Terms from theoretical physics of relevance for complex systems science
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Additivity: a quantity A is additive if its overall value in a system S is the sum of its partial values
in the sub-systems composing S, whatever the partition is: A(S) =Y, A(S;) where S = U;S;. On
the mathematical standpoint, an additive function satisfies f(z + y) = f(z) + f(y) for any pair
(z,y); provided it is continuous, it reduces to a linear function f(x) = ax, supporting the following
interpretation of additivity: knowing a sample is enough to grasp the collective behavior, thus
justifying reductionist approaches and linear* reconstruction.

Asymptotic: refers to the behavior or properties observed in the limit ¢ — oo of the system
evolution®.

Attractor: closed invariant indecomposable subset of the phase space*, which attracts all tra-
jectories starting sufficiently nearby (in a neighborhood called its basin of attraction), hence fully
accounting for the asymptotic* properties of the dynamical system*. An attractor is termed a
strange attractor if the dynamics restricted on it is chaotic*.

Average: this term associated with mean values of observable quantities is actually ill-defined; it
is essential to precise whether it refers to a time average along the system trajectory in the phase
space®, a spatial average in case of a spatially extended system observed at different resolutions,
or a phase-space average. In this latter case, it is termed a statistical average and it involves some
weight (a “measure”) over the phase space. Ergodic* theory gives conditions under which time and
statistical averages can be identified. For a sample of N independent and identically distributed
random variables (X;);, the law of large numbers states the convergence as N — oo of the sample
average (1/N) Zf\il X; to the common statistical average (X).

Bifurcation: any qualitative change in the asymptotic* behavior of a dynamical system* (e.g. an
exchange of stability between two fixed points, or the appearance of a limit cycle*) as a control
parameter™ is varied. The parameter value at which the change occurs is the bifurcation point. The
bifurcation diagram is the plot of the attractor(s)* vs the control parameter. A bifurcation is said to
be generic* if the conditions for observing it are structurally stable*, i.e. are robust* with respect
to a sufficiently small perturbation* of the evolution law. The effect of a perturbation would only
be to shift the bifurcation point.

Boltzmann distribution: relative weight of the different states x of a system; more precisely, it
is a probability distribution in the system configuration space, reflecting quantitatively the balance
between thermal energy kT (where T is the temperature® and kp the Boltzmann constant) and



potential energy U energies:
1
Pr(X) = —— —U(X)/kT
"= zm
The normalization factor Z(T') is called the partition function and it gives access through differen-
tiation to several thermodynamic quantities.

Boundary conditions: prescribing the values or behavior of observable quantities at the spatial
boundaries of the system is essential to get a well-posed problem.

Periodic boundary conditions, i.e. replacing a m-hypercube by a n-torus by identifying and
gluing together the opposite sides, is a numerical trick to simulate an infinite system and avoid
issues related to boundaries, e.g. surface effects (but finite-size effects remain).

Catastrophe: a bifurcation® in the special case of a gradient* dynamics dz/dt = —VU(z,@)
depending on some control parameters® . The attractors® are then fixed points x.,(&) that might
disappear, loose or exchange stability* as @ vary. The topological structure of the surface [@, ()]
and the nature of the singularity™ at the bifurcation point have been classified by René Thom in
7 types, now termed “elementary catastrophes”.

Cellular automata: dynamic model where the time, the space and the states take only discrete
values, specified by the time step At (t, = nAt), the spatial lattice, e.g. a square lattice of
parameter a (z; = ia, y; = ja) and a countable or more often finite set of elementary states (state
of the cell (4, j) at time n). Such a model is specially well suited for numerical simulations. It allows
to determine the wealth of possible collective dynamic behaviors achieved with a minimal set of
dynamic rules, hence to evidence generic* mechanisms that might explain self-organization* and
various other emergent* properties (for instance spontaneous segregation and pattern formation,
traveling waves, synchronization). A cellular automata is said to be deterministic* if the updating
rules (specifying the state at time n+1 knowing the state at time n) are deterministic, or stochastic*
if they involve random™ choices.

Chaos: a peculiar regime observed in some deterministic,* low-dimensional dynamical systems*,
characterized by an erratic, impredictible behavior at long times while the short-term behavior
is perfectly predictible. Three ingredients are required to get a chaotic regime: sensitivity to ini-
tial conditions, reflecting in the existence of at least one strictly positive Lyapounov exponent*,
mixing (in particular, the dynamics should remain in a bounded region), and the existence of a
dense infinity of unstable periodic orbits. A continuous-time dynamics requires a phase space* of
dimension at least 3 to exhibit chaos. On the technical side, two standpoints, either topological or
measure-theoretic, can be adopted to describe and measure chaotic features.

A scenario toward chaos is a well-defined sequence of bifurcations* leading from an equilibrium
situation (a dynamical system with a stable fixed point) to a chaotic one.

Characteristic time: typical time scale of a phenomenon. Quantitatively, it is the period in case
of an oscillatory behavior, the relaxation time 7, in case of an exponential decay e~*/™ or more
generally the time over which some relevant observable A varies: 74 = (|A(t)/A’(t)|) where ()
indicates some local time average.

Closure: when restricting the description of a large system to that of a sub-system, one usually
needs to add extra relations (more often approximate) called closure relations, to get closed equa-



tions involving only the variables relative to the considered sub-system.

Coarse-graining: multi-scale procedure allowing to reduce the complexity of a given model by
performing local averages to get a coarser (i.e. with a lower resolution) description of the system. It
can be implemented either in real space (for a spatially extended system), either in phase space*.
Typically, one introduces a partition in cells and performs a space (respectively a phase-space)
average over each cell in order to reduce its description to that of a few degrees of freedom. In
general some approximations (closure® relations) are required to get closed equations for these
coarser, effective* degrees of freedom.

Complexity: beyond the current meaning of this name, one encounters several notions of com-
plexity in theoretical physics. Let us cite among others the algorithmic complexity of a symbolic
sequence, actually an entropy™. A true notion of complexity has been defined in dynamical systems™
theory, as the speed of convergence of the finite-time entropy rates H,, /n towards their limit h (the
Kolmogorov-Sinai entropy*):

c= Z(Hn — nh) = Z(an - HQTL)
n=1 n=1

In the case of the logistic map family [f.(z) = az(l — x)]1<4<4, one has ¢(4) = 0 whereas the
entropy is there maximal: h(4) = log2 (a fully chaotic behavior is observed for a = 4); on the
contrary, one has h(a.) = 0 at the chaotic threshold a. whereas ¢(a.) = 0.

Conditional probability: probability P(A|B) of an event A knowing that an event B has occur-
red. According to the Bayes rule, P(A|B) = P(A, B)/P(B) hence P(A|B) = P(B|A)P(A)/P(B).

Conformation: 3-dimensional shape of a macromolecule, taken as its microscopic state in statis-
tical mechanics studies of conformational transitions, folding or allosteric transitions.

Conjugate space: defined by contrast to the real space, in which the observable quantities A
are described as spatio-temporal fields A(7,t). “Working in conjugate space” means to represent
these observables as functions E(q", w) of the frequency w and wave vector ¢. The correspondence
between real space and conjugate space is usually achieved by Fourier or Laplace transformations,
allowing to perform explicitly the decomposition of sufficiently well-behaved fields A(7,t) (e.g.
square-integrable) into components E(zf, w):

3 =
AGw) = /eiﬁ A(7,t) %, and conversely A(7,t) = /e"ﬁ A(qw) —1=
The conjugate representation straightforwardly gives the contribution E(qf w) at time scale 27 /w
and spatial scale 27/¢q to the observable A. Small spatial scales correspond to large wave vectors
q — oo and similarly for the time scales. One speaks of ultraviolet (UV) behavior (for instance an
UV divergence*) if it occurs for ¢,w — oo and infrared (IR) behavior (e.g. an IR divergence) if it
occurs for g,w — 0, in reference to the corresponding ordering of colors and frequencies in light.

Conservation: the existence of invariants, i.e. conserved quantities, in the course of the evolution™
of a given system, reflects in conservation equations, e.g. the continuity equation On/ot +V.7= 0,
where n(7, t) is the local density and (7, t) the local density of current. The right-hand-side can be



supplemented with a source term, if any. Similar equations can be written for different pairs (n, 7),
for instance the (density, density of current) of charge, energy or impulsion in an isolated system.

Conservative: refers to a dynamical system* in which the total energy is conserved (by contrast
to a dissipative* one). Its evolution is described by Hamilton equations and the natural volume of
the phase space is conserved by the dynamics (Liouville theorem).

Continuous medium: approximation replacing the molecular description of a many-particle sys-
tem by that of a continuous field of matter; it is valid at large enough scale, such that the elementary
volume d37 contains an enough large number N > 1 of particles to neglect their discrete nature
and ensuing discontinuous variations, and to get a continuous density field. This number N is also
supposed to be enough large to neglect fluctuations inside a cell d®7, so as to adopt a deterministic*
description, identifying the actual density with its statistical average.

Control parameter: any tunable parameter whose value controls the relevant behavior of the
considered system, e.g. the temperature or coupling strength when investigating a phase transition*,
the strength of nonlinearitites when studying the bifurcations® of a dynamical system, the ionic
strength when studying the conformational* transition of a charged macromolecule.

Coupling: direct interaction between two elements. It is usually described by an interaction po-
tential V' (z1,z2) depending on the states x; and x5 of the two elements (including their positions
71 and 75 in real space). The coupling strength is the typical energy involved in the interaction,
whereas the coupling range is the distance |} — 7| up to which the elements actually experience
their mutual influence.

Coupling should not be confused with correlation®, that is a statistical relationship between
the two elements (it might exist even in the absence of any coupling, as for instance in percolation*
lattices). Nevertheless, it is often the case in multi-scale modeling that correlations at a given level
of description are accounted for as an effective* coupling in a coarse-grained* description.

Correlation: statistical dependence between two sub-systems or more generally, two random
variables A and B. In case of a process A(t) or a spatially extended variable B(7), one defines
(auto)-correlation functions as follows:

Ca(t) = (A(1)A(0)) — (A(#))(A(0)) Cp(M) = (B(7)B(0)) — (B(7))(B(0))

where ( ) denotes the statistical average. In practice, such correlation functions are computed as
time or space average, using an argument of ergodicity*, e.g.

1 T—t—1 1 T—t—1 1 T—t—1
Calt) » 77— > Alt+s)A(s) - (T_t > A(t+s)> <T_t > A(s)>
s=0

s=0 s=0

The normal behavior of correlations is to be exponentially decaying, thus defining a correlation time
7o (such that C4(t) ~ C4(0) e~*/7) and a correlation length €. (such that C(7) ~ Cp(0) e~"/¢¢).
A slower decay, e.g. as a power law*, reflects a divergence of the correlation time/length, or equi-
valently a critical* character of the system.

Critical: critical points in physics have had for many years a clearly delineated meaning, in
thermodynamics: an isolated point where a phase transition* of a special kind (“second-order phase



transition”) occurs. In the phase diagram™® of the system, in coordinates [pressure, temperature],
it is a point ending a line of coexistence between two phases, say liquid and vapor. The system
there exhibits special features: almost macroscopic inhomogeneities in its density, divergence of
susceptibility and other response functions, singularity in its free energy*. Since the 70’s and the
development of renormalization™ methods, critical phenomena have been recognized in many other
fields: percolation*, conformation of a polymer chain, growth, turbulence. The main signature of a
critical point is the presence of long-range correlations, reflecting in the divergence of correlation*
length and time and power-law* behavior of the correlation functions (instead of an exponential
decay). Accordingly, it is associated with large fluctuations, anomalous response properties to
perturbations and scaling® laws for the order parameters* and susceptibilities. The meaningful
quantities to quantitatively describe a critical behavior are thus the critical exponents involved in
these power laws.

A specific instance is self-organized criticality*, in which the system spontaneously reach a
critical point (i.e. with no need to tune from outside one of its control parameter*).

By contrast, it is to note that in mathematics, a critical point of a function f(z) is simply an
extremal point x. (such that the derivative f’'(z.) = 0) and where f takes a (locally) extremal
value. Considering a dynamical system dz/dt = F(x), a critical point is an stationary point z,.
such that F(x.) = 0; it corresponds to a critical point of the potential U(x) in case of a gradient
dynamics F' = — dU/dx.

Detailed balance: relation satisfied at equilibrium in any system evolving according to a Mar-
kov process, i.e. whose evolution is fully determined by the transition probabilities between two
successive times with no further memory*. Considering for simplicity the case of discrete time
and discrete states, the detailed-balance relation writes W;;p;(co) = Wj;p;(oc0) for any pair (3, 5)
of states, where W;; is the transition probability from j to ¢ (i.e. the conditional probability* of
observing the state ¢ at time ¢ 4+ 1 knowing that the state is j at time ¢) and p(co) the stationary
distribution, such that Wp(co) = p(co). This relation fails to be satisfied in non equilibrium* situa-
tions, where non vanishing probability currents J;; = W;;p;(0c0) — Wj;p;(00) # 0 are still present
in the asymptotic, stationary state p(oo).

A formally similar relation is encountered in the context of chemical kinetics, expressing that
a given reaction is separatedly at equilibrium, notwithstanding the other reactions in which the
different species might be involved. It also fails in non equilibrium situations, where fluxes of matter
cross the system, even once a stationary state is reached, if any.

Deterministic: far from any philosophical idea of determinism or determination, this adjective
simply refers to a class of equations used to model the system evolution*, namely ODE* or PDE*,
or more generally a set of updating rules such that the knowledge of the system state at time ¢
thoroughly determines its future state. It is to be opposed to stochastic* models, in which random*
choices are involved in the updating.

Diffusion: a mode of transport of particles (from molecules up to micron-size grains) in a solvent
originating in the elastic collisions of solvent molecules onto the particles. The resulting irreversible*
motion observed at macroscopic scales is thus a statistical consequence arising from a microscopic
random motion. The same phenomenon is described at macroscopic scale by a PDE* (the diffusion
equation) for the particle density On/0t = DAn, where D is the diffusion coefficient, and at the
mesoscopic* scale of the particles by a random walk*. The mean-square displacement R*(t) =



(|7(t) —7(0)|?) of a particle obeys the normal diffusion law R?(t) ~ Dt with the same coefficient D.
A fully deterministic* description can also be considered at microscopic scale, accounting for the
collisions of the solvent molecules and the particles. This example underlines that the deterministic
or stochastic* nature of a dynamics is highly dependent of the scales and phase space in which it
is considered: it is essentially a feature of the mathematical model and not an intrinsic property of
the actual phenomenon.

Dimension: this term is to be understood according to the context, since it might refer to the
linear size of the system, to the real space (the line if d = 1, the plan if d = 2, the usual space if
d = 3, or abstract spaces if d > 4) underlying the system, to the number of independent degrees
of freedom (dimension of the phase space) and finally, to the unit of a given observable (e.g. kT,
where T is a temperature*, has the dimension of an energy and the ratio U/kgT, where U is a
potential, energy is said to be dimensionless).

Dissipative: in which matter or energy is “consumed”; i.e. brought up in the external medium,
generally as heat. If not fed, a dissipative system relaxes* toward equilibrium* (e.g. a pendulum with
friction). If fed continuously, it might reach a non trivial steady state*, differing from equilibrium
insofar as fluxes cross the system and the entropy* production is strictly positive.

Distribution: the most current meaning is encountered in the probabilistic framework where a
distribution function describes the law of probability of a random™* variable. A related but restricted
meaning is that of generalized function introduced by Schwartz, e.g. the Dirac distribution 4.

Divergence: this ambiguous term first designates a linear differential operator transforming a
vector field* @(7,t) into a scalar field V.#(7,t) (in Cartesian coordinates V.7 = 3. dv;/dz,). Tt
is also associated with various singularities® where infinite quantities appear, for instance the
divergence of the correlation length at a critical* point.

Dynamic: evolving in the course of time; it thus differs from the biological meaning of “exhibiting
an alternation of assembly and disassembly events”.

Dynamical system: a mathematical model of the form dX/dt = V(X,t) describing the evolution*
of a system whose instantaneous state is represented by some point X of a vector space of a manifold
(the phase space of the system). It is to note that such a model is memoryless*, without delay and
deterministic* insofar as the knowledge of the system state X (t) at the single time ¢ thoroughly
determines its future evolution. The dynamical system is said to be autonomous if V does not
explicitely depend on t.

Effective parameter: parameter of a mesoscopic* model accounting in an integrated way of far
more complex phenomena occurring at lower scales. For instance, an effective diffusion* coefficient
might be introduced to summarize the average effect of small-scale obstacles thus avoiding to
describe them explicitly; an effective coupling™ constant might reflect the net effect of direct and
also indirect interactions taking place at a lower scale; an effective stochastic* process is generally
required in the coarse-grained* description of a deterministic* flow, since many trajectories now
originate from the same “mesoscopic point”.

Element: any kind of sub-system chosen to be described as a structureless entity.



Emergence: refers to any collective property or behavior that cannot be predicted from the
properties and behavior of a single element, but involves essentially the interactions between the
elements. Acknowledged physical examples of emergence are irreversibility * and phase transitions®*.
One might suggest that a specific feature of complex systems is the feedback of emerging properties
onto the very features and potentialities of the elements, thus allowing the observation of non
generic* situations, e.g. marginally stable or even critical* situations, through inter-level coupling.

Entropy: this term unfortunately recovers a host of different notions, somehow related, but that
should be carefully distinguished. Here follows a brief definition of the main ones.

Historically the first notion is the thermodynamic entropy: in thermodynamics®, one assumes
the existence of a state function Sy, (U,V, N) depending on the volume V, the particle number
N (or Ni,...,N,) in case of a g-component system) and internal energy U; its derivatives yield
thermodynamic quantities, e.g. the temperature through (05, /0U)y,ny = 1/T. The free energy*
is defined as FF = U — T'Syy,.

A statistical notion has later been introduced by Boltzmann for isolated systems: the Boltzmann
entropy of the system is Sp = kplog {2 where 2 is the number of possible states of the system.
Assuming that states are equally accessible, this entropy coincide with the thermodynamic one.

This notion have been extended by Gibbs at a slightly higher scale (“mesoscopic” scale), at
which the state of the system is described by a continuous variable z; denoting by p(z) its dis-
tribution function, the statistical (Gibbs) entropy of the system is S¢ = — kg [ p(x)log p(x)dz.
At thermal equilibrium, p(z) is the Boltzmann distribution* and here again, S¢ coincide with the
thermodynamic entropy, up to an additive constant related to the coarse-graining* involved in the
definition of the mesoscopic state x and continuous distribution p(z).

In a totally different context, that of communication theory (now acknowledged as “information*
theory”), Shannon introduced a formally similar notion of entropy, also called information: consi-
dering an event with discrete outcomes ¢ = 1...n, with probability p;, the information gained
in observing the outcome 4 (or equivalently the missing information before observing the out-
come, the greater as the outcome is a “surprise”) is defined to be log(1/p;), yielding the expression
I = -3, pilogp; for the average information.

Entropy has been extended to dynamic processes into a notion of entropy rate h (Kolmogorov-
Sinai entropy) measuring the information generated at each time step: h = lim,,_,o, H,/n where
H, = I[p\™] and p(™ describes the possible n-step trajectories (more precisely, one has moreover
to introduce a partition of the phase space to get discrete trajectories, then let the size of the
partition cells tends to 0). A strictly positive entropy h > 0 is a hallmark of chaotic* behavior.

Finally, on still different grounds, Kolmogorov introduced the notion of algorithmic complexity of
a symbolic* sequence, namely the length of the shorter program that might generate this sequence.
For an ergodic symbolic evolution, it can be shown that almost all trajectories have the same
algorithmic complexity, coinciding with the above-mentionned entropy rate h.

Entropic effect: apparent force resulting from the statistical trend towards macroscopic states of
larger entropy (typically encountered in macromolecular conformations or colloidal mixtures).

Equilibrium: given a time scale and a level of description, i.e. a set of quantities thoroughly
describing the system state at this level, the system is said to be “in equilibrium” if these quantitites
do not vary in time over the considered time scale; they might vary on a larger scale; they might be
the overall consequence of many fluctuating or evolving processes at lower scales. As summarized



by Feynman, “equilibrium occurs when fast variables have relaxed and slow ones not yet begun to
evolve”.

Equipartition: at thermal equilibrium, any degree of freedom is endowed with the same energy
kpT/2 (the characteristic thermal energy) where T is the temperature* and kp the Boltzmann
constant.

Ergodicity: the operational definition of ergodicity is the ergodic property, namely the equality of
time and statistical averages®. It thus involves some weight (a “measure”) u in the phase space*,
coinciding with the frequency of visit in phase space regions A:

lim 1 /OT lA(xt)dt:/lA(z)dp(z) or lim % /()Té(xt)dt:/q)(z)du(z)

for any integrable function ®. The Birkhoff ergodic theorem gives conditions, in a measure-theoretic
framework (the “ergodic theory’) under which a given deterministic* dynamics satisfies the ergodic
property: a flow (¢;); in the phase space X satisfies the ergodic property with respect to a measure
w if it leaves p invariant and if any invariant subset (namely A such that ¢;(A) = A for any ¢) is
of zero or full measure (i.e. u(A) =0 or u(X — A) = 0); or equivalently if any invariant function F
(namely F o, = F for any t) is u-everywhere constant. This notion of ergodicity can be extended
to Markov* chains, where it simply requires that any two states of the system can be related by
some path in a finite time.

The ergodic hypothesis introduced by Boltzmann in the foundation of statistical mechanics
assumes that the microscopic dynamics of an isolated many-particle system is ergodic with respect
to the microcanonical distribution, giving the same weight to any state of the energy surface on
which the system is confined. Although intuitively supported by molecular chaos (i.e. the chaotic*
nature of molecular dynamics), it is rarely proven and in fact, it is presumably false in most
real cases, but with so slight violations that all happens as if it were satisfied, in particular for
computational purposes.

Estimation: beyond the current meaning of approximate evaluation of a given quantity, this term
and its more specific companion “estimator’ refer to relations expressing statistical averages, or
more generally parameters of a model, from the knowledge of a sample or a time series. The
estimator is thus a random* variable, converging to the desired value (unbiased estimator) or a
related value (biased estimator) as the sample size tends to infinity (see for instance the example
of correlation functions*).

Evolution: in physics, change of the system state in the course of time. In mathematics, the equa-
tion or set of equations (either deterministic* or stochastic*, and either discrete or continuous in
time, space or phase space*) describing such a change. It thus strongly differs from the biological
meaning encountered in the context of Darwinian theory, where it refers to the observable conse-
quences of natural selection at species level (possibly extended to virus, cells, immune systems, or
even molecular species).

Extensivity: a key property of macroscopic systems (in particular required in the framework of
thermodynamics*) according which basic observable quantities (volume, energy, entropy), known
as “extensive variables”, scale as the total number N of particles of the system. It amounts to
a joint property of additivity* (say, the energy of the system is the sum of the energies of its



sub-systems, whatever the partition is) and homogeneity* (say, the energy of two sub-systems of
identical composition are equal). Accordingly, by dividing the above quantities by N, one obtains
intensive variables (energy density, entropy density, specific volume) taking the same value in any
sub-system, on a par with other intensive variables as the temperature, the pression or the chemical
potential controlling the thermodynamic equilibrium state of the system. Extensivity implicitely
encloses a condition of local thermodynamic equilibrium (Dobrushin-Lanford-Ruelle conditions) and
requires that only short-range couplings* are present in the system, so as to neglect surface energies
and interfacial energies between the sub-systems. It allows to consider the thermodynamic limit
N — o0, N/V = cte and to ignore finite-size* fluctuations® and specific influence of the boundaries
(e.g. surface effects).

Field: a smooth spatio-temporal function representing a spatially extended and time-varying fea-
ture of a system considered as a continuous medium*. Let us cite some representative examples:
the temperature field in a piece of metal, the velocity field in a moving fluid, the electromagnetic
field. According to its number of components and the (constrained) way it is transformed upon a
change of reference frame, the field is a scalar, a vector, or a tensor field.

Finite-size effects: any discrepancy between the actually observed behavior and the behavior
expected in the limit as N — oo (where N is the number of particles in the system) or L — oo
(where L is the linear size of the system). In the context of phase transitions*, a finite size N < oo
smoothes out the singularity® characterizing the transition: strictly, there is no longer a phase
transition in a finite-size system. It is to be underlined that the limits N — oo and T' — T (where
T. is the temperature of the phase transition) do not commute, in agreement with the singular
behavior observed for N = oo as T' — T, while the behavior is regular in T' = T, for any finite N.

In the context of critical* phenomena, a finite size L < oo induces a cutoff of the critical
divergences™: the correlation length ¢ no longer diverges, since it is obviously bounded by L.
Scaling* are then only approximately satisfied, unless one explicitly accounts for the L-dependence:
this yields extended scaling relations, involving an extra scaling variable £/L but the same critical
exponents, known as finite-size scaling relations. Now the very study of the finite-size effects would
give access to the (infinite-size) critical exponents.

At molecular scales, a finite value of N is associated with statistical fluctuations®: the discre-
pancy with respect to the limiting law of large numbers (stating the equality between the sample
and statistical averages in the limit as N — oo) reflects in the still stochastic nature of all the
system properties, e.g. its density, its energy, or the fluxes in and out in case of diffusing or reacting
species.

Fluctuations: random, uncontrolled variations of the system state. More specifically, this notion
presupposes that some level of description has been chosen, in which part of the system composition
or evolution appears as a random phenomenon, typically due to the coupling of the observed
quantities with others degrees of freedom (external or at smaller scales) ignored at this level of
description. For instance, the number of molecules present in a given region of a gas fluctuates,
whereas it can be followed exactly at the level of molecular dynamics: here appears a subjective
difference between variations and fluctuations according to the considered setting. An ubiquitous
instance of fluctuating behavior is associated with thermal fluctuations, originating in the kinetic
energy kpT (where T is the absolute temperature* and kp the Boltzmann constant) stored in any
degree of freedom at thermal equilibrium.



Fluctuation-dissipation theorem: it states the equality of correlation functions™ (variance of
internal fluctuations*) at thermal equilibrium and response functions (describing the linear* res-
ponse of the system to a small excitation). Namely, a system at thermal equilibrium reacts in the
same way to external perturbations (a small applied field) and internal ones (fluctuations), and
the knowledge of its equilibrium statistics gives a full access to its dynamics in the linear regime.
This theorem fails in non equilibrium* systems (either in metastable* states or in steady states far
from equilibrium).

Fokker-Planck equation: PDE* describing the evolution of the distribution function P(X,t) of
a diffusion process (a Markov* process with no jumps) equivalent to a Langevin* equation for X (¢).
The simplest example is provided by the Fokker-Planck equation 0P/dt = Dﬁ.(PﬁU/ kT + ﬁP)
describing Brownian motion in a potential energy landscape U(X) at thermal equilibrium.

Fractal: self-similar structure (i.e. such that any magnified detail is similar to the whole pattern)
that escapes the Euclidean geometry in the following way: the “mass” M (R) contained in a region
of radius R satisfies the scaling law: M (kR) = k% M(R) where d; differs from the dimension
d of the space and takes in general a non integer value. If a is the resolution (minimal scale
of observation), self-similarity writes M (ka,kR) = k%M (a, R) or equivalently, introducing the
number N (a, R) of cells of linear size a required to cover a region of linear size R of the structure:
N(ka,kR) = N(a, R). It follows that N(ka, R) = k=% N(a, R) and M (ka, R) = k%% M(a, R). In
consequence, the mass (length for a curve, area for a surface) of a fractal structure is ill-defined
since it depends on the resolution. The relevant quantitative characteristic feature is now provided
by the exponent dy, called the fractal dimension. Self-similarity has to be checked before computing
the fractal dimension, otherwise dy might depend on the scale hence loose any relevant meaning.
Only mathematical structures are strictly fractal; in the real world, a fractal structure exhibits the
above scaling behavior only in a statistical sense, and in a limited window [R,in, Rimas] Of scales,
below and above which an Euclidean behavior is recovered.

Free energy: thermodynamic potential to be minimized at equilibrium at a fixed temperature.
It expresses as F' = U — T'S in thermodynamics™ (U being the internal energy, T' the temperature
and S the thermodynamic entropy) or as F' = —kgT log Z where Z is the partition function in
statistical mechanics*, at the level of microscopic or mesoscopic* configurations of the system. Its
expression reflects the balance between order induced by interactions and disorder due to thermal
motion, at work in any classical physical system and at the origin of thermal phase transitions®.

Function: far from the biological notion related to the achievement of some goal or adapted
mechanism essential to the preservation of life and reproduction, a function in physics is merely any
relationship between a given quantity and other ones taken as variables; for instance the pressure is
a function of volume and temperature in equilibrium thermodynamics. With some tolerance with
respect to the mathematical notion of function, the same quantity can be considered as a function
of different sets of variables.

Functional: any relationship in which the “variable” is not a point or a vector but a function
f € F. A delicate point in manipulating functionals is to properly prescribe the functional space
F and its topological structure.

Gaussian: a class of random variables and stochastic processes, distributed according to Gaussian
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statistics ]
P ) = e—(m—m)2/20'2
m,o’( ) \/ﬁ o
A Gaussian random variable is thus fully determined by its first two moments (mean (X) = m and
variance (X?2) —m? = ¢?). Any higher-order moment* (X™), n > 3, can be expressed as a function
M,,(m, o). The sum of independent Gaussian variables is still Gaussian.

Gradient: linear differential operator associating to a smooth scalar field A(7) a vector field ﬁA(F)
locally pointing in the direction of steepest descent, or equivalently orthogonal to the level surfaces
A(F) = cte. In Cartesian coordinates 77 = (z,y, z), its components are (0A/0x,0A/dy,0A/0z);
its invariant definition is dA = ﬁA(F).dF, from which follows its expression in any system of
coordinates. The gradient of a potential energy defines a force field.

The gradient method is the numerical implementation of an intuitive idea for finding the mini-
mum of an energy landscape, namely following its gradient, i.e. a steepest-descent path.

A gradient dynamics is a dynamical system* dr/dt = —ﬁV(F) ruled by the gradient of a
potential V (7); accordingly, the equilibrium points (fixed points) coincide with the extrema of V,
the stable ones corresponding to the minima of V.

Genericity: a generic condition is a condition that is not affected by a small change in the setting;
for instance, imposing the bounds 300 < T < 400 on the temperature is a generic condition whereas
the condition 7" = 100 is not. A “generic property” is obtained under generic conditions. A “generic
object” exhibits generic properties: one e.g. speaks of a generic bifurcation®. It is related to the
notions of robustness®, universality* and structural stability*. A quasi synonym is typical. In a
probabilistic framework, generic means with probability 1, or in a weaker sense, with a finite (i.e.
non vanishing) probability.

Homogeneity: statistical invariance® under spatial translations. In consequence, samples of iden-
tical sizes have the same statistical properties whatever their localizations in the system.

Hydrodynamic: beyond the reference to fluid dynamics theory, hydrodynamic description is a
shorthand to designate a continuous-medium™* approximation in which the system state is described
by a small number of spatio-temporal fields*, obtained after averaging over the velocities of the
system particles (or more generally averaging over kinetic features).

Information: beyond its current meaning, information is associated with a mathematical theory
of signal* transmission and communication channels, developed by Shannon. The central notion is
the average information gained through the observation of a discrete-state event or the reception
of a coded message: I = — ), , p;logp; involving the a priori knowledge we have on the event,
namely the probabilities p; of the possible outcomes i. The information I measures the uncertainty
about the outcome (it is rather a “missing” information), being maximal (equal to log N) when
all outcomes are equiprobable (p; = 1/N for all ¢) and vanishing in case of a deterministic event
(pi, = 1 for some (). Note that the log is usually a binary logarithm, so that I is measured in bits.

Instability: spatio-temporal analog of a bifurcation®, namely a qualitative change in the system
spatio-temporal organization when some control parameter® crosses a threshold. For instance, an
homogeneous state turns to develop patterns or traveling waves.
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Invariance: it means that the behavior (e.g. statistical properties) of the system is not modified un-
der some transformation acting on the system microscopic state. Invariance is thus closely related to
the notion of symmetry*; for instance, invariance under translations corresponds to homogeneity™,
invariance under rotations to isotropy, and invariance under time reversal to reversibility*.

Inverse problem: quasi synonym of reconstruction™; it refers to the issue of inferring the sources
and elementary causes from the observation of the system behavior, more often performed at a
larger scale and spoiled with the distortions inherent to the experimental setup (e.g. indirect,
filtered and averaged measurements).

Irreversibility: the existence of a time arrow. An irreversible behavior is any behavior that is
not invariant upon time reversal ¢ < —t. The puzzle of irreversibility is that Newtonian dynamics
(in particular molecular dynamics) is reversible, whereas the observed world is obviously not. The
most acknowledged explanation relies on the non-typical nature of the initial conditions in currently
observed phenomena (e.g. a drop of ink in water), making highly improbable the reverse evolution.

Kinetic theory: mainly developed for dilute gases, this theory deals with the distribution* func-
tions of positions and velocities. Its central piece is the Boltzmann equation describing the evolution
of one-particle distribution and involving a decorrelation approximation for closure* (writing the
two-particle distributions as a product of one-particle ones).

Langevin equation: stochastic* extension of an ODE* dx/dt = F(x) achieved by adding a
stochastic force f, (or noise* term) to F'(z). The evolution equation now writes dx/dt = F(z)+ fL.
As a result of the cancellations following from the fluctuating nature of fr, the random term fdt
roughly behaves as V/dt; it is generally supposed to be fully random (i.e. with no correlations*)
and moreover Gaussian®, hence fully determined by the knowledge of its first two moments*:

{(fr(t) =0, (fL(t)fr(s)) = o(t — 5)A(t)

One currently writes fr,(f) = A(t)n where 7 is a white noise*. Such a Langevin equation belongs
to the more general class of SDE*.

Originally, Langevin introduced this formalism in the context of Brownian motion; F' and
fi have then the same origin, namely numerous random* collisions of water molecules on the
Brownian particle. F' is the coherent contribution building up from these collisions, whereas f;,
is the remaining fluctuating part. Nevertheless, their common origin reflects in the fluctuation-
dissipation theorem*, relating the amplitude of F' and the variance of fr,.

Lattice: discrete counterpart of the real space; it might result from an arbitrary discretization of
the continuous space, or reflect some physical reality (crystal lattices, spin lattices).

Limit cycle: periodic solution of a dynamical system; if it is stable, it describes an oscillating
asymptotic behavior.

Linear: a linear dependence is a mere proportionality. It thus describes only additive® behaviors,
with no collective features. Linear approxzimation amounts to replace a function™ or a functional*
by its linearized* counterpart. Linear response theory describes the system response to an external
field under the assumption that this response is linear with respect to the field, hence thoroughly
characterized by a response coefficient (or a response function R(w) in case of an excitation at
frequency w).
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Linearization: approximation of a function® or a functional* by a linear dependence, correspon-
ding to the first term in its Taylor expansion: f(z) =~ f(xq) + f'(x0)(xz — zo).

Lyapunov exponent: time-average rate of dynamic amplification of infinitesimal errors and dis-
turbances on the system state, in dynamical systems theory. A positive value v > 0 reflects sen-
sitivity to initial conditions and an exponential growth of the separation between two trajectories
initially arbitrarily close, thus providing a hallmark of deterministic chaos*. More explicitely, let
0x(t) be the distance at time ¢ between two trajectories initially separated by dx(0); then

1
v = Jlim &%ior)n% 7 log |0x(t)/62(0)]

It is actually a measure-theoretic quantity, introduced in the framework of ergodic theory and
associated with an invariant ergodic* measure of the evolution; it is shown to be identical for all
the generic* trajectories with respect to this measure.

Macroscopic: (context-dependent) scale of observation; also the highest level in a multi-scale
description. It is typically the experimentally accessible level, hence the level of phenomenological
models.

Map: discrete-time evolution z,+1 = f(z,) where z,, is the system state at time ¢,, (¢, = nAt,
n-th generation or n-th round in case of varying time step).

Markovian: system whose (stochastic*) evolution is fully determined by the transition probabili-
ties between two successive times, with no further memory* of the past evolution.

Maxwell distribution: velocity distribution of a particle of mass m at thermal equilibrium

P(U) — m o/ e—mvz/QkBT
27TkBT

Mean-field: approximation in which a local hence fluctuating™ quantity is replaced by its average*
value over the whole system. It has been originally developed for spin lattices*: each spin i expe-
riences a local field h; = h(m;) where m; is the local magnetization generated by the nearest
neighbors of i divided by the number of nearest neighbors, i.e. a magnetization per spin. The
approximation is to replace m; by its average value m over the whole lattice (i.e. an average over
i), thus replacing h; by a mean-field h(m). Averaging over the resulting orientations of the spins
yields a self-consistent® equation for m.

Memory: extended time dependence in the sense that the knowledge of the system state over a
whole time interval (or even the knowledge of its whole history) is required to determine its future
evolution. Related issues are on one hand dynamical systems* with delays, on the other hand aging
and hysteresis, e.g. in disordered systems.

Mesoscopic: intermediary scales between microscopic* and macroscopic* levels. It is typically
introduced through coarse-grainings* and involves effective* parameters.

Metastability: transient phenomenon in which a system is trapped in some state, typically a local
minimum of its free energy* or more generally in some phase space region where the dynamics is
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highly slowed down. Metastable states nevertheless differ from equilibrium* states, hence the system
will ultimately relax further and equilibrium relations and properties (e.g. fluctuation-dissipation
theorem*) might not apply.

Microscopic: (context-dependent) elementary scale of the system; also the lowest level in a multi-
scale description. It is typically the level where a theory describing the phenomenon in terms of
first principles is available.

Moments: statistical averages (X™) of a random variable X. Irreducible moments (also called
cumulants) are defined as the difference between the actual moments and those, denoted M,,(m, o)
of the Gaussian* variable with the same mean m = (X) and the same variance 02 = (X?) — m?,
ie. (X™)ipr = (X™) — My, (m, o). These irreducible moments quantify the distance to the Gaussian
distribution ((X™);. = 0 whatever n > 3 would ensure that X is Gaussian). As can be checked
directly, the n-th derivatives in u = 0 of the characteristic function p(u) = (e?*X) and of the

generating function G(u) = log(e*X) are respectively equal to i"(X™) and (X™);.,..

Multifractality: extension of the fractal* geometry to the case of intermingled, superimposed
fractal structures. In the most current cases, it refers to the singular structure of a measure or a
field A(7), exhibiting in any point a singularity characterized by an exponent «(7), in such a way
that the level subsets {7, a(7) = o} are fractal sets of dimension f(«); this function o« — f(«) is
called the dimension spectrum of the multifractal structure.

Noise: any influence chosen to be described in an effective* manner as a random contribution,
because it involves (external or lower-scale) degrees of freedom out of reach or chosen not to be
described explicitely. A Gaussian noise uncorrelated in time is called a white noise. In general, a
noise term is not structureless, which reflects in nontrivial distribution and correlation™ function.

Non equilibrium: one should distinguish two instances for a system to be in “non equilibrium”.
It can be out of equilibrium, i.e. not yet at equilibrium but in the process of relaxing™ towards a

state of equilibrium. Associated themes are slow dynamics, metastability*, linear response theory*,

self-assembly, and current examples are provided by glasses, protein folding or foams.

It can be far from equilibrium, driven by an external field, or by fluxes in and out at the
boundaries, in a steady state with nonvanishing fluxes of matter, energy or charge crossing it.
Associated themes are dissipative® structures and self-organization®, and current examples are
provided by Turing structures, chemical waves or the functioning of a molecular motor.

The frontier between these two notions of non equilibrium is nevertheless not so clear-cut:
it refers to the delicate notion of equilibrium*, which is highly dependent of the context and
observation scales.

Non linearity: any discrepancy from mere proportionality f(x) = ax in an evolution law dx/dt =
f(z) or in the response f(x) to an excitation x. Typical non linearities are associated with a step
function f (existence of a threshold), with a polynomial f(z) = 2™, an exponential f(z) = e®*, or
a sigmoidal shape (accounting for both a threshold and a saturation).

Order parameter: any macroscopic observable that reflects quantitatively and if possible also
qualitatively (passing from a vanishing to non-vanishing values) the organization or dynamic regime
of the system, e.g. the density in a fluid, the magnetization in a magnetic material, the average
molecular orientation in a liquid crystal or the radius of gyration of a macromolecule. It is the
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quantity on which a phase transition™ or a conformational® transition is best evidenced.

In Landau theory (an example of mean-field* theory), the free energy* is directly assumed to
be a polynomial function of the order parameter, devised according to the symmetry* property of
the system.

ODE: acronym of Ordinary Differential Equation, i.e. a differential equation involving a single
variable, say the time ¢, and a regular differential operator D = > a;(t) d'/dt" where a,(t) > 0,
for which Cauchy conditions of existence and uniqueness of the solution (given the initial condition,
i.e. the initial value of the solution and its n — 1 first derivatives) are satisfied. Among ODE, dyna-
mical systems are first-order equations dx/dt = F(x). Defining 21 = z, ..., ¥, = d"~ta/dt" "1, it
is always possible to transform a one-dimensional ODE of order n into a n-dimensional dynamical
system.

Path integral: extension of the finite-dimensional integration (e.g. in R™) to the case when the
integration variable is a function f(x) € F (another name might have been “functional integration”).
The central, and delicate, part is to define the measure in the functional space F (in plain words,
to define the infinitesimal volume element in F playing the role of d"z in R™). A well-behaved
instance is the case of the Wiener measure over the set of trajectories 7(¢) of a Wiener process (the
mathematical model for Brownian motion) taking advantage of the statistical independence and
Gaussian* statistics of the increments 7(t + dt) — 7(t).

PDE: acronym of Partial Differential Equation, i.e. a differential for a multivariate function, most
often a spatio-temporal field*; it thus involves partial derivatives. Boundary conditions* play a key
role and should supplement the PDE in order to make any statement about the possible solution(s).
Fourier or Laplace transformations can be exploited to turn some or all derivatives into algebraic
expressions (e.g. /0t — iw upon a Fourier transformation over time).

Partition function: normalization factor Z(T) = Y e~V(X)/k5T inyolved in the Boltzmann
distribution* of a system (of state X) at thermal equilibrium at temperature* T. It actually pro-
vides a generating function whose derivatives give access to several thermodynamic* quantities. In
particular, —kpT log Z is the free energy™* of the system.

Percolation: class of spatially discrete models in which the local state takes only two values 0 or 1.
Moreover, the rule in constructing percolation lattices is that the cell states are independent (i.e. no
coupling between the cells). Different models can be devised, according to the lattice geometry and
to whether the elementary units are lattice cells (site percolation) or the links between neighboring
sites (bond parcolation). The key feature of these models is the existence of a second-order transition
for a given value p. of the probability p of cell occupancy (the percolation threshold) below which
only finite clusters (connected sets of occupied neighboring sites) are present whereas connected
paths of occupied sites crossing the whole system are present for p > p.. Various scaling™ laws and
universal* features can be evidenced at the percolation threshold.

Perturbation: slight modification of an equation or evolution law ruling the structure or dynamic
regime of a system (or even, if explicitely mentioned, slight applied variation of the system state,
e.g. a “perturbation of initial conditions”). Perturbation approaches take advantage of the small
amplitude of the imposed variation to determine the change in the system behavior as an expansion
around the unperturbed solution (it reduces to a linearization* at lowest order).
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Phase diagram: partition of the space of control parameters™ into regions associated with different
stable equilibrium states (or “phases”).

Phase portrait: sketch of the flow (ensemble of all trajectories) of a dynamical system™ in its
phase space* (in practice useful only in d = 2).

Phase space: the space of possible states of the system under investigation; this space is partly
arbitrary since it depends on the description scales and on the amount of details that are retained
in the modeling.

Phase transition: qualitative change of the overall organization and statistical properties of a
system observed when varying a control parameter* (e.g. the temperature*, in case of thermal
transitions originating in a change in the balance between the ordering achieved by interactions
and disorder generated by thermal motions). It is strictly well-defined only in the infinite-size limit
N — oo (where N is the number of particles in the system) where it reflects in a singularity™* of the
free energy* at the transition value of the control parameter. The transition is said to be of first
order if the order parameter® exhibits a finite jump at the transition, of second order if it remains
continuous with a singularity in its derivatives. Second-order transitions are a typical instance of
critical* phenomena.

Power law: functional dependence of the form Y (x) ~ 2~ (corresponding to a linear dependence
in a log-log plot). The key point is that Y thus varies over an arbitrarily large range, with no
characteristic scale (compared for instance to an exponential dependence Y (z) ~ e~%/% or an
oscillating behavior Y (x) ~ cos(2wz/a) exhibiting a finite characteristic scale a). One speaks of
anomalous power law if the exponent « differs from the value following from plain dimensional
analysis (e.g. a fractal* dimension or an anomalous diffusion* law R?(t) ~ t7 with v # 1). Power
laws are the hallmark of critical® phenomena, exhibiting long-range correlations®, fluctuations*
at all scales, abnormal response properties (a finite perturbation might generate consequences
at arbitrarily large scales). Power-law distributions are a generic* alternative to exponential and
Gaussian* distributions. They exhibit “long tails”, giving a non negligible probability to large events.
In case of a small exponent o < 3, their variance is infinite, which means among other features
that rare large events might dominate the observed behavior.

Quasi-static: approximation according which an evolution is described as a succession of equili-
brium* states. It amounts to decouple the fast relaxation* towards a local equilibrium and a slow
evolution of this equilibrium state.

Random: involving a part of chance, e.g. the possibility of several outcomes for the same input. A
random event is thus described in a probabilistic framework. Randomness does not preclude some
predictability, e.g. if some outcome is more probable than the other ones, or if successive outcomes
are correlated*. Unfortunately, “random” is sometimes used with the implicit additional meaning
of “with a uniform probability” and “uncorrelated in time”, that should rather be stated explicitely.

Random walk: stochastic* motion defined as a sequence of statistically independent and iden-
tically distributed discrete steps. It provides a mesoscopic* model of diffusion*: as soon as the
variance a? of these steps and their average duration 7 are finite, the mean-square displacement
R2(t) = (|7(t) — 7(0)|?) obeys the normal diffusion law R?(t) ~ Dt with D = a*/27. Most often,
this model is implemented on lattices. Numerous extensions (correlated, self-avoiding, biased, or
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confined random walks) can also be considered.

Range: speaking of interactions, it is the distance over which the interaction is noticeable, e.g.
the distance a for an interaction potential V(r) ~ e~"/% or V(r) having a minimum in r = a.
A power-law* dependence V(r) ~ r~“ is said to be long-range (in fact infinite-range). Similarly,
the range of correlations™ is the correlation length £, and one speaks of long-range correlations if
& ~ oo.

Reconstruction: estimation® of a model and its parameters from experimental data. In general,
additional constraints should be introduced to discriminate between several possible solutions.

Relaxation: evolution towards equilibrium, typically after an excitation or starting from non
equilibrium initial conditions.

Renormalization: different meanings are associated with this term, corresponding to very dif-
ferent status for the associated renormalization procedure.

A renormalized quantity can be plainly a rescaled* quantity (normalized, dimensionless or put
to the scale of the considered sample).

It can be an effective* quantity accounting in an integrated way or underlying mechanisms of
contributions (e.g. the renormalized mass of a body moving in a fluid, accounting for hydrodynamic
effects).

Renormalization is also a mathematical technique developed first in celestial mechanics then
mainly in quantum electrodynamics to regularize divergent expansions and perturbation® series.
It proceeds by means of resummation, or by introducing a cutoff on the space, time and energy
scales, then accounting in an effective way of the host of contributions at smaller space-time scales
so as to take advantage from physical cancellation of mathematical divergences™.

Finally, renormalization also refers to a multi-scale procedure allowing to classify critical* be-
haviors, to determine quantitatively critical exponents and to handle associated divergences*. A
renormalization transformation consists in joint coarse-grainings* and rescalings®, thus relating two
models describing the same phenomenon at different scales; it moreover puts forward their self-
similar properties and associated scaling laws, while eliminating specific small-scale details having
no consequences on the asymptotic, large-scale behavior. Iteration of this procedure generates a
flow in the space of models, whose fixed points correspond either to trivial, either to critical situa-
tions (according to their stability). It can be shown that the linear* analysis of the renormalization
transformation around a critical fixed point gives access to the critical exponents. This analysis
allows to split the space into universality™ classes, each associated to the basin of attraction of a
critical fixed point. The set of renormalization transformations has a semi-group structure with
respect to the rescaling factor (or plainly with respect to iteration) and one often speaks of the
renormalization group.

Rescaling: multiplication by a given factor of quantities of a given type (e.g. “rescaling of lengths”)
to get a dimensionless quantity, or to evidence a scaling® behavior (through the collapse of rescaled
data from different systems on a master curve). Joint rescalings of space, time and phase space
variables are involved in renormalization* methods (following a coarse-graining*) to preserve the
size of elementary units composing the system and evidence self-similarity as a fixed-point property.

Reversibility: invariance of dynamical equations with respect to time reversal ¢t < —t. For ins-
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tance, Newtonian dynamics is reversible whereas the diffusion® equation is irreversible*.

Robustness: with respect to a certain type of perturbation®; it means that the observable behavior
is qualitatively unchanged under the influence of such a perturbation. Different levels of robustness
are to be distinguished according to the nature of the perturbation: robustness with respect to
a change in the initial conditions (i.e. stability), to a modification of the dynamic equations (i.e.
structural stability) or to a modification of the model itself (i.e. universality).

Scale invariance: extended notion of self-similarity; changing the system size N by a factor of &k
changes accordingly the value of the order parameter X (or other observables) by a factor of k*x.
This can be expressed as a scaling law: X (kN) ~ k** X(N). More generally, scale invariance
implies that a dependence between two observables X and Y writes

Y(N,X) ~ k™ F(k*XX,kN) or  Y(N,X)~N® f(NXX)

This notion can be generalized to any subset of variables, including or not the size N. The notion
is specially interesting in case of “anomalous” scale invariance, namely the case when the exponents
cannot be determined by a plain dimensional analysis, but build up from a highly correlated internal
organization of the system, as in critical* phenomena.

Scaling: a way of investigating natural systems, focusing on their multiscale architecture, scale-
invariant* properties and the self-similar relations that might exist between different levels. The
central role is given to scaling laws, to scaling theories assuming such scaling laws as a basic fact,
and to renormalization* methods. To summarize in plain words, scaling approaches amount to
replace a “physics of the amplitudes”, aiming at computing the system behavior at a given scale,
with a “physics of the exponents”, centered on the determination of scaling exponents.

Second Principle: one of the basic principles founding classical thermodynamics*. One of its nu-
merous formulations is that the (thermodynamic) entropy* of an isolated system cannot decrease,
even transiently. In consequence, any entropy increase, even local and transient, requires an energy
exchange with the external world. Microscopic investigations in the framework of statistical mecha-
nics have shown, at least in equilibrium or near-equilibrium situations, that this Second Principle
does not state an impossibility (it is currently violated in a system of, say, three molecules) but an
improbability due to the large size N — oo of the systems investigated in classical thermodynamics
(the same explanation is invoked for the emergence of irreversibility™).

Self-consistent: refers to a general technique used in systems with feedbacks, namely in which
some small-scale feature X (a parameter, a field) has consequences at higher levels that exert a
retro-action on this very feature. An example is provided by mean-field* theory encountered for
instance in spin lattices: X is here the average magnetization, generating a mean magnetic field
h(X) that influences back the spin orientations, hence also the magnetization and its average X.
Writing the consistency of this feedback loop yields an implicit equation for the unknown value
X*, having the form of a fixed-point equation f(X*) = X*.

Another issue is then to solve this equation. A systematic technique is to proceed by iterations:
Xn+1 = f(X,), provided the sequence (X,,), can be shown to converge to X* (in particular, it
requires an initial condition X, enough close to X*).

Self-organization: spontaneous appearance of spatial, temporal or spatio-temporal structures

18



in a system driven far from equilibrium* by injection of matter or energy. One also speaks of
“dissipative* structures”’ to underline that dissipation of energy occurs to pay the entropic* cost of
the local increase of order.

Self-organized criticality: systems slowly driven out of equilibrium by a continuous injection of
matter or energy might either stabilize in a steady state™ or, in case when some threshold controls
the outputs, accumulate this energy or matter up to a situation of marginal stability where it
is released in a random™* way, i.e. at random times and during events of random amplitude and
duration. More quantitatively, the distributions of the event size, duration and interval typically
exhibit a power-law* dependence, reflecting the absence of characteristic* size or time, hence a
critical* character. Accordingly, strong long-range correlations* are present in the structure and
dynamics of these systems, and one speaks of self-organized criticality (“self-organized” since the
system spontaneous reaches such a regime, without the need of monitoring from outside some
control parameter*). Typical examples are sand or snow piles and their avalanches, earthquakes
and landslides, or the inflation of lungs during breathing.

Related situations, involving the same inter-level feedback loops, are those where a dynamic self-
tuning of the internal parameters maintains the system in a non generic* state, e.g. a bifurcation*
point or a critical* transition point (situations sometimes encountered under the names of “thre-
shold stabilization” or “edge of chaos”).

Signal: in physics (in contrast to biology), this notion is not endowed with any semantic contents;
a signal is simply a time series recorded by an experimental setup.

Singularity: any discrepancy with respect to a smooth behavior, for instance a jump in an other-
wise continuous function, a pole in an analytic function, a hole in an otherwise connected region,
a cusp on an otherwise differentiable manifold, the divergence® of a series. Strictly speaking, the
singularity is a feature of the mathematical model and not of the real system, in which physi-
cal cutoffs or finite-size effects* always occur at some point and smooth out the singularity, but
it nevertheless reflects some actual feature: it is precisely one of the merit of the mathematical
formalization to accentuate physical features in such a clear-cut manner.

Spectrum: spectrum and accordingly spectral analyses unfortunately refer to a host of different
notions, and is to be understood according to the context.

In experimental studies, numerous “spectroscopy’ techniques are currently implemented: spec-
trum then refers to electromagnetic waves emitted or absorbed by the molecules of the investigated
sample, thus providing informations on their nature, conformation, interactions, motions and envi-
ronment. Recently developed techniques of fluorescence spectroscopy now supplement more classical
analyses recording e.g. the emission spectra after an excitation (emission of a photon during the
relaxation of an excited energy level) or absorption spectra (selective absorption of photons by
degrees of freedom, e.g. vibrational, of the system). Techniques are classified according to the
frequency range, i.e. energy range of the observed photons, thus probing different features, sub-
structures and degrees of freedom. Spectroscopic studies are the only experimental access to distant
objects as stars or interstellars gases.

In signal analysis, one computes power spectra, namely the energy S(w) contained in the com-
ponent at frequency w. According to the Wiener-Khinchine theorem, S(w) is the Fourier transform
of the auto-correlation* function of the signal.

In any problem whose mathematical formulation involves a linear operator A, the spectrum
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refers to the set of complex numbers A such that A — Al is singular, including in particular
eigenvalues (for which the kernel of A — A1 is not reduced to {0}).

In quantum mechanics, a spectrum is the sequence of energy levels (discrete in its lowest part)
of a system. It corresponds to the spectrum of its Hamiltonian, thus matching the mathematical
definition of the spectrum of a linear operator. One also recovers the experimental notion of emission
or absorption spectrum, since the photons absorbed by the system or emitted after an excitation are
associated with a transition between two energy levels, hence have a frequency directly proportional
(up to the Planck constant h) to the inter-level spacing of the energy spectrum.

Finally, the term spectrum might be used almost in its current meaning of “range”, “sampling”,
“distribution”. For instance, in proteomic analyses, the mass spectrum of a protein mixture is the
sequence of masses of the different molecules present in the sample, allowing by a one-to-one
relation to identify its composition.

Stability: feature of an equilibrium™* state, according which any small perturbation of this state
relaxes* to 0 (exponentially fast). In case of a dynamical system dz/dt = V (z) with an equilibrium
state in z = 0, i.e. V(0) = 0, the stability is determined by the sign of the real part of the
eigenvalues of the Jacobian matrix DV (0) (all should be strictly negative).

Statistical mechanics: microscopic theory of many-body systems aiming at determining their
macroscopic* properties from first principles (thermal motion and molecular interactions). This
goal is achieved provided one restricts to statistical properties. The central piece is the ergodic*
hypothesis and ensuing Boltzmann* distribution, allowing to circumvent a molecular dynamics
study (by contrast to the kinetic* theory) and to perform the whole analysis in the configuration
space. It successes range from providing a microscopic support to thermodynamics® up to explai-
ning critical* phenomena, when supplemented with renormalization* methods. Within a linear*
framework (linear response theory), it has been extended to near-equilibrium situations. Work is
still in progress for far from equilibrium systems (a direction is to use notions and tools from
dynamical systems* theory and chaotic* dynamics).

Steady state: stationary state differing from an equilibrium state in that fluxes of matter, charge
or energy cross the system.

Stochastic: a synonym of random*, more specifically used for time evolution involving some ran-
domness in its updating rules (e.g. one speaks of “random variables” and “stochastic processes”).
The associated evolution law is given in a probabilistic framework. Stochastic convergence, stochas-
tic calculus and stochastic integration refer to the extension to stochastic processes, developed in
a measure-theoretic framework, of usual notions of convergence of a sequence, differential calculus
and integration theory.

Structural stability: a dynamical system is said to be structurally stable when its asymptotic*
features remain qualitatively unchanged upon a small perturbation™ of its evolution* law. This
property will depend on the space in which perturbations are chosen and on its topology (giving a
quantitative meaning to the smallness of the perturbations).

Sub-additivity: property of a function according which f(z +y) < f(x) + f(y).- It ensures the
existence of a finite limit: limsup,_, . f(z)/z < co.

Symbolic dynamics: it is possible to reduce a discrete-time dynamical system™ to a symbolic
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formulation by introducing a suitable finite partition (A, )w=1.. & of the phase space*: the system
state x; at time ¢ is coded by the label w; is z; € A,,. Trajectories are thus represented by
symbolic sequences (w;);>0. The point is that for generic* chaotic* dynamics, this coding involves
no loss of information: knowing the sequence (w;);>¢ thoroughly determines z¢, hence the ensuing
trajectory. Moreover, a quantitative estimation of chaotic* features, e.g. Kolmogorov-Sinai entropy,
can be done on this symbolic representation of the dynamics. More generally, one merit of such a
symbolic representation is to put forward universal features of the dynamics.

Symmetry: invariance * of the system upon some transformation (for instance translations, ro-
tations or time-reversal). A symmetry might be discrete (a periodic structure is invariant upon
translations of length equal to an integer multiple of the period) or continuous. It might be exact
or only statistical, i.e. satisfied by the average properties or the distribution functions.

Symmetry breaking is a situation where the observed behavior is less symmetrical than the laws
and equations ruling it: let us cite for instance the spontaneous appearance of a periodic pattern
while initial composition and mechanisms at work in the system are homogeneous.

Temperature: intensive variable defined in the framework of thermodynamics* (zeroth law): two
bodies in equilibrium* (in contact each with the other, and after a time enough long so that no
observable change in the bodies state can be detected macroscopically) have the same temperature.
It can be formally defined once assumed the existence of thermodynamic entropy* S: denoting U
the internal energy, (05/0U)y,y = 1/T. As such, it plays a central role in heat and work exchanges
(Carnot cycle, thermostats, Second Principle, heat equation and the Fourier law, to cite but a few
main themes of classical thermodynamics). It has been given a microscopic meaning and role with
the development of statistical mechanics* and kinetic theory*. At equilibrium*, the average* kinetic
energy of a particle is 3kpT/2 where kg is the Boltzmann constant and its velocity distribution is

the Maxwell distribution 3/2
m 2
P — —mv*/2kpT
(V) <2kaT> ‘

More generally, the equipartition theorem ensures that any degree of freedom is endowed with the
same energy kpT/2 (the characteristic thermal energy) at thermal equilibrium. The temperature
is also involved in the Boltzmann distribution, describing the relative weight in the configuration
space of the system, reflecting quantitatively the balance between thermal and potential energies:

1
PT(X) - = e*U(X)/kBT

The inverse temperature 3 = 1/kpT (the inverse of an energy) is frequently used instead of T'.

Thermodynamic: refers to macroscopic and phenomenological variables, relations or arguments,
as those involved in classical thermodynamics. The four principles founding thermodynamics are
the zeroth-principle (equality of equilibrium temperatures of two bodies in contact), first principle
(energy conservation), second principle (increase of the entropy of an isolated system) and third
principle (vanishing of the thermodynamic entropy extrapolated at zero temperature). Concretely,
one assumes the existence of a state function S(U,V, N) depending on the volume V', the par-
ticle number N and internal energy U, whose derivatives yield thermodynamic quantities, e.g. the
temperature through (0S5, /0U )y, ny = 1/T. Advances in statistical mechanics* provided a micro-
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scopic basis to thermodynamics of equilibrium™* states and linear* reponse theory; an analogous
microscopic support for thermodynamics of irreversible processes is still lacking.

Universality: in the context of critical phenomena*, universality refers to the fact that seemingly
very different systems (e.g. a fluid and its liquid-vapor phase transition*, or a magnetic material and
its ferromagnetic transition) exhibit the same critical behavior, in particular their critical exponents
are exactly equal, thus defining universality classes of critical phenomena. Renormalization* studies
have shown that universality classes of thermal transitions were prescribed by only two geometric
parameters: the space dimension d and the number n of components of the order parameter® of
the transition. In more general instances, universality classes can be determined as the basin of
attraction of a critical fixed point under the action of a suitable renormalization group.

Variational methods: formulation of a problem in such a way that its solution X™* appears
to minimize some functional* F(X) (possibly under additional constraints): F(X*) = 0. This
endows the considered problem with a geometric interpretation: a landscape F(X) whose relief
leads to the solution X* when following valleys and steepest-descent paths.

Wavelets: a method of signal processing providing a local and multi-scale generalization of Fourier
or Laplace transformations. By performing a convolution of the signal with a localized kernel (a
“wavelet” w(t) of bounded support), rescaled by a factor b and translated at time t(, one obtains
the contribution S(b,ty) of the wavelet at scale b and time ¢y to the signal. The wavelet might be
chosen to resemble inherent patterns of the signal, in order to minimize the number of relevant
contributions. The resulting decomposition can be seen as the “music score” corresponding to the
original signal: a sequence of notes, i.e. prescribed frequencies, played at prescribed instants, over
a prescribed duration.

White noise: Gaussian® noise* uncorrelated in time. It is fully determined by its first two

moments™*:
(n(t)) =0, (n(t)n(s)) =6(t —s)
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