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Introduction

My aim in this talk is to show the very close analogy that exists between:

— temporal renormalization used in the study of chaotic dynamical systems and

— spatial renormalization previously developed in statistical mechanics, implemented
in the framework of field theory.

The comparison leads to a better understanding not only of the fundamental mathe-
matical ideas, but also of the common physical features that lie under all the various
applications of renormalization techniques[21].

The key of the analogy is to exchange the spatial extension (and the associated
variable r̄) of the physical systems described in statistical mechanics and the time
length (and the associated time variable t) of the evolution of the dynamical systems.

This points out that the nature of the extensive variable(s) does not matter very
much; as a consequence, a direct extension of both “statistical mechanics renormaliza-
tion” and “dynamical systems renormalization” will be spatio-temporal renormalization
methods, where space and time have the same status. This leads to a powerful tool of
analysis for numerous challenging problems, for example dynamical phase transition-
s, chaos in extended systems, stochastic partial differential equations or diffusion in
disordered media.

Part A - Renormalization in statistical mechanics

Renormalization techniques were first introduced in quantum electrodynamics[2,4]

in order to get rid of ultra-violet divergences and to handle singular perturbative ex-
pansions. It was only more than a decade later, mainly after Wilson’s works[30], that
their relevance in statistical mechanics became obvious. Wilson’s contribution was to
put together the renormalization-group methods of quantum electrodynamics and the
concept of scale invariance pointed out by Kadanoff[20], among others, then to develop
from their conjunction a rigorous and nevertheless constructive scheme for the study of
the so-called critical phenomena encountered in statistical mechanics (§A.2). He also
applied this new operational framework in quantum field theory, and obtained striking
advances which led him to the Nobel Prize in 1982.

In this first section, I present the renormalization method designed for the de-
scription of phase transitions in the framework of statistical mechanics. All the usual
approaches fail close to critical points. I explain why renormalization turns out to be
successful, beyond hope since it proves not only the existence but also the universality
of scaling behavior, then gives explicit values for the critical exponents. It thus achieves
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to classify critical phenomena according to the universal properties they share. Under-
standing how renormalization works for critical phenomena shows up the fundamental
physical and statistical mechanisms which give rise to critical behavior[23,29], which in
turn clarifies the conditions for deriving macroscopic deterministic behavior from small
scale probabilistic description.

A.1 - Thermodynamic formalism at a fixed temperature

The typical problem to be solved in the statistical mechanics framework[24,26] is to
describe the macroscopic behavior of a system S composed of a large number N À 1
of interacting particles, possibly submitted to an applied constant field B (magnetic
field, pressure. . . ). I suppose that S is in equilibrium with a surrounding thermal bath
at a given temperature T . Equilibrium means that no change can be perceived when
observing S at macroscopic spatial and temporal scales. Knowing composition and
dynamics of S at a microscopic scale, one has to compute the value of all the physical
quantities that could be measured in a macroscopic observation, and to describe how
they depend upon the control parameters B and T , denoted K in short.

A.1.1 - Ensemble averages

I call microscopic the length scale a at which the physical system S is defined and
modelled. It is the smallest scale of the description and it is supposed to be large
enough so that a semi-classical (non-quantum) description of S is sufficient. At this
given scale, the system S appears as a population of N interacting particles, N being
very large. The name particle must be understood in the weak sense of elementary
sub-system of (linear) size a. By definition of a the finer structure of the particle is not
described; its consequences at scales larger than a must be taken into account through
effective terms.

Each particle is described by a few individual state variables, say k, that I shall
represent by a k-vector z ∈ Eel; the k components of z are in most cases the position ~x
of the particle in the accessible domain of the real physical space Rd, its momentum ~p,
also having d components, and a local order parameter, for example its spin ~s, having n
components. The two dimensions d and n will play a major role when classifying critical
phenomena[14]. A (Nk)-vector [z] ≡ (zα)1≤α≤N ∈ E⊗Nel is called a configuration of S; it
thoroughly describes its microscopic state at a given time. Thus the relevant phase space
of S at the microscopic scale is the set EN ∈ E⊗Nel of all the possible configurations when
taking into account the macroscopic constraints on S (geometry, boundary conditions,
physical invariants, symmetries. . . ). In the case of particles fixed at the sites of a given
lattice, only the spins are relevant (hence k = n) since positions are known (used as
indices for labelling the particles) and momenta are all equal to 0. The basic ingredient
to be specified in modeling S is its Hamiltonian, namely the (classical) state function
H(N, [z]) giving the energy of any configuration [z] of N particles.
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Although one can then write exactly the deterministic Hamiltonian laws of evolu-
tion, the study of their solution in unworkable, even for a computer, due to the too large
value of the dimension Nk of the phase space EN (a typical value for N , the Avogadro
number, is about 6. 1023). Only a statistical approach will be possible. The relevant mi-
croscopic information on S is contained in the statistical weights of the configurations
[z] belonging to its phase space EN . For a classical system S in thermal equilibrium,
these weights are given by the Boltzmann-Gibbs distribution at T . Equilibrium implies
statistical stationarity so that time no more intervene.

A.1.2 - Partition function and state functions

Denoting β=1/kBT the inverse temperature1, the Boltzmann-Gibbs distribution of S
is:

p (N, β, [z]) =
1

Z(N, β)
e−βH(N,[z]) ( [z] ∈ EN )

where the normalization factor:

Z (N, β) =
∑

[z]∈EN

e−βH(N,[z])

is called the partition function of the system S; it also depends on any parameter, for
example B, which appears in H. Knowing the probabilities p (N, β, [z]), it is possible
to compute the statistical mean of any state function2. Most of the averages can be
directly deduced from the knowledge of the partition function:

— the free energy is given by F (N, β) = − lnZ(N,β)
β .

— the internal energy is given by U(N, β) =<H>= − ∂ lnZ(N,β)
∂β .

— the entropy is given by S(N, β) = U−F
T = − kB β2 ∂

∂β

(
lnZ(N,β)

β

)
.

The thermodynamic limit [27] is defined as the limiting operation, performed on the
previous statistical averages after division by N in order to obtain intensive (rather
than extensive) quantities: {

N →∞
V/N = Cte

where V is the accessible volume in the real space Rd. The resulting quantities are
expected to give the deterministic values of the observed macroscopic quantities (per
particle), as described in classical thermodynamics. When it is the case, statistical me-
chanics provide microscopic foundations for the macroscopic and deterministic thermo-
dynamics, allowing to relate macroscopic measurements and microscopic parameters.

1Here k
B

is the well-known Boltzmann constant.
2A state function is associated to any physical characteristic of S which is thoroughly determined

when knowing the configuration [z] ∈ EN of S; it is thus a real function defined on EN .
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A.1.3 - The conjugate space

The so-called conjugate space is a counterpart, obtained through a Fourier transform,
of the space Rd of positions x̄ known as the real space. The local order parameter s̄j
can be viewed as a n-vector function of the position x̄j of the j-th particle. But due
to the finite minimum scale a > 0, the position x̄ takes its values in the discrete space
(aZ)d, so that s̄(x̄) does not define a continuous field. Intending to take advantage of
the field theory framework[33], one computes the Fourier transform of the discrete field
s̄(x̄):

ŝ(q̄) = ad
∑

m̄∈Zd

e−iam̄.q̄ s̄(am̄)

which is a n-vector complex field on Rd. Inverse transform writes:

s̄(am̄) =

∫ 2π
a

0
. . .

∫ 2π
a

0
e+iam̄.q̄ ŝ(q̄)

ddq̄

(2π)d

The transformed field ŝ(q̄) defined in the conjugate space has the desired regularity
property3 without any continuous limit a → 0, even if s̄ takes only discrete values.
Whereas the physical meaning of the contributions in H are better understood in the
real space, H is often directly constructed in the conjugate space when the whole
subsequent analysis is performed there: it is given as a functional of the field ŝ(q̄),
typically involving an integration over a local expression.

Let us stress that the counterpart of a minimum scale ||∆x̄|| = a > 0 in the real
space is a finite cutoff Λ = 2π/a in the conjugate space. This intrinsic bound, imposed
with the choice of a theoretical model, prevents from any ultra-violet divergence.

We shall see that renormalization, originally conceived and designed in the real
space, is more often implemented in the conjugate space, where the analogy with quan-
tum field theory is obvious (at least for specialists!) and fruitful.

A.2 - Critical points

A.2.1 - Critical behavior

Let S be a N -particle system observed at a macroscopic scale in the thermodynamic
limit N →∞ and for varying control parameter(s) K. From a physical (experimental)
viewpoint, S is said4 to have a “critical behavior” if it exhibits the following features
when K reaches some special value Kc:

— large scale inhomogeneities are observed;

— statistical fluctuations cannot be ignored;
3Indeed, the real physical quantity locally described by s̄ has a finite spatial extension; even in an

“ideal” model of infinite spatial extension (as it is the case in the thermodynamic limit), one may thus
impose that s̄(x̄) is rapidly decreasing at infinity, so that ŝ(q̄) is differentiable at any order.

4One also speaks of “critical point” or “critical phenomena” in such a situation; Kc is called a
“critical value” and S(Kc) a “critical system”.
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— localized perturbations generate long distance disturbances during a long time;

— some thermodynamic quantities (or their derivatives) diverge in Kc.

Divergence5 of the thermodynamic quantity x(K) = limN→∞X(N,K)/N for some
special value Kc of K expresses that there are strong non-additive contributions in
X(N,K); their origin lies in correlation effects at all scales. As a consequence, the
system cannot be split into uncorrelated cells of finite size. Such a situation is a
characteristic feature of a critical phenomenon. It indicates that a major critical feature
is the divergence of the correlation length.

3 Divergence of correlation length and its consequences

The statistical properties of a critical phenomenon cannot be explained in the frame-
work of classical thermodynamics. Hence, a more theoretical definition of criticality is
the following:
A system S will be said to be “critical” if the predictions of classical thermodynamics

fail to reproduce its observed properties.

Closely related to the study of critical phenomena, a key issue in statistical mechanics
is thus to ask whether it is correct to describe the macroscopic behavior of S in terms of
computable statistical averages taken in the thermodynamic limit N →∞. The answer
is positive as soon as the strong law of large number applies to the sequence (Zj)1≤j≤N
of elementary random variables globally distributed in EN according to the Boltzmann-
Gibbs distribution (Zj describing the random state of the particle j). Indeed, this
law allows to identify almost surely any observable quantity, which corresponds to a
realization of the average FN = N−1

∑N
j=1 f(Zj) over the N particles (f being any

local state function), with its statistical average <FN > in the thermodynamic limit
N →∞. It can be shown that the statistical feature that invalidates the strong law of
large numbers (hence characterizes a critical system) is the divergence of the correlation
length: ξ(Kc) =∞. In that case, the macroscopic quantities are still random variables,
so that a low-dimensional deterministic description of S makes no sense. This asser-
tion is expressed more quantitatively by introducing the relative statistical fluctuation
δFN ≡ FN− < FN >; according to the central limit theorem, δFN is almost surely a

correction of order
√
ξdK/a

dN , obeying a Gaussian statistics of variance ξ(K)d/adN (d

being the dimension of the underlying real space). Hence, the mean amplitude of the
fluctuations becomes macroscopic when the correlation length ξK diverges. Moreover,
ξ(K) is shown[21] to give the spatial extension of fluctuations, that is, the typical size
of the connected domains where statistical fluctuations exceed a given threshold. The
typical size anK above for which it is possible to identify spatial (that is, over the nK
particles) and statistical averages behaves as ξ(K), hence tends to infinity when K tend
to Kc.

It thus becomes obvious that criticality appears in Kc if and only if ξ(K) tends
to infinity when K reaches Kc; indeed, if ξ(Kc) = ∞, it is no more possible to ignore

5Let us note that the divergence of x(K) = limN→∞X(N,K)/N in Kc appears only in the thermo-
dynamic limit N →∞. For finite N , X(N,K)/N is an everywhere regular function of K.
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statistical fluctuations, since both their amplitude (at a fixed position) and their spatial
extension (above a given level) diverge with ξ(K). Hence an observable feature of
critical systems is the occurrence of giant fluctuations that can be directly perceived
at a macroscopic scale (in fact as soon as ξ(K) is greater than the minimum scale of
observation). Dynamic study shows that moreover the time life of these fluctuations
diverges at a critical point so that they are effectively perceived.

It can also be shown[21] that ξ gives an estimate of the “order scale”, that is, of the
spatial extension of collective effects, for exemple of domains in which all the particles
are organized so that they behave in a totally correlated manner. Hence criticality is
strongly related to the presence of collective behaviors, inducing organization, hence
structures, at all scales. Moreover, it can be shown that ξ = ∞ jointly occurs with
self-similar and scaling properties of the overall behavior, which ends to deduce the
whole critical features from the divergence of the correlation length.

3 Critical phase transitions

Typical critical features are illustrated by the so-called “critical” phase transitions.
Let us first recall that a phase transition is an exchange of stability between two states of
thermodynamic equilibrium of S, observed at a macroscopic scale when varying some
control parameter(s) K, typically the temperature T or the pressure P . These two
states, also called phases, differ through the expression of the massic thermodynamic
quantities describing how their observable properties vary when K is varied. An order
parameter M(K) is chosen: it can be any thermodynamic quantity which reveals the
transition and is greater in the most organized phase (called the ordered phase) than in
the other one, in which it can be identically zero, for example. A transition occurring
in K = K∗ is said to be of first order if the coexistence of two different phases can be
observed for K = K∗; this implies that some massic thermodynamic quantities, among
which the order parameter, the massic volume and the massic entropy, present a jump
discontinuity in K = K∗.

On the contrary, the transition is said to be of second order if the order parameter
and the other observable thermodynamic state functions are continuous inK = K∗, but
with diverging derivatives. This continuity of the thermodynamic properties implies
that it is no more possible to observe the coexistence of two differentiated phases in K∗.
The divergence of some derivatives causes singularities in the observable behavior, for
example on the heat capacity, which are typical of a critical phenomenon. Moreover,
it can be shown that these divergences are the macroscopic observable consequences
of statistical critical properties, mainly giant fluctuations and diverging correlation
length. In fact, all the critical features listed above can be identified in such “critical
phase transitions”.

A.2.2 - Failure of conventional methods

Let me point out the main difficulties arising in the analytical study of critical phe-
nomena, which prevent from applying standard approaches used for any non-critical
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system.

• Standard statistical mechanics fail close to a critical point, since it is impossible to
identify macroscopic observations with statistical averages.

• The correlation length ξ gives the order of the variance and of the size of micro-
scopic inhomogeneities so that its divergence forbids to treat the statistical fluctuations
perturbatively, starting from a macroscopic description using only statistical averages.

• A typical failure in studying critical phenomena is in the mean field theories, in
which the interactions between the elementary constituents are replaced by an effec-
tive homogeneous exterior influence depending only on the statistical properties of the
system.

• To be independent, samples of the system must have a size of order ξ: divergence of
ξ makes any local analysis (on a sample) impossible in the real space.

• Correlations at all scales also forbid any local analysis in the conjugate space, as it is
impossible to decorrelate ultra-violet and infra-red domains. All the methods based on
scale separation fail close to a critical point.

• A difficulty arises when handling singular quantities: it is impossible to determine
the state functions in the form of analytic expansions in K −Kc

• The problem of critical divergences becomes crucial in perturbative methods with
respect to some additional contribution V in H. They involve typically expansions of
the form

∑
j cj(K) V j ; the successive terms become very large as the critical point Kc

is approached, and the convergence of the expansion becomes slower and slower; it is
necessary to take more and more terms into account (at Kc, all of them must be taken
into account) in order to accurately estimate the quantity described by the expansion.

• A similar difficulty arise when trying to invert the thermodynamic limit N→∞ and
the “critical” limit K→Kc. We observe L1= limK→Kc limN→∞ but we know how to
compute L2=limN→∞ limK→Kc . Due to critical singularities, L1 and L2 are different
and limN→∞ cannot be exchanged with limK→Kc nor with differentiation in K.

• As a consequence, implementing at first a perturbative approach in power of (K−Kc)
in order to compute macroscopic state functions for finite N and close to a critical
point, hence letting N tends to infinity, does not give a correct description of the
thermodynamic behavior around Kc.

A.2.3 - Scaling behavior

The main question relative to critical systems is to explain how short-range (spatial
or temporal) physical couplings generate a phenomenon perceptible on a large scale.
The answer lies in the existence of a collective behavior organized hierarchically from
the microscopic up through the observation scales. Moreover, the very existence of this
organization at all scales implies that the macroscopic observations may be sensitive

9



to a modification of microscopic features: it is no more the values of the physical
quantities which are relevant, but the qualitative features of their dependance with
respect to the size N of the system and to the control parameters, denoted K. The
analysis should deal not with the microscopic details but with the way in which they
cooperate; it should be detached from the specific details of the system, in order to
give universal results which should be the same for any system for which some set of
generic hypotheses is satisfied. The different scales must be related each to each other
in such a way as to make the expected scale invariance explicit; these relations take
generically the form of scaling laws, for example (here K = (K1,K2)):

X(K1,K2) ∼ |K1 −K1c|γ f(|K1 −K1c| |K2 −K2c|−α) with α > 0

where f is a continuous function which behaves like f(z) ∼ A |z|ρ at infinity. It
expresses in a whole the singular behavior of the thermodynamic function X when the
parameters K reach the critical point Kc and the associated scaling invariance of X:

X(K1,K2) ∼ |K1 −K1c|γ f(0) if K1 → K1c, K2 being fixed

X(K1,K2) ∼ A |K2 −K2c|−αρ |K1 −K1c|γ+ρ if K2 → K2c, K1 being fixed

X(K1c + λαk1,K2c + λk2) ∼ λαγ X(K1c + k1,K2c + k2) for any λ > 0

γ, α and ρ are called “critical exponents”; they describe quantitatively the scaling
behavior of the state function X in the vicinity of the critical point.

An important example is given by the statistical pair-correlation function, which is
expected to behave according to:

Γ∞(K, x̄, ȳ) ∼ e−||x̄−ȳ||/ξ(K) (K 6= Kc)

in the thermodynamic limit N → ∞, except at the critical point Kc where the expo-
nential dependence is replaced by a power law:

Γ∞(Kc, x̄, ȳ) ∼ ||x̄− ȳ||−γ

The characteristic length ξ(K) defines the statistical correlation length and the critical
behavior of Γ∞ indicates that ξ(Kc) =∞; experimental results suggest that:

ξ(K) ∼ |K −Kc|−ν

Nevertheless, as the importance of the notion of critical phenomena dawned, the ne-
cessity of new tools for describing them correctly became obvious. We shall see that
the renormalization methods are the most efficient among these6.

6Before the emergence of renormalization methods, analytical description of critical phenomena
was based on scaling theory, which amounts to “guess” phenomenological relations describing the
scaling properties around a critical point, with experimentally fitted exponents. In the best cases,
physical consistency of the theory together with dimensional analysis give rise to new relations which
either determine new critical exponents, either establish universal theoretical relations between the
experimental exponents (such a property is called hyperscaling).
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A.3 - Renormalization approaches

The discussion presented in the previous section (§A.2) showed the lack of analyt-
ical methods for the investigation of critical systems. Renormalization is designed to
make up with the difficulties which arise, due to critical behavior, in the thermodynam-
ic analysis. It has to provide rigorous results about the macroscopic state functions
observed in the thermodynamic limit when the system S is close to a critical point
(N→∞, K→Kc), focusing on their dependence with respect to the parameter(s) K.
More specifically, the relevant program of a renormalization method is:

— to prove the existence of scaling laws describing the critical behavior,

— to compute the value of critical exponents,

— to provide expressions for the associated scaling functions,

— to single out the physical parameters that influence these exponents and these func-
tions; it amounts to investigate their universal nature and (simultaneously, in general)
to determine the associated universality classes,

— to approximate corrective terms to the leading dependence in K −Kc (for example
logarithmic corrections) in order to estimate deviations from the scaling behavior,

— to describe finite-size scaling (for N < ∞) where both N and K −Kc arise in the
scaling laws, in order to compare theoretical predictions with experimental or numerical
results.

I shall now explain how renormalization analysis achieves to fulfill this program.

A.3.1 - Coarse-graining and spin-block renormalization

3 Coarse-graining

The major aim of statistical mechanics is to describe the macroscopic properties of
the system at thermal equilibrium in the thermodynamic limit N → ∞. A basic idea
is to perform a coarse-graining, replacing the short range correlations, structures and
mechanisms by effective ones at larger scale. The first result is to increase the minimum
scale of the model, at which observation must be done to match the parameters of
the model with experimental information. In particular, it relates the smallest scale
ingredients of the model to their consequences at higher scales. The second result is
to reduce the number of degrees of freedom of the model (that is, the dimension of
its phase space) while preserving its long range properties, its symmetries and any
physical invariance. This procedure amounts to replace the initial statistical model by
a simpler7 one, of lower dimension but with the same macroscopic observable features.

In conjugate space, such a coarse-graining amounts to introduce a cutoff Λ corre-
sponding to the desired minimum length scale a = 2π/Λ; components of wave vector

7Of course, information about the small range correlations is lost, hence small scale properties are
no more available from the coarse-grained model: coarse-graining is a non-reversible (and more often
approximate) procedure.
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q̄ for ||q̄|| = q > Λ are no more described explicitely, and their influence at larger
spatial scale is reproduced by modifying the parameter values and by adding effective
contributions of wave vectors q ≤ Λ.

Coarse-graining has been used for a long time as a preliminary step intending to
produce a workable model. Although including this operation, renormalization is a far
more powerful tool since it is devised to be iterated. It thus also includes rescalings in
order to preserve apparent scales.

3 Spin-block renormalization

The spin-block renormalization implements such iterated coarse-grainings for spin
systems, where the spins are fixed on a regular lattice of parameter a. Their Hamilto-
nian is typically the sum of a free Hamiltonian H0, involving each spin separately, and
of an interaction potential V0 :

H = H0 + V0 where H0(N, [s]) =
n∑

j=1

h0(sj).

Individual spins s are grouped in kd-blocks of linear size ka then each block is considered
as a unique effective spin s′. Internal correlations between the elementary spins inside a
block contribute to the coarse-grained free Hamiltonian h1(s

′) of the block. Correlations
of range greater than ka, involving spins of different blocks, contribute to the effective
interaction potential V1 between spin-blocks.

The new idea[19,30] is to focus on the transformation (h0, V0) → (h1, V1) itself, if
possible in an adequate space of parameters. Fixed points of this transformation are
associated with an effective correlation length satisfying kξ = ξ. Either ξ = 0 and the
fixed point is associated with a system of free spins. Either ξ =∞ and the fixed point
is associated with a pure critical system, exhibiting an exactly self-similar structure
since any coarse-grained system deduced from the initial one is identical to it.

A.3.2 - An exactly renormalizable example: the Ising model

One-dimensional Ising model illustrates in a convincing manner the spin-block renor-
malization sketched above. In fact, this model provides one of the few cases, if not the
only one, where the complete renormalization analysis can be performed straightfor-
wardly, involving only elementary calculations and giving exact and explicit results.

3 Background

The Ising model refers to a system of spins
— fixed on the sites of a one-dimensional regular lattice of parameter a0,
— taking only the two values s = +1 and s = −1,
— with a ferromagnetic interaction −Jsjsj+1 between nearest neighbors (J >0).
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The microscopic state of the system is completely described by the spin configuration
[s] = (sj)1≤j≤N ∈ En = {−1,+1}N . In order to have statistical translational invariance,
a periodic boundary condition s1 = sN+1 is imposed. Thus, the Hamiltonian of the
system is:

HN (J, [s]) ≡ −J
N∑

j=1

sjsj+1

The dimensionless Hamiltonian HN = βHN (for inverse temperature β) depends only
on the dimensionless coupling constant K = βJ . I will denote <>NK the statistical
average with respect to the Boltzmann-Gibbs distribution for N spins and a control
parameter K. Analysis will have to prove the exponential dependence of the thermo-
dynamic correlation function Γ∞(K, j) = limN→∞ < sisi+j >NK , expected to behave
as exp[−ja/ξ(K)], to look for critical points Kc where the correlation length ξ(K) di-
verges hence to determine the scaling behavior (if any) of the thermodynamic state
functions with respect to K −Kc.

3 Scheme of the renormalization analysis

Intending to fulfill the program presented above, renormalization analysis begins
with a decimation that reduces the initial system of N0 spins to a system of N1 = N0/2
spin-blocks. A partial sum over the odd-label spins in the partition function achieves
the desired local statistical averaging replacing each pair (s2j , s2j+1) by an effective
spin s′j . A spatial rescaling of factor 1/2 is performed in order to preserve the minimal
scale a0; as the spin density should be invariant, the effective spins still have modulus
equal to 1, hence take exclusively the values s′ = ∓1. One thus writes:

Z(N0,K0) =
∑

[s2j ]0≤j<N1

∑

[s2j+1 ]0≤j<N1

N1−1∏

j=0

eK0s2j+1 (s2j+s2j+2 )

= CN1
∑

[s′j ]0≤j<N1

N1−1∏

j=0

eK1s′js
′
j+1

= CN1 Z(N1,K1)

with tanhK1 = (tanhK0)
2 and C ≡ 2 eK1 = 2

√
cosh 2K0. In the special case of the

one-dimensional Ising model, the renormalized Hamiltonian has the same structure as
the initial one so that the renormalization procedure amounts to a mere transformation
K1 = r(K0) in the space of parameters8, defined by tanh r(K) = (tanhK)2.

The “reduced” renormalization transformation r has two fixed points K = 0 and
K = ∞. The value K = 0 is obtained either for infinite temperature or for zero
coupling; it corresponds to free particles. The value K =∞ is obtained either for zero
temperature or for infinite coupling; it describes totally correlated particles and hence

8As it does not depend on the spin configuration, the constant C does not play any role in the
thermodynamic properties.

13



corresponds to a critical system. Not surprinsingly since renormalization is designed to
reduce critical behavior, K =∞ is unstable whereas any trajectory under the action of
r tends to the stable fixed point K = 0, since r(K) < K on ]0,∞[. It is easy to derive
the behavior of the correlation length near the critical point K =∞:

ξ(K) ∼ ae2K hence lim
K→∞

ξ(K) =∞

The correlation function satisfies Γ∞[K, 2j] = Γ∞[r(K), j], which leads to the scaling
behavior:

Γ∞(K, j) ∼ Γ̃

(
aj

ξ(K)

)
since ξ[r(K)] = ξ(K)/2

An analogous renormalization scheme can be used for the Ising model submitted to a
constant and uniform magnetic field B i.e. when a contribution −Bµ∑N

j=1 sj is added
to the Hamiltonian. Again, the renormalized Hamiltonian has the same structure as the
initial one, so that renormalization can be exactly implemented in the parameter space
{K = βJ,A = βBµ}. The previous critical fixed point is recovered for K = +∞ and
A = 0 (zero temperature and zero field). It is then possible to show that the magnetic
susceptibility diverges for (K = +∞, A = 0), which supports the critical character of
the associated spin system: it is said that the one-dimensional Ising model exhibits a
critical phase transition at zero temperature.

A.3.3 - Principles of renormalization analysis

The key idea of renormalization is to move the study from the phase space to a space
of models or, in a restricted viewpoint explained below, to a space of Hamiltonians;
renormalization is thus constructed as a transformation in this functional space, each
element of which corresponds to a physical system for some fixed value of the control
parameter(s) K. Instead of studying the equilibrium state of a given system S (within
a prescribed model), for example computing the value of state functions and their
variations with respect to variables and parameters, renormalization analysis focuses
on the transformation of the model and of its parameters following a change of the
scale of the description of S; the benefit of this transfer is to obtain quantitative and
universal results from the properties of the renormalization flow.

The typical steps common to all the renormalization procedures intending to describe
critical behavior in the framework of statistical mechanics are the following[14].

1) The preliminary step is the description of the renormalization action on the
model describing the physical system S. It includes:
— a reduction of the number N of particles;

— a rescaling in the real space in order to keep constant the density of degrees of
freedom, so that it makes sense to compare initial and renormalized problems;
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— a coarse-graining that is, an average over the small scale structures in order to obtain
their effective contribution in the model at larger scales. In the real space, it is more
often implemented through a partial sum in the partition function; in the conjugate
space, it is achieved through a cutoff q < Λ, the components q ≥ Λ being integrated
out. It leads to replace the dimensionless Hamiltonian H with a renormalized one RkH;
— a transformation (more often a rescaling) of the local order parameter s and of the
value of the state functions X. These transformations reproduce the consequences on
the physical quantities X of the “geometrical” renormalization that is, direct and con-
crete transformation of the model composed of decimation, coarse-graining, action of a
magnifying glass. . . Dimensional consistency may also be invoked in constructing these
transformations. Another prescription is the group structure of the set of operators
obtained when varying k. The remaining parameters, if any, are chosen in such a way
that iterating the whole renormalization procedure ultimately leads to a fixed point
associated to a non-trivial system.

To summarize, the action of the renormalization Rk expresses schematically:

N → Nk−d which defines the label k of Rk;
x̄→ x̄/k in the real space Rd;
q̄ → kq̄ in the conjugate space;
H → RkH with Rk1 ◦Rk2 = Rk1k2 ;
s̄→ s̄/σ(k,H) with σ(k2, Rk1H) σ(k1,H) = σ(k1k2,H);
X → RXk (X) for the value of a state function X.

2) Rk amounts only to change the scales of the description of S or in other words,
to change the analytical model, the values of the control parameters and the values
of the extensive variables in such a way that the underlying physical system S is not
modified. It thus makes sense to compare the initial situation with the renormalized one
and to iterate the renormalization procedure. In particular, the macroscopic properties
of S must be unaffected by the renormalization, which requires that:

Z(Nk−d, RkH) = Z(N,H)

and, for any macroscopic state function (obtained through a statistical average):

Rk[X(H)] = X[Rk(H)] so that X(Nk−d, RkH) = RXk [X(N,H)]

For a field ψ(N, x̄), the renormalization equation can be expressed in the form:

[Rkψ] (Nk−d, x̄/k) = Rψk [ψ(N, x̄)]

More generally, for any state function, Rk[X(S)] ≡ X[Rk(S)], which expresses analyt-
ically in:

RXk [X(H, N, x̄, s̄] = X(RkH, Nk−d, x̄/k, s̄/σk)
For example, Rsk(s̄) = s̄/σk for the order parameter s̄(x̄) so that [Rk(s̄)](x̄) = s̄(kx̄)/σk.
In consequence, σ2k G(RkH, N, x̄) = G(H, Nkd, kx̄) for the pair-correlation function
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G(H, N, x̄) =< s̄(0)s̄(x̄) >H,N . It leads to the relation ξ(RkH) = ξ(H)/k for the
correlation length.

If X is a physical invariant of the system, its value must be preserved by the
renormalization, which writes RXk (X)=X or equivalently X(Nk−d, RkH)=X(N,H).
If moreover, X is scale independent (intensive), its invariance writes X(RkH)=X(H).

In fact, the relevant quantities are the thermodynamic limits x=limN→∞X(N)/N
for an extensive state function, for example the dimensionless free energy per particle
f = − limN→∞(lnZN )/N , and y = limN→∞ Y (N) for an intensive one, for example
the pair-correlation function. One then obtains:

f(RkH) = kdf(H) σ2k G∞(RkH, x̄) = G∞(H, kx̄)

Physical invariance writes respectively x(RkH) = kdx(H) and y(RkH) = y(H).
3) In some cases, an adequate parametrization K → HK allows to reduce, at least

approximately, the renormalization action in the space of Hamiltonians to a trans-
formation K → r(K) in the parameter space. Renormalization equations then read
Z[Nk−d, rk(K)] = Z(N,K) and X[Nk−d, rk(K)] = RXk [X(N,K)]. We shall see below
(points 6 and 7) how to find such an “adapted” parametrization.

4) The main step is the determination of the fixed points H∗ of Rk satisfying the
fixed-point equation RkH∗ = H∗. If a renormalization analysis is to be fruitful, Rk
must have some fixed points. From the relation Rk[X(H)] = X[Rk(H)] satisfied by an
arbitrary state function X and from RkH∗ = H∗, it follows that the underlying model
S∗ ≡ S(H∗) is a fixed point of Rk. From the very construction of Rk, this property
shows up an exactly self-similar behavior. In this sense, S∗ appears as an “ideal”
critical system. Indeed, as ξ[Rk(H)] = ξ(H)/k, then ξ∗ =∞ in case of a non-trivial
fixed point, which shows the critical character of S∗. One obtains G∗(x̄) ∼ ||x̄||−2ω for
the thermodynamic pair-correlation function if σk ∼ k−ω: it gives explicitely the power
law dependence which is characteristic of a critical system. Denoting X∗ = X(H∗),
it follows from RkH∗ = H∗ that X∗(Nk−d) = RXk [X

∗(N)]. If RXk (X) = kαX, one
obtains the scaling law X∗(N) ∼ N−α/d. As a result, either X∗ =∞ if −α > d either
X∗ = 0 if −αx < d in case of an extensive state function X. More generally, a state
function X∗ of the fixed point S∗ satisfies:

RXk [X
∗(N, x̄, s̄)] = X∗(Nk−d, x̄/k, s̄/σk)

If moreover X is a physical invariant, so that RXk (X) = X, then X∗ satisfies:

X∗(N, x̄, s̄) = X∗(1, x̄N−1/d, s̄/σk=N1/d)

For σk ∼ k−ω:

X∗(N, x̄, s̄) = Θ(x̄N−1/d, s̄Nω/d) = Ψ(x̄N−1/d, s̄ ||x̄||ω

where Θ and Ψ are scaling functions depending on only two variables.
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5) The next step is to perform a linear and if possible nonlinear analysis of Rk
around H∗. Due to the group-theoretic structure of the set (Rk)k, the eigenvalues of
DRk(H∗) have the form kγj and the eigenvectors do not depend on k. If a renormal-
ization analysis is to be fruitful, Rk possesses a hyperbolic fixed point, that is a fixed
point having both stable and unstable directions. The stable manifold V s of H∗ is
the location of the critical systems: in case of a system whose modelling involves an
Hamiltonian HK depending on a control parameter K, the critical value Kc is given
by the condition HKc ∈ Vs. Thus H∗ appears as a universal function describing the
typical and universal critical features. These properties are summarized in:

∀ H ∈ Vs, lim
n→∞

Rnk0H = lim
k→∞

RkH = H∗

The operators Rk are precisely designed to extract the universal large-scale behavior
of a critical system. Each renormalization eliminates the specific small-scale details in
order to highlight the self-similar properties common to all the systems of the same
universality class; moreover, it shows that the universality class having H∗ as a typical
and “pure” representative is merely the stable manifold Vs of H∗, which allows to
construct it explicitely.

6) It is then possible to determine the scaling behavior of a system depending on a
control parameter K. Let P be the projection onto the unstable direction (independent
of k) of DRk(H∗) associated to the maximal eigenvalue kγ1 > 1. If the so-called
“condition of transversality” P.(∂HK/∂K) 6= 0 is satisfied in the family (HK)K , it is
possible to write, for K close to Kc:

P [Rk(HK)] ≈ P [Hrk(K)] with rk(K) ≈ Kc + kγ1(K −Kc)

Critical behavior of a thermodynamic state function x follows:

RXk [x(HK)] = x[RkHK)] ≈ x[Hrk(K)]

or, expressing x(HK) as a function x̃(K): RX [x̃(K)] ≈ x̃[Kc + kγ1(K −Kc)] .

7) An exhaustive description of the critical behavior is available from the knowl-
edge of the renormalization flow close to an hyperbolic fixed point H∗. A complete
parametrization of the neighborhood of H∗ in the space of Hamiltonians is obtained s-
traightforwardly knowing the eigenvectors (hj)j≥1 of DRk(H∗) (which are independent
of k) and the associated eigenvalues (kγj )j≥1; indeed, one can write at the leading order
in H−H∗ which corresponds to the linear terms:

H = H∗ +
∞∑

j=1

aj hj =⇒ RkH = H∗ +
∞∑

j=1

kγj aj hj +O(a2)

Hence, the renormalization of the Hamiltonian reduces in the linear approximation to
a scale transformation rk acting component-wise in the parameter space according to

r
(j)
k (aj) = kγj aj . The label j → aj are chosen according to the ordering γj ≥ γj+1.
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The scaling behavior of a state function X follows. If for example RXk (X) = kαX, one
writes for any k > 0:

X[N, (aj)j≥1] = k−α X[Nk−d, (kγjaj)j≥1]

x[(aj)j≥1] = k−α−d x[(kγjaj)j≥1]

The signs of the exponents (γj)j≥1 are crucial. The direction associated to γj is said
to be:
— relevant if γj > 0,
— marginal if γj = 0,
— irrelevant if γj < 0.
Let us explain this terminology on a toy-model where γ1 > γ2 > γ3 = 0 > γ4. The
coefficient a1, associated to the maximal exponent γ1 > 0, appears to be the control
parameter of the phenomenon; in particular, critical behavior is observed for a1 → 0.

Taking k = a
−1/γ1
1 (if a1 > 0) leads to9:

x(a1, a2, a3, a4) = a
−(d+α)/γ1
1 x(1, a2 a

−γ2/γ1
1 , a3, a4 a

−γ4/γ1
1 )

The function x being continuous, the value of the parameter a4 does not play any role
on the limiting behavior a1 → 0. If it can be shown that x(1, z, a3, 0) behaves as a
power |z|µ∓ for z tending to ∓∞, the leading behavior of the thermodynamic function
x when a1 → 0+ is known: x(a1, 0, a3, a4) ∼ a−η1 where:

• if a2 = 0, x(a1, 0, a3, a4) ∼ a−(d+α)/γ11 x(1, 0, a3, 0) hence η = d+α
γ1

;

• if a2 > 0, x(a1, a2, a3, a4) ∼ a−(d+α+γ2µ
+)/γ1

1 Θ+(a2, a3) hence η = d+α+γ2µ+

γ1
;

• if a2 < 0, x(a1, a2, a3, a4) ∼ a−(d+α+γ2µ
−)/γ1

1 Θ−(a2, a3) hence η = d+α+γ2µ−

γ1
.

Analogous results are deduced for the various derivatives of x. Hence the relevant
directions control the exponent values. In the example above, a cross-over between
different10 scaling laws, hence between different universality classes is observed when
a2 varies from negative values to positive ones, passing through a2 = 0. The marginal
directions11 do not affect the exponent values but intervene in the universal functions.
The irrelevant directions have no influence at all on the leading scaling behavior; they
only provide corrections to the asymptotic scaling behavior (a1 → 0). Additional
corrections come from the nonlinear terms in the renormalization action.

9Similar calculations can be carried over for a1 < 0; it thus appears the reduced thermodynamic
function x(−1, a2 |a1|

−γ2/γ1 , a3, a4 |a1|
−γ4/γ1); in general, it modifies the universal functions but not

the values of the exponents.
10It is often the case that a2 = 0 leads to a critical behavior, whereas standard values (for example

mean-field values) are recovered for a2 6= 0.
11Let us note that a marginal direction is in most cases associated to a continuous symmetry (Sb)b of

the physical system S. Indeed, as renormalization preserves the symmetries of S, Rk and Sb commute
(for any k > 0, b > 0). Hence, if H∗ is a fixed-point of Rk, SbH

∗ is also a fixed point for any b > 0,
so that [∂(SbH

∗)/∂b](b0), if non-zero, is a marginal direction of DRk(Sb0H
∗). It corresponds to a

displacement along the curve (SbH
∗)b>0 of fixed points in the space of Hamiltonians.
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Renormalization principles and their relevance for the prediction of scaling behavior
can thus very clearly be asserted in the real space. Nevertheless, the explicit construc-
tion of Rk (acting in the space of Hamiltonians) is more often easier to implement in
the conjugate space, by introducing an ultra-violet cutoff q ≤ Λ and by integrating
out the components q > Λ. We refer to the reviews of Fisher[14] and of Wilson and
Kogut[31] for technicalities, especially for perturbative expansions performed within a
renormalization analysis and for their graphical formulation. This “conjugate” view-
point is moreover well-suited to draw a parallel with renormalization methods used in
quantum field theories.

We shall in the following Part B recognize an analogous scheme intending to de-
scribe the onset of deterministic chaos; spatial extension will be replaced by duration
and the renormalization operator will act on the evolution law. More generally, the
above procedure is the backbone of most of the renormalization methods. Let us list
again, now in a general formulation, the main steps for implementing a renormalization
analysis.

1) As previously, renormalization includes a reduction of the number of degrees of
freedom (which defines the scale factor k labelling the transformationRk) together with
suitable rescalings in real and phase spaces. It must preserve the physical invariants
and the symmetries of the system.

2) A preliminary step in the analytical formulation of the renormalization action
is the specification of a space of “structure rules” Φ. The “structure rule” of a system
names the set of informations necessary to write down its equilibrium state or its
evolution: it is the dimensionless Hamiltonian in statistical mechanics, the evolution
map for a discrete dynamical system, the vector field for a continuous dynamical system
or the transition probabilities for a random walk. Φ appears as a “space of models”.

3) The main step is the construction of a renormalization operator Rk acting in
Φ, involving a coarse-graining of the small scale details in the real space or a cutoff in
the conjugate space, then rescalings in order to keep constant the apparent scales and
the physical invariants of the system.

4) The core of the method lies in the determination of fixed points Rkφ
∗ = φ∗,

hence in the linear stability analysis of Rk around these fixed points. All the results
obtained in the framework of statistical mechanics still apply with only minor (mainly
notational) changes.
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Part B - Renormalization for dynamical systems and
chaos

Hereafter,“ chaos” will refer to unpredictable and erratic asymptotic behavior en-
countered in the context of differentiable dynamical systems, thus induced by a deter-
ministic and regular evolution in a low dimensional phase space X . Such a chaotic
motion[32] is different in nature both from random motion, since no stochasticity is in-
cluded in its dynamics, and from fully developed turbulence, since only a finite number
of degrees of freedom intervene.

My aim is to show that some of its main (and well-accepted) characteristics can be
seen as critical features. It will thus be possible to relate it with the so-called critical
phenomena encountered in statistical mechanics and to describe transition to chaos as
a critical phase transition.

B.1 - Background for the study of deterministic chaos

B.1.1 - Asymptotic regime

First of all, let me point out that “pure” chaotic features and the associated singu-
larities appear only in asymptotic evolutions of infinite duration. This keeps from any
contradiction with the deterministic and regular behavior of finite evolutions, described
by smooth functions of time, of initial conditions and of parameters of the system. This
duality between finite and limiting behaviors is reminiscent of the “critical phenomena”
encountered in statistical mechanics, which give rise to singularities in the observable
state functions only in the thermodynamic limit. In both cases, critical singularities
can be seen, from a mathematical viewpoint, as a mark of the presence of two limits
that cannot be taken in arbitrary order. Namely, in statistical mechanics, the thermo-
dynamic limit N → ∞ cannot be inverted with the limit β → βc. Analogously, in
dynamical systems framework, the asymptotic limit T → ∞ cannot be indifferently
taken after or before letting a control parameter µ increase to a critical value µc.

B.1.2 - Attractors and invariant measures

Since the relevant description of chaos involves only asymptotic regime, we shall only
consider the restriction of the dynamical system to its attractor[11], that is a closed and
indecomposable subset of its phase space X which is invariant and stable under the
evolution. It is to note that the stationarity of this asymptotic regime is a statistical
stationarity with respect to some suitable distribution m on X , called an invariant
measure; it means that m is a statistical weight on X which is unchanged during the
evolution. In case of a discrete dynamical system of evolution map f , this invariance
of m expresses equivalently:
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i) ∀A ⊂ X , m[f−1(A)] = m(A)

ii) ∀φ ∈ L1(X , dm),
∫
φ ◦ f(x)dm(x) =

∫
φ(x)dm(x)

The stationary regime being reached, the overall dynamics is entirely described by the
invariant measurem, more precisely the measure, among all the possible invariant ones,
which is spontaneously selected by the evolution from the initial data distribution. By
definition of m, its support is the attractor A.

Asymptotics of a dynamical system (chaotic or not) can thus be described in a
probabilistic framework, in which the notion of trajectory in the phase space X is
replaced by that of measure in X , describing the probability of presence of the physical
system in X at any time of the stationary regime. Thus, the question is no more to
describe how the physical system evolves from any initial state (that is, from any point
of X ), but to investigate the properties of the invariant measure m, as it gives a global
description of the asymptotic dynamics. It is reminiscent from the statistical mechanics
approach, in which individual deterministic trajectories are replaced by an adequate
statistical ensemble.

B.1.3 - Ergodicity

The relevance of such a probabilistic approach arises when it can be supplemented by
ergodic properties of the invariant measure m. Namely, m is ergodic with respect to the
evolution map f if and only if any invariant subset B of X (such that f−1(B) = B)
has either a null m-measure or a full m-measure or, equivalently, if and only if any
invariant measurable real function φ (such that φ ◦ f = φ) is m-almost surely constant
on X . Besides, the notion of deterministic chaos is defined in the framework of ergodic
theory. To explain this apparent restriction on m, I may invoke the indecomposability
of an attractor which is densely visited by any generic asymptotic trajectory, and the
intuitively mixing character of chaotic dynamics , which in turn implies ergodicity. I
hope specialists of this domain will agree, or make precise, this rather naive justification.

3 Statistical results

Whether in statistical mechanics or for a dynamical system, the aim of the theorist
is to explain and, if possible, to predict the macroscopic behavior from the microscopic
structure of the system. It is achieved by establishing some statistical laws, relating the
macroscopically observable results with theoretically computable means.

In statistical mechanics (Part A), the spatial averages A(N, [z]) = (1/N)
∑N
i=1 a(zi)

or C(N, [z]) = [1/N(N − 1)]
∑
i6=j c(zi, zj) for a system S of N À 1 particles in a

configuration [z] may be identified with their statistical means < a(z) > or < c(z, z ′) >
with respect to the Boltzmann-Gibbs distribution, provided S is non-critical.

For a dynamical system, the observable quantities are temporal means T−1
∫ T
0 a(zt)dt

along a given trajectory (zt)t≥0 that is, a configuration of the dynamical system. The
analogy with statistical mechanics is formally exact for a discrete dynamical system, as
the temporal mean writes down (1/N)

∑N
i=1 a(zti) after N steps. This temporal mean
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may be identified in the limit of an infinite duration T →∞ with the statistical mean
of a(z) with respect to the invariant measure m of the dynamical system, provided this
measure is ergodic when associated with the evolution law of the dynamical system and
finite (m(X ) <∞). Thus, the apparent random character of chaotic trajectories is the-
oretically supported by the existence of statistical laws about the asymptotic motion,
which show up the very nature of “deterministic chaos”.

Such results stem from the pointwise ergodic theorem of Birkhoff[1] applied to the
ergodic dynamics on (X ,m). Given a discrete evolution map f , it asserts that for any
integrable function a ∈ L1(X , dm):

∃X0 ⊂ X , m(X − X0) = 0, ∀x0 ∈ X0, lim
T→∞

1

T

T−1∑

j=0

a[f j(x0)] =
1

m(X )

∫
a(x)dm(x)

It exactly expresses that the (random) temporal mean of the successive values taken by
a state function a is m-generically equal to its statistical mean in (X ,m). In physical
words, it means that the observation of a over a macroscopic time interval gives no
longer a “random” result but can be predicted and computed in terms of the intrinsic
statistical weight m generated by the dynamics itself.

3 Ergodicity and the Boltzmann ergodic hypothesis

When using this measure-theoretic description for an ergodic dynamical system, the
analogy with statistical mechanics is straightforward through a comparison between
the invariant measure and the Boltzmann-Gibbs distribution. Indeed, the statistical
approach for a system S composed of a large number N of particles, in thermal e-
quilibrium at temperature T , amounts to replace the description of the deterministic
trajectory of S in the microscopic phase space EN as time flows by the description, in
which time no more intervenes, of the relative frequency with which S visits any part
of EN . According to the ergodic hypothesis of Boltzmann[16], this relative frequence
coincide in the thermodynamic limit N → ∞ with the Boltzmann-Gibbs distribution
at T , which gives the statistical weight of each configuration [z] ∈ EN . This transfer
from a temporal description to a probabilistic one, independent of time in equilibri-
um problems, is the basis of statistical mechanics since it allows to identify temporal
averages over an infinite duration given by experimental observations with statistical
means computed theoretically; hence analysis can be restricted to a statistical ensemble
approach. In contemporary language, the Boltzmann hypothesis amounts to assume
that the microscopic evolution of S in EN is ergodic with respect to the Boltzmann-
Gibbs distribution, which is supported by a more physical statement about “molecular
chaos”.
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B.2 - Chaos is a critical phenomenon

B.2.1 - Bifurcations and routes to chaos

A striking advance in studying transition to chaos has been the experimental, numer-
ical and analytical evidence of a few number of generic scenarii describing changes
of asymptotics dynamics when some control parameters µ are varied[10]. Namely, a
scenario is a qualitative sequence of elementary mechanisms which leads from a simple
stationary motion (a fixed point) to a chaotic attractor. It is said to be generic if it
is only shifted in the space of parameters but not destroyed when the evolution map
is slightly modified. Typical steps of a scenario are bifurcations that is, qualitative
changes of the attractor Aµ when varying parameter(s) µ of the evolution map. For
deterministic chaos, a scenario involves only a finite dimensional subspace of the phase
space; only one parameter essentially controls it, otherwise genericity breaks down.
Hence the qualitative features of a transition to chaos obey one of a few predetermined
schemes; the unexpected result of this viewpoint is the discovery of some quantitative
universal features, especially for the period-doubling scenario presented below.

Having in mind to compare dynamical systems and statistical mechanics, it is to
note that a bifurcation exhibits common features with critical phase transitions; indeed,
it appears typically as:

• Jump discontinuities of the branches xj(µ) of the attractor Aµ or divergences of
their derivatives with respect to µ, which respectively correspond to first order and
critical transitions.

• Scaling laws for average quantities with respect to the control parameter µ− µ0.
• Critical slowing down, that is divergence of the time length necessary to reach

stationary regime (the notion of attractor being replaced by that of thermal equilibrium)
described by a stationary statistical distribution in the phase space (the notion of
invariant measure being replaced by that of Boltzmann-Gibbs distribution).

• In the dynamic viewpoint for the configurations of the particle system, ergodicity
seems to break down at the transition, the system staying an arbitrary long time in
bounded parts of the phase space. In the Boltzmann-Gibbs distribution, exact com-
pensation between thermal effects and coupling terms occurs at Tc, which may explain
critical slowing down as the system hesitates between qualitatively different statistics.
For dynamical systems, ergodicity seems to break down in the sense that the ergodic
measures are not the same below and above the bifurcation value.

B.2.2 - Critical properties of chaos and transition to chaos

As chaos is a characteristic of the asymptotic dynamics[11], the key notions are the
invariant measure m “spontaneously selected” by the evolution law and its support,
which coincide with the attractor A. Studying chaos and transition to chaos involves
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only the dynamics restricted to the attractor. For the sake of simplicity, I shall re-
strict the discussion to a one parameter family [(X , fµ),mµ,Aµ]µ of discrete dynamical
systems.

• To be chaotic, Aµ must be more complex than a mere quasi-periodic attractor12.

•Moreover, relevant definitions of chaos[11] involves ergodicity of the dynamics with
respect to the invariant measure mµ; in this sense, chaos is a measure-theoretic notion.

• The main characteristic of chaos is sensitivity with respect to initial conditions
illustrated by Lorentz in the so-called “butterfly effect”: namely, the presence of a
flying butterfly, if amplified by a chaotic flow, can eventually induce a hurricane. Such
property originates in the exponential enhancement of any initial disturbance during a
chaotic evolution. In particular, the trajectories stemming from two point x1 ≈ x2 ≈ x
that cannot be distinguished by an observer eventually have totally different behavior.
In turn, it causes impredictability since knowing x, it is impossible to say which of the
trajectories of x1 and x2 will be observed.

These properties are deduced from a single “mathematical” feature of the evolution
law fµ which is the positivity of the maximal Lyapounov exponent L(µ). For a one-
dimensional map f , the Lyapounov exponent is defined as:

L(f,m) = lim
N→∞

1

N

N−1∑

j=0

ln |f ′(f j(x0))|

Depending on the initial position x0 in its definition, L(f,m, x0) is in fact m-almost
everywhere constant due to the ergodicity of m. It is to note that L(f,m) depends
on the invariant measure m, as the pointwise ergodic theorem of Birkhoff gives (m is
supposed to be finite):

L(f,m) =

∫

X
ln |f ′(x)| dm(x)

The relation asserted above between chaos and the positivity of this maximal Lya-
pounov exponent is an obvious consequence of its meaning, which is to be the rate of
the exponential separation of initially close trajectories:

||fnµ (x)− fnµ (y)|| ∼ enL(µ) ||x− y|| if n enough large and if ||x− y|| < ε(n, µ)

• Another criterion, this one of topological nature, can be useful, especially for
experimental analysis. It involves a measure of the impredictability. Let ε0 be the
accuracy on the initial data; admitting an error up to ε, the mean time length Tµ over
which a trajectory can be predicted roughly obeys a scaling law ε ∼ ε0 exp[TµStop(µ)]
which defines the topological entropy Stop(µ). Chaos is associated with Stop(µ) > 0.

12A quasi-periodic motion is a combination of coupled periodic components.
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• The statistical entropy of the distribution of probability mµ/mµ(X ) on X is called
the metric entropy (or the “information”) s(µ) of the ergodic finite measure mµ; its
positivity s(µ) > 0 gives another metrical criterion of chaos.

•When the nonlinearities are strong enough (for µ > µc), chaos is likely to appear;
indeed, the nonlinearities amplify any initial disturbance of the trajectory as time grows
exactly as, in statistical mechanics, a collective particle state in strong coupling regime
(for β > βc) propagates and amplifies local perturbations of the configuration. In this
sense, a chaotic system is critical.

• The maximal Lyapounov exponent L(µ), possibly smoothed in µ (then denoted
L̄(µ)), provides a suitable order parameter for the transition to chaos, as it is strictly
positive in the chaotic phase whereas it is zero in the other one. Just above the tran-
sition to chaos in µ = µc, the smoothed Lyapounov exponent L̄(µ) is likely to satisfy
a scaling law L̄(µ) ∼ (µ− µc)β with 0 < β < 1: it is continuous in µc but presents an
infinite slope. Stop provides an equivalent order parameter.

• A significant quantity is the characteristic time τ(µ), since it exhibits a singular
scaling behavior at the transition. Below chaos (µ < µc), τ(µ) is equal to the largest pe-
riod of the periodic components which contribute to the asymptotic motion; it typically
increases as such a quasi-periodic motion destabilizes into chaos. In “strongly chaotic”
regime where the dynamics are mixing, the mixing property have a decorrelating effect
along any mµ-generic trajectory, which have thus shorter memory as the nonlineari-
ties responsible of the exponential sensitivity to disturbances increase. Typically, τ(µ)
behaves acording to a singular power law:

τ(µ) ∼ |µ− µc|−ν (ν > 0)

in the neighborhood of µc, the exponent ν being in most cases the same on each side
of µc. Of course, this scaling law is to be compared to the analogous behavior of the
correlation length ξ(K) around a critical point Kc.

• Let me point out that the analogy between bifurcations and phase transitions
extends as far as to distinguish:

— “first order” bifurcation which does not lead to chaos in µ = µ0: L(µ0) = 0, L(µ) ≤ 0
is continuous in µ0 but its derivative dL/dµ has a jump discontinuity with limits from
the right and from the left of opposite signs; besides, it indicates that dL/dµ is a better
order parameter for this kind of bifurcation;

— “second order” bifurcation which leads to chaos in µ = µc: L̄(µc) = 0, L̄(µ) is
continuous in µc but has an infinite slope in µc, with L̄(µ) ≡ 0 if µ < µc and L̄(µ) > 0
if µ > µc.

We shall pursue further the analogy in the case of period-doubling transition to chaos,
where the parallel with critical phase transitions is quite amazing.

25



B.2.3 - How renormalization operates on chaotic motions

The evidence of universal qualitative and even quantitative characteristics, as well as
scaling properties, for the transition to deterministic chaos is a clue to make use of
renormalization methods. The key-idea is to perform iterated coarse-grainings jointly
to time-scale contractions in order to capture the overall asymptotic dynamics into
the trajectory of the evolution map under the renormalization action in an adequate
functional space (whose elements are evolution maps).

A typical transformation is Rkf(x) = [λf,k]
−1 fk(xλf,k) where λf,k is some scale factor

in the phase space X which appears in order to preserve some physical properties, for
example the value of f(0) and to restrict the analysis to a neighborhood of x = 0. The
action of Rk expresses according to the following relations.

• L(Rkf) = kL(f) on the Lyapounov exponents, since:

|x− y|enL(Rkf) ∼ |[Rkf ]n(x)− [Rkf ]
n(y)| with

|[Rkf ]n(x)− [Rkf ]
n(y)|∼ [λf,k]

−1|fkn(xλf,k)− fkn(yλf,k)|∼|x− y|eknL(f)

• Stop(Rkf)=kStop(f) on the topological entropy.

• The measure mRkf defined by mRkf [B] = mf [λf,kB] (for any subset B of the phase
space) is invariant with respect to Rkf .

• s(mRkf ) = ks(mf ) on the statistical entropy (also called “information”).

Let us note that the renormalization of L, Stop and s does not involve the scale factor
λf,k in X but only the time rescaling factor k.

B.3 - The example of the period-doubling transition to chaos

B.3.1 - Qualitative features

The characteristic feature of this route to chaos is the occurrence, when increasing a
control parameter µ, of a sequence of “period doublings”, for bifurcation values (µj)j≥0
accumulating on a finite limiting value µc above which the asymptotic behavior is
chaotic (at least for a non-countable infinite set of values µ > µc). The striking result
is the evidence of a universal number δ governing the limiting behavior of the sequence
(µj)j≥0: although the bifurcation values (µj)j≥0 and the value µc at the onset of chaos
depend on the family (fµ)µ of dynamical systems and even on parametrization µ→ fµ,
the rate of convergence takes a prescribed value δ ≈ 4, 66920 . . . :

lim
j→∞

δj(µc − µj) = A 6= 0 which implies lim
j→∞

µj+1 − µj
µj+2 − µj+1

= δ
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The second formulation is easier to test experimentally as no preliminary knowledge
of µc nor of δ is needed. This scenario can also be observed on the power spectrum of
the asymptotic dynamics (restricted to the attractor); it then deserves the name of sub-
harmonic cascade[12], as the successive period doublings correspond to the successive
appearance (one new frequency each time the control parameter crosses a bifurcation
value) of decreasing frequencies (2−jω0)j≥0. Varying µ ultimately leads at µ = µc
to a chaotic power spectrum, which is characterized by an accumulation of non-zero
components in ω = 0.

This route to chaos was pointed out first numerically by Feigenbaum [13] and inde-
pendently, at the same time, by Coullet and Tresser[7], when studying the asymptotics
of the logistic map[25] x 7→ ax(1−x) on the interval [0, 1] when the control parameter a
increases from a = 0 to a = 4. It was also well observed experimentally13, for example
in Rayleigh-Bnard convection[9,22] where the control parameter is the vertical gradient
of temperature applied from below in a finite layer of liquid.

This scenario is specific to discrete dynamical systems and it is sufficient to consider
one-dimensional14 systems; so let (fµ)µ be a one-parameter family of differentiable
maps of the interval exhibiting this route to chaos. A typical example is provided by
the family [x 7→ 1−µx2]0<µ<2 on the interval [−1, 1]. Each of the successive qualitative
steps leading from equilibrium for µ < µ0, when the attractor is a mere fixed point, to
chaos for µ > µc is a stability exchange between a 2j-cycle for µ < µj and a 2j+1-cycle
for µ > µj . This doubling of the period of the attractor is the observable consequence

of the occurrence of a pitchfork bifurcation in the iterate f 2
j

µ of the evolution law fµ
of the dynamical system in µ = µj . This generic bifurcation[28] corresponds to the
following topological change of the attractor: a unique stable fixed point x0(µ) for
µ < µ0 looses its stability in µ0 and is replaced 15 by a stable 2-cycle x∓(µ) for µ > µ0.
Its mathematical formulation, which gives the bifurcation value µ0, is:

gµ0 [x0(µ0)] = x0(µ0) and g′µ0
[x0(µ0)] = 1

The branches are connected continuously in µ0, but with an infinite slope:

x0(µ0) = x+(µ0) = x−(µ0)
dx0(µ)

dµ
(µ0 − 0) finite

dx∓µ
dµ

(µ0 + 0) =∞

B.3.2 - Renormalization analysis

The power of renormalization applied to dynamical systems is demonstrated with its
success in analysing this scenario; indeed, it achieves to prove the scaling behavior of
the sequence of the bifurcation values, to predict the numerical value of the rate δ

13Due to noise, only a finite sequence of bifurcations can be observed experimentally.
14This does not contradict the assertion that chaos needs dimension d ≥ 3 to appear, since the

underlying continuous dynamics is embedded in a phase space of dimension at least 3.
15The fixed point x0(µ) still exists for µ > µ0 but is unstable.
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and to describe the associated universality class. It additionally shows up the self-
similarity of the bifurcation diagram, which ultimately evidences the fractal structure
of the attractor Aµ0 at the onset of chaos.

The first step of the renormalization procedure is to define the relevant space F of
evolution maps on which renormalization will act:

F =





f : I 7→ I = [−1, 1], even, analytical, f(0) = 1
f ′(0) = 0 and f is strictly increasing in [−1, 0[

Sf < 0 in [−1, 0[∪ ]0, 1] where Sf = (f ′′′/f ′) − (3/2) (f ′′/f ′)2





As renormalization analysis will show it, this space appears naturally when studying
the period-doubling scenario for it is such that generically, a one-parameter family
belonging to it obeys the scenario. Its elements are known as unimodal maps[6]. A
typical one is fµ(x) = 1− µx2 with µ ∈]0, 2].

Let λf = f(1), so that f(I) = [λf , 1]. If λf ≥ 0, fn(I) = [an, bn] shrinks monoton-
ically either towards the unique fixed point xf ∈]0, 1[ of f or towards a 2-cycle since
bn+1 = f(an) ≥ an+1 = f(bn) ≥ 0. Hence, only the case λf < 0 can lead to a complex
asymptotic behavior. A relevant renormalization transformation R for investigating
period-doublings will double the elementary step. As it must moreover preserve the
normalization f(0) = 1, imposed on the elements of F in order to match the position
and the value of their peak with (0, 1), renormalization acts in F according to:

Rf(x) =
1

λf
[f ◦ f ] (xλf ) f ∈ F , λf = f(1) < 0

To obtain a renormalized map Rf ∈ F , R has to be restricted to a subset D0 ⊂ F .
Another argument supporting this definition of R is the fact that for f ∈ F with λf < 0,
the graph of f ◦ f restricted to [λf ,−λf ] is almost similar to the graph of f , up to a
reversal of the space and a dilation of factor 1/|λf | to restore its extension ∆x = 2.
As (Rf)n(x) = (1/λf ) f

2n(λfx), the trajectory generated by the map Rf from an
initial position x0 ∈ I interpolates every two time steps the trajectory stemming from
x0λf and rescaled by the factor 1/λf . Hence, the transformation f → Rf reproduces
a “geometrical” renormalization of the trajectories, precisely adapted to show the self-
similarity of the (finite) attractors associated with special sequences (µ̂j)j≥0 (among
which the sequence of bifurcation values).

A major step in this functional analysis is to look for fixed points Rϕ = ϕ. It can
be shown[8] that the fixed-point equation:

[ϕ ◦ ϕ] [xϕ2(0)] = ϕ2(0) ϕ(x) ϕ ∈ F

where necessarily ϕ(0) = 1 admits a unique solution in F . This equation expresses an
exact self-similarity between ϕ and its iterate ϕ◦ϕ, hence at all time scale between the
trajectories they generate (even during the transients).

The following step is to investigate the linear stability of ϕ with respect to the
renormalization action, in order to describe the flow generated by R in F . It can
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be shown that the linearized renormalization operator DR(ϕ) has only one unstable
eigenvalue δ > 1, which moreover can be expressed explicitely in terms of ϕ hence
computed approximately: δ ≈ 4, 66920 . . . . The other eigenvalues are of modulus
strictly smaller than 1, so that ϕ is an hyperbolic fixed point of R. Its stable manifold
Vs is of codimension one. Both Vs and Vu can be characterized explicitely as graphs,
at least approximately and in the neighborhood of ϕ.

B.3.3 - Universality of the scenario

Having constructed and analyzed the renormalization operator R, the last step (but not
the least) is to relate the renormalization picture in the space F of unimodal maps with
the period-doubling scenario observed in most one-parameter families of such maps. In
the present situation, a complete nonlinear analysis of renormalization equations is
possible, and it leads rigorously to the following results:

• The fixed point ϕ is the evolution map of the typical critical system exhibiting at
all scales self-similar properties, as is shown by the fixed point equation Rϕ = ϕ.

• Among the maps of a family (fµ)µ in F , the map fµc for which transition to
chaos occurs is the unique one belonging to the stable manifold V s of φ. From the very
definition of the stable manifold, renormalization action expresses:

lim
n→∞

Rnfµc = φ.

It gives rise to universal critical behavior as:

Rnfµc ≈ φ hence R(Rnfµc) ≈ Rnfµc

for sufficiently large n, which means at sufficiently large time scale since Rnfµc is
associated to the time scale 2nτ if τ is the elementary time step.

• The neighborhood of the hyperbolic fixed point ϕ in F of evolution maps can
be split into the stable manifold Vs and the unstable subspace Eu of dimension 1;
for any f ∈ F , one writes f = fc + g where fc ∈ Vs and g ∈ Eu, which defines
the (nonlinear) projection P onto Eu (parallel to Vs) through Pf = g. Ignoring the
nonlinear contributions, the action of R then writes close to ϕ:

Rf ≈ Rfc +DR(ϕ).g with Rfc ∈ Vs and DR(ϕ).g = δ g

Hence:
P (Rf) ≈ δ Pf

• It is possible to single out a family (Wj)j≥0 of manifolds of codimension 1 having

the property that Wj is the location in F of the elements f such that f 2
j
undergoes

a pitchfork bifurcation. Hence, given a family (fµ)µ, the bifurcation value µj is deter-
mined by the condition fµj ∈ Wj . It is moreover proved that the sequence (Wj)j≥0
accumulates on Vs for j →∞,
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• From the very construction of R, it is obvious that Rfµj+1 ∈ Wj . The manifold
Wj being roughly parallel to Vs, it is possible to write at the leading order:

Pfµj ≈ P (Rfµj+1) ≈ δ Pfµj+1

• Differentiating with respect to µ (around µc) and ignoring nonlinear corrections
in µj − µc in the limit j →∞ gives:

(µj − µc)
[
P0

(
∂fµ
∂µ

)
(µc)

]
≈ δ (µj+1 − µc)

[
P0

(
∂fµ
∂µ

)
(µc)

]

where P0 = DP (ϕ). Provided [P0.(∂fµ/∂µ)(µc)] 6= 0, which expresses the transversality
of the family (fµ)µ, the above equation16 leads to:

lim
j→∞

µj − µc
µj+1 − µc

= δ

where δ is universal since it is the maximal eigenvalue of DR(ϕ). As it is possible to
compute the first terms of the analytical expansion of ϕ, it is possible to obtain an
explicit value δ ≈ 4, 66920.

To summarize, the universality classes of the period doubling scenario is the set of
all one-parameter families of unimodal maps which cross transversally the basin of
attraction of φ with respect to the renormalization action.

Part C - Analogies and further developments

C.1 - Comparison between Ising model and period-doubling scenario

In this section, I show that the “statistical mechanics renormalization” and the
“dynamical systems renormalization” share not only the same fundamental principles,
but also the same technical steps; this assertion is illustrated on the renormalization
analysis for the Ising model and for the period-doubling transition to chaos.

C.1.1 - Background and critical features

I shall first unify the formalisms in which the period-doubling scenario (illustrated on
the “normal form” fµ(x) = 1− µx2) and the Ising model are described.

16It needs much work to make it precise, taking into account all the nonlinear or quadratic corrections;
see for example Collet and Eckmann[6].
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Ising model Period-doubling scenario

• Extensive variable (“real space”) : discrete variable

position zj = ja , j ∈ Z time tj = ja , j ∈ Z

microscopic length scale ∆z = a microscopic time scale ∆t = τ

N sites, N À 1 N steps, N À 1

macroscopic length scale L = Na macroscopic time scale T = Nτ

• Elementary state variable (labelled j ∈ Z)

local magnetization position at a given time

spin sj = s(zj) ∈ Eel = {−1,+1} xj = x(tj) ∈ X = [−1,+1]

• Collective state variable at the microscopic scale (N components)

configuration [s] = (sj)1≤j≤N ∈ EN trajectory [x] = (xj)0≤j≤N

• “Physical” coupling between nearest neighbors (j, j + 1)

pair Hamiltonian: hj(J) = −Jsjsj+1 evolution map: xj+1 = fµ(xj)

short range a short range τ

• “Structure rule” of the sytem

dimensionless Hamiltonian unimodal evolution law fµ

• Control parameter (organization increases jointly with it)

K=βJ (relative magnitude µ (measuring the

of coupling and thermal motion) size of the nonlinearities)

• Statistical description

statistical averages <> give a theoretic access to observable quantities

Boltzmann-Gibbs distribution invariant measure mµ in X
probability in EN dMµ,N ([x]) = dmµ(x0)

∏N−1
j=1 δ[xj − fµ(x0)]dxj

statistical equilibrium stationary regime

<> = space average <> = time average

• Critical behavior

thermodynamic limit N →∞ asymptotic dynamics N →∞
(L = Na→∞) and K → Kc =∞ (t = Nτ →∞) and µ→ µc (finite)

critical phase transition onset of deterministic chaos

• Divergence of the range ξ of statistical correlations which means criticality

correlation length (typical size of characteristic time

domains of uniform magnetization) (period of the stable cycle if µ<µc)

• Order parameter which reveals the transition

statistical average < s >K smoothed Lyapounov exponent L̄(µ)
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C.1.2 - Renormalization analysis and scaling laws

It is now quite straightforward to put in parallel the renormalization procedures, which
shows up the typical steps common to most renormalization methods, whatever the
nature of the extensive variable(s) is.

• Decimation N ′ = N/2 block (2j, 2j + 1)→ j

N spins → N/2 “macro-spins” N steps → N/2 “macro-steps”

s′j = s2j x′j = x2j/λf where λf = f2(0)

partial sum in partition function iteration of f and rescaling x′=x/λf

• Rescaling in the real space in order to leave invariant the minimum scale

z′j = z2j/2 → ∆z′ ≡ z′j+1 − z′j = a t′j = t2j/2 = → ∆t′ ≡ t′j+1 − t′j = τ

• Physical invariants (constant under renormalization action)

density 1/a of degrees of freedom domain [−1, 1], normalisation f(0)=1

spin density |s|/a ⇔ |s′|= |s|=1 origin x0 of a trajectory

• Internal consistency of the renormalisation action R:

changing the scale of the description does not change the physical system;

renormalization hence preserves the macroscopic properties.

Z[2N,H] = C(H)N Z[N,RH] f2N (x) = λ(f) [Rf ]N (x/λ(f))

• Reduction of the apparent range of correlations

ξ[RH] = ξ(H)/2 (length) ξ[Rf ] = ξ(f)/2 (time)

• Renormalisation r expressed on the control parameter (within a given model)

R[H(K)] ≡ H[r(K)] R(fµj
) ≈ fµj−1

µj−1 ≈ r(µj)

• Critical point

unstable fixed point Kc =∞ fixed map ϕ of R

r(Kc) = Kc and r′(Kc) = 1 critical point if fµc
∈Vs(ϕ) r(µc)=µc

• Scaling behavior

Dimensionless parameter θ (θc = 0) renormalized under the action of r̂.

Universal scaling laws outcome from the linearized transformation r̂(θ) ≈ δ θ.

δ = r̂′(0)>1 is obtained through a linear analysis of r̂ around its fixed point.

θ = e−K and r̂(e−K) = e−r(K) θ = µc − µ and r̂(µc − µ) = µc − r(µ)

e−r(K) ∼
√
2 e−K gives δ =

√
2 µc − r(µj+1) ∼ µc − µj ∼ δ(µc − µj+1)

where δ = 4, 66920 . . .

• Scaling law for the statistical correlation length is:

ξ(θ) ∼ θ−ν where ξ(r̂(θ)) = ξ(θ)/2 gives δν = 2 that is, ν = (ln 2)/(ln δ)

• For a state function X renormalized in RX(X): RX [X(θ)]=X[r̂(θ)]≈X(δθ)

if RX(X) ∼ X/k, then X(θ) ∼ θ−α where α = (ln k)/(ln δ)
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C.2 - Spatio-temporal renormalization

It is quite natural to take advantage of the unification of spatial and temporal
renormalizations to introduce a general spatio-temporal renormalization. On the basis
of the comparative scheme presented above (§C.1), it is in fact quite straightforward to
put forth general principles for the study of large-scale properties of systems exhibiting
some generalized critical features. This provides a promising tool for investigating both
non-equilibrium statistical mechanics and extended dynamical systems.

C.2.1 - General principles of spatio-temporal renormalization

Spatio-temporal renormalization methods are relevant (and more often necessary):

— for the description of the large scale dynamics of a critical system S, that is, of
a spatially extended system whose thermodynamic equilibrium state exhibits critical
features;

— to investigate their scaling and universal properties inside adequate classes. Scaling
may involve parametersK−Kc, as in static critical phenomena, sizes L and T (finite-size
scaling), but also space and time variables. A typical example of this kind of spatio-
temporal scaling behavior is a diffusion law, or more generally any spatio-temporal
phenomenon where growth (or motion) and time are related through scaling laws, at
fixed parameter values;

— t predict their macroscopic features (for example critical exponents and universal
functions) in terms of microscopic variables and parameters.

They give access to the dependence with respect to control parameters of asymptotic
thermodynamic quantities. Their basic step is an averaging over a prescribed set of
degrees of freedom, as any one of the following typical sets:

— details of spatial scale a < ∆x ≤ ka and/or of time scales τ ≤ ∆t ≤ kατ ;
— modes Sq̄(t) of characteristic times τ ≤ τq̄ ≤ kατ ;
— modes Sq̄(t) of wave vectors Λ/k < q ≤ Λ;

— Fourier components of wave vectors Λ/k<q ≤Λ and/or of frequencies Ω/kα≤ ω ≤Ω.

Renormalization intends to integrate out these degrees of freedom and to obtain effec-
tive contributions describing their effects at larger space-time scales. A key result is
to relate different models, of increasing spatio-temporal minimum scale, hence to fo-
cus the subsequent analysis on this relation rather than on the properties specific to a
given model. Another result is to reduce the number of degrees of freedom (number
of elementary cells in position-time space or in the conjugate momentum-frequency s-
pace). Having fixed the resulting number N , renormalization gives access to larger and
larger systems without increasing computational complexity. In that sense, iterating
renormalization amounts to perform the limit N → ∞ simultaneously modifying the
parameters in such a way that the limiting system is non-trivial (non-trivial fixed point
of the renormalization with exact self-similar and scaling properties).
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More generally, renormalization can be conceived of as a constructive method for
the study of structural stability of large scale behaviors that is, stability of the properties
observed at a macroscopic scale when modifying the microscopic equations. Indeed,
renormalization analysis is designed to describe explicitely, through quantitative rela-
tions, the large scale consequences of microscopic structures. As a result, it achieves
to group into universality classes the microscopic models that induce the same large
scale properties. Each element of a class is then structurally stable with respect to any
perturbation such that the resulting model is still in the class.

C.2.2 - Out of equilibrium statistical mechanics

I have presented in Part A the main renormalization techniques used for predicting
the static critical properties observed at large scales inside a system S in thermal e-
quilibrium when the temperature T reaches a special value Tc. A natural extension
is the spatio-temporal renormalization approach aiming at the description (being in
fact rather necessary) of the large scale dynamics of S close to a critical point. Fruitful
achievements 18,21,23 pave the way for a larger use of renormalization in non-equilibrium
statistical mechanics.

3 Dynamic critical behavior

Dynamic critical behavior shows up in the following spatio-temporal properties,
observed in the thermodynamic limit when T reaches the critical point Tc.

• It first appears in the properties of the overall (spatio-temporal and multi-particle)
equilibrium distribution, describing the statistical weight of any possible trajectory in
the microscopic phase space of S; here, “equilibrium” means that the distribution is
statistically stationary or equivalently that the statistics is invariant under a change of
the time origin. A typical feature is the divergence of the correlation time τcorr(Tc)=∞,
together to the previously encountered divergence of the correlation length ξ(Tc)=∞;
a scaling behavior is likely to exist for T close to Tc:

ξ(T ) ∼ |T − Tc|−ν τcorr(T ) ∼ |T − Tc|−∆c

• It also appears in the asymptotic behavior of an arbitrary non-equilibrium distribu-
tion. In Tc, its exponential relaxation towards the Boltzmann-Gibbs distribution at T ,
of leading behavior e−t/τr(T ), is generically replaced by a power law t−κ which means
that the relaxation time τr(T ) necessary for S to reach thermal equilibrium diverges in
T = Tc. This property is known as critical slowing down. Moreover, a scaling behavior
is likely to exist17 for T close to Tc:

τr(T ) ∼ |T − Tc|−∆r

17τcorr(T ) and τr(T ) differ as they characterize respectively equilibrium (stationary) and non-
equilibrium (transients) statistical properties; nevertheless, both τr(T ) and τcorr(T ) diverge in Tc and
it is interesting to compare the associated critical exponents ∆r and ∆c.
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• Critical singularities for T = Tc also appear at the origin (q → 0, ω → 0) in the
Fourier transform f̂(q̄, ω) of the linear response fonctions18 (depending on T ).

• Transport coefficients describing transport phenomena inside S, which depend on the
equilibrium temperature T , exhibit singularities in Tc if S is critical in Tc.

3 Spatio-temporal renormalization techniques

Analysis is performed in the “semi-conjugate” space, the time variable being still
the “real” one t. The relevant functions when describing the small scale dynamics of S
are the modes Sq̄(t), defined as the components of the spatial Fourier transform of the
order parameter field s̄(x̄, t). In an efficient model, a preliminary coarse-graining has
been performed in order to reproduce the lower bound on space and time scales. Hence,
only modes ||q̄|| ≡ q ≤ Λ intervene, so that equations of evolution for the modes Sq̄(t)
already contain a noise term reproducing the effective influence at scales ∆x > 2π/Λ
of smaller scale mechanisms. These so-called mode-coupling equations[23] also include
a phenomenological damping term. They describe the relaxation of each mode Sq̄(t)
towards its equilibrium expression Sq̄(eq).

The basic renormalization idea is to eliminate the fast modes Sq̄(t) with short relax-
ation time τ(q̄), for the reason that they are not perceived in a macroscopic observation.
As usual, their influence onto the evolution of the slow modes is taken into account
in effective contributions which produces renormalized parameters and a renormalized
noise term. Explicit procedure begins with a resolution of the evolution equations of
the fast modes intending to express these modes in terms of the slow modes and of
the initial noise term; it is followed up with a partial statistical averaging over the
fast modes of the noise; it ends as usual with adequate rescalings in order to restore
minimum scales and keep constant physical invariants.

One thus achieves to prove that relaxation times obey a universal scaling behavior:

τ(q̄, T ) ∼ ξ(T )z Θ[qξ(T )] (q < Λ, T → Tc)

where ξ(T ) ∼ |T − Tc|−ν is the static correlation length and Θ a continuous function
on [0,+∞[. The real z > 0 is called the dynamic exponent. The limiting behavior of S
under the iterated action of renormalization indicates that the overall relaxation time
coincide with the correlation time:

τr(T ) ∼ τcorr(T ) ∼ |T − Tc|−νz (hence ∆r = ∆c = νz)

which explains analytically why critical slowing down and strong temporal correlations
always appear jointly. It appears that there is more dynamic universality classes than
static ones. A standard reference on this subject is a review paper of Halperin and
Hohenberg[18] and a book by Halperin[17].

18Let us recall that f̂(q̄, ω) is the multiplicative factor relating the Fourier components Â(q̄, ω) of an
applied field or excitation and those ŝ(q̄, ω) of the local order parameter.
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C.2.3 - Partial differential equations

Spatio-temporal renormalization is also well-suited when studying the asymptotics
of the solutions of partial differential equations when a scaling behavior is likely to
exist[3,5]. For example, renormalization turns to be helpful when investigating the
large scale dynamics and the scaling invariance, if any, of the equation:

∂tu = D(µ, ∂x̄)[u]

for a real or complex spatio-temporal function u(x̄, t); µ is a set of parameters and D
a differential operator. It will jointly transform (k > 1 being a scaling factor):

— the unknown function: u(x̄, t) −→ [Rku](x̄, t) ≡ fk[u(kx̄, kαt)]
— the parameters: µ −→ rkµ

in such a way that ∂t[Rku] is the closest possible to D(rkµ, ∂x̄)[Rku]. Nevertheless,
additional terms generally appear, so that the functional operator D must also be
modified into Rk[D] in order to give a consistent renormalized picture:

∂t[Rku] = Rk[D](rkµ, ∂x̄)[Rku].

The renormalization procedure is carried over by looking at a fixed point (u∗, µ∗,D∗)
of the transform:

(u, µ,D) −→ (Rku, rkµ,Rk[D])
The function u∗ describes the self-similar asymptotic behavior of the solution. Per-
forming a linear (and if possible nonlinear) stability analysis of the renormalization
action around this fixed point in some adequate space {(u, µ,D)} will make precise
the irrelevant modifications (associated with stable directions) of the initial problem
hence will determine its universality class. The power of such an analysis is to study
simultaneously the changes in the large scale behavior:

— when varying the initial conditions u(x̄, 0) (nonlinear stability),

— when varying the parameters µ (bifurcation diagram),

— when varying the differential operator D (structural stability).

It allows for example to describe which perturbations of D do not modify the asymp-
totics of the solution (irrelevant perturbations).

Extending the analysis to stochastic partial differential equations, a renormaliza-
tion approach can be of great help to split the space of such equations into universality
classes. It allows to describe the irrelevant stochastic perturbations of a deterministic e-
quation, hence to investigate the structural stability of deterministic models with respect
to noise, especially with respect to internal noise induced by microscopic fluctuations,
that cannot be avoided nor even reduced. Renormalization intends to extract the deter-
ministic core of a stochastic partial differential equation[15]. It will recursively include
the stochastic contributions into deterministic parameters until the renormalized evo-
lution is purely deterministic. It is hoped to construct the macroscopic deterministic
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model embedding the microscopic stochastic description and to provide the whole class
of stochastic models that can be replaced at a sufficient large scale by this deterministic
model.

It is in fact possible to extend the scope of such an analysis to situations where
stochasticity is essential instead of being introduced as a correction in a initially de-
terministic framework, namely stochastic processes and random walks[21]. Spatio-
temporal renormalization methods, now acting on transition probabilities, are again a
powerful tool for investigating large-scale dynamics, self-similar properties and struc-
tural stability.

Conclusion

Let me summarize the typical results that a renormalization analysis achieves for a
physical system S:
— it gives access to the limiting behavior N → ∞ where N is the spatial or tempo-
ral size of S. It describes its dependence with respect to the control parameters K,
especially in case of long-range correlations which invalidate the usual approaches. It
encompasses the difficulties that appear when the limits limN→∞ and limK→Kc do not
commute;

— it predicts consequences at all scales of the microscopic structures or mechanisms
and shows up their hierarchical organization, if any;

— it proves self-similarity properties of S and gives quantitative results about the as-
sociated scaling behavior (critical exponents, universal functions, universality classes);

— it determines perturbations of the microscopic model for S which are irrrelevant or
on the contrary relevant with respect to its macroscopic properties;

— it allows to investigate structural stability of macroscopic models, especially with
respect to internal noise induced by microscopic statistical fluctuations;

— it gives access to finite-size scaling (involving K and also N) and non-universal
corrections to scaling behavior (non-universal scale factors, logarithmic corrections,
nonlinear terms in the renormalization flow, . . . ).
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