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Introduced by Shannon as a “rate of actual transmission,” mutual information rate (MIR) is an extension of
mutual information to a pair of dynamical processes. We show a delay-independence theorem, according to which
MIR is not sensitive to a time shift between the two processes. Numerical studies of several benchmark situations
confirm that this theoretical asymptotic property remains valid for realistic finite sequences. Estimations based
on block entropies and a causal state machine algorithm perform better than an estimation based on a Lempel-Ziv
compression algorithm provided that block length and maximum history length, respectively, can be chosen larger
than the delay. MIR is thus a relevant index for measuring nonlinear correlations between two experimental or
simulated sequences when the transmission delay (in input-output devices) or dephasing (in coupled systems) is

variable or unknown.
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I. INTRODUCTION

Shannon devised entropy per unit time (denoted /4 there-
after) of discrete-valued stochastic processes as one of the
basic concepts of information theory [1]. This concept has been
later developed in dynamical systems theory by Kolmogorov
[2] and Sinai [3], and there known as metric entropy or
Kolmogorov-Sinai entropy. Its relevance to quantify the overall
temporal organization of an evolution has been recognized in
numerous applications, and it is now a standard tool of non-
linear time series analysis [4]. Directly derived from Shannon
entropy, mutual information measures nonlinear correlation
between two discrete random variables. A natural extension
crossing entropy per unit time with mutual information is
mutual information per unit time or mutual information rate
(MIR). This dynamic extension provides a global quantifica-
tion of the overall joint probability distribution and captures
mutual information of two processes.

In the section of the seminal paper [1] devoted to transmis-
sion in a noisy channel, Shannon already considered MIR of
the input signal X and the output signal Y. He first defined the
conditional entropy rate h(X|Y) = h(X,Y) — h(Y) measuring
the average ambiguity of the output signal, namely, the amount
of additional information needed per unit time to correct
the transmitted message Y and recover X. The symmetric
conditional entropy rate, h(Y|X), is the part due to noise in
h(Y). MIR, termed “rate of actual transmission” by Shannon,
is defined as

i(X;Y) = h(X) — h(X|Y) = h(Y) — h(Y|X). (1)

Compared to entropy rate and mutual information, MIR did
not arouse great interest for experimental time series analysis,
since its faithful estimation from data was presumed to be
impossible and its practical interpretation not straightforward.
Many textbooks [5—7] offer only brief mentions of MIR. In-
vestigation of signal transmission in a noisy channel (see, e.g.,
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Ref. [8]), involving MIR between a Gaussian input S(¢) and
the output S(¢) + N(¢) where N(t) is a Gaussian white noise,
do not apply to the case where the two sequences have different
state spaces. Information rates considered by Palus ez al.
[9] are, in fact, time-averaged delayed mutual information,
whose descriptive power is that of coarse-grained rates [10].
They differ in their definition and properties from the mutual
information rate considered in the present paper. Detailed
investigations presented in Refs. [11-13] focus on asymptotic
properties and mathematical aspects, for instance, ergodic
decomposition, dependence of MIR on the discretization of an
underlying continuous state space, and extension to continuous
alphabets. They are not straightforwardly relevant for practical
analysis of finite-length symbolic sequences. Zozor et al. [14]
mentioned that extension of Lempel-Ziv (LZ) compression
algorithm to multivariate data could be implemented for
computing MIR (see Sec. IIT A). They did not investigate
this direction further since the estimated quantity could be
negative, whereas the theoretical quantity is always positive.!
Several faithful estimation methods, including those used
below and more computationally demanding ones [15], are
now available and renew the practical relevance of this index.

The goal of the present paper is twofold. We first study the
properties of MIR as a dynamic extension of mutual informa-
tion suitable to analyze quantitatively the joint temporal orga-
nization and nonlinear correlation of two processes, in the con-
text of input-output systems or coupled systems. We show that
MIR is independent of the delay between the two processes. We
then investigate whether this delay-independence theorem es-
tablished in the asymptotic limit remains valid in experimental
situations, i.e., for finite sequences. We consider synthetic data
obtained in benchmark situations (discretized logistic maps
and Markov chain). We show that estimations based on block
entropies and a causal state machine algorithm perform better

'"We will see below that negative estimated values are due to
uncontrolled finite-size effects.
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than an estimation by means of a LZ compression algorithm
(free of any control setting) provided the block length and max-
imum history length, respectively, can be chosen larger than
the delay. Our study delineates the conditions in which MIR
provides an operational index to assess nonlinear correlations
between two signals when an unknown or variable time shift
(delay or dephasing) is present between them, whereas usual
mutual information is strongly misleading in this case [16].

II. GENERAL PROPERTIES

A. Notations and definitions

Let us consider a discrete-time process Z = (Z;);>¢ With
values z; = (x;,y;)in Z = X x ). The alphabets X and ) can
(and will often) be different. We assume statistical stationarity
and ergodicity.” We denote X and Y the canonical projections
(stochastic processes), X; and Y; their components at time
t (random variables), and 6, X the time-shifted process such
that [6; X1, = X,... The distribution of Z is not in general the
product of the distributions of X and Y, and this is precisely the
point to be quantitatively appreciated here. This mathematical
setting covers the case of a bivariate recording of a source,
the case of two different recordings (i.e., from two different
sources), and the case of a communication channel or input-
output device.

The overall distributions of Z, X, and Y are defined through
the distribution of n-words w, = (z;,Z/+1, - - - ,Zr4n—1) inde-
pendent of ¢ by stationarity. Shannon entropies of these distri-
butions are also called block entropies of order n and denoted,
respectively, H,(Z), H,(X), and H,(Y). Explicitly3 for Z [5],

Hy(Z) ==Y pz(wy)log pz(wy), )

Wy
where w, runs over the set of n-words written with alphabet

Z. Shannon entropy H;(X) is extended into the entropy per
unit time 2(X) of the stochastic process according to

. H(X)
h(X) = lim 3)
n—o00 n
= lim [ Hys1(X) = Hy(X]. 4)
Block mutual information of order 7 is written
L(X;Y) = H,(X) + H,(Y) — H,(2), &)

and the mutual information rate is defined as the limit
{recall that if lim,_,co[l,+1(X;Y) — L,(X;Y)] exists, then
lim,, o I,(X; Y)/n also exists and they are equal }:

. . L(XyY)
i(X;Y)= lim ——— (6)
n—oo n
= lim [ [, 1(X;Y) — [,(X;Y)] @)
= hX) + h(Y) — h(Z). 3)

Ergodicity is a weak property for a stochastic process, which
requires only that any state can be reached from any other one.

3We shall use throughout the paper the Neperian logarithm, denoted
log, as generally done in dynamical systems theory. Using the binary
logarithm log, would yield entropies and mutual information in bits,
as usual in information theory.
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B. Basic properties

It can be shown [13] that i always exists for stationary
processes, and basic properties of MIR follow from the above-
mentioned relation with conditional entropy rates i(X;Y) =
h(X) — h(X|Y) = h(Y) — h(Y|X), namely:

(1) Symmetry i(X;Y) =i(Y; X),

(2) Positivity i(X;Y) > 0,

(3) Upper bound i(X;Y) < inf[A(X),h(Y)],

(4) Special value i(X; X) = h(X),

(5) Special valuei(X;Y) = I(X;Y)if Z = (X,Y) is uncor-
related and identically distributed in time,

(6) i(X;Y) =0 in the case of independent processes X
and Y.

C. Interpretations of MIR

Exactly as the entropy rate h(X) gives a better account of
the whole temporal structure of the process X compared to
linear statistical indices like the autocorrelation function or
instantaneous indices like Shannon entropy, i(X; Y) accounts
for both the instantaneous correlation between X; and Y; and
the temporal autocorrelation of the process t — (X,;,Y;). It
provides a more complete and global quantification of the
interrelations between the two processes X and Y than mutual
information and covariance (all the more since covariance is
not straightforwardly defined for discrete-valued processes).

Further interpretation is based on the Shannon-McMillan-
Breiman theorem [1,17,18], which states that for N large
enough, a source X produces e™"X) typical equiprobable
N-sequences (x1, ...,xy). Using (8), MIR relates the number
of product sequences (x1,y1, . ..,Xy,yn) to the actual number
of typical N-sequences (zj, ...,zy) of the joint source Z =
(X,Y) according to

NKZ) eNh(X)+h(Y)]

The reduction of the set of typical joint realizations compared
to the case of independent sources is thus quantified by the
factor eV X3Y) As soon as i(X;Y) > 0, the realization of one
component of the pair (X,Y) partly determines the realization
of the second one, all the more since i(X;Y) is large. Small
values of i(X; Y) could correspond either to correlated signals
of very small entropy rates or to independent signals.

In the context of communication theory [1], Shannon
proved that the maximum over all sources X of i(X; Y) defines
the capacity of a given noisy transmission channel. According
to (1) and the Shannon-McMillan-Breiman theorem, each
typical output can be produced by about eV"XI") inputs
(“reasonable causes of the output” in Shannon’s words [1])
with eVAXIY) — oNi(X) o =Ni(X:Y) “Similarly, each typical input
message produces about eV*Y1X) outputs (“reasonable con-
sequences of the input” [1]) with eNV'V1X) = NAX)p=Ni(X:¥)
Thus, ifi(X; Y) = h(X), the output is associated to a single in-
put message, and conversely if i (X; Y) = h(Y), a single output
is associated to each typical input message. Since i(X;Y) <
inf[A(X),h(Y)], it is not possible to have a single input
associated to an emitted message if h(X) < h(Y). On the
contrary, if i(X;Y) =0, the input message X carries no
knowledge about the output, which can be associated to any
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of the input messages, and the output message can be any of
the typical outputs.

D. MIR delay independence
1. MIR delay independence theorem

Starting from a sequence (x;),>1, that is, a realization of X,
we derive the corresponding realization of the shifted process
6. X by simply shifting the time labels by an integral amount 7.
Whereas in general, 1(X,; Y;) and 1(X;; 6, Y) are different, an
important feature of MIR is the following delay independence
theorem (its proof is given in the Appendix):

For any processes X and Y, and any delay 7, i(X;60.Y) =
i(X;Y).

MIR thus evaluates the correlation between the two
sequences as a whole and notwithstanding a possible
delay.

2. Shifted processes Y = 0, X

For any ergodic and stationary source X and any time
shift r, the MIR delay independence theorem implies that
i(X;60.X)=i(X; X) = h(X). MIR properly captures that the
processes X and 6; X are essentially identical. In contrast,
except in critical situations with long-range correlations,
mutual information I(X;6;X) decreases with 7, typically
as e~/ [19,20], leading us to conclude that the signals
are independent as soon as T is larger than the correlation
time Teopr.

3. The special case of Markov processes

Note that H,(X,0.X) = H,,.(X) as soon as n > t (for
any process). For a Markov process of order 1, H,(X) =
H{(X)+ (n — 1)h(X); hence block mutual information is
written 1,(X;6.X) = Hi(X)+(n —1—1)h(X) for n > 1,
which controls the convergence of [,(X;6;X)/n toward
h(X). The convergence of the difference is even better since
L1(X;0.X) — I,(X;0.:X) = h(X) for any n > t. Similar
results hold for a Markov chain of any finite order g, using that
H,(X) = Hy(X) + (n — g)h(X) for any n > g. For Markov
processes, MIR delay independence can be contrasted ana-
Iytically with the behavior of pointwise mutual information.
Denoting M, the transition probabilities (from state x to y)
and p the stationary distribution, mutual information of the
time-shifted variables is written:

I(X1; X147) = 2H, — H(X1, X 14)
=H =) p.y MilogMy, (10)
X y

which converges to O exponentially fast as T — oo, like
e~ T/%or where T is the characteristic relaxation time of the
Markov chain, given by the second largest eigenvalue A; =
e~ !/%or [21] (the largest one is Ag = 1). Mutual information
fails to capture the full correlation between the time-shifted
sequences as soon as a nonvanishing delay 7 > 0 is present.
Note that delayed mutual information [9], that is, mutual infor-
mation between the first component and a backward-shifted
version of the second one, would be a relevant index if the goal
were to determine the lag t (for instance, in a second step, after
having evidenced the presence of correlations between the two
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processes using MIR). MIR and delayed mutual information
are thus complementary indices, each fulfilling a specific goal.

4. Input-output devices

The use of MIR in the context of transmission channels,
as originally proposed by Shannon [1], is specially relevant in
view of our theorem. Indeed, in practical situations, the delay
between the input and the output signals is usually unknown,
and one has no simple way of achieving a temporal alignment
of the two sequences. Our theorem states that delays do not
affect the rate of actual transmission of the channel. If the
output Y is simply a time-delayed copy of the input X (i.e.,Y =
0. X), h(X|Y) vanishes, in agreement with the fact that there is
no ambiguity on the input message given the output message.
Practical applications also cover the analysis of information
transmitted by spike trains [22].

5. Coupled systems

MIR is also of interest in the context of self-organizing
systems, where dynamics is induced by the interactions of
elements and emergent organization is not discernible at
the individual level [23,24]. Considering strongly coupled
systems, the fact that the evolution of Y reflects that of
X, Y =06, f(X), is revealed in MIR since then i(X;Y) =
i[X, f(X)]. Characterization of interactions is completed by
considering an asymmetric index such as transfer entropy
[25,26] I(X;11; X;,Y;) to assess the direction of the coupling
between X and Y. Note that this transfer entropy is nothing
but conditional mutual information I[X(z + 1); Y (¢)| X(¢)] as
shown in Ref. [27].

III. RELEVANCE OF MIR FOR DATA ANALYSIS

In order to appreciate the practical relevance of using
MIR for investigating experimental input-output systems and
coupled systems, we have to delineate the conditions in which
the asymptotic independence with respect to a delay or time
shift between the two sequences established in the previous
section remains valid for finite sequences. We will investigate
the behavior of MIR estimated from finite numerical data,
considering two standard benchmark systems [28]: discretized
logistic maps and two-symbol Markov chains.

A. MIR estimators

Since i(X;Y) = h(X) + h(Y) — h(X,Y), there are as many
methods for estimating MIR as for estimating entropy rates.
Extending our previous investigations on entropy rate estima-
tion from short sequences [29], we will use LZ estimators
as a preliminary quantification free of any control setting,
to be refined with block entropy estimators and a causal
state machine-based estimator: the causal state splitting recon-
struction (CSSR) algorithm [30-32]. All estimations require
statistical stationarity of the sequences, which could compel
one to restrict them to a suitable time window.

In the LZ compression algorithm [29,33], the se-
quence of length N is parsed recursively into N, words,
by considering as a new word the shortest one that
has not yet been encountered. For instance, the se-
quence 100110111001010001011 ... is parsed according to
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l]eOe0OlelDelle100e101 «e00e010e11... One then
computes

(41 h
Nu( tloge No) ooy 1= (11)
N N—oo logk

The limit holds for almost all sequences under the assump-
tion of ergodicity of the process. LZ algorithms can be
easily extended to compute the joint LZ complexity of two
sequences (x;); and (y;);, with respective alphabets X and
Y, by considering the sequence (z;); belonging to the finite
alphabet Z = X x ) [14]. Denoting k., ky, and k, = k.k,
the respective sizes of the alphabets, MIR is estimated as

L=

11z(X;Y) = Lxlogk, + Ly logk, — Lz log(kky), (12)

where Lx (resp. Ly, Lz) is the LZ complexity of the symbolic
sequence X (resp. Y, Z).

From Egs. (6) and (7) one defines a difference block
estimat(/)f Tns = I,41 — I, and an average block estimat/gr
Tnay = 1'1[ n of i, irlyolving l})\lOCk entropy estimators H,
through 1,(X;Y) = H,(X) + H,(Y) — H,(X,Y). Ideally, the
MIR estimator is obtained asymptotically according to 7 =
limneoo’l;,s = limn»oo/l\n,av-

Alternatively, entropy rates could be computed using the
CSSR algorithm [31] which reconstructs hidden Markov
models from a symbolic sequence [34]. The basic idea of
this algorithm is to infer causal states from the data and
obtain the most compact representation of the probabilistic
model generating the symbolic sequence [30]. The CSSR
algorithm starts by assuming that the process is an independent
and identically distributed symbolic sequence with only one
causal state and adds states recursively until the current set of
states is statistically sufficient. The algorithm contains three
phases: (1) initialization, (2) finding a next-step with sufficient
statistic for optimal one-step-ahead prediction according to
the maximum sequence history length /, and (3) making the
set of states recursively calculable, by splitting the states until
they have deterministic transitions. Then the relative frequency
of strings of maximum length [ for each state gives the
probability distribution of states, directly usable for entropy
computation.

Several other estimations, more accurate though more
computationally demanding, can be implemented. Let us cite
those based on the recurrence of some words of motifs
[35,36], those based on a variable length Markov chain models
[37] (similar in spirit to CSSR), and a Bayesian algorithm
based on context-tree reconstruction and supplemented with
a Monte Carlo sampling to compute MIR [15]. This latter
method, extending to MIR the entropy rate estimation method
proposed in Ref. [28], provides a confidence interval and
is well suited when the input signal is continuous. Since
our aim is to show the applicability and benefit of the MIR
delay-independence theorem in the analysis of experimental
data, we here deliberately trade accuracy for robustness and
simplicity. Development of more accurate and sophisticated
estimation algorithms would only strengthen our point.

B. Finite-size errors

The convergence of LZ estimators has been studied for
binary sequences in Ref. [29] and shows good performance
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FIG. 1. (Color online) Finite-size behavior of block entropy
estimators H,(X) and H,(X,Y) when increasing the word length
n in the reference case of independent and fully random binary
sequences of length N = 10°. The corresponding entropy values are
hx = hy =log2 and hxy = log4. The vertical dashed lines indicate
the theoretical location n* = log N/ h of the crossover between good
and bad statistics above which H, saturates to the value log N
[29,39].

even for sequences of a few hundreds of symbols. Here a
specific difficulty originates in the different convergence rates
of LZ estimators for h(X), or h(Y), and for A(X,Y), due
to the fact that (X,Y) is written with the product alphabet,
of size k; = k,k,. This may lead to negative values for the
estimated MIR, in contradiction with the positivity of its exact
value [38]. Note that convergence of LZ estimator to entropy
rate is true only for almost all sequences. As we consider
experimental data, a result for almost all sequences, that is,
for all the probable sequences, with full measure, is, however,
sufficient.

Using block-entropy estimation requires us to find a suitable
balance in the choice of the block size n, since statistical
errors increase as n increases, while convergence toward the
asymptotic value requires large enough n values. Figure 1
illustrates the behavior of n — H, in thE reference case of
random sequences (with N = 10°). Both H,(X,Y) and H,(X)
saturate to the same value log N due to finite sampling. Using a
straightforward argument, we have shown in Ref. [29] that the
crossover between linear regime and saturation in the regime
of bad statistics occurs roughly for a value n* =log N/ h,
recovering the result rigorously derived in Ref. [39]. A
conservative bound is log N/logk, where k is the size of
the alphabet. Accordingly, H,(X,Y) saturates faster than
H,(X) due to different alphabet sizes (respectively, k,k, and
k,).In asimilar way,* biases and statistical fluctuations hamper
the estimation of H,(X,Y) more strongly than the estimation
of H,(X) and H,(Y). In all cases the limiting step of the
computation of i(X;Y) will be the estimation of iy y. As in
the case of estimation of entropy rate of single sequences [29],

4Recall [29] that the variance of the estimator H, scales like
h.logk.n*e™ /N at the leading order; hence we expect that the
variance of the estimation of H,(X,Y) is in general far larger than the
variance of H,(X) + H,(Y).
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we suggest a two-step estimation: in a first step, an estimate
of hx y is obtained at low computational cost using the LZ
method. This preliminary knowledge guides the choice of
the optimal value of n, namely, the larger value for which
statistical errors are controlled, which is satisfied provided
n logk. e"xr < N hyy [29].

Excepting special instances or coincidental cancellations,
MIR block estimators are biased ({z,s) # I,+1 — I, and
(tn.av) 7 I, /n) due to the negative bias affecting block entropy
estimators [29]. Correction of the bias proposed in Refs. [40]
and [41] is derived for entropy assuming an uncorrelated
sample, and hence do not apply in general in our context.
In our simulations where n =4, N = 10°, and k = 2, the
Miller and Madow correction [42] is of order 103 and
can be neglected. Asymptotic bounds rigorously derived in
Ref. [43] are not straightforwardly relevant for finite-size
sequences.

Fitting a causal state machine model to experimental
data depends on the maximum history length /, constrained
by the finite length of the data sequence. In the following
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investigations, CSSR estimation will be done using / =5
according to the heuristic procedure associated with the
algorithm. In case of context trees or causal state machines
estimation method, bootstrap methods (i.e., resampling by
simulating the reconstructed process) can be developed
to determine precise confidence interval [37]. A simpler
clue to estimation errors accounting for the dependence
among the observations is obtained by replacing the
actual sequence length N by an effective length N
proportional to the sequence length N and the entropy
rate i (roughly Neg = hN/logk for an alphabet of size
k) [29].

C. Influence of an input-output delay

We investigated discrepancy between the asymptotic delay
independence of MIR and the behavior of finite-size estimators
T(X;Y) in the simple case where Y is a time-shifted version
of X, i.e., Y =6, X. We considered two situations where X
presents a specific temporal organization, namely, a Markov

10 .
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FIG. 2. (Color online) MIR of time-shifted binary Markov chains of length N = 10° as a function of the entropy rate / (horizontal axis)
and the time delay t (vertical axis). The first sequence is generated with a transition matrix control parameter a € [0,1/2], and the second one
is obtained by shifting the first one by a lag 7 varying from O to 10. The entropy rate, known analytically as a function h(a), is taken as a
measure of the temporal correlations. It is scanned unevenly when a is varied at constant step a = 0.01, hence represented with a varying step
8h on the linear scale. The color (grayscale) code used for the values of i is defined in the color (grayscale) bar on the right. MIR estimation
is implemented using 7,, = I,/n with n = 4 (top left), 75 = I, — I, (top right), LZ algorithm (bottom left), and CSSR algorithm with [ = 5

(bottom right).
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FIG. 3. (Color online) MIR of time-shifted binary sequences of length N = 10° in the case of an underlying deterministic dynamics, as
a function of the entropy rate & (horizontal axis) and the time delay 7 (vertical axis). The first sequence is generated from a logistic map
discretized according to the partition [0,1/2[U[1/2,1], and the second one by shifting the first one with a lag 7 varying from 0 to 10. The
entropy rate is taken as a measure of the temporal correlations of the source; its value is computed as the Lyapunov exponent of the map from
a very long typical trajectory (hence with a very good accuracy). It is scanned unevenly when a is varied at constant step a = 0.01, hence
represented with a varying step 6/ on the linear scale. The color (grayscale) code used for the values of i is defined in the color (grayscale) bar
on the right. MIR estimation is implemented using 7,, = I,,/n (top left),7; = I, — I, with n = 4 (top right), LZ algorithm (bottom left), and

CSSR algorithm with / = 5 (bottom right).

chain and a discretized logistic map trajectory. In both cases
h(X) is taken as a measure of the temporal correlations in X
and MIR is studied as a function of z and .

1. Shifted stochastic sequences (Markov chains)

We first consider the case where X is a first-order Markov
chain with transition matrix:

M(a):<1;a lcia>'

Hi(a) =1log?2 and h(a) = —aloga — (1 — a)log(l — a) for
this process. Results are presented in Fig. 2 for n = 4 and
I =5. MIR delay independence is observed with 7, s and
7. cssr provided T < n and t < [, respectively. For T > n or
7 > [, the estimation is dramatically impaired, and 7, s(a,7),
7. cssr(a,t) markedly differ from i(a,t) = h(a). The upper
limit n* ~ (log N)/h on n imposed to get a proper statistical
quality for block-entropy estimation (Sec. III B) also bounds

13)

above the time lags for which correlation between time-shifted
sequences is well captured by 7, 5. At low A, a larger block
size n could possibly be considered, which enlarges the range
of time lags for which delay independence is satisfied in
practice.

The same requirement T < n is also observed with, ,y, but
this estimator performs less satisfactorily than 7. For T > n,
Tnav(@,7) could even be negative, whereas the exact value
i(a,t) = h(a) is always positive, leading us to definitely drop
this estimator.

LZ estimation displays the merit of a control-setting-free
estimator: It is less accurate than 7, and 7; cssr in their
range of validity, but it properly evidences the existence of
a correlation between the original and shifted sequences in a
wider range of delay values.

Overall, these results show that estimated MIR captures the
correlation between the original and shifted sequences, more or
less accurately according to the estimator, whereas this full cor-
relation is lost when considering classic mutual information.
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2. Shifted discretized trajectories of a logistic map

We then considered a sequence X obtained from
the discretization,” according to the generating partition
[0,1/2[U[1/2,1], of the deterministic dynamics generated by
the one-parameter family of logistic maps in [0, 1]:

Xn+l = fa(xn) = axn(l - xn) (14)

with control parameter a € [3.5,4]. Results are presented in
Fig. 3 and are qualitatively comparable to those obtained in
the Markovian case. Block and CSSR estimators properly
evidence the correlation in the domain where the block size
or the maximum history length is longer than the delay. LZ
estimator reveals a correlation between the original and the
shifted sequence in a wider range for the delay.

D. Coupled systems

We now consider the case of a process Z whose components
X and Y evolve in a coupled fashion.

1. Symmetrically coupled logistic maps

A two-dimensional discrete-time system is obtained by a
symmetric coupling of logistic maps as follows:

Xntl = yfu(xn) + (1 - y)fa(yn)a
Y1 = A = y) falxn) + v fa(Yn),

where y is the coupling coefficient and varies between 0 and 1.
The contribution Ay (resp. hy) to MIR is the entropy rate of
the projection X (resp. Y) differing from the entropy rate of
the source X (resp. Y) in the absence of coupling.

According to Ref. [45], the overall dynamics of the coupled
maps can be broadly divided into seven zones as in Fig. 4. The
transition from one zone to another is marked by a bifurcation
with control parameter y. There is a quasisymmetry about
y =1/2, so we can restrict to the four zones observed
for y €[0,1/2]: Aone I is a region of complex dynamics,
mostly chaotic but with several periodic orbits; zone II is
characterized by a periodic behavior; zone III is completely
chaotic; zone IV is also chaotic, but the maps X and Y are
then perfectly synchronized.

In Fig. 4 we observe that MIR qualitatively follows the
behavior of the difference X — Y (displayed on the lower
panel of the bifurcation diagram). Satisfactorily, a high value
of MIR is observed when the two components X and Y are
synchronized (i.e., the difference X — Y is null). Here both the
LZ estimator and CSSR estimator give the most faithful results.

15)

2. Coupled time-uncorrelated sequences with delay

We finally consider the case where X is a time-uncorrelated
equiprobable binary sequence and Y a randomly flipped

SWe do not discuss here the discretization of a continuous trajectory.
Most often, generating partitions are unknown or even do not exist,
and the discretization is rather chosen according to its significance
with respect to the investigated data set and questions, in particular
to buffer individual variability [20,44]. The dependence of MIR on
the partition chosen for discretizing the underlying continuous state
space is discussed with full mathematical rigor in Ref. [13].
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FIG. 4. (Color online) Top panel: Bifurcation diagram of two
coupled logistic maps (for a control parameter value a = 4 with
initial conditions xo = 0.1 and yo = 0.75, corresponding to fully
chaotic maps when uncoupled) as a function the coupling coefficient
y. The vertical dashed lines delineate the bifurcation points and the
regions (I, II, III, IV) with qualitatively different dynamic features.
Bottom panel: MIR estimated from the discretized trajectories of
these coupled maps as a function of the coupling coefficient y.

version of X® (with probability €), moreover shifted by a
delay t. This setting is suitable to study estimated MIR as a
function of both the statistical correlation, as measured by the
correlation coefficientr = 1 — 2¢, and the delay 7 between the
sources X and Y. Results are presented in Fig. 5. The statistical
dependence between X and Y is not captured by mutual
information as soon as 7 > 0, nor by block estimators for
7 > n. For T < n, the difference block estimator 7, 5 behaves
as theoretically expected (delay independence) and faithfully
captures the correlation between the sequences. The same
criterion t < n is also required with 7, ,,, but this estimator
performs less satisfactorily than7;. The CSSR estimator gives
good results within the domain t < I,. The LZ estimator
77, smoothly decreases, corresponding to a smooth loss of the
ability to detect coupling as the delay increases. Overall, the
LZ estimator reflects the presence of the coupling for a wider
range of r and t values, with no need of prior knowledge.

®Each symbol of the realization (x;), of X is inverted (0 — 1 and
1 — 0) independently of the others with a probability €.

036214-7



JEAN-LUC BLANC, LAURENT PEZARD, AND ANNICK LESNE

-0.8 -0.6 -0.4 -0.2 9 0.2 0.4 06 08 1

I1z

0.40

Q= N W B

-0.8 -0.6 -0.4 -0.2 P 0.2 0.4 0.6 0.8 1

PHYSICAL REVIEW E 84, 036214 (2011)

0.64

=N W s
=
© © o o o
[=] = ] w -y
(-] (=] = (%] o

1 -08-0.6-04-0.2 9 0.2 04 06 08 1

I

1 55 :
0.64
0.56
0.48
. |0.40
¥ 0.32
0.24
0.16
0.08
1 0.00

1 -0.8-0.6-04-0.2 P 0.2 04 06 08 1

(LT R L VY~ ¥ B -1

FIG. 5. (Color online) Mutual information rate estimation of two time-uncorrelated binary sequences X and Y (length N = 10°) as a
function of their correlation coefficient » (horizontal axis) and the time delay t between them (vertical axis). The estimation is performed
considering either block estimators: 7,, = 1,/n (top left) and7; = I, — I, (top right) for a word length n = 4, or LZ estimator (bottom left),
CSSR algorithm with / = 5 (bottom right). The color (grayscale) code used for the values of i is defined in the color (grayscale) bar on the right.

IV. CONCLUSION

We have investigated analytically and numerically prop-
erties of MIR pertinent to its use in time-series analysis. As
for other entropy-based indexes, no prior assessment of the
deterministic nature of the evolution is needed. MIR thus
offers a unified framework for analyzing both deterministic
and stochastic evolutions. It is able to capture the degree of
temporal organization of a coupled system by measuring how
the coupling creates redundancy in the information production
of the two sources. Since the theoretical behavior of MIR
is a strict delay independence, this index is especially well
suited to quantify mutual information of two processes, as a
whole, when an unknown time shift or dephasing is present
between them. In such a situation, delayed mutual information
is not advisable because it misleadingly leads one to conclude
that the two sources or signals are independent when it is
computed with an ill-chosen delay. In practical applications,
delay independence is satisfied by block- and CSSR-estimated
MIR provided the delay is smaller than the block size and
memory length, respectively. It is satisfied more roughly, but
also more smoothly as a function of the delay by LZ-estimated
MIR. We thus recommend the joint use of several estimation
methods, especially in the exploratory analysis of the data, to

benefit from their complementary advantages. These results
demonstrate that mutual information rate provides a suitable
index to evidence correlations between two signals despite a
possible time shift or dephasing between them, in a wide range
of experimental research domains.
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APPENDIX: PROOF OF THE DELAY INDEPENDENCE
THEOREM (SEC. I1 D)

For any processes X and Y with discrete values on alphabets
X and Y (not necessarily identical) and any delay t, we want to
show that i(X;60.Y) = i(X;Y), where 6, Y is the time-shifted
version of Y, namely, 6, Y(¢) = Y (¢t + t). We introduce the
standard notation X;’ for abbreviating X;, X, 41,...,X;_1,X;.
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We recall that the statistical stationarity of a process Y ensures
the time-shift invariance of its entropy rate, i.e., h(Y) =
h(6. 7). It is a straightforward consequence of the asymptotic
nature of 4 and its dependence on the whole process. Similarly,
stationarity of the pair (X,Y) implies that i(X,6,;Y) =
i(0_.X,Y), allowing us to restrict to the case T > 0 without
loss of generality. By definition of the mutual information rate,
i(X;60:Y)=h(X)+ h6.Y)— h(X;6.Y), while i(X;Y)=
h(X)+h(Y)—h(X;Y). By stationarity, h(6;Y) = h(Y),
so it remains to show that the joint entropy rates are
equal:’

h(X;6,Y)
n n n yn+t
— lim H[Xl’(ery)l] = lim H[XI’Y1+T]
n—oo n n—o0o n
o HIOGOTRL ] B g ]
n—o00 n

PHYSICAL REVIEW E 84, 036214 (2011)

using the chain rule for entropy. Since

0 < H[XT.YT [ Y]

< H[XTYT] < tloglkiky),

the second contribution to the limit vanishes, that is,
lim,— oo (1/n)H[XT, Y (X, Y, 1Y 7] = 0. Thus

n+1 I+7d5 147
H[(X.Y)!
h(X;6.Y) = lim HIXC 1]
n—o00o n

H[(X’ Y)rll-k—r]
n—rt

= lim
n—o0

= h(X,Y),

which completes the proof.

"We credit an anonymous referee for this elegant formulation
simplifying our original proof.
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