp(—r/&(t))] /17,

or, in Fourier space (more convenient, simulatielhsize limitation) using a
four-point structure factor:

Su(qit) = / dr exp(i q - 1)Ca(r;t)

which can be fitted at low q (Ornstein-Zernike ftiogal form of critical
phenomena) involving a correlation length.

5,4 (0)

S4 (q:t):

(1+(g&(0)°)




C) DYNAMIC HETEROGENEITIES

Lacevic et al. JCP 2003

Going through the functions for a LJ liquid

0.9}
0.8

d Overlap order parameter Q(t) 07}

20.6:
QP(I)EJ dridryp(r;,0)p(ry,1) 6(r;—r;) ?gj:
0.3
Two-step relaxation (transient caging) similar to ‘;2.
the behavior of the intermediate scattering fumcti ™
F(k,t). Decays to (3, random overlap, fraction ofor—
the volume occupied by particles at any given |
time.

O Sample to sample fluctuation:

)
0= 1020) 0,0y

Growth of correlated motion between pairs of

. . . . FIG. 6. Tune and temperature dependence of y4(7). As 7 decreases, the
part|C|eS. At |Ong tl mes, d IﬁUSIOn th lx%(t)zo . peak m y4(7) monotonically increases and shifts to longer time. We define

the time at which y4(7) is maximum as 15 .




C) DYNAMIC HETEROGENEITIES

Going through the functions for a LJ liquid
d Radial correlation functiog,(r,t).
o) \?
au(r) =( B2 ) ()1
» At small times (ballistic), <Q(t)>=1 s«
that g4=g(r)-1.
» Deviates when <Q(t)> deviates fror

unity andy,(t) becomes non-zero.

O Four point structure factor

Su(g:t) = / 2 exp(i q-1)Ca(r;t)

— . L —=- =3306.5 <Q>/N=0.326
-l:_ 10 — intermediate time .= t=15590.4 <Q>/N=0.178
— -4
w
o
N
[
q-

Lacevic et al. JCP 2003

I i 1 1

- (b) — t=1360.2 <Q>/N=0.457

FIG. 12. Small ¢ behavior of §5'(¢,rT™). Inset shows a log—log plot of
59(q,17™) vs q. The lines in both figures are fits to the data using Eq. (30).
The second lowest temperature 7=0.60 is difficult to fit because of the large
uncertainty in Sﬁ{’( 0,r) at times in the vicinity of 7°° (see text for further
discussion).




C) DYNAMIC HETEROGENEITIES _
Lacevic et al. JCP 2003

Going through the functions for a LJ liquid ®
O Fitting using the Ornstein-Zernike theor £
57/(0) =
StOl ,t — 10
A N PTATIIE N\,

> Allows determining correlation |eng FIG. 12. Small ¢ behavior of $3'(q./2™). Inset shows a log—log plot of

§9'(q,17%) vs g. The lines in both figures are fits to the data using Eq. (30).

E4(t) as a fu N Ct| on Of te m pe ratu re. The second lowest temperature 7=0.60 is difficult to fit because of the large

uncertainty in Sﬁ{’( 0,¢) at times in the vicinity of /7" (see text for further
discussion).

10 o o T RN | LR | T

O Correlation lengtlg4(t)

» Qualitatively similar toy,(t)
» Increase ot4(t) as T decreases.

&)




C) DYNAMIC HETEROGENEITIES

O Experimental and theoretical evidenceGrowing dynamic length scale in
molecular liquids and colloidal suspensions.

v""

kHTZX]'z[m)I('p
o
LG |
pkaTxr92x2g(1)

units,” right side of

for 99.6% pure super- \

water absorption by L ' ’ N ““ \ \

colloidal hard spheres by dynamic light scattering. The static prefactor, pk, T«,, was evaluated
units (24, 25)]. Relative errors at the peak are at most about 10% for (A) and (C) and 30% 100

Fig. 1. Dynamic sus- 100 ——7——1
relations 5 and 6 for [
three glass formers.
{/
w ,,; u’o.f’nm
cooled glycerol in a
desiccated Argon envi-
using standard capaci-
tive dielectric measure- S B
ments for 192 K < T < 105 104 10‘ 0*2 101 10 0 101 102
232K (T, = 185K). (B) 2n/o (s)
from the Camahan-Starlmg equation of state (20). From left to right, ¢ = 0. 18, 0.34, 042, - C
0.46, 0.49, and 0.50. (C) y,(t) was obtained in a binary Lennard-jones (LJ) mixture by
for (B). For all of the systems, dynamic susceptibilities display a peak at the average
relaxation time whose height increases when the dynamics slows down, which is direct

ceptibilities in "y, A
(A) x4{w) was obtained ‘
il +m n
ronment to prevent '
Xo(t) was obtained in
numerical simulation. From left to right, T= 2.0, 1.0, 0.74, 0.6, 0.5, and 0.465 [in reduced L]
evidence of enhanced dynamic fluctuations and a growing dynamic length scale.

ky "xjﬂfll'!‘v

102

Berthier et al. Science 2005 10+t =

t (LJ units)




C) DYNAMIC HETEROGENEITIES

Experimental and theoretical evidenceGrowing dynamic length scale in
molecular liquids and colloidal suspensions.

s 102 F
j 10'F
g _.. i e Silica --® - o
"t 2 b e e -
i BPM - ]
“ i p—
o Propylene mrbosx_:;lloé ::;__. i
m-toluidine -- © -
I Decaline -~ -~ |
0 Number of dynamically correlated particles 102 L - . L
. . 10~ 1 1 10 10
(peak height of,) increases as temperature Tato

decreases (or relaxation timgincreases).

O Dynamical fluctuations and correlation length
scales increase as one approaches Tg.




D) ISOCONFIGURATIONAL ENSEMBLE

Q A. Widmer-Cooper, P. Harrowell, PRL 2004, Bertieddrack, PRE 2007

O Idea: Study of theole of local structure when approaching the glass
transition. As T is lowered, it becomes harderaimgle all the phase
space.

O Initial positions of particles are held fixed, butdynamical trajectories
are independent through the use of random inigldaities.N MD runs

d Define G(t) a general dynamic object attached to partisiech as:

fit)=cosik-[ri(t)—r(0)]}

O Isoconfigurational averac < . .>i50

L Equilibrium Ensemble averag| - - - |

Q Dynamic propensit (C;(¢));, e.g. displacement




D) ISOCONFIGURATIONAL ENSEMBLE

O Allows disentangling structural and dynamical sesrof fluctuations through
the definition of 3 variances over the quantityraérest C:

oc(t) = E[(C;(2) 130] E2[Ci(1)], “_ Structural component of the

fluctuations (particle-to-particle
fluctuation of Ct(t)

Also(t) E[<C (t)>1so - <C (t)>1so] “~__ Fluctuations of C between

different runs ynamics

— 2 — 2 .
Acl(t) = ERCZ’ (1))iso] = ETLCi(2)] " Total amount of fluctuations.

and: A (1) =AS(2) + 5(1)




Matharoo et al. PRE

Example: Dynamic propensity in liquid
water.

O Make M IC copies of a N component water
system.

0 Define for e.g. an O atom the squared
displacement r?‘(z k. Z”)

O The system-averaged and IC-ensemble
averaged msd is:

(ry=(NM)"'SN SM 23 k. 1)
O Dynamic propensity of each molecule is:
2 1M .
‘ (ri>iC:M 12 =1r2(lakat)
O Potential propensity

FIG. 3. (Color online) Dynamical heterogeneity (left panels)
and structural heterogeneity (right panels) in the initial configura-
1 —_ EN ¢ tion at 7=350 K (top panels), 290 K (middle panel';) and

u IC — M E ] u (l k t) I’£ 1 {Jf 270 K (bottom panels). To make each panel, the values of {r; ) (or
(u;);.), evaluated at the time of the maximum of S, are assigned to

each molecule in the initial configuration. These values are sorted




D) ISOCONFIGURATIONAL ENSEMBLE

Lennard-
Jones
liquid

T=0.466 T=0.5 T=0.6 T=1.0

FIG. 10: Spatial variation of (r?);. (top panels) and (n,);. (bottom panels) at each T. To make each top panel, the values of
(r?);. evaluated at the time of the maximum of Sy, are assigned to each A particle at its position in the initial configuration
of the IC ensemble. These values are sorted and assigned an integer rank R; from 1 to IV, from smallest to largest. Each A
particle is then plotted as a green sphere of radius ¢ = R, exp{[(R; — N)/(1 — N)]log(Rmax/Rmin)}, where Ry, = 0.5 and
Rimin = 0.01. The ranks R; are then reversed (i.e. assigned from largest to smallest), and each A particle is also plotted as
a red sphere of radius . The color observed for each particle therefore indicates which of the green or red spheres is larger.
The result presents the rank of (r?)ic on an exponential scale, such that the largest green spheres represent the most mobile A
particles, and the largest red spheres the most immobile. The bottom panels are created in exactly the same way as the top
panels, but with (?‘f);c replaced by (n:)ic, and where the time is chosen to be the maximum of Si. at each T'. In the bottom
panels, the largest vellow spheres represent the A particles with the lowest B coordination, and the largest blue spheres the A

particles with the highest B coordination.
Razul et al., JPCM (2011).




E) ENERGY LANDSCAPE

O Definition: Potential energy
landscapeREL) is V(rN) of a system

of N particles. M M“
Stillinger and Weber, 1982 A o M

TPy
O While PEL does not depend on T, |t .
exploration does.

O The PEL of glasses is made of
> Distinct basins with local —

minima (inherent o 5

structures) of the PE.

» Saddles, energy barriers

: Parisi and Sciortino, Nature 2013
O Decreasing temperatures reduces the

possibility to explore parts of the
PEL.
Barriers of increasing heights
Too much time spent in basins




E) ENERGY LANDSCAPE

O The partition functiorZ of a system oN particles interacting via a two-body
spherical potential is :

1 _BV(FNY) g
Z(T,V) = N!)\?’NQ(V’ T) QV,T) = /‘;e BV(Y) g7

O Configuration space can be partitioned into baghastition function becomes
a sum over the partition functions of the indivibddatinct basingi

QT V)= QT.V)

Q Partition function averaged over all distinct basivith the same
e value as

QZ‘(T_, V) — e—ﬁemi / e—BAV(FN) dFN

basin 7
Zz’ 661 el Qz (Ta V)
Q(6187 T: V) — ZSZ 5:’ISi’eIS
i i Qles, T,V
and associated average basin free ener _ B fonsin(ers, T, V) = ln[ ( I)S\SN )




E) ENERGY LANDSCAPE

O The partition function of the system then reduces sum of the IS:

Z(T, V) — Z Q(els)e—ﬁfbasin(els,T,V)

€IS

Q(eg) Is thenumber of basins of depth.e

O This defines the configurational
entropy :

Scont(€15) = kg In[Q(ers)]

Z(T, V) = Z e_’B[_TSCOHf(€IS)+fbasin(elS;T;V)]

€IS




E) ENERGY LANDSCAPE

 Basin free energy from harmonic approximation
SN\ B
V(r") = es + Z Hiojgor; or

?:,j,(}f,ﬁ 82V(FN)

3 With H.... the 3N Hessian matrixH; .. =
B 1]
" 87“?87"?

of

IS

d The partition function, averaged ovey, €an be written, witly the 3N
eigenvalues associated witg e

Z(ews, T, V) = e~ <ﬁ[5 7;”3' (618)}1>els

vibrations

d This allows separating the vibrational part of tiasin free energy K InZ.




E) ENERGY LANDSCAPE

d A simple example: one dimensional PEL defined between 0 and L nadahe
basins, each wit -1 and size L/n:
e V(zx) =V, cos[(2mn/L)x]

O Stilinger-Weber formalism will give:

L n—1
0— / VO dr = 3,
0 i=0

(-+1)(L/n)

Qi = / e V@) dy
i(L/n)

Q All the basins have the same dep Q — ?’LQQ

F=-T ln[n] + fbasin _ﬁfbasin — IH[QO]




E) ENERGY LANDSCAPE

O BKS silica: IS energies and configurational energies
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Figure 12. T dependence of S.pns for BKS silica at p = 2.36 and 3.01 g em 3.
Note that in this model, at the lowest density, Seons does not appear to vanish at
a finite 7. Dashed lines represent possible extrapolations. Redrawn from [62].

Figure 2. Left: time dependence of ejg for the BKS model for silica in a 999-ion
system for three different temperatures. Note that at each T, a different set of
ers values is sampled. Right: T dependence of (ejg) for the same model.

F. Sciortino, J. Stat. Mech. 2005




E) ENERGY LANDSCAPE 107

10°-
J Simultaneous calculation of D g 10°
(diffusivity) and %Onf.(from gm_m_
PEL) shows Arrhenius
behavior. 107"
10%5 | 0.05 01
1000/TS_ (mol/J)
Sakai-Voivod, Nature 2001
10" ® =095 glcm:
O Numerical validation of the Y 5z rosgem
Adam-Gibbs relationship s ;221:2831225
c"E 10 p=1.40 g/lcm
".=§ 1l

C 107
COnNn 0.0 0.2 0.4 0.6 0.8

103/(TS_.) (mollJ)

conf )

Fig. 5. Test of the Adam-Gibbs relation in SPC/E water. For
all the densities studied the diffisivity follows the Adam-Gibhs
law, for about four decades in diffusivity. The arrow indicates

SC|Ort|nO et al Eur Phys J E 2002 the range of diffusivity values accessible to experiments. Re-

drawn from reference [18].




Conclusion:

O Dynamics of glass-forming systems can be followé&t wumerous tools
using computer simulations.

O Functions quantify the slowing down of the dynamics

0 Heterogeneous dynamics sets in: Non-Gaussian pggarmeur-point
correlation functions, Isoconfigurational Ensemble

O Energy landscapes provides a thermodynamic vietnctiranects back to the
simple Adam-Gibbs relationship.

Next lecture (12):Ab initio simulations...a survey




