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Abstract

The problem of identifying differential activity such as in gene expression is a major defeat in biostatistics and bioinformatics. Equally
important, however much less frequently studied, is the question of similar activity from one biological condition to another. The fold-
change, or ratio, is usually considered a relevant criterion for stating difference and similarity between measurements. Importantly, no
statistical method for concomitant evaluation of similarity and distinctness currently exists for biological applications. Modern micro-
array, digital PCR (dPCR), and Next-Generation Sequencing (NGS) technologies frequently provide a means of coefficient of variation
estimation for individual measurements. Using fold-change, and by making the assumption that measurements are normally distributed
with known variances, we designed a novel statistical test that allows us to detect concomitantly, thus using the same formalism, differ-
entially and similarly expressed genes (http://cds.ihes.fr). Given two sets of gene measurements in different biological conditions, the
probabilities of making type I and type II errors in stating that a gene is differentially or similarly expressed from one condition to
the other can be calculated. Furthermore, a confidence interval for the fold-change can be delineated. Finally, we demonstrate that
the assumption of normality can be relaxed to consider arbitrary distributions numerically. The Concomitant evaluation of Distinctness
and Similarity (CDS) statistical test correctly estimates similarities and differences between measurements of gene expression. The imple-
mentation, being time and memory efficient, allows the use of the CDS test in high-throughput data analysis such as microarray, dPCR,
and NGS experiments. Importantly, the CDS test can be applied to the comparison of single measurements (N = 1) provided the var-
iance (or coefficient of variation) of the signals is known, making CDS a valuable tool also in biomedical analysis where typically a single
measurement per subject is available.

Keywords: Statistical test; Fold-change; Distinctness; Similarity; Gene expression; Single measurement; Patient study
Introduction

The problem of identifying differentially expressed genes
has been widely studied [1]. Considering two different bio-
logical conditions, one aims to decide which genes are dif-
ferentially expressed from one biological condition to the
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other, each composed of one or several gene expression
measurements. RNA quantification, which is being used
in transcriptome analysis here will serve as an instance rep-
resentative of any type of high-throughput quantification
of cellular components such as DNA, RNA, protein, or
metabolites, as the underlying problem of identifying sta-
tistically significant changes remains similar independent
of the nature of the experiment. Therefore, all of what fol-
lows similarly applies to proteome or other measurements.
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Figure 1 Graphical representation of the problematic and encountered

scenarios

A. Expression signals of a single gene in two different biological
conditions, with normal distributions having the parameters x1 and x2

(mean values) and r1 and r2 (variances). The fold-change criteria defining
the difference or similarly is represented with a conic section defined by
parameter h. The problem is to determine the value of (x1,x2) having the
values of estimators ð bx1 ; bx2Þ. B. Potential scenario for the statistical test for
differential expression and low variability. C. Potential scenario of having
low variability and similarly expressed genes. D. Potential scenario for the
statistical test for no statistical significance and high variabilities.
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For the sake of simplicity, we will only continue to discuss
the case of gene expression investigations. First attempts to
tackle the question of differential quantities did not involve
statistics and genes having expression levels differing by
more than an arbitrary cut-off fold-change value were con-
sidered to be differentially expressed [2,3]. Although the
identification of statistically differentially expressed genes
has been widely covered [1], the identification of similarly
expressed genes has been far less studied. This is surprising,
for several reasons. (i) Statistical measures for similarity
are an important tool in establishing reproducibility and
thus track technical and biological variation. (ii) In relative
quantification, such as microarray experiments, where no
absolute numbers of, e.g., transcripts is established, a defin-
ing procedure for what is considered similar, or unchanged,
expression would in turn also provide a sound basis for
defining what is to be considered different. (iii) Finally,
especially in the case of biomedical studies on human sub-
jects and patients, the question of genes with conserved
expression across different biological conditions is of simi-
lar importance to the one of change [4].

When reasoning in a statistical manner, assumptions can
generally be made that gene expression measurements are
normally distributed. The simplest statistical method for
detecting differentially expressed genes is the two-sample
t-test [5]. The two-sample t-test allows us to formulate
statements concerning the difference between the means
of two normally distributed variables with the assumption
that the variances are unknown. On the other hand, the
two-sample z-test allows us to formulate statements con-
cerning the difference between the means of two normally
distributed variables with the assumption that the vari-
ances are known. However as this assumption can only
be made with a large sample of independent records or with
additional information about the variances, the two-sam-
ple t-test is more often used in the identification of differen-
tially expressed genes. Different variants of the two-sample
t-test can be classified in two groups: (i) methods such as
the two-sample t-test with relative thresholds [6] carrying
out local adjustments to account for biologically meaning-
ful differences, and the Significance Analysis of Micro-
arrays method [7] that uses a gene-specific correction; and
(ii) jointly global and local methods such as the B-statistic
[8] and the regularized two-sample t-test [9]. In addition to
simple fold-change or t-test-like methods, another
approach is to consider the statistical properties of the ratio
of means of the two biological conditions sampled. Based
on the previous work [10], Chapman [11] proposed for
the first time a statistical test in this direction. Recent meth-
ods (e.g., [12,13]) extended this approach by considering
confidence intervals for the statistic of the ratio of the
two means used in hypothesis testing. When comparing dif-
ferent methods for differential expression detection, among
the desirable characteristics that a method should have are
reproducibility and control of type I and type II errors. Not
all of the existing methods necessarily combine both char-
acteristics [14]. Another way of comparing different meth-
ods is to measure their false positive and false negative
rates [15].

Assume two sets of gene expression measurements
obtained from two different biological conditions (Figure 1).
By initially making the assumptions that the gene measure-
ments are normally distributed with known variances, we
represent the fold-change as the tangent of h in Figure 1A.
Having two biological conditions we can expect different
scenarios. If both biological conditions have a small vari-
ance within biological replicates and then show differential
expression, then methods should detect them as signifi-
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cantly statistically differentially expressed (Figure 1B). Ide-
ally, the same metric would provide for detecting similar
expression across biological conditions (Figure 1C) when
they present small variability. However, when variability
is high, methods should indicate no statistical significance
neither for similarity nor for difference (Figure 1D).

We describe here a statistical test, CDS for Concomitant
identification of Distinctness and Similarity, which allows:
(i) obtaining statements on the fold-change rather than on
the difference between the mean expression levels; (ii) pro-
viding an estimate of the variance together with the signal;
(iii) obtaining bounds on the fold-change, both in case of
differentially expressed genes and similarly expressed genes.
CDS can thereby be used for single measurements of bio-
logical conditions (N = 1), provided an estimate of the var-
iance is available.
Statistical approach

Test formulation

Let X be a random variable following the given distribution
Dx with unknown parameter x, and let x̂ be an estimator of
the parameter x from a sample of independent observa-
tions of X. Let H0 be a null hypothesis and HA an alterna-
tive hypothesis, and let R0 and RA be two regions (we use
the term region as a synonym of set), such as:�
H 0 : x 2 R0

HA : x 2 RA
Let bR0 be the rejection region of H0 such that H0 is

rejected if and only if (iff) x̂ 2 bR0, and let bRA be the rejection

region of HA such that HA is rejected iff x̂ 2 R̂A.
The probability of type I error, which is the probability

of making an error of rejecting the null hypothesis H0 when
it is actually true, is then defined by:
ProbðH 0 rejectedjH 0 trueÞ () Probðx̂ 2 bR0jx 2 R0Þ
The probability of type II error, which is the probability
of making an error of rejecting the alternative hypothesis
HA when it is actually true, is then defined by:
ProbðH A rejectedjH A trueÞ () Probðx̂ 2 bRAjx 2 RAÞ
For any regions ðR; bRÞ 2 fðR0; bR0Þ; ðRA; bRAÞg, it can be
noticed that we have:
Probðx̂ 2 bRjx 2 RÞ ¼ sup
x2R

Probðx̂ 2 bRjxÞ

In plain words, Probðx̂ 2 bRjx 2 RÞ is the probability that

the estimated value belongs to bR knowing that the actual
value of the parameter is x. Controlling

sup
x2R0

ProbðX 2 bR0jxÞ and sup
x2RA

ProbðX 2 bRAjxÞ is hence equiv-

alent to control probabilities of making type I and type II
errors in worst cases.
Let Q0 and QA be these two probabilities such as:
Q0ðR0; bR0Þ ¼ sup
x2R0

Probðx̂ 2 bR0jxÞ ð1Þ
QAðRA; bRAÞ ¼ sup
x2RA

Probðx̂ 2 bRAjxÞ ð2Þ
The above definitions can be exploited in three different
ways. First, given regions R0 and RA defined by a null
hypothesis H0 and an alternative hypothesis HA, and given

the estimator x̂ defining rejection regions bR0 and bRA such

that x̂ 2 bR0 \ bRA, the probabilities of making type I and
II errors can be calculated (more precisely, upper bounded)
using Eqs. (1) and (2). Second, given the estimator x̂ defin-

ing rejection regions bR0 and bRA such that x̂ 2 bR0 \ bRA and
given a confidence level a, a confidence interval for x can be
obtained by delimiting regions R0 and RA such that

Q0ðR0; bR0Þ ¼ QAðRA; bRAÞ ¼ a. Then, it will be stated with
a confidence level a that x 2 ðR0 [ RAÞc (complement of
R0 [ RA). Third, given regions R0 and RA defined by a null
hypothesis H0 and an alternative hypothesis HA, and given
e a maximal tolerance for probability of making type I and

type II errors, rejection regions bR0 and bRA can be delimited

such that Q0ðR0; bR0Þ ¼ QAðRA; bRAÞ ¼ �. Then, H0 will be

rejected iff x̂ 2 bR0, and HA will be rejected iff x̂ 2 bRA, with
at most a probability e of making an error.

Formulation of fold-change statements

Let X1 be a random variable following a normal distribu-
tion X 1 : Nðx1; r2

1Þ and X 2 : Nðx2; r2
2Þ with

covðX 1;X 2Þ ¼ 0. Let s1 be a sample from X1 of size n1

and empirical mean dxobs
1 , and s2 be a sample from X2 of size

n2 and empirical mean dxobs
2 . Furthermore, assume that r1 is

known, and r2 is known (we will discuss this aspect later in
detail). Consider the samples s1 and s2 as two sets of expres-
sion measurements of a specific gene of interest in two dif-
ferent biological conditions. Formulating statistical
statements about the fold-change between the means x1

and x2 using the above described statistical approach leads

to adequately define regions R0, RA, bR0 and bRA. In order to
formulate fold-change statements between the means x1

and x2 of the two normal distributions, regions R0, RA,bR0 and bRA have to be defined using conic sections Ch such
as:

Ch ¼ ða; bÞ 2 R2; tan
p
4
� h

� �
<

a
b
< tan

p
4
þ h

� �n o
where 0 � h � p

4
is an angle on each side of the first

diagonal.
Moreover, means x1 and x2 must be controlled to avoid

a negative contribution of the distributions to the fold-
change. As only positive values of means have to be taken
into account, regions R0 and RA must be curtailed from
zero, and regions bR0 and bRA must be curtailed from bxobs

1

and bxobs
2 . We will henceforth alleviate the notations and



130 Genomics Proteomics Bioinformatics 10 (2012) 127–135
use bx1ðresp: x̂2Þ for the value x̂obs
1 (resp. x̂obs

2 ) of the estima-
tor of the mean x1ðresp:x2Þ, as computed from the data
sample.

Then, regions R0, RA, bR0, and bRA are defined such as:

R0ðh0Þ ¼ ða; bÞ 2 R2; ða; bÞ 2 Ch0
and 0 < a and 0 < b

� �
RAðhAÞ ¼ ða; bÞ 2 R2; ða; bÞ R ChA and 0 < a and 0 < b

� �
bR0ðbh0; bx1;bx2Þ

¼ ða; bÞ 2 R2; ða; bÞ R Cbh0
and bx1 < a and bx2 < b

n o
bRAðbhA; bx1;bx2Þ

¼ ða; bÞ 2 R2; ða; bÞ 2 CbhA
and bx1 < a and bx2 < b

n o
Figure 2 illustrates the definition of regions R0 (Fig-

ure 2A), RA (Figure 2B), bR0 (Figure 2C), and bRA (Fig-
ure 2D) with arbitrary parameters.

Probabilities Q0 and QA described in Eqs. (1) and (2)
with the above defined regions are then defined by:
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Figure 2 Representation of the different regions R0, RA, bR0 and bRA

A. Region R0 shown in blue with h0 ¼ arctanð2Þ � p
4
. B. Region RA showbh0 ¼ arctanð2Þ � p

4
, bx1 ¼ 2 and bx2 ¼ 4. D. Region bRA shown in red with chA ¼
Q0ðR0ðh0Þ; bR0ðbh0; bx1;bx2ÞÞ ¼ sup
ðx1;x2Þ2R0ðh0Þ

ProbððY 1; Y 2Þ

2 bR0ðbh0; bx1;bx2jx1; x2ÞÞ ð3Þ

QAðRAðhAÞ; bRAðbhA;bx1; bx2ÞÞ ¼ sup
ðx1;x2Þ2RAðhAÞ

ProbððY 1; Y 2Þ

2 bRAðbhA; bx1;bx2jx1; x2ÞÞ ð4Þ

with Y 1 : N x1; r2
1 ¼

r2
1

n1

� �
, Y 2 : N x2; r2

2 ¼
r2

2

n2

� �
, and

covðY 1; Y 2Þ ¼ 0.
As explained above, the above definitions can be

exploited in three different ways. First, given two angles
h0 and hA that are relevant to assess the similarity and
the distinctness between x1 and x2, and given bx1 and bx2

defining the rejection regions such as bR0ðĥ; bx1;bx2Þ andbRAðĥ; bx1;bx2Þ with ĥ ¼ jarctanðbx2bx1

Þ � p
4
j, the probabilities of

making type I and II errors can be calculated using Eqs.
(3) and (4). To formulate fold-change statements, angles
h0 and hA are defined as h0 ¼ arctanðfC0

Þ � p
4

and
θΑ
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n in blue with hA ¼ arctanð2Þ � p
4
. C. Region bR0 shown in red with

arctanð2Þ � p
4
, bx1 ¼ 2 and bx2 ¼ 4.
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hA ¼ arctanðfCAÞ � p
4

where fC0
P 1 and fCA P 1 are two

fold-change values that are relevant to assess the similarity
and the distinctness between x1 and x2. Q0 (resp. QA) will
then give the probability of making an error when stating
that two genes are differentially (resp. similarly) expressed.
Second, given bx1 and bx2 (computed from the data samples)

defining the rejection regions such as cR0ðĥ; bx1 ; bx2Þ andcRAðĥ; bx1 ; bx2Þ with ĥ ¼ arctan bx2bx1

� �
� p

4

��� ���, and given a confi-

dence level a, a confidence interval for

h ¼ arctan x2

x1

� �
� p

4

��� ��� can be obtained by delimiting regions

R0(h0) and RA(hA) such that

Q0ðR0ðh0Þ;cR0ðchA ; bx1 ; bx2ÞÞ ¼ QAðRAðhAÞ;cRAðchA ; bx1 ; bx2ÞÞ ¼ a.
Then, it will be stated with a confidence level a that
h 2 ðR0ðh0Þ [ RAðhAÞÞc which corresponds to the state that
h0 < h < hA. By denoting fC the fold-change between x1

and x2, this is equivalent to state with a confidence level
a that fC0

< f C < f CA
where fC0

¼ tanðh0Þ þ p
4
,

fC ¼ tanðhÞ þ p
4
, and fCA ¼ tanðhAÞ þ p

4
. Third, given two

angles h0 and hA (i.e., fold-changes, see above) that are rel-
evant to assess the similarity and the distinctness between
x1 and x2, and given e a maximal tolerance for the proba-
bility of making type I and type II errors, rejection regionscR0ð bh0 ; bx1 ; bx2Þ and cRAðchA ; bx1 ; bx2Þ can be delimited. However,
as those regions are defined by three parameters, their
delimitation is more complicated to define than for the
regions R0 and RA. Also, as they are not essential for our
question, we will not focus here on their delimitation.
Test behavior and biological application

Test behavior

Let us have three different situations as displayed in Figure 3

represented as bar charts: a gene showing statistically signif-
icantly differential expressions (Figure 3A), another gene
whose expression does not differ statistically significantly
from one to another condition (Figure 3B), and finally a sit-
uation where a given gene cannot be said to be statistically
significantly differentially nor similarly expressed due to the
variability of its expression levels (Figure 3C).

As previously explained, Q0 is the probability of making
an error in stating that a certain gene is differentially
expressed between the two biological conditions. Lower
values (close to zero) of Q0 indicate then dissimilarities in
terms of gene expression as in Figure 3A (Q0 = 0.01) as
opposed to the cases presented in Figure 3B and C. Simi-
larly, QA is the probability of making an error in stating
that a certain gene is similarly expressed between the two
biological conditions. The situation displayed in Figure 3B
(QA = 0.03) can be considered as statistically significant as
opposed to the cases presented in Figure 3A and C. More-
over, values such as the ones in the example of Figure 3C
are associated neither with similarity nor distinctness from
a statistical point of view.
In summary, our examples suggest three typical situa-
tions when comparing the expression levels of a certain
gene between two different biological conditions that our
statistical test can detect.

Biological application

In order to illustrate the behavior of our statistical test in a
biological application, we use a dataset coming from tran-
scriptome microarray studies of adrenal cancer [16–19].
This dataset is composed of 3 different biological condi-
tions: (i) adrenal cortex carcinoma (ACC), 33 samples (ii)
adrenal cortex adenoma (ACA), 22 samples and (iii) nor-
mal adrenal cortex (NAC) that serves as control, 10 sam-
ples [18]. The insulin-like growth factor (IGF) signaling
system was identified as being one of the most dominantly
altered in ACC in the form of greatly increased expression
of IGF2 [17]. In a subsequent study [18], 10 genes associ-
ated with the cancer phenotype are identified. Steroid sig-
naling is associated with ACA since the activation of this
pathway is needed for different hormone production. We
estimate the evolution of the values for Q0 and QA as we
vary the fold-change parameter fC0

and fCA , respectively.
For example, considering the differences between ACC
and NAC (i.e., the malignancy profile), we computed sev-
eral subtraction profiles as displayed for Q0 (Figure 3D)
and QA (Figure 3E). As expected, Q0 is more restrictive
as fC0

increases and conversely when we increase fCA the
value of QA is more permissive. The results obtained here
for differentially expressed genes is presented in Figure 4.
A summary of the number of differentially expressed genes
is displayed in a Venn Diagram (Figure 4A). The advan-
tage of our method is that we can extend our scope by
looking at cases other than simply differential expression
amongst the different biological conditions. For instance,
we can consider similar expression in one of the compari-
sons (Figure 4B) or even in two of them (Figure 4C). Each
of these possibilities give us different insights. Among the
114 genes differentially detected, the collagen type I – alpha
1 gene (COL1A1) has been identified as present in the adre-
nal cancer malignancy (Figure 4D). In particular, we
detected the gene encoding secreted phosphoprotein 1
(SPP1), which is present in carcinoma and control samples,
with little variation while displaying a large variability in
the adenoma conditions. This can be explained since this
dataset has adenomas that produce different hormones all
synthesized from cholesterol (steroids), which contribute
to the variability of this gene (Figure 4E). We can predict
that gene Interleukin-1 alpha (IL-1a) is similarly expressed
among carcinoma samples but is not relevant as a malig-
nancy marker since the expression is not statistically consis-
tent with the other two biological conditions (Figure 4F).

Variance estimation

The CDS statistical test described here is based on the
assumption of known variances of the signals. This
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Figure 3 Test behavior validation

In silico simulations using standard normal distributed data with parameters x1, x2, r1, r2 capture 3 different situations shown in A–C. A. Case of
differentially expressed gene having a significant Q0 value ðQ0 < 0:05Þ but an high QA value. B. The opposite case being statistically similar ðQA < 0:05Þ. C.

Case where neither Q0 nor QA display statistical significance. Our method is tested on a real biological dataset (panels D and E) showing the correct
behavior. D. Values of Q0 are directly changing as a function of the fC0

parameter. As we increase the fC0
parameter, the values of Q0 are higher. This

means that the more we increase the fC0
parameter the less Q0 values we have for a given bin of the Q0 histogram. E. Values of QA are inversely changing as

a function of the fCA parameter. As we increase the fCA parameter the values of QA are lower. This means that the more we increase the fCA parameter the
more QA values we have for a given bin of the QA histogram.
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assumption is reasonable in cases where the technology
itself provides direct estimates of the variance as is the case
for dPCR and certain NGS applications using recall chem-
istry. Furthermore, modern microarray platforms provide
coefficient of variation estimates which can be used as
proxies for variance [20]. Another most important case is
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Figure 4 Experimental validation of our CDS statistical test

Venn Diagrams of the differentially expressed genes when comparing 3 different biological conditions are shown in panel A–C. A. Comparing differential
expression across the three comparisons is the usual case. With the CDS method we can capture more cases, for instance shown in panel B and C.
B. Comparing differential expression in two subtractions and similarity in one subtraction. C. Comparing one differential expression and two similarity
expressions. Panels D–F. Examples of genes detected using both Q0 and QA values issued from our method. D. Difference in the three biological
conditions. E. Similarity between two biological conditions. F. Similarity in two comparisons and difference among the three biological conditions.
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the often encountered scenario of biomedical investigations
where a large number of individual measurements are
available (e.g., a single recording per patient or subject).
Computing the biological variations from the entire cohort
of samples can then allow us to compare individual mea-
surements amongst each other with the CDS statistical test.

Multiple testing

The CDS statistical test can and should be combined with
false-positive discovery rates or similar corrections when
used in a serial manner. We have used successfully both
FDR and pFDR methods [21,22]. Note, that the data pre-
sented here were not subjected to multiple testing correc-
tion as they only serve to demonstrate the applicability of
the CDS method.

Conclusion

The CDS statistical test is suitable for quantitatively check-
ing statements, typically to determine confidence intervals,
about the fold-change between the means of two normally
distributed variables, under assumptions that the variances
are known. Applied to the identification of differentially
and similarly expressed genes in the context of microarray
measurements, this statistical test correctly identified genes
of interest in benchmark situations and also gave confi-
dence intervals of the fold-change. Moreover, this statisti-
cal test can be used for any -omics data as long as the
similarity or distinctness between two signals is measured
by the fold-change and the required assumptions are ful-
filled. Even if in the present case, assumptions have been
made that gene expression measurements are distributed
according to normal distributions with known variances,
the principle of the test remains valid for other distribu-
tions and it can be numerically implemented. Indeed,
Monte Carlo simulations can be performed to estimated

probabilities Prob ðY 1; Y 2Þ 2 cR0
bh0 ; bx1 ; bx2

� �� �
and

Prob ðY 1; Y 2Þ 2 cRA
chA ; bx1 ; bx2

� �� �
when explicit forms can-

not be obtained easily. Finally, when variances of the nor-
mal distributions are not supposed to be known but have
to be estimated from the samples, Student t-distributions
can be used instead of the normal distributions.
Methods

Explicit forms of probabilities

The explicit forms Prob ðY 1; Y 2Þ 2 cR0
bh0 ; bx1 ; bx2

� �
jx1; x2

� �
and Prob ðY 1; Y 2Þ 2 cRA

chA ; bx1 ; bx2

� �
jx1; x2

� �
have been

obtained by applying affine transformations to the bivari-
ate normal distribution ðY 1; Y 2Þ in order to make the inte-
gration region rectangular and then easily computable
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using the standard bivariate normal complementary cumu-
lative distribution function. These explicit forms are given
in Supplementary materials (http://cds.ihes.fr) in Eqs. (5)
and (6).

Type I and type II risks upper bounds computation

It is notable that supremums of Eqs. (3) and (4) are reached
on boundaries of regions R0ðh0Þ and RAðhAÞ, meaning on
lines y ¼ arctan p

4
þ h0

� 	
and y ¼ arctan p

4
� h0

� 	
for Q0,

and on lines y ¼ arctan p
4
þ hA

� 	
and y ¼ arctan p

4
� hA

� 	
for QA. Albeit mathematically defined, as in (3) and (4),
the computation of these probabilities begged for a numer-
ical estimation given the complexity of the explicit form of
their first and second derivatives. In this line of thought, we
use numerical methods to obtain the maximum values of
the probabilities considering a finite number of instances
of the probability distribution functions (as opposed to
the exact functions from the mathematical definition) and
we evaluated them over a finite interval in the parameter
space (as opposed to the infinite interval assumed in the
mathematical definition).

Confidence interval computation

As Q0 increases (respectively QA increase) with h0 (resp.
hA), this delineation can done by performing a binary
search of the angle h0 (resp. hA) from

ĥ ¼ arctan bx2bx1

� �
� p

4

��� ��� to 0 (resp. to p
4
) until Q0 R0ðh0Þ;cR0

�
bh0 ; x̂1; x̂2

� �
Þ ¼ a (resp. QA RAðhAÞ;cRA

chA ; bx1 ; bx2

� �� �
¼ a) is

reached.

Implementation

This statistical test has been implemented in Java and it is

possible to compute Q0 R0ðh0Þ;cR0
bh0 ; bx1 ; bx2

� �� �
and

QA RAðhAÞ;cRA
chA ; bx1 ; bx2

� �� �
as well as the confidence inter-

vals for a set of 30,000 values in a few minutes. The com-
putational speed allows us to imagine using this test for
the analysis of NGS data. It may be interesting to notice
here that some thought can be stated regarding the nature
of the distributions to be used for the analysis of NGS.
Indeed, in contrast to data from microarrays where the val-
ues are continuous signals, the measured values are dis-
crete, and thus the use of discrete distributions like the
negative binomial distribution can be interesting for better
modeling of assumptions. An R implementation of the
CDS statistical test is available at http://cds.ihes.fr.

Data processing

The transcriptome data discussed have first been published
in [17], and are available from GEO [23] under Accession
No. GSE10927, and mace (http://www.mace.ihes.fr) under
Accession No. 2651913582. Data were log-transformed,
subjected to an additional round of quality control
[24,25], and normalized using NeONORM [26] for subtrac-
tion profiling. No multiple testing correction was per-
formed so as to retain the original P values.
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