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Abstract

This paper presents a brief and pedagogical account of the relevance
of chaos theory in biology. A few caveats to avoid misleading inter-
pretations are underlined, for instance the required determinism and
stationarity of the experimental time series. The selective advantage
offered by a properly controlled chaotic dynamics is discussed on the
examples of cardiac rhythm and brain dynamics.

1 Summary

Thirty years after the historical paper of May [1976] evidencing chaotic behaviors in a simple model of po-
pulation dynamics, we present a brief and pedagogical account of the relevance of chaos theory in biology. We
first raise simple but nevertheless essential caveats to avoid over-interpretation or even misleading conclusions.
Mainly, before implementing any algorithm to estimate quantitative indices of chaos, one has to check that the
dynamics is essentially deterministic and low-dimensional, and restrict to a time window where it is statistically
stationary. We bring out the possible motivations for chaotic feature investigations in a biological context. We
argue on two examples (cardiac rhythm, neural and brain dynamics) that a properly controlled chaotic dynamics
offers a selective advantage. This explains the numerous observations of chaotic features in biological systems, but
also the observed discrepancies from a pure chaotic dynamics, that are associated with their regulation.
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2 Introduction : primary observations

A step in the history of chaos theory has been the publication in 1976, by the physicist and ecologist
Robert M. May, of a paper entitled ‘Simple mathematical models with very complicated dynamics’. This
paper, probably one of the most cited as soon as one deals with chaos, presents a very simple model,
being on purpose the most simple that one can devise to describe the dynamics of an insect population
given the following minimal ingredients, May [1976] :

— generations do not overlap (that is, adults die before the eggs hatch);
— adults reproduce with a rate a > 0;

— resource limitation induces population saturation at a maximal value K,
that yields the following discrete-time evolution law :

Xn
Xn+1 = (J,Xn (1 - ?> (1)

for the number X,, of individuals in the n-th generation. Introducing the relative population z = X/K
turns the evolution law into the following dimensionless form :

Tnt1 = axn(l —zyp) (2)
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This model is called the logistic map, in reference to the logistic equation dz/dt = az(1 — z) proposed by
Pierre-Francois Verhulst in 1846, accounting in the term 1 — z for the limited space (‘logis” in french)
constraint experienced by the population, turning the growth rate a into an effective rate a(1 — z). But
it is to be underlined that this continuous-time equation essentially differs from the discrete-time model
introduced by May, and generates only a trivial behavior of convergence towards a stable fixed point
z* =1 as soon as z(t = 0) > 0, Krivine et al. [2007]. Values a < 0 and a > 4 of the parameter are
excluded because they lead to relative population values 2 lying outside the relevant interval [0, 1]. May
thus studied (2) for 0 < ¢ < 4 and brought out an unsuspected wealth of different behaviors, among
which erratic and long-term unpredictable ones now termed chaotic.

This article by May inspired much research work, dealing among other topics with cyclic or chaotic
variations in populations of budworms, locusts, lemmings, sardines, or predator-prey systems (species
are chosen according to either the occurrence of striking phenomena, like locusts invasions and lemmings
“collective suicides”, or the availability of accurate and faithful data over a long period, typically more
than a century, provided by the registers of fisheries and skin traders). But chaos studies in biology are
not restricted to population dynamics, and other investigated domains are :

— epidemiology of some infectious diseases like measles and flu, Anderson and May [1992] ;

— cardiac rhythm

— neurosciences, both at the neuron level (recording the electric activity of a single neuron and the
spikes it emits and sends to all neurons connected downwards to its axon) and at the brain level (activity
recorded by electroencephalogram) ;

— metabolism and intra-cellular rhythms, observed on concentrations of some species (for instance glu-
cose, hormones, calcium or potassium ions). They illustrate and extend in vivo the chaotic behaviors
observed in some chemical reactions, Goldbeter [1996].

3 Why looking for chaos ?

Beyond fashion and curiosity, what are the motivations for searching for chaos in a phenomenon,
especially a biological phenomenon ? The relevance of chaos theory comes first from the conceptual and
quantitative tools that it offers for analyzing experimental time series, the main ones being phase space
reconstruction from a one-dimensional signal, the computation of Lyapounov exponents that quantify the
sensitivity to initial conditions, and the determination of the attractors and their dimension. Experimental
data of interest are obtained by recording along the time the values of a few observables, for instance
concentration of chemical species, population numbers, or electric signals by means of properly placed
electrodes (electrocardiogram, electroencephalogram, or single neuron activity).

Looking for chaos in cardiac rhythm, brain or population dynamics has also the merit of replacing
the study of such systems within the framework of non linear dynamics, where the adjective “non linear”
contrasts it with the linear statistical methods based on the signal representation as a linear superposition
of parameterized evolution laws (possibly stochastic processes), of standardized types, whose parameters
and coefficients are estimated from the data. Such a linear representation often provides a very good and
efficient fit of the data ; it has in some case a good predictive value, but no explanatory value since it does
not point at the actual underlying mechanisms, nor a regulatory value since it is not able to evidence
control parameters of the observed behavior. Nonlinear dynamics viewpoint, on the contrary, considers
the observed behavior as resulting from coupled dynamic processes. Established observation of chaos in
a phenomenon reveals the presence of strong nonlinearities, mixing mechanisms and more technically
specific phase space structure exhibiting in any point stable and unstable directions, originating from the
coupling of a small number of essential degrees of freedom. Identification of chaos thus provides most
useful informations to understand the origin of the observed dynamic behavior and to model them. Taking
together data analysis and modeling, we bring out three objectives motivating to investigate the nature
of the dynamics in biological systems, in particular their chaotic features if any :

— the classification of systems on the basis of their dynamic behavior, for diagnosis;
— the possible predictions about the system dynamics, for prognosis;



— the explanation of observed behavior, for therapeutic purposes.

4 How to evidence chaos from experimental data ?

In order to evidence chaotic behavior in a phenomenon, whether biological or not, two ways can be
traveled. The first one is a direct analysis of experimental data, jointly with the development of algorithms
for computing significant indices quantifying the dynamics features, Abarbanel [1996], Faure and Korn
[2001]. The second one is the design, from the data, of models aiming at accounting for the essential
mechanisms at work in the real system and explaining its leading behavior. The study then focuses
on the model in order to unravel the possible behaviors, evidence the control parameters (and thus
suggest therapeutic targets), investigate the robustness of the dynamics with respect to perturbations
(and thus determine its response and/or adaptation after a change in external conditions), and develop
integrative approaches describing collective properties (for instance, linking the neuron dynamics to the
brain dynamics, a still largely open issue). The work of May [1976] presented in introduction is a typical
example of this second approach, belonging to the field of “mathematical biology”, Murray [2002].

We shall focus on the first approach starting with an essential caveat : the value of a chaotic index,
for instance a positive Lyapounov exponent or a non integral dimension for the attractor, cannot, hence
should never, be interpreted as a proof of the chaotic nature of the dynamics. It provides a signature of
chaos only once it is shown that the dynamics is essentially deterministic and low-dimensional : a chaotic
dynamics, although long-term unpredictable and generating a statistically random trajectory, is perfectly
predictable at short terms. In other words, the evolution can be represented over a small time interval
At by means of a map f for a variable x with only a few components, explicitly z; — f(x¢) = ziias. In
practice, this condition will be tested, with At being the time-step of the recording, by plotting the value
Zn41 Observed at time ¢,,1 = (n + 1)At as a function of x,, : one gets a curve (the graph of f) if the
evolution is deterministic, or on the contrary a cloud of points if the evolution is random.

Experimental data are typically a time record (z;);>0 of a single variable :
— the number of individuals in a population at generation ¢ ;
— the number of infected individuals (e.g. with measles) at time ¢;
— the concentration of a given chemical species (glucose, hormones, ions, ...) at time ¢;
— the time interval between the ¢-th and (¢ + 1)-th heart beat ;
— the potential between two electrodes in an electroencephalogram ;
— the membrane potential of an axon at time ¢;
— the time interval between the ¢-th and (¢ + 1)-th spike emitted by a neuron.

Time is necessarily discrete in experimental records. Discretization might be intrinsic : non overlapping
generations in insect populations, single hence countable events like heart beats and neural spikes; in
this case, discretization does not put a limit on the information available about the system. More often,
time discretization is imposed by the experimental protocol : the apparatus should relax to a reference
state before being able to perform a new recording; this imposes a minimal time interval between two
successive observations, the longer the larger apparatus inertia is.

An additional difficulty arises : not only we have only a single trajectory at our disposal (the recording
performed in the given experimental conditions) but, all the more, we observe only one variable, sometimes
a few, but never all those defining the system state (its position in the phase space). In order to test the
low-dimensionality condition and show that a small number d of degrees of freedom is enough to explain
the observations (otherwise we would leave the domain of chaos to enter that of turbulence), we have
to reconstruct the dynamics and its phase space. The privileged method to reconstruct a m-dimensional
trajectory from a the recorded scalar sequence (z,),>1 uses delays : Xf,,m) = (Tn, Tnt1s- s Tntm—1)-
To obtain a reconstructed dynamics that is topology equivalent to the real one, m should be enough
large, at least larger than the number d of essential degrees of freedom. In practice, this number is
unknown (one of our aims is precisely to determine it). A method to estimate its value is based on the



following remark : neighboring points in dimension m might no longer be so in dimension m+1 (and then
termed “false neighbors”). An example is provided by a 8-shaped curve in space, that crosses itself when
projected on the plane but whose two branches might remain at a finite distance when considered in the
3-dimensional space; by contrast nothing changes further when it is considered in a higher-dimensional
space. This shows that the embedding dimension of a self-avoiding 8-shaped curve is d = 3, whereas it
reduces to d = 2 in case of a self-crossing curve (topologically equivalent to its typical plane projections).

In the present case, we shall analyze the sequences [X,(lm)}nzl for increasing values of m and determine
the value m* beyond which the number of neighboring pairs (points at a distance smaller than a given
threshold) do not decrease any more. This value m™* provides a lower bound to the searched dimension d
(the bound can be strict if the observed sequence is short and finite-size effects prevent from unraveling
all the directions, simply because the sample of neighbors is too small). Another criterion is to consider
that a suitable value of m is reached once the values of the chaotic indices (topology and dimension of
the attractors, Lyapounov exponents, entropy) do not vary any more when m is further increased. In
case of a chaotic dynamics, Floris Takens [1981] rigorously proved the condition m > 2D, where D is the
attractor dimension, for the reconstructed dynamics to be equivalent to the original dynamics.

Another method to discriminate a chaotic dynamics from a random dynamics is to perform a random
shuffle of the data (one speaks of surrogate data) and to compare the pseudo-evolution thus generated
with the observed one, Schreiber and Schmitz [2000]. Such a shuffle preserves the range of the data, their
mean, their variance (in fact their whole distribution) but not their temporal structure : any feature
associated with deterministic chaos will be lost after the shuffle, whereas all the features of a random
evolution will remain unchanged.

The implementation of these methods (and all the other ones inspired by non linear dynamics and
chaos theory) is less straightforward than their theoretical principles, in particular because the recorded
signal is in general noisy (by side phenomena or experimental noise). Another limitation comes from the
finite and often short length of the signal, preventing from a faithful reconstruction since only a small and
presumably non representative region of the phase space will be sampled. This limitation is strengthened
by the possible non-stationarity of the signal : frequently the statistical features of the system dynamics
evolve between the beginning and the end of the recording (we are considering living systems that can
be affected by the measurement protocol or withstand experiment only for a limited duration), requiring
to restrict the exploited series to finite windows where this drift can be ignored.

More basically, one should keep in mind that the distinction between a chaotic dynamics and a
random evolution from the sole knowledge of an experimental time series is a very delicate and sometimes
meaningless task : according to the observation scale (the microscope magnification rate), the same
phenomenon might appear to be either deterministic and chaotic, or stochastic. A current example is
provided by Brownian motion : the Brownian particle dynamics appears deterministic and chaotic at scales
I < X where ) is the mean-free-path of the particle surrounded by water molecules; on the contrary, it
appears as a diffusive motion at larger scales. A more abstract example is provided by the series generated
by the logistic map z — f(x) = 4x(1 — x) : it is perceived as a deterministic evolution at the elementary
time scale (0t ~ 1) and if the variable x is observed with enough fine resolution (§z < 1) ; on the contrary,
if only the position of x with respect to 1/2 is recorded, the ensuing binary sequence does not differ in its
behavior (nor, more quantitatively, in its statistical properties) from a sequence generated by independent
coin tossings. Besides one of the interests of the notion of chaos is to reconcile the appearance of erratic
motions with the determinism of the underlying mechanisms.

In tunable experimental settings, a different and faithful test of chaos is to observe a bifurcation (or
a sequence of bifurcations) leading to chaos; in other words, when varying a control parameter a, to
observe a regular regime for a < a. and a chaotic regime for a > a.. Such a clear signature of chaos is for
instance provided by the observation of a cascade of period-doubling bifurcations (this cascade is only
one of the possible scenarios to chaos but it has the advantage to be unambiguously recognizable, even
in noisy systems or in case of noisy measurements).



Let us finally mention a simpler approach to analyze experimental data. The basic step is to reduce
the recorded signal to a symbolic sequence, then to analyze it within the framework of information theory
developed by Claude Shannon [1948]. Typically, one codes z; by wy = 0 if 23 < 2* or by wy = 1 if 3 > z*,
where z* is a suitable threshold, chosen by invoking extrinsic arguments and knowledge of the system, or
determined as the value that optimize the robustness of the results ; for instance, * can be chosen so that
(w) = 1/2, or equal to a physiological threshold, or given by z* = (z;). To cite an example, in studying
electric activity of single neurons, one might distinguish short and long inter-spike intervals, exactly as
in the Morse alphabet. The ensuing binary sequence is then analyzed, e.g. its entropy is computed, with
tools developed to quantify information carried by a coded message or a computer program written in
binary code, Badii and Politi [1997].

5 Chaos in the cardiac rhythm.

Several studies inspired by chaos theory have been conducted on the cardiac rhythm observed in
electrocardiograms. Results for patients suffering for cardiac diseases were compared with those obtained
for healthy patients. The main conclusion (it would of course requires more shades) is that healthy cardiac
rhythm exhibits a chaotic component whereas very regular rhythms are associated with pathologies.

Explanation originates in the fact that an exactly periodic rhythm would not be robust : the slightest
perturbation would disrupt it. What about a chaotic regime? The sensitivity to initial conditions of
chaotic dynamics, responsible of their long-term unpredictability, also appears as an exploitable advantage
insofar as a minute external input is enough to qualitatively modify the behavior. This remark led to the
idea of controlling a chaotic dynamics by means of carefully tuned external perturbations, Garfinkel et
al. [1992]. This notion of control of chaos is relevant for artificial systems, where the proper servo-control
can be determined for instance by learning algorithms. But it might also be relevant as regards biological
systems, where the proper regulatory mechanisms might have settled during the course of evolution, by
means of natural selection. It seems plausible that cardiac rhythm illustrates this possibility to stabilize a
chaotic regime on a roughly periodic trajectory, while keeping at disposal all the richness and sensitivity
of the chaotic dynamics as a reservoir of possible solutions to respond to stresses and rapidly adapt to
changes in the surroundings.

A decrease of the chaoticity of the cardiac rhythm is thus an alarming clinical signature, pointing
at a decreased adaptability and decreased robustness. Estimation of the correlation dimension is besides
used as a diagnosis tool in some medical centers. Nevertheless, we here encounter an example of the
shades that accompany the notion of chaos in biology : more often, the observed dynamic regimes will
be more complicated than pure chaotic dynamics, with many other superimposed features coming from
the dynamics regulation.

6 Chaos in neurons and brain ?

Some stochasticity is unavoidable in neural system dynamics, due to external inputs (for instance
variations in the metabolic fluxes) and to the randomness of the elementary events participating in the
propagation of the nerve impulse. Hence, looking for chaos in neural dynamics makes sense only once
the question has been more precisely delineated. One can thus investigate whether the activity of a
single neuron, reflecting in the spikes it emits, is chaotic ; or whether the effective macroscopic dynamics
reconstructed from an electroencephalogram exhibits a chaotic component. These two questions have
been studied intensively for long, Faure and Korn [2001, 2003].

Data on the electric activity of a neuron are obtained by recording the variations of the membrane
potential of it axon. They are then filtered insofar as only the times where the neuron emits a spike (a
brief and sharp increase of its membrane potential) are kept. Established chaotic behaviors have been
observed for instance in neurons having a pacemaker role, or belonging to well-identified small functional
networks, like the ‘central pattern generators’ involved in some motor activities; intermittent behavior



have also been observed, Faure and Korn [2003]. A first issue is to characterize the dynamics of the neuron,
in particular for identification and classification purposes if several different neurons are investigated and
the issue without knowing in advance whether they are of the same type or not. A second motivation is
to infer the functional role of the neuron and to determine how its activity will influence the behavior
of the network in which it is embedded; it opens on the fundamental question of understanding how
information is coded and carried by neurons. A third one could be to observe the influence of a drug or
a neuro-receptor mutation on the basic activity of neurons, hence to predict and possibly control their
overall consequences. It is to note that the length of spike records is bounded by the signal stationarity
condition (over a too long duration, the observed neuron will either adapt or suffer damages) ; since the
time discretization is here intrinsic, fixed by the spikes, the number of points exploitable in the analysis
is limited, in an inescapable way.

At the level of neural networks, remarkable experiments have been performed in which real neurons
have been coupled to artificial electronic ones hence precisely controlled and tunable. It has thus been
possible to investigate the modifications experienced by a real neuron as a function of the strength and
temporal patterns of the inputs it received from its (here artificial) neighbors. Strikingly, this study has
clearly evidenced that the dynamic potentialities of a neuron are strongly modified by its embedding
within a network : dynamic regimes (oscillations, spike trains) might be observed whereas they never
occur in the isolated neuron. Conversely, the embedding of a neuron in a network (provided suitable
conditions on the inwards connections are satisfied) might stabilize an intrinsic irregular behavior. We here
encounter a selective advantage of chaos : neurons having a chaotic basic regime bring a great flexibility
in the implementation of a functional network since a chaotic neuron can potentially be stabilized in a
large number of different regimes, Schiff et al. [1994], Rabinovich and Abarbanel [1998].

Although recording methods look similar, the analysis (in particular as regards the chaotic features)
of the electroencephalogram is far more complicated than that of the electrocardiogram. The main rea-
son is the obvious fact that brain, contrary to the heart, is not globally synchronized (such an overall
synchronization would be highly pathological, as shown by epilepsy crises following from an instance of
partial synchronization). Spatial dimension cannot be ignored, and dynamics a priori depart from the
basic notion of deterministic low-dimensional chaos. The high dimension of the recorded signal (coming
from an array of about a hundred of electrodes) precludes in practice a plain implementation of recons-
truction methods and usual chaos criteria. These caveats have somehow put off the initial enthusiasm,
Babloyantz et al. [1985], Skarda and Freeman [1897], and a lot of critical investigations have been conduc-
ted to delineate whether chaos is actually at work in brain, in which form, and how it is possible to detect
and describe it from experimental data, Rapp [1993], Lehnertz et al. [1999], Kaneko and Tsuda [2001].
Nevertheless, it is possible to show using surrogate data method that deterministic non linear components
are present in the electroencephalogram. Conclusions about chaos at the brain level are nevertheless not
clear not consensual, moreover weakened by the hypotheses (determinism, stationarity) required by the
analysis methods. The issue thus remains largely open and it is actively investigated by several teams.

7 Biological usefulness and exploitation of chaos

The examples of cardiac rhythm and neurons illustrate a more general conclusion : chaos offers both
robustness and adaptation properties that provide a functional advantage hence a selective advantage. But
in order to take profit of these properties, additional regulatory mechanisms have to settle, that appear as
a specificity of living systems. Indeed, a major difference discriminates living systems, able to reproduce
and experiencing natural selection from one generation to the other, and physical systems, where the only
selection at work is associated with the stability, with respect to perturbations and noise, of equilibria
and dynamic regimes. Living systems are thus more apt to explore the whole range of possible behaviors,
through a slow adaptive tuning of the parameters controlling their dynamics, and a co-evolution of their
sub-systems. Three remarkable properties follow :

— a thorough exploration of the parameter space yielding a larger panel of dynamic regimes and bifur-



cations;

— a possible stabilization on thresholds, bifurcation points or other non generic situations (even those
involving a joint tuning of several control parameters) that is achieved by selected feedbacks and control
mechanisms ;

— a possible control of the chaotic regimes. We here mean the approximate and transient stabilization of
the dynamics on one of the unstable periodic orbits embedded in any strange attractor, allowed by finely
tuned feedbacks and regulatory mechanisms selected and settled during evolution. It is besides better that
such a stabilization is only transient so that the system might shift to another regime (think for instance to
brain dynamics), fulfill other function, or recover a sensitivity to other stimuli. This possibility to stabilize
the system in a roughly periodic regime has the double interest of being very flexible (almost any period
can be reached) and of low cost (because the amplitude of the regulatory perturbations to be applied
to the original dynamics remains low). It is by contrast very costly in terms of information : biological
systems ‘pay this cost’ step after step in the course of evolution, through the selected establishment
of feedbacks achieving logical adaptive circuits. In nervous system (or brain in higher organisms), this
process can be fulfilled at a far shorter time scale thanks to the learning performances of neural networks.

Furthermore, it should be noted that deterministic chaos is weakened or even suppressed by the pre-
sence of noise (random external perturbations). This is due to the fact that noise destroys the remarkable
phase space structure associated with a chaotic dynamics : tangle of dilating and contracting directions,
fractal structure of strange attractors, dense covering of these attractors with unstable periodic orbits
with periods of arbitrary duration. On the other hand, chaotic behavior are robust within classes of
deterministic dynamics, and a slight modification of the coupling constants or kinetic rates (as long as
no bifurcation point is crossed) will preserve the qualitative features of the dynamics. Chaotic dynamics
thus offer a delicate balance of sensitivity and robustness. When completed in the course of evolution by
multiple regulation and control mechanisms, chaos endows living systems with an increased adaptability,
larger than the adaptability offered by regular dynamics. This might explain the observation of chaos, or
rather, chaotic features, in several biological systems.

In conclusion, we underline the following points :
— it is highly delicate to evidence chaos in experimental data, especially biological ones;
— pure chaotic features, close to the mathematical notion of deterministic chaos, will be observed only
at the level of isolated elements, for instance single neurons. At the system level, chaotic features will
be partly modified by regulation and controlled mechanisms, settled in the course of evolution, so as to
exploit the dynamics robustness and adaptability provided by a chaotic component.
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