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We formulate a renormalization group analysis for the study of the accumula- 
tion of period doubling in the presence of noise. The main tool is a renormaliza- 
tion of the time evolution of the noise. The critical indices depend on the nature 
of the noise, but are given by thermodynamic quantities describing the large 
deviations of the Lyapunov exponent of the linearized random renormalization. 
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1. I N T R O D U C T I O N  

The influence of noise on the accumulation of period doubling bifurcations 
was studied several years ago by several authors/5's'9'19'21) They discovered 
a new universal number with a value of about 6.6192 .... One possible way 
of describing this number is as follows. On the bifurcation diagram of the 
so-called standard one-parameter family of mappings of the interval 
[ - 1 ,  1 ] given by 

x -*  1 - # x  2 (1) 

for/~ in the interval [-0, 2], one can observe consecutive windows of values 
of the parameter kt corresponding to stable periodic orbits of period 1, then 
2, then 4, 8, etc. In the presence of noise, the smallest windows are washed 
out and the boundaries of the remaining ones consist of fuzzy bifurcations. 
The universal number is associated with the following question: by how 
much should one decrease the amplitude of the noise to observe one more 
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level of windows? Asymptotically, the answer is the above universal 
number. This result was usually obtained for an additive noise composed 
of independent identically distributed Gaussian random variables. Similar 
results were observed for an additive noise coming from an irrational rota- 
tion on the circle in refs. 1 and 2. In particular, a seemingly nearby value 
for the universal number appeared (except for some special irrational 
numbers). This nice observation is the basis of our method to analyze the 
problem. As we shall see below, the quasiperiodic case turns out to be 
simpler than the random case. Both cases have been analyzed in the 
context of a linear renormalization group analysis and a similar renor- 
malization equation was found. We shall present here a more general 
approach which allows us to analyze a much broader class of noises and 
which is suited to a nonlinear analysis. Our approach differs from the old 
one in several ways. In particular, we shall not renormalize the noise, but 
the time evolution of the noise. As we shall see, this is a more natural 
renormalization which works for all noises. We shall explain how the 
previous analysis emerges from this more general approach. 

We shall describe first the complete renormalization transformation in 
the presence of bounded noise and derive the linear renormalization 
mapping. The case of unbounded noise can also be treated; however, one 
should deal with a problem of large deviations when the mapping does not 
leave the interval [ - -  1, 1 ] invariant. We shall then study a special problem 
of multiplication of random operators which turns out to be the building 
block of all the linear renormalization maps. However, due to large-devia- 
tion effects in Lyapunov exponents, one may observe different universal 
numbers for different noises, as we shall see below. In the cases mentioned 
above, the universal numbers turn out to be very close; however, one can 
show that they are different in e expansion. 

The outcome of the analysis is the existence of a positive universal 
exponent due to the presence of the noise (this can be proven rigorously in 
e expansion). This exponent leads to a crossover phenomenon (which our 
theory predicts to be of infinite dimension). If one adds a small noise to the 
mapping, it is easy to show that the Cantor structure will remain up to a 
certain scale for the (nonautonomous) random iteration. The big gaps in 
the Cantor set which are associated with the periodic orbits of small period 
will remain. If the renormalization amplifies the noise, then even the large 
gaps of the Cantor set will eventually be destroyed. A rough estimate is 
that they are destroyed when the amplitude of the noise is of the order of 
their size. This argument gives a qualitative explanation of the numerical 
results described at the beginning of this section. A rigorous argument 
should be based on considerations involving support properties of 
invariant measure. We refer to ref. 23 for an analysis based on this idea. 
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In Section 2, we describe a general formalism for renormalization in 
the presence of noise, which is a generalization of the usual one. We also 
derive a general formula for the linearized problem. In Section 3, we treat 
the particular case of a quasiperiodic noise. As we shall see, the universal 
number depends on the regularity of the mapping with respect to the noise. 
In order to give results which apply to more general maps than simple 
trigonometric polynomials, one has to study the large deviations of a 
Lyapunov exponent. We develop this technique in Appendix A. In 
Appendix B, we show that the hypotheses of Appendix A are satisfied in 
expansion. We also mention that under the same hypothesis our method 
applies in a more general context and provides a large-deviation-theorem 
("f(c0" result) for the largest Lyapunov exponent (see ref. 4 for a one- 
dimensional analogue). In Appendix C, we derive some results about the 
nonlinear analysis. 

2. R A N D O M  ITERATIONS A N D  R E N O R M A L I Z A T I O N  

We shall denote by X the phase space of our system, and assume that 
it is a compact topological space. We shall be mostly dealing with the case 
X =  [ - 1 ,  1 ], although it is easier at this point to adopt a more abstract 
point of view. Several formalisms can be used to describe random iterations 
on X. For our purposes, the quasiproduct formalism seems more 
convenient, and we now briefly recall this approach. We assume that a 
measurable space Y (the phase space of the noise) is given with a probabil- 
ity measure v. The time evolution of the noise is given by an invertible 
measurable map g (with measurable inverse) of Y preserving the measure 
v. For  example, in the case of independent random variables, Y is an 
infinite product space and the time evolution is the shift, while for a 
quasiperiodic noise, Y is the circle and the time evolution is a rotation 
(which may be rational or not). We define a random iteration map to be 
a measurable map F from X x Y to X. We shall of course assume later on 
some regularity for F. We can now consider the map P of X x Y which is 
given by 

T h e  n th (random) iterate of F, denoted by F E"?, is the projection on X of 
the n th iterate P ( " ~ = P o P  . . . . .  F (n times) of F. In other words, F E"1 
satisfies the following recursion relation: 

FO,3(x ' y)= F(FE,,-II(x, y), gO,-ll(y)) 

Equivalently, P is a quasiproduct map of X x Y. 
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We now specialize the above general situation to the particular case of 
period doubling maps. We first give some definitions and fix some more 
notations. There are by now several proofs of existence of a regular 
unimodal function q~, solution of the Cvitanovi6 equation 

~0(q~(~p(1)-)) = ~0(1) q~(-), q~(0) = 1 (2) 

See ref. 13 for a review of recent results. We shall denote by 2 the positive 
quantity -~o(1). This function is analytic in some neighborhood of the 
interval [ - 1, 1]. 

More generally, for e > 0 fixed, we shall consider mappings of the 
interval [ - 1 ,  1] with the following properties: 

P1 f m a p s  the interval [ - 1 ,  1] into itself. 

P2 0 is the only critical point of f,  and f ( 0 )  = 1. 

P3 f has negative Schwartzian derivative, i.e., on the interval [- - 1, 1 ], 
f satisfies 

f,,, 3 ( f , , ?  
f '  2 \ f ' )  <~0 

P4 There is a positive number e, a complex neighborhood ~ of [0, 1 ], 
and a function 37 analytic in ~ such that 

f(x)=37([x[ 1+') for x ~ [ - 1 , 1 ]  (3) 

We shall be mostly interested in the two cases e small (see 
Appendix B) and e =  1, the last one corresponding to analytic even 
functions. 

For  a fixed e and a fixed domain 9 ,  we shall denote by ~1 the closure, 
in the L 2 space of the Lebesgue measure of 9 ,  of the set of bounded 
analytic functions in ~ satisfying 37(0)= 1. Note that this is a space of 
analytic functions which contains the fixed point associated function 3. 
Moreover, ~ is mapped strictly into itself by z ~ ~(2 1 +~z) 1+~, where the 
power is defined continuously starting from the positive real axis. We also 
observe that we can find in ~1 a neighborhood of ~ such that all elements 
satisfy the hypotheses P1-P4. We shall denote by ~ such a neighborhood. 
The standard renormalization transformation is defined in ~ ,  but is not in 
general an endomorphism. 

We introduce now the noise in the iteration as explained above. From 
now on we consider maps F ( . , . )  which belong to ~ in their first variable. 
This space will be denoted by d .  We shall need to impose later some more 
regularity on the second variable also. 
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We now define the renormalization transformation. As usual, this 
transformation acts on s~, and is composed of iteration and scaling. The 
purpose of the scaling is to maintain the property P2. Here, however, the 
situation is slightly more complex, and the inner scaling has to be chosen 
differently from the outer scaling to ensure adequate cancellations of the 
scaling factors when the mapping is iterated, i.e., 

9tg(F)(x, y) = (F(1, g(y))) 1 F(F(F(1, g ~(y))x, y), g(y)) (4) 

Our choice of these scaling factors also works for the iteration of the 
renormalization transformation. This is easy to verify on the following 
formula: 

)vl(y)FE2n]()~z(y)x, y)=~J~g2n lO~g2,,-2 . . . . .  ~gZO~g(F)(x, y) (5) 

where we have denoted by gP the pth iterate of g: gP = g . . . . .  g (p times) 
and 21(y ) and )~2(Y) are two scaling factors that can be easily written in 
terms of the successive renormalizations of F. 

Some care has to be taken for the domain of the renormalization 
transformation. We shall later assume that some topology has been given 
on Y, and we shall denote by ~r the set of continuous functions from Y 
to ~ equipped with the uniform distance. We note that every element of a 
small enough neighborhood (in do) of the constant function ~ satisfies the 
above four hypotheses. In particular, such a neighborhood is contained in 
the domain of the renormalization transformation. 

Formula (5) shows how the renormalization is acting at the noise 
level. A very important fact is that it is not the noise which is renormalized, 
but the time evolution g of the noise. This is a very natural situation if we 
think of the noise as another dynamical variable. The renormalization 
should indeed act on the time evolution and not on the noise itself, which 
is a point in phase space. The study of the renormalization is now the study 
of the iterates of a new skew product dynamical system. A particular 
realization of the noise is given by an element of Y, the renormalization at 
the noise level is simply the composition of g with itself, and the mapping 
which is acting on sa' o is given by 91g. This new system has an interesting 
property. Let Fo be the random mapping of our interval defined by 

Fo(x, y) = ~o(x) (6) 

Notice that this map is independent of the noise. It is easy to verify that 
F 0 is a fixed point of all the renormalization transformations ~Rg. It follows 
easily from the properties of (p that the renormalization transformation 
is well defined in a small enough neighborhood (in ~4o) of F o. The 
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renormalization maps are also differentiable in a small neighborhood of F0, 
and we have the following formula for the differential of 9~g at F0: 

Dg~g(ro)(H)(x, y) = AH(x, g(y) ) + BH(x, y) + CH(x, g-l(y)  ) (7) 

where A, B, and C are three (linear) operators acting on the tangent space 
# to ~ at q) and defined by 

AK(x) = [K(1) (p(x) - K(r 

BX(x) = -~0'(g0(2x)) K(--2x)/)~ (8) 

CK(x) = -x~o'(x) X(1)/,~ 

where K is a function in #. It is a very remarkable fact that the linearized 
renormalization has such a special form and in particular that the action 
on the noise is almost disconnected from the action on the phase space 
variable. As we shall see, this will greatly simplify the analysis. 

The linear renormalization analysis is now the study of the asymptotic 
behavior of the following product of linearized renormalization transforma- 
tions (compare with Eq. (5)): 

Dg~g2,-~(Fo) . Dg~g2, 2(Fo)... Dg~g2(Fo). Dg~g(Fo) (9) 

The previous product can be written in a more compact form if we intro- 
duce the unitary operator U associated with the time evolution g of the 
noise (recall that g is invertible and measure-preserving). This operator is 
acting on L2(Y, dv) and is given by 

U~(y) = ~(g(y)) 

If we introduce the operator ~fv given by 

~ f u = U A + B + U  1C (10) 

the product in Eq. (9) can also be written 

(11) 

3. A N A L Y S I S  OF T H E  L INEAR R E N O R M A L I Z A T I O N  

As we shall see, the asymptotic behavior of the linear renormalization 
can be analyzed in terms of a simpler problem. To describe this problem, 
we first introduce the operator L~o acting on d ~ and given by 

Lo~=e'~A + B+e  i~C (12) 
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It is easy to verify that for any fixed co, Los is a compact operator in 6~. (7~ 
Let N denote the transformation of the circle given by 

~(co) = 2~o mod(2n)  (13) 

It is well known that this is a uniformly expanding transformation of the 
circle. Given an ergodic invarian( measure, we can apply the Oseledec- 
Ruelle theorem (22) to the family of maps Lo,. We obtain an almost 
everywhere constant maximal Lyapunov exponent (exponential rate of 
growth) for the product of operators 

L~,(o~" L~,-l~o)'" L~e(o,l" Los (14) 

This Lyapunov exponent depends on the ergodic invariant measure which 
is considered. The map ~ of the circle has many invariant measures. We 
shall be interested in two particular ones (although it may be interesting to 
consider other cases such as periodic points). The first one is the delta 
measure at co =0.  For  this measure, we have co almost surely L,,, = 
A + B + C, which does not depend on co. From the explicit formulas for A, 
B, and C, it is easy to verify that the operator  A + B + C is the usual linear 
renormalization operator for maps of the interval (in the absence of noise). 
Therefore the maximal Lyapunov exponent in this case is equal to log 6, 
where (for e = 1) 6 is the universal number  4.6692 .... If  we use the Lebesgue 
measure instead of the Dirac measure, we expect to find a different 
Lyapunov number. 

We shall denote this number by 7. We recall that as a consequence of 
the Oseledec-Ruelle theorem, there is a subset J of the circle which is 
invariant under ~ ,  of Lebesgue measure 27r, and such that for any 09 in J 
the product of operators (14) grows with an exponential rate 7 outside of 
a linear subspace of codimension at least one. Using a method developed 
by Herman, (18) one can give a lower bound on 7- First, one can show, as 
in ref. 6, that, except for an exponent - 2 log ,~, the operators Lo and 

M~X(x) = - [ K ( ~ ( , ~ x ) ) e  ' ~  + ~ ' ( ~ ( , ~ x ) ) / ; (  -;~x)]/,~ (15) 

have the same Lyapunov exponents. This last family of operators is now 
acting on functions which are not restricted to have the value zero for 
x = 0. It is now easy to apply Herman's  lower bound estimate to get that 
7/> - 2  log 2. Numerical simulations (for e = 1) give a value around 6.4. 

We now come back to the analysis of the asymptotic behavior of the 
product (11). Let ~ denote the Hilbert space L2(y, dv). This Hilbert space 
can be disintegrated with respect to the Abelian von Neumann algebra 
generated by the unitary operator  U. (1~) As we shall see below, this is a 
convenient way to do the spectral analysis of U. There is a measure p on 
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the circle S 1 and a measurable field of Hilbert spaces ~ (depending on U) 
such that 

( , e  
j g =  is- W~ dp(~) (16) 

The operator U is disintegrated into the field of operators 

U~ = ei~I~ 

where I~ is the identity operator in 4 -  Similarly, we can disintegrate the 
Hilbert space ~ defined by 

Y - - g |  (17) 

into a field of Hilbert spaces o~o,. The operator ~e v which acts on 
according to (10) is disintegrated into a field of operators given by 

(S ly)  ~ = eiOA + B + e - ~ ~  (18) 

We can construct similarly a global operator J/gv on ~ ,  which is 
disintegrated into the field of operators (Mo~)o~r defined in (15). 

Moreover, U 2" obviously disintegrates to ei2"~ At this point, we 
cannot apply the Oseledec-Ruelle theorem to conclude about the growth 
rate of the product of operators in Eq. (11). The reason is that the above 
theorem only gives the asymptotic behavior of the product (14) for a fixed 
co. The transient behaviors may vary wildly with co and this nonuniformity 
can change the asymptotic behavior of the integrated product (1 !). Such a 
phenomenon can actually be shown explicitly for the easier problem of the 
influence of noise on the intermittency transition. It is also reflected in the 
difference between the above number and the universal number found for 
the case of independent noise. 

We emphasize that the components (~v)~ do not depend on the time 
evolution g. Therefore, the asymptotic behavior of 5r v will depend on g 
only through the associated spectral decomposition. We shall identify L~o 
and (L~v)<o, since these operators are identical for all noises, except for their 
multiplicity. 

Essential differences between various types of noises appear in the 
asymptotic behavior of ~v- The case of a quasiperiodic noise is treated 
below (Theorem 3.3). We shall show at the end of this section how to 
obtain the critical index for a noise with Lebesgue spectrum. 

We now consider the particular case of quasiperiodic noise. In this 
case, Y= S 1 (endowed with the Lebesgue measure), and the disintegration 
can be done by Fourier transformation. Time evolution of the noise is 
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simply a rotation. More precisely, for a given rotation angle 60, the linear 
renormalization is acting on functions H of x and the angle y by the 
formula 

(OOt~H)(x, y)=AH(x, y + co)+ BH(x, y)+ CH(x, y--co) 

(see Eq. (7)). In order to simplify notations, we shall denote by ~ the 
operator D gto~. The above disintegration is simply the Fourier transform 
with respect to y, and we are led to the family of operators 

(Sf~oH),(x)=ein~AH,(x)+BHn(x)+e in~ (19) 

where n is the integer variable conjugated to y. By Fourier transformation 
the operator 5a~o has been decomposed into a (countable) direct sum of 
operators. Each of these operators is now of the form L ~ ,  and we first 
have to compute the Lyapunov exponent for each Fourier sector 
separately. Consider first the sector n = 0 .  In this case, as we have 
previously observed, the tangent operator is the linearized renormalization 
without noise, and the Lyapunov exponent is the logarithm of the universal 
number 6. If we consider the case n = 1 and choose co in J (which is a set 
of full measure in S 1), we get a Lyapunov number equal to 7. Consider now 
the case n = 2. In order to obtain an exponent equal to 7, we have to take 
2 c o n j .  But it is easy to verify that the set {co]2co~J)  is also of full 
measure. More generally, the set .J given by 

7 =  {col pcoEJ Vp~Z\{O} } 

is a set of full measure. Therefore, if co belongs to 7 ,  we observe the 
Lyapunov number V in all Fourier sectors except the zero sector. 

At this point, we can observe a situation which is new with respect to 
the standard renormalization group analysis. Each Fourier sector (except 
n = 0 )  possesses one unstable direction and our fixed point (6) is now of 
codimension infinity. In other words, one needs to impose a countable 
number of constraints to observe a complete sequence of period doubling 
bifurcations in the presence of quasiperiodic noise. If this is not the case, 
one will be able to distinguish only finitely many such bifurcations on the 
bifurcation diagram. Through the renormalization, the system flows away 
from the fixed point (6) and it would be interesting to understand the 
nature of this crossover, which may be nontrivial even for simple noises 
like rational rotations (see ref. 17 for results in this direction). 

We now come to the question of the asymptotic behavior of the 
integrated product (11). Although, as we explained before, every Fourier 
sector (except the zero sector) has the same Lyapunov exponent, this 
number may not be the global Lyapunov exponent. Various counter- 
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examples can be constructed easily using lacunar series. More precisely, 
an element H of the tangent space can be decomposed in a sequence of 
Fourier components (H,)n~ z, and we have 

IlY~ Hll = ~  H~ll 
n 

Each term in the sum (except n=O) behaves exponentially like eZqY; 
however, this asymptotic behavior is not reached at a simultaneous speed 
for each term and this can upset the large-q behavior of the logarithm of 
the sum. In order to control this phenomenon, we need a precise estimate 
of the quantities 

e q? [q]  IIL.~ H~ 

for various n's and &s. This estimate is provided by the large-deviation 
theory of the largest Lyapunov exponent developed in Appendix A. We 
shall assume that the hypotheses HA.1 and HA.2 of this appendix are 
satisfied. In Appendix B, we show that this is indeed the case in the situa- 
tion where the e expansion can be controlled. For  the natural case ~ = 1, it 
should be possible to make a computer-assisted proof of these two 
hypotheses. We shall also assume from now on that 7 is larger than log 6 
(this is true at least in e expansion, and follows numerically, in the case 
e = 1, from the lower bound ~/> - 2  log 2). We shall denote by c~p for p e N 
the Hilbert space of maps from S t to ~ such that the ~ norm of their first 
p derivatives is square integrable with respect to the normalized Lebesgue 
measure l of S t. It is easy to verify that for any angle ~o, Yo~ is a continuous 
operator in c~p. We shall simply denote c~ 0 by c6. We first have the following 
trivial lower bound. 

Le rnma  3.1. If (o ~ iT, there is an infinite-codimension vector space 
cK~o in ~ such that if H e ~ -  c~o~, then 

lira infq -1 log Eq3 IISo., HII >~'~ 
q ~ o O  

Proof. The result follows at once from the above considerations, 
since it is enough to have the exponent 7 in one Fourier sector to ensure 
the lower bound. 

We shall now prove an upper bound. 

P r o p o s i t i o n  3.2. There is a subset O of J of full measure and a 
positive constant c3 such that if o~ e O and if for some positive number t/ 
large enough, H satisfies for every n e Z 

IIH~[I ~<(9(1)(1 + n  2) ,/2 
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then 

lim sup q ~ log [q] L[~o~ HI[ ~ ? + c 3 r /  1/2 
q ~ o 0  

ProoL We first lift the map (o~L~o from S t to {0, 1} z using the 
dyadic representation of co e S 1. Since the new map (2 ~ Ln,  f2 e {0, 1 }z 
does not depend on the elements of s with negative indices, the hypotheses 
of Appendix A are still satisfied. Given an angle co, there is of course a 
countable number of elements of {0, 1 }z which project onto it. We shall 
denote by p the map which associates to any f2 in {0, 1 }z the angle co in 
S 1 whose dyadic expansion is given by the coefficients with positive index 
of (2. We shall not mention explicitly the preimage in statements which 
refer to all the preimages of a given angle. 

We now define several sequences of sets which shall be useful in the 
definition of 8. For  any positive integer q, we first define a real function S q 
on {0, 1} z by 

q - - I  

SU(n)  = ~ (log Pse,a - 7) 
0 

where Pa is defined in Appendix A. We first observe that S q <~ qA, where 

A = sup(log pa - 7) > 0 
12 

If e is a positive number, we define a set Zq by 

=+ = {colVf2ep m(co), sq (o )<~qe}  ~ q  

From the large-deviation Lemma A.6 of Appendix A, we deduce that there 
are positive constants B, eo, and an integer-valued function q(-) such that 
if 0 ~< e ~< eo and q > q(s), we have 

~,,s e Bqe2 l ( - - q )  >1 1 - 

We now choose 

and , / large enough so that ~ < eo. We define a set of angle Oq" by 

r/__ ~'s Oq- N {colnO+-q} 
Inl <exp[Aq/(n 2)] 
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From the previous estimates and definitions, it is easy to verify that for t/ 
large enough and q larger than q(e), we have 

l( O~q) >1 1 - 2 e  A q / ( n  2) e -  2 q A / ( ~  - 2 ) / >  1 - -  2 e  - -qA / ( r l  -- 2) 

We now define a set O r by 

It follows immediately that 

p = q(~) l : p  

l (O ~) = 1 

If co belongs to O r, we have co e Oq" for any q large enough. Therefore, from 
Lemma A.5, 

q - - i  

II~qJHII2~(9(1) ~ IIH.[I 2 I-I P~ ,(.~(~o~(~)) 
[nl < e x p E q A / ( q  -- 2)J 0 

+(9(1) ~ IIHn[lae 2q(A+7) 
e x p [ q A / ( r l  2)] ~< Inl 

~< (9(1)e 2q(~ + ~) Ilgll 2 

for any q large enough. This proves that on O r, the maximal Lyapunov 
exponent, is smaller than 7 + (9(1)r/-1/2. Note that instead of using the L 2 
norm, we can derive a similar result using any Sobolev norm. 

T h e o r e m  3.3. There is a subset O of 5 ~ of full measure such that if 
co is an element of O, if H is a nonzero C ~ function in ~ which does not 
belong to the (infinite-codimension) subspace egos, then 

lim q-1 log [q] I 1 ~  HII =~, 
q ~  

In other words, we have to impose some regularity on the y 
dependence of H to be able to use the large-deviation results and to 
prevent the occurrence of another Lyapunov exponent. For  C ~ functions 
we get exactly the Lyapunov exponent. 

Proof. We define a set O of full measure by 

0 =  (~ O r 
r > 2 + 2 A / B e  2 



RG Analysis of Dynamical Systems with Noise 979 

If H is a C ~176 function and if ~o e O, we can apply Proposition 3.2 for all 
values of r/ which are large enough integers. The result follows now from 
Lemma 3.1. 

As remarked before, the same result holds if we replace the L 2 n o r m  

by a Sobolev norm (in some Cgp). 
We now come back to the case of noises with Lebesgue spectrum. 

Since the spectral measure introduced in (16) is in fact a class of equivalent 
measures on S ~, we can assume that the spectral measure of such noises in 
the (normalized) Lebesgue measure on S ~. 

We recall that the linearized renormalization group result for 
Gaussian noises can be formulated as follows. 

Theorem 3.4. There is a linear subspace ~-G of Y of codimension 
at least one such that if H E ~ - Y6, we have 

lim n -~ log [l~cu~3Hll = ~G (20) 
n ~ o O  

where 7a is a universal number. Moreover, in ~ a  the limit is smaller. 

This result was first proven for independent Gaussian noises, (8'9' 19.21.23) 
and can be extended to correlated Gaussian noises. (15) The universal 
number ~ depends on e and for e--  1 its value is about  6.6192 .... For  small 
E, one gets ~a = log(x/2/2) + (9(1). 

One can give a proof  of Theorem 3.4 using the general technique of 
renormalization explained above. It is, however, a tedious rephrasing of 
most of the above arguments with some adaptations, and we only present 
here the interesting part, which is an expression for the number 7a- 

T h e o r e m  3.5. The universal number 7~ is given by 

7G = q~(2)/2 (21) 

where ~b is the free energy of the Lyapunov exponent defined in 
Appendix A. 

The first step in the proof  of Theorem 3.5 is an elementary relation 
between L~,, and M~o. 

k e m m a 3 . 6 .  For  any n>~l and any (n~S  ~, M ~ n l - L  [~1~ is an 
operator of rank one on g, and we have 

e l - - 1  

[n] [n] L~ h 2 ~a2noo ~ e-i2P+L~L~PJh(1) Vhe& M o h= 
0 

where ao~(x ) = eZ'~~ - xO'(x) satisfies M2o, ao, = a2~. 
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We now consider a subset Yp of ~ defined by 

~e= { H ~ I H ( x ,  y)=h(x)k(y)withh~g, andk~L2(y, dr)} 

It is easy to show that ~p is total in ~ ,  and therefore one can find an 
element H = hk of Yp which does not belong to ~-~. 

It is known that one can make even more restrictive assumptions on 
H. We recall that the space L2( Y, dr) is an infinite tensor product of spaces 
Lz(R, e-X2dx/x/-~), and it is enough to consider a function k which 
depends only on one component. (15) One can still find couples h and k such 
that Eq. (20) still holds for H=hk. Moreover, this is true in the 
complement of a linear space of codimension at least one of the linear 
space of functions h in g. It is easy to obtain for such vectors hk the 
expression of the spectral disintegration, and we have 

]lJ[~"3(hk)ll2 = Ilkl12 fs, IIMff~htl2 d~o 

The inequality 

7G ~< q5(2)/2 

follows at once from Theorem3.4, Lemma3.6, and the results of 
Appendix A (in particular Lemma A.5). 

We now prove the lower bound. It follows easily from Lemma A.5 that 
we can replace Lr~lh by 

n - - 1  

o 

where we have used again the extension to {0, 1 }z of the dyadic represen- 
tation. It follows now from the continuity of c% and the expansivity of the 
map 

09 ~ 2~o mod(27r) 

that if there is an (2 such that ( ~ o [ h ) r  then 

45(2)/2 = lim(2n)--1 log fs~ IlL~C~ 2 do  

Therefore, using Lemma 3.6, we conclude that if Yc is strictly smaller than 
45(2)/2, some cancellation should occur between a2,o, and a multiple of e~e,~ 
at least for large n. This is, however, impossible because both are analytic 
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functions in N of norm (9(1), and moreover, eu, no(0)=0 , while a2,~o(0) = 
exp(i2 n + lo)). 

We conclude with a comparison of the critical indices for different 
noises, the index e of the universality class with respect to x [cf. (3)] being 
fixed (the thermodynamic limit 4,  hence the indices 7 and 7c, will of course 
depend on e). Theorem 3.4 shows that the critical exponent for a noise with 
Lebesgue spectrum is equal to 4(2)/2, which is the value for an in- 
dependent Gaussian noise. The critical exponent for a quasiperiodic noise, 
which is equal to q~'(0), is different, at least in the e expansion. However, 
the critical index does not depend on the details of the noise considered; it 
is universal within each class of noises of the same spectral type (and for 
adequate functions, as explained in Theorems 3.3 and 3.4). 

A P P E N D I X A .  LARGE D E V I A T I O N S  OF T H E  M A X I M A L  
L Y A P U N O V  E X P O N E N T  

Here we shall present the theory of large deviations for the maximal 
Lyapunov exponent in a situation which is more general than what is 
needed for our applications. Similar results were proven in one dimension 
by Bohr and Rand. (4~ The argument is also very similar to the proof of the 
volume lemma. (3) We shall denote by E the set {0, 1} z equipped with the 
usual dyadic distance. I will denote the probability measure which is the 
infinite product of the measure with weight 1/2 on each atom of {0, 1 }. We 
shall denote by p the map which associates to any r in {0, 1} z the angle 
co in S 1 whose dyadic expansion is given by the coefficients with positive 
index of f2. 

Note that all the results below can be easily extended to the case of 
shift-invariant, short-range Gibbs state on a subshift of finite type. Let d ~ be 
a complex separable Hilbert space. The associated scalar product will be 
denoted by ( 1 ) .  We shall assume that a (uniformly) H61der continuous 
map 

is given from E to the unit sphere of ~, and also a (uniformly) H61der 
continuous map 

r ~ L_~ 

from E to the set of compact operators on & For  a given positive number 
a larger than 1, we shall denote by Co, o the cone 

Co.o = { h e g l  Plhll <<,al(hlto)l} 

We make the following hypotheses. 
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HA1. There is a positive number a' with 1 < a' < a such that for all 
f2 in E, we have 

L ~ C a ,  n c Ca,,~s~ 

HA2. There is a positive number b such that 

inf [(t~alLnh)[ > b > 0  
heCa, o I(hltQ)l=l 

Similar hypotheses can be used to deal with the case of a real cone. 
One then has to use Hilbert's projective metric instead of the complex 
projective metric defined below (see ref. 16 for a related result). We define 
two positive real numbers by A = (a 2 -  1)1/2 and A ' =  (a ' 2 -  1 )1/2. We shall 
denote by dc, n the Caratheodory-Reiffen distance on the ball of radius A 
in ta a (see ref. 14 for a definition). We recall that if A"<A, there is a 
positive number K (depending on A and A") such that if ul and u2 belong 
to t~ and have norms less than A", then 

[lul -- u2]l ~< dc, n(ul,//2) ~ KHul - u2H 

We now define a projective distance dn on Ca, a by 

da(hl, h2)=dc n ( hi ------~/ ,h2 tn ) 
�9 ( tn lhl )  ta ' \ ta .h2 /  

The following result is the main reason for introducing this projective 
metric. 

P r o 0 o s i t i o n  A.1. If the hypothesis HA1 above is satisfied, for any 
s there is a positive number On such that 

d~n(Lnhl, Lnh2) <~ Oadn(hl, h2) 

for any pair h~, h2 of vectors in Ca, n- Moreover, 0 = supa On < 1. 

ProoL We can represent La from the decomposition g =  C ta@ t~ 
into ~ = Cts~n@ ts~n ~ by a matrix: 

(LI,I(~Q) L1,2('Q)~ 
Ln= \L2,1(O) L2,:(f2)J 

We now define a function J~ of the ball of radius A in t~ by 

gn(h) = L2,1(E2) + L2,2(f2)h 
L,, ~(~2) + L~,2(~2)h 
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From our hypotheses, Jo is an analytic map from the ball of radius A 
(in t~) in the ball of (smaller) radius A' (in • t~a) ,  hence the iterates of Jo 
are well defined. The result now follows from ref. 14. 

Our next result provides information about the field of unstable 
directions. 

Proposition A.2. There is a (uniformly) H61der continuous map 
(2 -+ ea from E to g such that ea belongs to C~,a,  (eo  ] to > = 1, and 

L e e a  = f i a e ~ o  

where the function 12 --, tSa from E to C is (uniformly) H61der continuous 
and has modulus Pa larger than b. 

ProoL It follows from Proposition A.1. that the sequence 

J[q] (13~ ,9 ~ q.Q t ~ ? 

converges exponentially fast in the Caratheodory-Reiffen metric to a vector 
u o ~ t  o . We denote by ea the vector t o +  ua. It is easy to verify that eo 
belongs to Cd,~ and also that its image by Lo is proportional to ey  o. The 
proportionality factor will be denoted by Pe, namely 

From the hypothesis HA2 we have po I> b. Note that Pa is also uniformly 
bounded above since Lo is uniformly bounded. It now remains to show 
that eQ is H61der continuous. The H61der continuity of Pa will then follow 
from the above formula. Let f2 and s be two elements of E. Let l be 
defined by d(f2, s = 2 ( Let l '  be the largest integer smaller than l/2. We 
can assume that l '  is large, otherwise the H61der estimate follows from the 
boundedness of ea,  i.e., we shall assume that l is larger than some integer 
l0 to be chosen later. From the H61der continuity to to, it follows that for 
some positive constants B1 and bl we have, from d(SP-vf2,  5P-r l2  ') ~ 2 r, 

I ( t ~  "al t ~ - " a ' )  - II <~Bt2 -l'bl 

For 0 ~< p <~ l' (l' fixed), we define three sequences Xp, yp, and zp by 

xp=JEPl (0) ,~ vg2 

- - J [ P ] (  ' t ~ - ' ' t 2 -  ) 
Y p -  j I'a, \ ( t~_ro ,  ] t~-t 'o> t~-"a '  

and 
t~p-ro, + yp 

zp - ( t~p-~ 'o ,+ yp l t~p-vo> - - t y p  r 0 

822/57/5-6-2 
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�9 and [[Zp][<<.A'. We also have Zp=yp+(9(1)2  =rbl. Note that Zpe t~p-t, 
Using the H61der continuity of L o and the hypothesis HA1, we deduce, for 
l 0 large enough, that there are two constants B 2 and b2 (independent of (2 
and s such that 

[[J~p ro(Zp) -- J~p ~'o'(Y;)[[ ~< B22-"b2 

This implies that for some similar constant B3, we have 

]lZp§ l - J~p-,.~(zp)ll <~ B32 t'b2 

From the properties of the Caratheodory-Reiffen metric, we have for some 
new constant B 4 

dc,~p r+lo(Xp+ 1, Zp+ 1) ~ Odc,~p-ro(xp, Zp) + B42 rb2 

and we finally get 

' dc, o (xr ,  y,,)<~ O(1)(O" + 2 ,'b2) 

We also have, using the contraction of the Caratheodory-Reiffen metric, 

[teo - to - xrl] <~ dc.o(eo - to, Xr) <~ (9(1)0 l' 

and a similar estimate for (2'. We finally get 

[leo - eo,][ ~< [ l ea -  t o -  xrl] + [Ito + x / , -  t o -  zrl[ 

+ I l t o + z z , - t o , - Y r l l  + I l e o , - t o , - y r l l  

~< (9(1)(0t' + 2 rb2) 

and the result follows from 1'~>//3. 
The following lemma will be useful later to estimate the growth rate of 

a general vector. 

I . e m m a  A.3. Let v be a vector which does not belong to the cone 
Ca, o. Then 

, , v - - e o ( v l t o ) , ,  >~ (1-- -~) , ,v l l  

ProoL If the reverse (strict) inequality holds for some vector v, we 
have from Ileal[ ~< a' the inequality 

a l ( v l t o ) [  <<, ]lvll < a ' l ( v l t ~ ) l  + CltlVll 
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where C 1 : 1 - a'/a (the first inequali ty follows f rom v r Ca, n). This implies 

and 

C1 Ilvll 
I < v l t a ) l  < - -  a -  a '  

a 

Ilvll < c, Itvll = IJvll a - a '  

which is a contradict ion.  
We can now analyze the behavior  under  i terat ion of vectors which do 

or do not  belong to the Ca, n. 

I . e m m a  A.4 .  There  is a constant  c2 such that  if v is a vector  and n 
is an integer satisfying L~v 4/Ca, so,n, then 

n - - 1  

I lL,  vii ~< c2 Ilvll 1-[ O~,ap~,a 
0 

If  v belongs to Ca, n, then for every integer n > 0 we have 

C21 ~ I(ts~alL~'Jv)l <~c2 
Ilvll 1-Ig- ap~,~ 

and also 

IIL~']vl[ c~-l~< 
IIv[I F i g - *  p,~,~ 

Proof. Let vr  (otherwise L~']sCo, y.n). Let ( ( ( # 0 )  be a 
complex n u m b e r  with smallest  possible modulus  such that  v + fen e Ca, n. 
F r o m  Propos i t ion  A1 we have 

n 1 
E-] In] d~'n(Ln v+~Ln en, L~']en)<~Cg(l) ~I O~,n 

j = O  

Let u be the vector  defined by 

U - -  
L~']v 

It follows from the hypothesis  on v and on n that  ur Ca, S~, n. We deduce 
from the above inequali ty 

u + e ~ .  n . -  1 

I +  <ult~,n> -e~"n  ~<(_9(1) lrI O~j n 
j = 0  
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or equivalently 
n 1 

Ilu-e~~176 ~<(9(1) 1-[ 0~,~11 + < u l t y a > l  
j = 0  

We now deduce from the preceding lemma that 

n- -1  

Ilull ~<Cl ~ H o ~ ( 1  + [lull) 
0 

hence 
n 1 

Ilull ~2c~ x H 0 ~  
0 

if n is larger than the smallest integer no such that O"~ 1/2. For n 
smaller than no the first assertion of the lemma follows from the uniform 
bound on IIZ,~ll. For n larger than no it follows from the estimate on 
(recall that ea ~ C~, a): 

I~1 <~a-a Ilvll 

If l )~Ca , (2  , w e  have from Proposition A.1 and the relation between the 
norm and the Caratheodory distance 

<t~e.alZ~n]v> =~._ ,a ( t~ ._ ,o lZ~n-13v>[1  +(9(1)0 n 1] 

The result now follows by iterating this relation and using the definition of 
the cone. 

We shall need later the projector on the vectors which do not have the 
same asymptotic growth rate as eo. The normal direction to this subspace 
is defined in the following lemma, where we suppose that Lo depends only 
on p(f2) (since it is the case in the renormalization group analysis). 

k e m m a  A.5. For v in g the sequence of numbers ~ ) ( v )  defined by 

<tp,~ ILL%> 

converges. The limit defines a family of bounded linear forms associated 
with a H61der continuous family of vectors an of 8. The direction of ~a 
depends only on the components f2j of ~2 with j >/0, and there is a positive 
constant c4 such that for any v in 8 and for any f2 s p-l(o)),  we have 

q- -1  

L [ q ] v  < ~ o  v [q]  co _-- [ >Lo~ et2ll~c4oq[ll)H H PSPJ~2 
0 
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ProoL Assume first that v belongs to  Ca,.Q. Then the convergence 
follows at once from Proposition A.1. It is easy to verify that c~ a defines an 
affine map on the cone C,,o. Since this cone is generating, we can extend 
:~a to a continuous linear functional on ~ .  The convergence follows in the 
general case using Lemma A.4. The H61der continuity follows as for ea in 
Proposition A.2. For  any vector v and any integer n, we have 

L ~"3(19 -- eo~:/ ( o~ o Iv ))(~ C,,,~,n 

(unless the left-hand side is zero). Indeed, if for some integer n the above 
vector is in Ca,~,a, this will go on for any larger integer. Using 
Lemma A.4, we get a contradiction with the above argument. Let co be an 
angle and let f2 e p-~(co). If v is a vector in g, we apply L~ q] to each 
member of the decomposition 

19= (c~alv )e~a + ( v -  ( ~ l v ) e ~ )  

We deduce, using the above remark and Lemma A.4, 

q--1 
L [q] 19 [q] 11 ~o v - ( c t o [  ) to ,  eall<~r ~I PJ,(~> 

o 

Eq] In particular, this estimation leads to the following upper bound on I]L~, N. 
For  any Q e p-1(co), 

q 1 
[q] 

IIL~ rl ~<r I ]  P~,a 
0 

Finally, if f2 and O' differ only by their components of negative indices, it 
is easy to verify that 

converges to 1. This implies that c~ a and c~ a, are proportional. 

Lomma A.6. There are positive constants eo and B, and for any 
number e satisfying 0 < e < ao, there is an integer q(~) such that if q > q(e), 
then 

({ q, }) l CO V Q e p  I(CO), IV- [ p y j ~ > e q ( e + e  ) <~e qBe2 

o 

ProoL It follows from well-known arguments (see, for example, 
ref. 3) that the thermodynamic limit 

( ql ) qs(fl) = lira q-1 log ~ p ~,~,a dl(O) 
q ~ o o  0 
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exists and defines a three-times-differentiable function ~ (see ref. 3). The 
result follows at once from the definition of y and the large-deviation 
theorem t12) by noticing that there is a constant C uniform in q such that 
if t2 and t2' project on the same angle co, then uniformly in q and in co, we 
have [since d(SPJg2, 5e Jr2') ~< 2 J] 

~<C 
riqo-- 1 P ~Jg2' 

A P P E N D I X B .  T H E I N V A R I A N T  F A M I L Y  OF CONES IN THE 
E E X P A N S I O N  

We now prove that the assumptions of Appendix A are satisfied in the 
case of the e expansion. We shall first recall some facts about this theory. 
It was proven in ref. 7 that for 2 positive and small enough, the Cvitanovi6 
equation 

~(r  = - , t ~ ( x ) ,  ~ ( o )  = 1 

has a solution which is of the form ~b(z)= ~(]xll+~), where ~ is analytic in 
some (large) domain and e satisfies 

-,~(~ - r  
,g-- 

1 + log 2 

For simplicity we shall not indicate the 2 dependence of ~b and ~. As 
explained in ref. 7, it is equivalent to considering the renormalization 
operator acting on ~. As explained in Section 2, we consider (for ~ small 
enough) a fixed complex neighborhood ~ of the interval [0, 1] (for 
example, the set of points at distance 2), and sets of functions which are 
analytic in this neighborhood. 

We can now check the hypotheses of Appendix A in the context of the 
e expansion. After some elementary computations, one gets the following 
estimate for the operator L~ [acting on h(]xll+~)] 

L~h(z) = z{h'(0) + cos co[h'(1) + ~h(1)/2] 

- 2i2 1 sin co [(1 + 2) h(1 ) + eh(1)/2 - 2h'(1)/2] } + 2r(h)z 

where h ~ r(h) is an analytic map from a neighborhood Y- of ~ in the set 
of functions analytic and bounded in @. We now set for 2 small enough 
a = 1 + 1 / log( - log  2) and we define the invariant field of cones by 

Ca,~o = { h ~ l  Ilhll <~al(tih)l} 
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where t is the function t(z)= z/llzll. We shall denote by 6o~ the quantity 

{ [1 + cos co(1 + e/2)] 2 + 42-2 sin 2 o)(1 + )]2 + e/2)2 } 1/2 

It is now easy to verify the hypotheses of Appendix A with a' = 1 + 2 log 2 2, 
b = -C(1)/Iog 2. Moreover, using [for f2 e p-1(o9)] 

po = 6~o[1 + (9(1) 2(log 2) 2 ] 

one gets an estimate for the Lyapunov exponent 7 = - l o g  2 + 2 +  (9(1)e, 
and for the contraction factor 0n<<.21/21log21/6o, from which it follows 
that Oopa < e - r  for some positive (and large) number F. 

A P P E N D I X C .  S T A B L E  M A N I F O L D  

In this section, we prove that for Lebesgue almost any angle, the 
renormalization iteration for a quasiperiodic noise has a (local) stable 
manifold. As explained in Section 3, this is not so relevant for the renor- 
malization dynamics, because this stable manifold is of infinite codimen- 
sion. In order words, in order to stay near the fixed point, one would have 
to satisfy infinitely many conditions (a phase transition of infinite order). 
As explained in Section 2, we need to make some assumptions on the 
dependence on the noise. As we have already explained, a continuous 
dependence is enough to ensure that the renormalization transformation is 
well defined. It is easy to show that the renormalization preserves this con- 
tinuous dependence in a small neighborhood of the fixed point (in fact, it 
also preserves analyticity) because we are composing with an analytic func- 
tion restricted to a smaller domain. More precisely, for any positive integer 
p, we denote by @ the set of maps from S 1 to ~1 such that their first p 
derivatives has a square-integrable norm. Using the above remark, it is 
easy to verify that the renormalization operator maps a small enough 
neighborhood (in s~'l) of the constant function ~ into ~41. 

The technical difference with previous results on quasiproduct stable 
manifolds (2~ is precisely that our tangent map is not compact anymore. 
We shall use, however, the rather good control provided by the results of 
Appendix A. In some sense these results (hypotheses) overcome the 
problems created by large deviations. It would be interesting to deal with 
situations where this is not so. We shall use Mafi6's method (2~ suitably 
modified to take into account the fact that in our situation, the projection 
on the unstable manifold is not defined on the circle, but only in the exten- 
sion {0, 1} z. 

We now state the main result of this Appendix. 
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Theorem C.1. For Lebesgue almost every angle co, there is a C a 
local stable manifold of the constant fixed point in all. 

Note that similar results hold in all Sobolev spaces. 

P r o o L  We first recall briefly the method of proof  used by Mafi6. (2~ 
We first perform a translation so that the fixed point is now 0. For  each 
vector v ~ in d l  we construct a sequence (Vq)q~N in d~. We have used here 
upper indices because the lower indices are reserved for Fourier 
components. For  a fixed (and small enough) projection of v ~ on the linear 
stable manifold cK~o, we shall determine by a fixed point equation the 
transverse part  of v ~ so that the associated sequence (/)q)qEN is bounded 
(and in fact converges to 0). 

We denote by Ro, the map obtained from 9~o, after translating the fixed 
point at zero. It may be necessary to take some fixed iterate of this map to 
ensure that the constants appearing in the first part  of Lemma A.4 are 
smaller than 1. This may also require to have 0o slightly larger, but still 
smaller than one. We shall assume this is the case for only one iteration 
since the general argument requires only very elementary modifications. As 
observed in Section 2, Ro, is infinitely differentiable in d~ and we define the 
remainder operator r by 

r(co, v)  = Ro~(v) - D R ~ ( O ,  v)  

We now define a Banach space of sequences Y .  This is the space of 
sequences with elements in sr equipped with the norm 

H(vq)q~N[I = sup [Ivqtl e qc 
q 

where c is a positive number  to be chosen later. Let H t be the projector co 
with image in the contracted linear space ~r defined for n r 0 by 

U] <~2z.colv.> L.co ~.co 
( r t L~ ) .  = ~~ 

<~2,.~ I L [I]~ " nco ~ n o )  / 

and the projection on the stable eigenspace of the usual linearized renor- 
malization for n = 0. In the above formula, eo~ is not well defined. However, 
from Lemma A.5 it follows that the direction of e depends only on co, and 
since the above formula is projective in c~, there is no ambiguity. We also 
define f f I~v  = v - H ~ v .  Note that it follows easily from Lemma A.5 that the 
vector 

co co 

<o~2/colLco co> 
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has a norm which is uniformly bounded. It then follows that the above 
projectors have a norm uniformly bounded in d ~  (with respect to l and 
to co). 

From now on, we shall assume that supa Oape  < e  - r ,  where F is a 
positive number. We recall that this inequality is true at least in e expan- 
sion (see Appendix B). It now follows easily from Lemma A.4 that 

rlse~y~ H~vll ~< e-qrllv[l 

where again the above inequality may be true only for some (fixed) iterate 
and a slightly larger Oa. 

Let ~, be a positive number to be chosen later. We define a family of 
maps T,o,~,o, where wOe ~f~o, by 

q--1 
T(o, wo(v)q = 5oEq3H o . 0 , ,) ~o v • ~, ~2,+~(PEq-J- 13H~+ tr(2Jco ' v j) 

O 
co 

- '}-E \~" 2qco ( (./7 [J q+  1]j~q ~--l__o,, /7~+' r( 2jco, vJ)  
q 

for q # 0, and 

T~o, w0(_v)~ = w~ - ~ ,(5(' EJ+ ~3/I~ ~ o ,  o,, 1 fflJ+,r,,Wo, tz  co, v j) 
I 

if Ilw~ and It_vii are smaller than ~. 
It is easy to verify that for a small enough ~ and a fixed co, To,.w0 is 

defined and C ~ on some neighborhood of 0 in J{ and the image is also in 
oK if c is small enough (c < F). It now follows as in ref. 20 that a necessary 
and sufficient condition for a vector v ~ of norm less than ~ and projection 
w~ H~ ~ on cg, o to be on the stable manifold at the angle co is that there 
exists a sequence v in J{  which is a fixed point of T~,.~,o. The existence (and 
uniqueness) of such a sequence for a w ~ of small enough norm follows from 
the implicit function theorem (m) as in ref. 20. The regularity of the manifold 
follows similarly. 
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