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Ionic currents across neuron and glial cells membranes lie at the origin of the entire brain
electrophysiology. They are the common root of functional brain dynamics and mesoscopic
or macroscopic phenomena such as extracellular fields. In particular, they provide the rel-
evant basis to relate cellular electrophysiology and macroscopic dipole models. In order
to derive robust features and to envision the multi-scale approaches required to connect
the different levels of observation, an essential prerequisite is to have minimal model of
elementary ionic motions. In this paper, we propose a general cellular automata frame-
work allowing to investigate the distribution of ionic currents in heterogeneous media
interspersed with membranes, from which follows the local electromagnetic field.
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1. Introduction

Ionic currents across neurons and glial cells membranes lie at the origin of the
entire brain electrophysiology. Modeling ionic currents at the molecular scale is thus
the very first step to bridge electrophysiological processes and integrated descrip-
tions of neurodynamics. Solving this multi-scale problem in its direct (bottom-
up) formulation would greatly help to tackle the inverse (top-down) problem of
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unraveling the functional electrophysiological processes underlying a given cognitive
or computational brain activity. Such a multi-scale model could also be exploited to
investigate the possible biological role of the local electromagnetic field in volume
transmission and ensuing cell interactions.

Ionic currents are involved in both the functional neuronal activity, e.g., spikes,
and the generation of the extracellular electromagnetic field measured experimen-
tally, e.g., local field potentials (LFP) or the electroencephalogram (EEG). For
instance, the EEG is an average macroscopic signal and as such, determining its
relationship with cellular physiology requires to integrate ionic currents from the
molecular scale to the millimeter scale. Moreover, the EEG originates in the elec-
tromagnetic field generated by the ionic currents transverse to the axons or across
the extracellular medium and does not directly reflect the computational properties
associated with the genesis and propagation of action potentials. The gap between
the phenomena measured in the EEG and the brain functional dynamics thus arises
yet at the neuronal scale.

In order to tackle this integration across different scales, we have to devise a
minimal model, retaining among the richness of molecular details and processes only
those involved in collective effects and leading ultimately to an observable impact
at macroscopic scale. Other details could of course be essential in other issues, but
they appear to be irrelevant degrees of freedom as regards to emergent phenomena.
A minimal model would thus be more efficient in large-scale numerical computations,
and more relevant insofar as it yields more generic results.

The present paper details the derivation of such a minimal model that reproduces
the elementary properties of transmembrane ionic currents of the cellular electro-
physiology, with the right level of details. Hence, it provides the relevant numerical
framework for robust multi-scale integration. Being discrete in time, space and state
variables, a cellular-automata model is well-suited to drastically reduce the number
of degrees of freedom involved in cellular electrophysiology, while allowing, at the
same time, to take into account the discrete nature of ions and the stochasticity of
their motion [6]. In simple situations, its average steady-state behavior should match
the standard electrophysiological equations (briefly recalled in Sec. 2). This central
step, allowing at the same time to check the model consistency and fit its parameters,
is the core of the present paper (Sec. 3). Potentialities of such an approach are
discussed in Sec. 4.

2. Bridging Electrophysiology and Dipole Models: The Frame

2.1. Standard deterministic equations of cellular electrophysiology

Cellular electrophysiology, for both neurons and glial cells, is based on the ionic
exchanges that take place through the cell membrane. It is now acknowledged that
they depend upon the presence of transmembrane proteins: channels that allow
passive transport of ions along the electrochemical gradient and pumps that allow
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active exchanges against the electrochemical gradient at the cost of ATP hydrolysis.
Passive transport has been first described on empirical grounds before the discovery
of ionic channels, by considering that ions move across the membrane under the
combined effect of diffusion (thermal motion) and electrical forces, and adopting a
deterministic “mean-field” description in terms of average ionic concentrations.a

Let, V , the electrical potential in x, ck the concentration of ion k, zk its valence
and uk its mobility. Within linear response theory, the contribution �k to the total
current density �J =

∑
k �k is given by the combination of Fick law and Ohm law,

leading to the Nernst-Planck equation:

�k = −uk(RT �∇ck + zkckF�∇V ), (2.1)

where Dk = ukkBT is the diffusion coefficient for ion k, T the temperature, kB the
Boltzmann constant, R the perfect gas constant, and F Faraday constant. It amounts
to consider the membrane as an effective uniform dielectric system in which ionic
mobilities and activities are spatially homogeneous: such a description comes from
the homogenization of a system composed of an “impermeable” part (phospholipids)
and a “permeable” one (channels). Since the membrane is locally plane, symmetry
arguments ensure that only the direction transverse to the membrane is relevant
which allows to locally come down to the unidimensional case.

The equilibrium potential Ek of the ions k is defined as the difference of potential
[Vi − Ve] across the membrane at equilibrium for the ions k, that is, when jk = 0.
Integration of Eq. (2.1) in such conditions yields the Nernst equation:

Ek = −RT

zkF
ln

[
ck,i

ck,e

]
, (2.2)

where i labels the intracellular compartment and e the extracellular compartment.
Intracellular and extracellular compartments contain different kinds of ions,

mainly Na+, K+, Cl− and Ca2+. It is possible to obtain from Eq. (2.1) the rest-
ing potential, namely the value Vm of the transmembrane potential difference at
equilibrium, i.e. when the total current density �J = 0:

Vm =
RT

F
ln

(
PK[K]i + PNa[Na]i + PCl[Cl]e
PK[K]e + PNa[Na]e + PCl[Cl]i

)
, (2.3)

where the contribution of calcium ions has been neglected. This expression is known
as the Goldman-Hodgkin-Katz equation [4, 5]. Vm differs from the ion equilibrium
potentials Ek, hence when V = Vm, individual current densities �k do not vanish.

An obvious consistency requirement of stochastic cellular automata model at the
ions level will be to recover, on the average, the acknowledged deterministic equa-
tions when considering a similar condition, namely two compartments (i.e. intra-
cellular and extracellular compartments), with fixed ionic concentrations separated
by a semi-permeable membrane. The interest of such a model will be to reproduce

aThis point will be of importance in matching this field-theoretic modeling with a more microscopic, discrete
and stochastic one in Sec. 3.
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the actual distribution of ionic currents, in the complex multi-cellular geometry
of the brain tissue, without handling a huge number of coupled equations. More-
over, cellular automata models take into account the discrete nature of ions and the
stochasticity of their motion, that are nonnegligible since ionic currents are weak.b

This distribution expressed at the proper coarse-grained scale may thus be used to
substantiate a dipole model and compute the electromagnetic field as recalled in the
next subsection.

2.2. Maxwell equations and the dipole model

At a mesoscopic scale where a continuous-medium approximation is valid, the elec-
tromagnetic field is ruled by Maxwell equations:

�∇ · �E = ρ/ε, (2.4)
�∇∧ �B = µ0

�J, (2.5)
�∇ · �B = 0, (2.6)

�∇∧ �E = 0, (2.7)

obtained under several simplifying assumptions: (i) the permeability of the brain
tissues is equal to the vacuum permeability µ0; (ii) the field-induced observables are
proportional to the fields (linear response theory); in particular, the polarization
writes �P = ε0χe

�E where χe is the electrical susceptibility of the medium, from
which follows that ε = ε0(1 + χe); (iii) a quasi-stationary approximation is valid,
that amounts to ignore the source terms ∂ �E/∂t and ∂ �B/∂t respectively in Eq. (2.5)
and Eq. (2.7). The latter Eq. (2.7) implies that it exists a scalar field V (the electric
potential) such that �E = −�∇V . The total density of current �J(�r ) can thus be
decomposed into [7]:

�J(�r ) = �Jp(�r ) + σ(�r ) �E(�r ) = �Jp(�r ) − σ(�r )�∇V, (2.8)

where �Jp is the primary current and �E the electric field that it generates. Invoking
the absence of charge accumulation at the considered space and time scales, namely
∂ρ/∂t = 0, and assuming σ = cste, Eq. (2.8) yields:

�∇ · �Jp = σ∆V, (2.9)

Eq. (2.9) is the analog of a Poisson equation for describing a medium presenting
a bulk density of currents generators described by �Jp. Such an “active” medium is
fundamentally different from dielectric media encountered in physics and is in fact
specific to “living matter”. The primary current �Jp is due to ionic currents generated
by neuronal activity, basically currents in ionic channels across cell membranes.

bFor example, one ion with |zk| = 1 crossing a surface of 1mm2 in 1ms is responsible for a current of
160 pA, or equivalently, the number of ions with valence z crossing a surface S (10−6 m) in a time t (10−3 s)
for a current density j (10−12 A), i.e., jSt/ze, is of the order 10−2.
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In the dipole model, the primary current is represented via a superposition of
current dipoles Q each giving a contribution Qδ(�r − �rQ) where δ(−) is the Dirac-
delta function. The knowledge of the primary current thus reduces to the knowledge
of a dipole distribution. Such a dipole model can be implemented at different scales:
for instance, the dipole representation used for interpreting EEG represents cortical
activity at millimeter scale, whereas the “physiological” dipoles associated with ionic
currents across membranes lie at the nanometer scale. One main aim of our numerical
approach is to settle the departure from a precisely tuned building-block allowing to
bridge these two representations of the electromagnetic field at far different scales.

3. Bridging Electrophysiology and Dipole Models: The Model

3.1. Aim and principles

We present here the design of a numerical framework allowing to articulate electro-
physiology and dipole models, in realistic geometries. The challenge is to bridge two
field-theoretic deterministic models, at different scales, relying on a different degree
of homogenization. We have seen (Sec. 2) that the purely diffusive motion of ions
in extracellular and intracellular spaces is strongly affected by the presence of the
membrane, across which they experienced both a resistancec and a deterministic
drift.d

We have adopted a cellular automata model which have already been used to
account for spatial buffering and diffusion processes in the brain [3, 9]. The model
is two-fold: first, a one-dimensional set of nodes represents the physical space and
second, particles representing the ions are allowed to move stochastically between
nodes. Membrane properties will be modeled at the node level: resistance will be
mimicked by a partial reflection of ions on the membrane and the drift by asymmetric
laws of motion across the membrane.

We explain here the construction and implementation of a one-dimensional model
with a single ionic species, and only mention the additional technicalities required
to extend it to dimension 2 or 3 and to several species.

3.2. Basic dynamic rules

We have implemented a cellular automata in discrete time (t = mτ,m ∈ Z) and
space (x = lλ, l ∈ Z), with a formulation suited to perform parallel iterations [2].
The structure of the model and the notations are represented in Fig. 1.

We define two Boolean processes n+(x, t) and n−(x, t) which represent the occu-
pation of edges between the successive sites along the array. If a particle arrives in
x at time t from (x − λ) (i.e., according to the direction �e+) then n+(x, t) = 1, and

cOnly a fraction of the membrane is permeable, through ionic channels.
dThe drift is generated by the electro-chemical gradient actively sustained by ATP-consuming pumps.
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Fig. 1. Representation of the model and notations. Boolean processes n±(x, t) account for the
particle motions arriving in site x at time t.

similarly if a particle arrives in x at time t from (x + λ) (i.e., according to the
direction �e−) then n−(x, t) = 1 (Fig. 1).

A stochastic motion is obtained by shuffling the direction of motion indepen-
dently at each site and time. This shuffling is implemented by introducing indepen-
dent Boolean variables µ±(x, t), so that the automaton dynamics writes:

n+(x + λ, t + τ) = µ+(x, t)n+(x, t) + [1 − µ−(x, t)]n−(x, t),
n−(x − λ, t + τ) = [1 − µ+(x, t)]n+(x, t) + µ−(x, t)n−(x, t).

(3.10)

It means that the particle arriving in x + λ at time t + τ according to the direction
e+ (i.e., n+(x + λ, t + τ) = 1) is either a particle that crossed the site x (i.e., that
arrived in x at time t from x − λ if µ+(x, t) = 1), or a particle that changed its
direction in x (i.e., that arrived in x at time t from x + λ if µ−(x, t) = 0). In other
words, µ±(x, t) = 0 prescribes a reflection in x at time t of particles arriving in x

along the direction e±, and this occurs with a probability 1 − p±(x, t).
In the simulations presented here, we considered an array of finite size L with

reflecting boundary conditions. At the left border (x = 0) this corresponds to:

for all t, n+(0, t) = 0 and µ−(0, t) = 0, (3.11)

(no entry and full reflection) and at the right border (x = L) to:

for all t, n−(L, t) = 0 and µ+(L, t) = 0. (3.12)

These conditions ensure that currents vanish at the boundaries (i.e., j(0, t) = 0
and j(L, t) = 0 for all t) which enforces the system relaxation towards a diffusion
equilibrium state. The well-known characteristics of diffusion equilibrium can be
compared to the simulation results, providing both a consistency check of the model
and a way to fit its parameters. Note that if we consider several ionic species k, the
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state variables n±(x, t), the shuffling variables µ±(x, t) and the associated shuffling
parameters p±(x, t) all depend on k.

3.3. Parameter tuning from free diffusion results

Free diffusion is implemented with an homogeneous, stationary and symmetric prob-
ability p±(x, t) ≡ p, i.e., a single shuffling parameter p. Expected features of the
diffusion equilibrium are a centered diffusive motion, namely 〈xt − x0〉 = 0 and
〈[xt−x0]2〉 ∼ 2Dt at short times, before saturation due to the finite size of the domain
sets in; then a relaxation towards a diffusive equilibrium with 〈[xt − x0]2〉 = L2/12
should occure (Fig. 2). We checked in parallel that the empirical average 〈xt − x0〉
(average of xt+s − xs along the simulated trajectory i.e., over s) remains close to
0, never exceeding λ. We also checked that the mean-square-displacement estimate
is independent of x0 (for long enough runs) as expected since we average a sum
of increments. We choose x0 = L/2 in all runs of the simulation so as to check
the relaxation of an initially localized distribution δ(x − L/2) towards the uniform
distribution in [0, L] corresponding to a diffusive equilibrium (Fig. 3).

A mean-field approach of the large-scale behavior of the automaton allows to
relate the diffusion coefficient D of the particles with the parameters of the free-
diffusion model according to [2]:

D(p) =
λ2

τ

(
p

2(1 − p)

)
. (3.13)

Note that D(p) is a monotonously increasing function of p at fixed λ and τ . An
infinite number of triplets (λ, τ, p) allow to fit a given experimental value of the
diffusion coefficient D. For instance, once the elementary time and space scales τ

and λ are chosen, using some experimental or external arguments, the measured
coefficient D is reproduced by choosing p = 2τD/(λ2 + 2τD). Varying p allows to
scan different values of D at fixed time and space scales, i.e., to reproduce within
a unique model the diffusion behavior of various species in various media. If the
diffusion coefficient is known, a change in p should be accompanied by a change in
τ and corresponds to changing the minimal time scale of the description (Fig. 4).

3.4. Parameter tuning from results for a single membrane

To account for the resistance of a membrane in x = m and its influence on ion
motions, the particles should be more likely to change direction at the membrane
than in sites of the bulk intracellular or extracellular media, i.e., µ±(m, t) should
take the value 1 with a probability p̃±(m) = p/r̃±(m) lower than p. To account
for the drift generated by the electric field across the membrane, the parameter

eNote that the best estimate of the mean-square-displacement is obtained by an average of (xt+s − xs)2

along the simulated trajectory (i.e., average over time s); indeed, in this case where 〈xt − x0〉 = 0 from
symmetry arguments, subtracting its (non exactly vanishing) empirical estimate in xt+s−xs would increase
the error bar on the mean-square-displacement estimate.
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Fig. 2. Diffusive motion of a single ionic species in a domain L = 50 (top) or L = 500 (bottom) for
different values of the shuffling parameter p, represented by plotting the mean-square-displacement
〈[xt − x0]

2〉 as a function of the time t, in units such that λ = 1 and τ = 1. As expected, finite-size
saturation is observed, the faster the larger the diffusion coefficient D(p) is (hence the larger p is)
since the crossover time scales as tc ∼ 1/D(p), and the smaller the length is, since tc ∼ L2. We
actually plot the dimensionless ratio 12〈[xt − x0]

2〉/L2 that converges to 1 for a normal diffusive
motion in a bounded domain [0, L]. Inset shows the convergence to diffusion equilibrium for longer
time for p = 0.9 and L = 500.

r̃±(m) representing the membrane resistivity will take a different value according
to the crossing direction. From a physiological viewpoint, we shall distinguish the
resistivity ri � 1 experienced by a particle coming from the intracellular medium
and re � 1 for a particle coming from the extracellular medium. If the left side of the
membrane is the intracellular medium and the right side the extracellular medium,
r̃+(m) = ri hence p̃+(m) = p/ri 	 p and r̃−(m) = re hence p̃−(m) = p/re 	 p. The
parameter A = re/ri quantifies the bias imposed by the electric field on the diffusive
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Fig. 3. Time evolution of the density profile ρ(x) in the domain [0, L] with L = 50, starting
from a point-mass distribution in x = 25 (in units where λ = 1 and τ = 1) for different values
of p : p = 0.3 (top) and p = 0.7, (bottom). The underlying diffusion coefficient D(p) behaves as
p/(1 − p) hence the equilibration time scales as tc ∼ (1 − p)/p, we here observe the relaxation to
diffusion equilibrium at different levels of stochasticity, the faster relaxation (for p = 0.7) being
also more stochastic (larger D). A simple scaling argument based on the self-similarity of normal
diffusion allows to predict the behavior expected for L = 500; numerical check of this behavior (not
shown) reinforced our confidence in the relevance of the model and proper tuning of its parameters.

motion inside a ionic channel of the membrane and simply amounting, seen from
outside, as a different resistivity according to the crossing direction. The reflective
boundary conditions, ensuring that the current vanishes in x = 0 and x = L, now
express µ−(x = 0, t) = 0 and µ+(x = L, t) = 0 together with n+(x = 0, t) = 0
and n−(x = L, t) = 0 for all t (hence µ+(x = 0, t) and µ−(x = L, t) play no role).
The relevance of these boundary conditions is their consistency with an equilibrium
state, whose characteristics are well known according to the Nernst equation (2.2).
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Fig. 4. Same representation as in Fig. 3 but with constant D = DNa+ = 1.334 · 10−9 m2 · s−1 and
λ = a = 5 · 10−9 m. For each value of τ , the probability p is chosen adaptively: for τ = 10−9 s,
p ≈ 9.64 · 10−2 (top) and for τ = 10−7, p ≈ 99.07 · 10−2 (bottom). The plots thus present the
relaxation to diffusion equilibrium at increasing time scale.

As in the case of free diffusion, we have to tune the additional two parameters re

and ri by comparing numerical prediction with the experimentally observed behav-
ior. The current across the membrane writes j(x = m, t) = (λ/τ)[µi(m, t)ni(m, t)−
µe(m, t)ne(m, t)], hence the average current is:

〈j(m, t)〉 =
λ

τ
(〈µi(m, t)〉〈ni(m, t)〉 − 〈µe(m, t)〉〈ne(m, t)〉), (3.14)

where the average is over the stochasticity generated by the random shuffle (we
have here used the statistical independence of µα(x, t) and nα(x′, t′) for any x, x′
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and t′ ≤ t). Since only a very small fraction of ions crosses the membrane, the
ensuing asymmetry in the ionic movement directions can be neglected and the bulk
fraction of ions going to the left identified with the bulk fraction of ions going to
the right. Assuming for definiteness that the left compartment is intracellular, it
follows that

〈n−(m, t)〉 = 〈n+(m − 1, t)〉 = ci/2 〈n+(m, t)〉 = 〈n−(m + 1, t)〉 = ce/2. (3.15)

Using the average values 〈µi〉 = p/ri and 〈µe〉 = p/re, the average current density:
J = zF〈j〉 writes J = (pzFλ/2τ)(ci/ri − ce/re). The equilibrium J = 0 is obtained
for (ce/ci)eq = re/ri = A, hence, comparison with Nernst equation (2.2) gives:

A = ezβeE or A = ezFE/RT . (3.16)

The equilibrium potential thus fully prescribes re and ri. In other words, we encap-
sulate in re and ri either the experimental knowledge of the equilibrium potential,
or the (constant) values of the ionic concentrations on each side of the membrane
in steady state.

Note that λ and τ are not directly related to the membrane thickness and crossing
time: the latter are encapsulated in the parameters p, ri and re, so that the membrane
influence on ions motion is fully accounted in this effective way, involving a single
site x = m with no width and no explicit delay. The model thus allows to compute
ionic currents at different space and time resolution. For instance, we might take
λ equal to the actual membrane thickness a ≈ 5 nm but consider in the simulation
that the membrane is point-wise located in x = m, except in devising the geometric
setting of the simulation: the overlap of the membrane with cells [m − 1,m] and
[m,m + 1] should be taken into account when prescribing the size of the array and
location of other membranes or boundaries. Since we aim at predicting emergent
phenomena, we shall also be interested in mesoscopic simulations with λ � a and
τ � a2/2D, possibly fed in a hierarchical way with the results of a smaller-scale
simulation.

Starting from an homogeneous ionic distribution in the intracellular and extra-
cellular compartments, we checked the expected convergence towards an asymmetric
distribution as prescribed through the asymptotic relation (ce/ci)eq = A (Fig. 5).
In all tested cases, the concentration ratio ce/ci converges toward A (Fig. 6). This
feature supports the consistency of our effective model and the proper physiological
interpretation of the parameter A. Investigating the time evolution of the density
profile shows that the parameters re and ri slow down the transit of the ions from
one compartment to the other; accordingly, they are directly related to the equili-
bration time, the relaxation to the equilibrium state being slower for larger values
(Fig. 7). Membrane crossings are rare events. The presence of the membranes thus
induces a considerable change of time scale between the fast “physical” and indi-
vidual ionic motions, and their slow collective and “physiological” consequences, at
the millisecond scale.
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Fig. 5. Time evolution of the density profile for A = 10 at fixed units λ = 1 and τ , with p = 0.3
(top), p = 0.7 (bottom). In what follows, we considered a system with length L = 9 in which the
middle site is the membrane. Since the extracellular space is about 25 nm, the five intervals on one
side of the membrane represent the extracellular compartment (at the right scale); the other side of
the membrane can be considered as a part of the intracellular compartment. In both compartments,
the movements of the ions are correctly described as normal diffusion (re = ri = 1). Furthermore,
if D = 2 · 10−5 cm2 s−1 is given it corresponds approximatively to the diffusion coefficient of K+

or Cl− ions in aqueous solution [1], one obtains τ ∼ 10−9 s for p = 0.3 and τ ∼ 10−8 s for
p = 0.7.

These observations are the numerical validation of our model consistency, since
it properly recovers the ionic concentration differences that have been used in fixing
the values of the parameters re and ri. This numerical consistency supports the fact
that ion dynamics across the membrane can indeed be captured by such a minimal
cellular automata model.
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Fig. 6. Time evolution of the concentration ratio ce(t)/ci(t) for A = 10. We check the asymptotic
convergence of this ratio towards ce,eq/ci,eq = A.

Fig. 7. Time evolution of the concentration ratio for re = ri = 1 and r = 10 with A = 10 and
p = 0.5. We check here the slowing down induced by the membrane.

3.5. Implementation in more complex situations

In principle, our cellular automaton straightforwardly extends to the case of a
medium with several membranes, several ionic species, in dimension 2 or 3, at
various scales. It thus provides a flexible framework to simulate brain tissue from
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the molecular scale to the scale of cell populations. Let us just mention an example
and a few guidelines to achieve its extended implementation.

It is first possible to account for different diffusion coefficients in the intracellu-
lar and extracellular compartments by taking pi �= pe. Our numerical model is thus
naturally suited to simulate heterogeneous media with a space-dependent diffusion
coefficient D(x), simply by considering a space-dependent shuffling parameter p(x)
such that D[p(x)] = D(x). Integration of the simulation results then gives a direct
access to the emergent large-scale behavior, thus avoiding the (much difficult) aux-
iliary computation of an homogenized diffusion coefficient that is required to come
down to a tractable effective diffusion equation [8].

Another basic extension is to consider several ionic species k diffusing jointly.
In this case, p, ri and re (hence A) depend on k. Although the different ions do
not directly interact, the membrane potentials depend jointly on all ionic species
(Goldman-Hodgkin-Katz equation (2.3)), hence, couple them since a change of con-
centration in any of those species will affect the diffusion of all the other ones. This
is one of the basic electrophysiological principles, and it is exploited in several ways,
for instance the modification of the fixed ions concentrations, the control of the
pumps activity or spatial buffering.

Considering a 1D array of membranes is enough to appreciate, at the still mod-
erate scale of several cells, the cumulative effect of membranes on the ionic currents
in one direction (that of the array), provided it is valid to assume the homogeneity
and symmetry in transverse directions ensuring the absence of any leak or input cur-
rents. The 1D-simulation is implemented by placing k membranes on sites x = mj,
j = 1, . . . , k. The sites (mj)j could be placed regularly, for simplicity, or randomly
placed according to a physiologically more relevant distribution. It is important to
note that, when following the array in one direction, the membranes will be alter-
natively between the extracellular medium (on the left of the membrane) and an
intracellular medium (on the right) for j odd, and conversely for j even. Figure 8
gives a simple example of the situation where a neuron is separated from a glial cell
by an extracellular compartment. Realistic parameters are used to deal with Na+

and K+ and their different permeabilities. The heterogeneous equilibrium which is
reached by the simulations gives coherent values for equilibrium potentials for each
ion and each type of cell (ENa = 58 mV and EK = −92 mV for the neuron compart-
ment; ENa = 66 mV and EK = −83 mV for the glial compartment). This result would
be easily extended to more cellular compartments.

At larger scale, current loops might settle and evidently require a genuinely 2D or
3D model. To efficiently model the brain tissue at such a larger scale, it is relevant to
repeat the coarse-graining and homogenization process used in the previous sections
to design our minimal model at a supra-molecular scale. In practice, it amounts
to consider a cellular automaton model, with a lower resolution λ′ > λ, τ ′ > τ ,
i.e., to consider more integrated “elementary” steps. The preliminary 1D study at
resolution (λ, τ), will then provide the effective parameters for the higher-level model
at resolution (λ′, τ ′).
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Fig. 8. An example of results using two membranes and realistic parameters for K+ (top) and
Na+ (bottom). The parameters were: λ = 5 · 10−9 m, τ = 0.1 · 10−3 s, DK = 1.957 · 10−9 m2 · s−1,
DNa = 1.334 ·10−9 m2 ·s−1. In the case of K+, the parameters of the neuron membrane are: r− = 1
and r+ = 25 and the parameters of the glial membrane were: r− = 20 and r+ = 1. In the case of
Na+, the parameters of the neuron membrane were: r− = 25 and r+ = 2.5 and the parameters of
the glial membrane were: r+ = 2500 and r− = 625.

4. Conclusion

Our cellular automata approach provides an agent-based numerical model simple
and efficient enough to achieve multi-scale integration in arbitrary geometries. Its
novelty is first to involve membranes and focus on their role and second to aim
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at computing the dipoles of currents. It has shown that the membrane tends to
slow down and localize electrical activity. On the basis of its discrete and stochastic
characteristics, this approach also allows to investigate the impact and biological
role of fluctuations arising in the ionic transport across the cell membranes. Its
variables and parameters exploit our knowledge of elementary electrophysiological
mechanisms. More precisely, the parameters (p and r±) can be either computed from
precise experimental values of the steady-state ionic concentrations, either chosen
together with the geometry between several generic alternatives, or determined self-
consistently by completing the actual model of ionic channels with the effective
action of pumps. In this latter case, the values of the concentrations will be related
to the kinetic parameters of the pumps, their density and the ATP flux fueling them.
Note that the contribution of fixed ions to the difference of potential (i.e., Donnan
equilibrium) can be easily included. Two extra global parameters λ and τ prescribe
the space and time resolution of the overall description and are supplemented with
the geometry and location of membranes.

The outcome of this model, i.e., the description of ionic currents distribution at
different scales according to the functional state of the neurons, is a first step in the
hard task of unraveling dynamic processes and functional mechanisms underlying
experimental records. Beyond establishing the connection between dipole models
at different scales, this numerical framework could be exploited to address central
questions like lateral interactions between neurons or between neurons and glial
cells, and buffering effects in the extracellular medium.

References

[1] Chen KC, Nicholson C, Spatial buffering of potassium ions in brain extracellular space,
Biophys J 78:2776–2797, 2000.

[2] Chopard B, Droz M, Cellular Automata Modelling of Physical Systems, Cambridge Uni-
versity Press, Cambridge, UK, 1998.

[3] Dai L, Miura RM, A lattice cellular automata model for ion diffusion in the brain-cell
microenvironment and determination of tortuosity and volume fraction, SIAM J Appl
Math 59:2247–2273, 1999.

[4] Goldman DE, Potential impedance, and rectification in membranes, J Gen Physiol
27(1):37–60, 1943.

[5] Hodgkin AL, Katz B, The effect of sodium ions on the electrical activity of the giant
axon of the squid, J Physiol 108:37–77, 1949.

[6] Lesne A, Discrete vs continuous controversy in physics, MSCS 17:185–223, 2007.
[7] Malmivuo J, Plonsey R, Bioelectromagnetism — Principles and Application of Bioelec-

tric and Biomagnetic Fields, Oxford University Press, New York, 1995.
[8] Nicholson C, Diffusion and related transport mechanisms in brain tissue, RPP 64:815–

884, 2001.
[9] Steinberg B, Wang Y, Huang H, Miura R, Spatial buffering mechanism: Mathematical

model and computer simulations, Math Biosci Eng 1:1–28, 2005.


