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Using a nonperturbative functional renormalization-group approach to the two-dimensional quantum O(N )
model, we compute the low-frequency limit ω → 0 of the zero-temperature conductivity in the vicinity of the
quantum critical point. Our results are obtained from a derivative expansion to second order of a scale-dependent
effective action in the presence of an external (i.e., nondynamical) non-Abelian gauge field. While in the
disordered phase the conductivity tensor σ (ω) is diagonal, in the ordered phase it is defined, when N � 3, by
two independent elements, σA(ω) and σB(ω), respectively associated to SO(N ) rotations which do and do not
change the direction of the order parameter. For N = 2, the conductivity in the ordered phase reduces to a single
component σA(ω). We show that limω→0 σ (ω,δ)σA(ω, − δ)/σ 2

q is a universal number, which we compute as a
function of N (δ measures the distance to the quantum critical point, q is the charge, and σq = q2/h the quantum
of conductance). On the other hand we argue that the ratio σB(ω → 0)/σq is universal in the whole ordered phase,
independent of N and, when N → ∞, equal to the universal conductivity σ ∗/σq at the quantum critical point.
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I. INTRODUCTION

Relativistic quantum field theories with O(N ) symmetry
arise in the low-energy description of many condensed-
matter systems: quantum antiferromagnets, superconductors,
Bose-Einstein condensates in optical lattices, etc. Although
the zero-temperature critical behavior at the quantum phase
transition of these models as well as the finite-temperature
thermodynamics [1–3] is well understood, understanding
the dynamics and the transport properties in the vicinity
of the quantum critical point (QCP) remains a subject of
intense research [4]. Because the corresponding theories are
strongly interacting, which often leads to the absence of
well-defined quasiparticles, perturbative quantum-field-theory
methods are usually of limited use. So far three approaches,
each with its own strengths and weaknesses, have been used:
quantum Monte Carlo simulations [5–11] (QMC), confor-
mal field theory (CFT) methods [9,11–14], and holographic
models [9,10,14–17] based on the AdS/CFT correspondence.
Quantum Monte Carlo simulations are a powerful method
to compute imaginary-time correlation functions but suffer
from the difficulty of analytically continuing data to real time;
holographic models based on the AdS/CFT correspondence
yield real-time results but their relationship to relativistic field
theories of interest in condensed matter is not always clear.

In this paper we describe a nonperturbative functional
renormalization-group (NPRG) approach [18–20] to the quan-
tum O(N ) model and compute the low-frequency limit of the
zero-temperature conductivity in the vicinity of the QCP. This
work should be seen as a first step towards a more complete
study including the frequency and temperature dependence.
The NPRG has been used previously to derive the equation of
state and the thermodynamic properties of the quantum O(N )
model [1–3]. It has also been used to study the Higgs amplitude
mode [21,22]. Very good agreement with QMC simulations
was obtained whenever comparison was possible.

The method of choice to compute correlation functions
from the NPRG is the Blaizot–Méndez-Galain–Wschebor

(BMW) approximation scheme since it allows one to obtain
the full momentum and frequency dependence [23–25]. It has
been used recently to compute the spectral function of the
Higgs amplitude mode in the quantum O(N ) model [22].
Unfortunately this method violates the gauge invariance of
the theory when the matter field is coupled to a gauge field
and therefore cannot be used to compute the conductivity.
Our results are based on a derivative expansion of the
effective action, a common approximation scheme in the
NPRG approach, which allows a natural implementation of
symmetries.

The outline of the paper is as follows. In Sec. II we
introduce the quantum O(N ) model in the presence of an
external (i.e., nondynamical) non-Abelian gauge field and
define the conductivity. We show how the latter can be
computed in the effective action formalism. In Sec. III, we
introduce the scale-dependent effective action, which is the
central quantity in the NPRG approach. The most general
expression of the effective action to second order of the
derivative expansion, compatible with gauge invariance, is
defined by five functions of the (matter) field. We derive
the RG equations satisfied by these functions and discuss the
one-loop approximation. In Sec. IV we discuss the large-N
limit in the presence of the gauge-field-dependent regulator
introduced to implement the NPRG approach. The numerical
solution of the RG equations is presented in Sec. V. First, we
briefly discuss the universal values of the critical exponents
and the zero-temperature ratio ρs/� between the stiffness and
the excitation gap (for two points in the phase diagram located
symmetrically with respect to the QCP). Then we discuss the
low-frequency limit of the conductivity. The disordered phase
behaves as a capacitor and its low-frequency conductivity
σ (ω) = −iωCdis is fully determined by the capacitance (per
unit surface) Cdis. In the ordered phase, the conductivity tensor
is defined by two elements (provided that N � 3), σA(ω) and
σB(ω), respectively associated to SO(N ) rotations which do
and do not change the direction of the order parameter. [For
N = 2 the conductivity tensor reduces to σA(ω).] σA(ω) =
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i/Lord(ω + i0+) is the conductivity of a perfect inductor.
We compute the universal ratio Cdis/Lordσ

2
q as a function

of N (with σq = q2/h the quantum of conductance and q

the charge) and argue that the ratio σB(ω → 0)/σq takes a
universal value σ ∗

B/σq , independent of N and, when N → ∞,
equal to the universal conductivity σ ∗/σq at the quantum
critical point. In Sec. VI, we discuss possible improvements
of our approach.

II. CONDUCTIVITY OF THE O(N) MODEL

The two-dimensional quantum O(N ) model is defined by
the (Euclidean) action

S =
∫

x

{
1

2
(∇ϕ)2 + 1

2c2
(∂τϕ)2 + r0

2
ϕ2 + u0

4!N
(ϕ2)2

}
, (1)

where we use the shorthand notation

x = (r,τ ),
∫

x
=

∫ β

0
dτ

∫
d2r. (2)

ϕ(x) is an N -component real field, r a two-dimensional
coordinate, τ ∈ [0,β] an imaginary time, β = 1/T , and we set
� = kB = 1. r0 and u0 are temperature-independent coupling
constants and c is the (bare) velocity of the ϕ field. The model
is regularized by an ultraviolet cutoff 
. In order to maintain
the Lorentz invariance of the action (1) at zero temperature,
it is natural to implement a cutoff on both momenta and
frequencies.

At zero temperature there is a quantum phase transition
between a disordered phase (r0 > r0c) and an ordered phase
(r0 < r0c) where the O(N ) symmetry of the action (1) is spon-
taneously broken (we consider u0 and c as fixed parameters
and vary r0 to induce the quantum phase transition). The QCP
at r0 = r0c is in the universality class of the three-dimensional
classical O(N ) model with a dynamical critical exponent
z = 1 (this value follows from Lorentz invariance); the phase
transition is governed by the three-dimensional Wilson-Fisher
fixed point.

In the following, we consider only the zero-temperature
limit where the two-dimensional quantum O(N ) model is
equivalent to the three-dimensional classical O(N ) model. For
convenience, we set the velocity c equal to one so that the
action (1) takes the usual form of the classical O(N ) model
with x a three-dimensional space variable [26]. Having in mind
the two-dimensional quantum O(N ) model, we shall refer to
the critical point of the three-dimensional classical O(N ) as
the QCP. In Fourier space, a correlation function χ (px,py,pz)
computed in the classical model should be identified with
the correlation function χ (px,py,iωn) in the quantum model,
with ωn ≡ pz a bosonic Matsubara frequency, and yields
the retarded dynamical correlation function χR(px,py,ω) ≡
χ (px,py,iωn → ω + i0+) after analytic continuation iωn →
ω + i0+. [At zero temperature, the Matsubara frequency
ωn = 2πnT (n integer) becomes a continuous variable.] In the
following we note d the space dimension of the quantum O(N )
model and D = d + 1. Although we are primarily interested
in the case d = 2, we shall often derive expressions valid for
arbitrary d.

A. Rotation invariance and current densities

The action of the D-dimensional O(N ) model [Eq. (1)] is
invariant in the global rotation ϕ′ = Oϕ with O ∈ SO(N ) a
uniform rotation. We can make this global invariance a local
one by introducing a gauge field Aμ in the action:

S =
∫

x

{
1

2

∑
μ=x,y,z

(∂μϕ − qAμϕ)2 + r0

2
ϕ2 + u0

4!
(ϕ2)2

}
.

(3)
We set the charge q equal to unity in the following (it will
be reintroduced in final expressions whenever necessary). Aμ

is an x-dependent skew-symmetric matrix of the Lie algebra
so(N ) (see Appendix A); it can be written as

Aμ = Aa
μT a (4)

(with an implicit sum over repeated discrete indices), where
{T a} denotes a set of so(N ) generators [made of N (N − 1)/2
linearly independent skew-symmetric matrices]. The action
(3) is invariant in the local gauge transformation,

ϕ′ = Oϕ,
(5)

A′
μ = OAμOT + (∂μO)OT ,

where O is a space-dependent SO(N ) rotation. Note that,
stricto sensu, gauge invariance is satisfied only if it is not
broken by the UV regularization. We shall assume here that
this is the case and come back to this issue in Sec. III.

We do not consider Aμ as a dynamical gauge field but rather
as a mere external source which allows us to define the current
density

J a
μ(x) = − δS

δAa
μ(x)

. (6)

To alleviate the notation we do not indicate the dependence of
J a

μ(x) on A. From (3) we obtain

J a
μ = ja

μ − Aμϕ · T aϕ,
(7)

ja
μ = ∂μϕ · T aϕ,

where ja
μ and −Aμϕ · T aϕ, respectively, denote the param-

agnetic and diamagnetic parts of the current density. Equa-
tions (7) can also be derived from Noether’s theorem. In
the quantum O(N ) model, ja = (ja

x ,ja
y ) corresponds to the

current density (in the absence of external gauge field) whereas
ja
z , after a Wick rotation z ≡ τ → it , gives the conserved

charge density La = −ij a
z = −∂tϕ · T aϕ (angular momentum

density) [4].
For N = 2, there is a single generator T , which can be

chosen as minus the antisymmetric tensor εij (Appendix A),
and we find

Jμ = −i[ψ∗∂μψ − (∂μψ∗)ψ] − 2|ψ |2Aμ, (8)

where ψ = (ϕ1 + iϕ2)/
√

2. We thus recover the standard
expression of the current density of bosons described by a
complex field ψ .
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B. Linear response and conductivity

To leading order, the mean value of the current density is
given by

〈
J a

μ(x)
〉 =

∫
x′

Kab
μν(x − x′)Ab

ν(x′) + O(A2), (9)

where

Kab
μν(x − x′) = δ2 lnZ[A]

δAa
μ(x)δAb

ν(x′)

∣∣∣∣
A=0

, (10)

with Z[A] the partition function in the presence of the external
gauge field. An elementary calculation gives

Kab
μν(x − x′) = �ab

μν(x − x′) − δμνδ(x − x′)〈T aϕ · T bϕ〉,
(11)

where

�ab
μν(x − x′) = 〈

ja
μ(x)jb

ν (x′)
〉

(12)

is the paramagnetic current-current correlation function.
In the quantum model, the response to a uniform time-

dependent gauge field is given by Kab
μν(iωn) ≡ Kab

μν(px =
0,py = 0,iωn) and the frequency-dependent conductivity is
equal to

σab
μν (iωn) = − 1

ωn

Kab
μν(iωn). (13)

The real-frequency conductivity is thus defined by

σab
μν (ω) = 1

i(ω + i0+)
Kab

μν
R(ω), (14)

where Kab
μν

R(ω) = Kab
μν(iωn → ω + i0+) denotes the retarded

part of Kab
μν(iωn).

For N = 2, the conductivity tensor reduces to a single
component defined by the current-current correlation function
obtained from the usual definition (8).

C. Effective action formalism

Let us consider the partition function

Z[J,A] =
∫

D[ϕ] e−S[ϕ,A]+∫
x J·ϕ (15)

in the presence of both the gauge field A and an external source
J which couples linearly to the ϕ field. The action S[ϕ,A] is
defined by (3). The order parameter is obtained from

φ[x; J,A] = δ lnZ[J,A]

δJ(x)
. (16)

The effective action

�[φ,A] = − lnZ[J,A] +
∫

x
J · φ (17)

is defined as the Legendre transform of − lnZ[J,A] with
respect to the linear source J. In Eq. (17), J(x) ≡ J[x; φ,A] is
a functional of φ and A obtained by inverting (16). � satisfies
the equation of state

δ�[φ,A]

δφ(x)
= J[x; φ,A]. (18)

Thermodynamic properties of the system can be obtained
from the effective potential

U (ρ) = 1

V
�[φ,A]

∣∣∣∣
φ=const,A=0

(19)

defined by the effective action evaluated in a uniform field
configuration φ(x) = φ and A = 0 (V = LD is the volume).
For symmetry reasons, U is a function of the O(N ) invariant
ρ = φ2/2. We denote by ρ0 the value of ρ at the minimum of
the effective potential. Spontaneous symmetry breaking of the
O(N ) symmetry is characterized by a nonvanishing value of
ρ0: U ′(ρ0) = 0 (the prime denotes derivatives with respect to
ρ) [27].

Correlation functions can be reconstructed from the one-
particle irreducible (1PI) vertices defined by

�
(n,m){aj }
{ij },{μj } [{xj },{yj }; φ,A]

= δn+m�[φ,A]

δφi1 (x1) · · · δφin(xn)δAa1
μ1 (y1) · · · δAam

μm
(ym)

. (20)

The correlation functions evaluated for A = 0 and in a uniform
field configuration are determined by the vertices

�
(n,m){aj }
{ij },{μj } ({xj },{yj }; φ) = �

(n,m){aj }
{ij },{μj } [{xj },{yj }; φ,A]

∣∣
φ=const

A=0
.

(21)

In particular, the (connected) propagator Gij (p,φ) =
〈ϕi(p)ϕj (−p)〉 − 〈ϕi(p)〉〈ϕj (−p)〉 in a uniform field and for
A = 0 is obtained from the matrix equation

G(p,φ) = �(2,0)(p,φ)−1, (22)

where �(2,0)(p,φ) ≡ �(2,0)(p, − p,φ). The O(N ) symmetry
allows us to write

�
(2,0)
ij (p,φ) = δij�A(p,ρ) + φiφj�B(p,ρ), (23)

and

Gij (p,φ) = φiφj

2ρ
GL(p,ρ) +

(
δi,j − φiφj

2ρ

)
GT(p,ρ), (24)

where

GL(p,ρ) = [�A(p,ρ) + 2ρ�B(p,ρ)]−1,

GT(p,ρ) = �A(p,ρ)−1 (25)

are the longitudinal (L) and transverse (T) parts of the
propagator. Due to rotation invariance in space, two-point
vertices and correlation functions in (23) and (25) are functions
of |p|. Since �

(2)
ij (p = 0,φ) = ∂φi

∂φj
U (ρ), one has

�A(p = 0,ρ) = U ′(ρ), �B(p = 0,ρ) = U ′′(ρ). (26)

In the disordered phase (ρ0 = 0) the correlation length
ξ is finite, which corresponds to a nonzero single-particle
excitation gap � ≡ c/ξ (c is set to 1) in the quantum
model. The latter is obtained from the spectral function
Im[GR(q,ω,ρ = 0)] where it manifests itself as a sharp peak.
It can be more simply obtained from a derivative expansion of
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the two-point vertex,

�A(p,ρ) = Z(ρ)p2 + U ′(ρ) + O(|p|4). (27)

The estimate obtained from (27),

� =
(

U ′(0)

Z(0)

)1/2

, (28)

turns out to be in very good agreement with the excitation gap
deduced from the spectral function Im[GR(q,ω,ρ = 0)] [22].

In the ordered phase (ρ0 > 0), the stiffness ρs is defined by
[28]

GT(p,ρ0) = 2ρ0

ρsp2
for p → 0. (29)

From (25), (27) we deduce

ρs = 2Z(ρ0)ρ0. (30)

1. Conductivity from 1PI vertices

The conductivity can be expressed in terms of the 1PI
vertices. From Eqs. (10), (17), we deduce

Kab
μν(y − y′) = δ2 lnZ[J,A]

δAa
μ(y)δAb

ν(y′)

∣∣∣∣
J=A=0

= − δ̄2�[φ[A],A]

δ̄Aa
μ(y)δ̄Ab

ν(y′)

∣∣∣∣
A=0

, (31)

where the order parameter φ[A] is defined by

δ�[φ,A]

δφ(x)

∣∣∣∣
φ=φ[A]

= 0. (32)

In Eq. (31), δ̄/δ̄Aa
μ(y) is a total derivative, which acts both on

φ[A] and the explicit A dependence of the functional �[φ,A].
In Appendix B we show that Eq. (31) leads to

Kab
μν(p) = −�(0,2)ab

μν (p,φ̄)

+ �
(1,1)a
iμ (−p,φ̄)�(2,0)−1

ij (p,φ̄)�(1,1)b
jν (p,φ̄), (33)

where φ̄ = φ[A = 0] is the (uniform) order parameter in
the absence of the gauge field and we use the notation
�(n,m)(p) ≡ �(n,m)(p,−p) for both vertices �(1,1) and �(0,2).
φ̄ has a modulus equal to

√
2ρ0 but its direction is arbitrary.

The second term in the right-hand side of Eq. (33) corresponds
to the part of Kab

μν which is not 1PI; we shall see that it does not
contribute to the conductivity σab

μν (ω) of the quantum model.
Equation (33) is shown diagrammatically in Fig. 1.

Γ(n,m) =(a) ... ...

1

n

1

m

K = +(b)

FIG. 1. (a) A vertex �(n,m) is represented by a black dot with n

solid lines and m wavy lines. (b) Diagrammatic representation of Kab
μν

[Eq. (33)]. Solid lines connecting vertices stand for the propagator
G = �(2,0)−1.

As in the case of �(2,0) [Eq. (23)], one can take advantage of
the symmetries of the model to write the vertices in the form

�
(1,1)a
jμ (p,φ) = ipμ(T aφ)j�A,

�(0,2)ab
μν (p,φ) = pμpν[δab�B + (T aφ) · (T bφ)�C]

+ δμν[δab�̄B + (T aφ) · (T bφ)�̄C], (34)

where �A,�B,�C,�̄B,�̄C are functions of ρ and p2. This
leads to

Kab
‖ (p) = − δab[�̄B(p,ρ0) + p2�B(p,ρ0)]

− (T aφ) · (T bφ)[�̄C(p,ρ0) + p2�C(p,ρ0)

− p2GT(p,ρ0)�A(p,ρ0)2] (35)

and

Kab
⊥ (p) = −δab�̄B(p,ρ0) − (T aφ̄) · (T bφ̄)�̄C(p,ρ0), (36)

where Kab
‖ and Kab

⊥ are the longitudinal and transverse
components of Kab

μν ,

Kab
μν(p) = p̂μp̂νK

ab
‖ (p) + (δμν − p̂μp̂ν)Kab

⊥ (p), (37)

with p̂ = p/|p| a unit vector parallel to p.
Finally, the functions �A,�B,�C,�̄B,�̄C are not indepen-

dent but related by the Ward identities (see Appendix C)

p2�A(p,ρ) = �A(p,ρ) − U ′(ρ),

p2�B(p,ρ) + �̄B(p,ρ) = 0,

p2�C(p,ρ) + �̄C(p,ρ) = �A(p,ρ). (38)

The first equation implies limp→0 �A(p,ρ) = Z(ρ) where
Z(ρ) is defined by (27). Relations (38) imply that Kab

μν is
transverse,

Kab
‖ (p) = −(T aφ̄) · (T bφ̄)�A(p,ρ0)U ′(ρ0)GT(p,ρ0)

= 0, (39)

where we have used GT(p,ρ) = �A(p,ρ)−1 and the fact that,
depending on the phase, either U ′(ρ0) = 0 or φ̄ = 0. The f -
sum rule

Kab
‖ (p) = �ab

‖ (p) − 〈(T aϕ) · (T bϕ)〉 = 0 (40)

is further discussed in Appendix B 2.

2. Conductivity in the quantum model

To obtain the frequency-dependent conductivity in the
quantum model, one sets p = (0,0,ωn) and μ,ν = x,y so that
pμ = pν = 0 and the one-particle-reducible contribution in
(33) vanishes, Kab

μν(iωn) = −�(0,2)ab
μν (iωn,φ̄), i.e.,

Kab
μν(iωn) = δμν

{−�A(iωn,ρ0)(T aφ̄) · (T bφ̄)

+ω2
n[δab�B(iωn,ρ0)

+ (T aφ̄) · (T bφ̄)�C(iωn,ρ0)]
}
, (41)

where we have used the Ward identities (38).
In the disordered phase (ρ0 = |φ̄|2/2 = 0), the conductivity

tensor σab
μν (ω) = δμνδabσ (ω) is diagonal with

σ (ω) = iω�B(iωn = 0,ρ = 0) + O(ω3). (42)
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Thus, at low frequencies the disordered phase behaves as a
capacitor,

σ (ω) = −iωCdis, (43)

with capacitance (per unit surface)

Cdis = −2π�σq�B(iωn = 0,ρ = 0) (44)

(we have restored q and �, and σq = q2/h is the quantum of
conductance).

In the ordered phase, when N � 3 one must distinguish
between the N − 1 generators that act on φ̄ (class A), i.e., such
that T aφ̄ 
= 0, and the (N − 1)(N − 2)/2 generators of class
B such that T aφ̄ = 0 [29]. Assuming for simplicity that the
order parameter is along the first direction, i.e., φ̄i = δi,1

√
2ρ0,

and choosing the basis {T IJ } introduced in Eq. (A4), one finds

Kab
μν(iωn) = δμνδab

{
ω2

n�B(iωn,ρ0) + 2ρ0δa∈A

[
ω2

n�C(iωn,ρ0)

−�A(iωn,ρ0)
]}

, (45)

where δa∈A is equal to unity if T a is in class A and vanishes
otherwise. The conductivity tensor σab

μν (ω) = δμνδabσ
aa(ω) is

diagonal and defined by two independent elements, σA(ω) for
a ∈ A and σB(ω) for a ∈ B (note that, for a generic basis
{T a}, the conductivity tensor is not necessarily diagonal). For
N = 2 there is only one so(N ) generator, which belongs to
class A. For N = 3, there are three generators, which can be
taken as spin-one matrices S1, S2 and S3 (see Appendix A).
S2 and S3 belong to class A whereas S1, the generator of
rotations about the order-parameter axis, belongs to class B.
Thus, KB = 〈j 1

μj 1
μ〉, where j 1

μ = −i[(∂μϕ2)ϕ3 − (∂μϕ3)ϕ2], is
related to transverse fluctuations of the order parameter.

For class A generators, at low frequencies

σA(ω) = i
ρs

ω + i0+ = ρs

(
πδ(ω) + i

ω

)
(46)

is characteristic of a superfluid with stiffness ρs =
2ρ0�A(iωn = 0,ρ0) = 2ρ0Z(ρ0). The system behaves as a
perfect inductor,

σA(ω) = i

Lord(ω + i0+)
, (47)

with inductance

Lord = �

2πσqρs

(48)

(restoring q and �).
For class B generators,

σB(ω) = i(ω + i0+)�R
B (ω,ρ0), (49)

where �R
B (ω,ρ) denotes the retarded part of �B(iωn,ρ). We

will argue in Sec. V (see also Sec. IV for the calculation of
�B in the large-N limit) that in the ordered phase �B(iωn,ρ)
diverges as 1/|ωn| for ωn → 0 so that σB(ω) takes a finite value
in the limit ω → 0.

Since Aμ enters the action in the gauge invariant com-
bination Dμ = ∂μ − Aμ, its scaling dimension at the QCP
must be [Aμ] = [∂μ] = 1. From Eq. (10) it follows that
[K(iωn)] = d − 1 and [σ (iωn)] = d − 2 [30]. For d = 2, in
the vicinity of the QCP the conductivity satisfies the scaling

form [30,31]

σ (ω) = σq�+

(
ω + i0+

�

)
,

(50)

σA,B(ω) = σq�
A,B
−

(
ω + i0+

�

)
,

where �± is a universal scaling function and the index +/−
refers to the disordered/ordered phase. In the disordered phase
� is the excitation gap. In the ordered phase, we choose � to
be given by the excitation gap at the point of the disordered
phase located symmetrically with respect to the QCP (i.e.,
corresponding to the same value of |r0 − r0c|), the ratio ρs/�

being universal. At the QCP, the universal scaling functions
reach a nonzero limit �±(∞) and the ratio σ (ω = 0)/σq =
�±(∞) is universal [30].

Comparing (50) with (43), we see that �+(x) must vanish
linearly with x in the limit x → 0 and

Cdis = i
σq

�
�′

+(0). (51)

On the other hand, Eq. (47) shows that �A
−(x) ∼ 1/x for x → 0

and

1

Lord
= −i�σq lim

x→0
x�A

−(x). (52)

From (51) and (52) we deduce that the ratio

Cdis

Lordσ 2
q

= �′
+(0) lim

x→0
x�A

−(x)

= lim
ω→0

σ (ω,δ)σA(ω, − δ)

σ 2
q

(53)

is universal in the critical regime (δ = r0 − r0c).
The divergence of �B(iωn,ρ) as 1/|ωn| for ωn → 0 implies

that �B
−(x) has a finite limit when x → 0. As a result

σB(ω → 0)/σq is a universal number in the whole ordered
phase (see Sec. V).

III. NONPERTURBATIVE RENORMALIZATION GROUP

In this section we show how the NPRG allows us to compute
the effective action �[φ,A].

A. Scale-dependent effective action

The strategy of the NPRG approach is to build a family of
models indexed by a momentum scale k such that fluctuations
are smoothly taken into account as k is lowered from the
microscopic scale 
 down to 0 [18–20]. This is achieved by
adding to the action (3) the infrared regulator term

�Sk[ϕ,A] = 1

2

∫
x
ϕ(x) · Rk(−D(x)2)ϕ(x)

= 1

2

∫
x,x′

ϕ(x) · Rk[x,x′,A]ϕ(x′), (54)

where

Rk[x,x′,A] = 1
2 [Rk(−D(x)2) + Rk(−D(x′)2)T ]δ(x − x′)

(55)
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and D2 = DμDμ with Dμ(x) = ∂xμ
− Aμ(x). In the absence

of the external gauge field, we recover the usual regulator term.
By replacing ∂μ by the covariant derivative Dμ in the regulator
term, we ensure that the action S + �Sk remains gauge
invariant. Gauge-invariant regulators have been considered
before in the context of gauge theories [32–36].

The regulator has to satisfy some general properties. The
cutoff function Rk must be of order k2 for |q| � k and small
with respect to k2 for |q| � k. That way, fluctuations with
momentum |q| � k are suppressed but those with |q| � k are
left unaffected. The exact shape of the regulator is further
discussed in Sec. V.

The partition function

Zk[J,A] =
∫

D[ϕ] e−S[ϕ,A]−�Sk [ϕ,A]+∫
x J·ϕ (56)

is now k dependent. The scale-dependent effective action

�k[φ,A] = − lnZk[J,A] +
∫

x
J · φ − �Sk[φ,A] (57)

is defined as a modified Legendre transform of − lnZk[J,A],
which includes the subtraction of �Sk[φ,A]. Here φ(x) =
〈ϕ(x)〉 is the order parameter (in the presence of the external
source J and the gauge field A). Assuming that fluctuations are
completely frozen by the �Sk term when k = 
,�
[φ,A] =
S[φ,A]. On the other hand, the effective action of the original
model (3) is given by �k=0 provided that Rk=0 vanishes.

The variation of the effective action with k is given by
Wetterich’s equation [37]

∂t�k[φ,A] = 1
2 Tr

{
Ṙk[A]

(
�

(2,0)
k [φ,A] + Rk[A]

)−1}
, (58)

where Ṙk[A] = ∂tRk[A] and t = ln(k/
) is a (negative) RG
time. In Fourier space, the trace involves a sum over momenta
as well as the O(N ) index of the φ field. The regulator R in
Eq. (58) ensures that high momenta do not contribute to the
flow and the momentum integrals can be safely extended up
to infinity. Thus the regulator term �Sk provides us with a
gauge-invariant UV regularization (see also Sec. III D).

All properties of the effective action discussed in Sec. II C
carry over to �k[φ,A], the only change being that all
quantities become k dependent. Thus, the computation of
the conductivity requires to determine the vertices �

(n,m)
k=0 for

(n,m) = (1,1), (0,2) in addition to the effective potential Uk=0

and the inverse propagator �
(2,0)
k=0 .

B. Derivative expansion

To solve Wetterich’s equation, we use a derivative expan-
sion of the scale-dependent effective action. Such an expansion
is made possible by the regulator term �Sk , which ensures
that all vertices �

(n,m)
k are smooth functions of momenta pi

and can be expanded in powers of p2
i /k2 when |pi | � k,

even at criticality. Thus, the derivative expansion of the
effective action is justified as long as we are interested only in
the long-wavelength physics (corresponding to length scales
larger than k−1 or the correlation length of the theory). It
does not allow us to obtain the full frequency dependence
of the conductivity but is sufficient to determine the low-
frequency limit of σ (ω) and σA(ω) defined by Cdis and Lord

[Eqs. (43) and (47)]. The case of σB(ω) is more subtle;
nevertheless, we shall see that the derivative expansion is
sufficient to infer that the ratio σB(ω → 0)/σq is universal in
the whole ordered phase, although the universal value σ ∗

B/σq

cannot be definitely determined. The derivative expansion
does not grant access to the universal critical conductivity
σ ∗ either. On the other hand, the derivative expansion allows
a simple implementation of gauge invariance. This should
be contrasted with the Blaizot–Méndez-Galain–Wschebor
approximation [23–25], recently used to compute the Higgs
(scalar) susceptibility [22], which enables us to calculate the
full momentum/frequency dependence of correlation functions
but violates gauge invariance.

The derivative expansion of �k[φ,A] is fully determined
by the symmetries of the system. For instance, for A = 0, the
most general O(N ) invariant effective action to second order
in derivatives,

�k[φ] =
∫

x

{
1

2
Zk(ρ)(∇φ)2 + 1

4
Yk(ρ)(∇ρ)2 + Uk(ρ)

}
(59)

is defined by three functions: the effective potential
Uk(ρ), Zk(ρ), and Yk(ρ) [18,19]. There are two O(∇2) terms,
reflecting the fact that longitudinal and transverse fluctuations
[with respect to the local order parameter φ(r)] have different
stiffness. The excitation gap in the disordered phase and
the stiffness in the ordered phase are then defined by �k =
(U ′

k(0)/Zk(0))1/2 and ρs,k = 2Zk(ρ0,k)ρ0,k , respectively [see
Eqs. (28) and (30)].

When A 
= 0, the effective action must be invariant in the
gauge transformation (5): �k[φ,A] = �k[φ′,A′]. The effective
action (59) can be made gauge invariant by replacing ∂μ by the
covariant derivative Dμ. It may also include terms depending
on the field strength [38]

Fμν = −[Dμ,Dν] = ∂μAν − ∂νAμ − [Aμ,Aν]. (60)

Although Fμν is not gauge invariant (it transforms as F ′
μν =

OFμνO
T ), it allows us to construct two invariant terms,

namely tr(F 2
μν) and (Fμνφ)2. Here tr denotes the trace with

respect to the O(N ) indices. This leads to the effective action

�k[φ,A] =
∫

x

{
1

2
Zk(ρ)Dμφ · Dμφ + 1

4
Yk(ρ)(∇ρ)2

+Uk(ρ) + 1

4
X1,k(ρ)Fa

μνF
a
μν

+ 1

4
X2,k(ρ)

∑
μν

(
Fa

μνT
aφ

)2
}
, (61)

where we use Fμν = Fa
μνT

a and tr(F 2
μν) = −2Fa

μνF
a
μν with

Fa
μν = ∂μAa

ν − ∂νA
a
μ − fabcA

b
μAc

ν (62)

(the structure constants fabc of the so(N ) Lie algebra are
defined in Appendix A). Note that, as the gauge field is treated
on the same footing as the gradient term, we restrict ourselves
to terms of second order in A. The effective action �k[φ,A] is
determined by X1,k(ρ) and X2,k(ρ) in addition to Uk(ρ), Zk(ρ),
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and Yk(ρ). From (61) we obtain the vertices

�A,k(p,ρ) = Zk(ρ)p2 + U ′
k(ρ),

�B,k(p,ρ) = ρ

2
Yk(ρ)p2 + U ′′

k ,

�
(1,1)a
k,jμ (p,φ) = ipμ(T aφ)jZk(ρ) (63)

and

�
(0,2)ab
k,μν (p,φ) = Zk(ρ)δμν(T aφ) · (T bφ) + [X1,k(ρ)δab

+X2,k(ρ)(T aφ) · (T bφ)](δμνp2 − pμpν). (64)

Comparing with (34) we deduce that

�A,k(p,ρ) = Zk(ρ), �B,k(p,ρ) = −X1,k(ρ),

�C,k(p,ρ) = −X2,k(ρ), �̄B,k(ρ) = p2X1,k(ρ),

�̄C,k(ρ) = Zk(ρ) + p2X2,k(ρ) (65)

to lowest order of the derivative expansion. Equations (65)
satisfy the Ward identities (38).

C. Flow equations

From Wetterich’s equation (58), we deduce the flow
equations satisfied by the effective potential,

∂tUk(ρ) = 1

2

∫
q
Ṙk(q)[Gk,L(q,ρ) + (N − 1)Gk,T(q,ρ)] (66)

(Ṙk = ∂tRk), and the vertices of interest in a uniform field,

∂t�
(2,0)
k,ij (p) = 1

2
∂̃t

∑
q

tr
{
Gk(q)

[
�

(4,0)
k,ij (p,−p,q,−q) − �

(3,0)
k,i (p,q,−p − q)Gk(p + q)�(3,0)

k,j (−p,p + q,−q)
]}

,

∂t�
(1,1)a
k,iμ (p) = 1

2
∂̃t

∑
q

tr
{
Gk(q)�(3,1)a

k,iμ (q, − q,p, − p) − Gk(q)�(3,0)
k,i (p,q,−p − q)Gk(p + q)

× [
�

(2,1)a
k,μ (p + q,−q,−p) + R(1)a

k,μ (p + q,−q,−p)
]}

,

∂t�
(0,2)ab
k,μν (p) = 1

2
∂̃t

∑
q

tr
{
Gk(q)

[
�

(2,2)ab
k,μν (q,−q,p,−p) + R(2)ab

k,μν (q,−q,p,−p)
] − Gk(q)

[
�

(2,1)a
k,μ (q,−p − q,p)

+R(1)a
k,μ (q,−p − q,p)

]
Gk(p + q)

[
�

(2,1)b
k,ν (p + q,−q,−p) + R(1)b

k,ν (p + q,−q,−p)
]}

, (67)

where �
(2,0)
k (p) ≡ �

(2,0)
k (p,−p), etc. To alleviate the notation

we do not write explicitly the dependence of the vertices on
the uniform field φ. The propagator Gk = (�(2,0)

k + Rk)−1

in (67) includes the cutoff function and the operator ∂̃t =
(∂tRk)∂Rk

acts only on the k dependence of the cutoff function
Rk , i.e.,

∂̃tGk,i1i2 (q) = −Ṙk(q)Gk,i1i3 (q)Gk,i3i2 (q). (68)

Since the effective potential enters the propagators only
through its derivatives, it is convenient to consider Wk(ρ) =
U ′

k(ρ) whose flow equation can be easily deduced from (66).
Equations (67) are shown diagrammatically in Fig. 2.

They differ from usual flow equations by the appearance of
derivatives of the cutoff function with respect to the gauge
field,

R(1)a
k,μ (x,x′,y) = δR[x,x′,A]

δAa
μ(y)

∣∣∣∣
A=0

,

R(2)ab
k,μν (x,x′,y,y′) = δ2R[x,x′,A]

δAa
μ(y)δAb

ν(y′)

∣∣∣∣
A=0

. (69)

The explicit expressions of R(1)a
k,μ (q,−p − q,p) and

R(2)ab
k,μν (q,−q,p,−p) are given in Appendix D.
The flow equations of the functions Zk(ρ), Yk(ρ), X1,k(ρ),

and X2,k(ρ) can be deduced from (67) using Eqs. (63) and

(64). They are too long to be shown here but can be found in
Appendix E. Since the flow equations do not generate terms
that are not already present in the scale-dependent effective
action, we verify a posteriori that Eq. (61) gives the most
general expression of �k to second order in derivatives. This
in turn justifies the expression of �(1,1) and �(0,2) in Eqs. (34).

Before discussing the numerical solution of the flow
equations (Sec. V), we consider two limiting cases where

∂tΓ
(0,2)
k = +

∂tΓ
(1,1)
k =

+ +

∂tΓ
(2,0)
k = +

++

FIG. 2. Diagrammatic representation of the RG equations (67).
Signs and symmetry factors are not shown. The diagrammatic
representation of the vertices is shown in Fig. 1 and the cross
with n wavy lines stands for ∂tRk, ∂tR(1)

k , and ∂tR(2)
k for n = 0,1,2,

respectively.
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known results can be recovered and elementary checks made:
the one-loop approximation and the large-N limit.

D. One-loop approximation

The one-loop correction to the bare effective action
�
[φ,A] = S[φ,A] can be retrieved from the exact flow
equation (58) by replacing �

(2,0)
k by �

(2,0)

 = S(2,0) in the

right-hand side, i.e.,

∂t�k[φ,A] = 1
2 Tr{Ṙk[A](S(2,0)[φ,A] + Rk[A])−1}. (70)

Integrating this expression between k = 
 and k = 0 with
boundary condition �
[φ,A] = S[φ,A] we obtain the effec-
tive action to one-loop order,

�[φ,A] = S[φ,A] + 1
2 Tr{ln(S(2,0)[φ,A])

− ln(S(2,0)[φ,A] + R
[A])}. (71)

The advantage of this expression over the usual one-loop
expression is that the regulator R
[A] is used as a gauge-
invariant UV cutoff and the momentum integrals can be
extended up to infinity. In Appendix G, we show that the three
expressions of Z(ρ), obtained from �(2,0), �(1,1), and �(0,2),
are in agreement.

IV. LARGE-N LIMIT

In this section we compute the conductivity in the large-N
limit within the standard approach [4] but from the action
S + �Sk including the gauge-field-dependent regulator. We
then discuss to what extent the results can be recovered from
the flow equations.

A. Conductivity

The regulator term �Sk gives the additional contribution
(B3) to the current density (7). Since we are interested in the
linear response, we need �Ja

k,μ to first order in A,

�Ja
k,μ(x) = −1

2

∫
y,y′

ϕ(y) · R(1)a
k,μ (y,y′,x)ϕ(y′)

− 1

2

∫
y,y′,x′

ϕ(y) · R(2)ab
k,μν (y,y′,x,x′)ϕ(y′)Ab

ν(x′).

(72)

This modifies the linear response function Kab
μν in two ways.

On the one hand the paramagnetic current-current correla-
tion function should now be computed with the paramagnetic
current (in Fourier space)

ja
μ(p) + �ja

k,μ(p) = 1√
V

∑
q

ϕ(q) ·
[
iqμT a

− 1

2
R(1)a

k,μ (−q,q − p,p)

]
ϕ(p − q).

(73)

In the quantum model, assuming a cutoff function Rk

which acts only on momenta and using R(1)a
k,μ (−q,q,0) =

−2iqμR′
k(q2)T a (Appendix D), we obtain

ja
μ(iωm) + �ja

k,μ(iωm) = 1

βLd

∑
q,ωn

iqμ(1 + R′
k)ϕ(q,iωn)

· T aϕ(−q,iωm − iωn), (74)

where μ ∈ {x,y}, R′
k ≡ R′

k(q2), and Ld is the volume. We find

�ab
μν(iωm) = 2δab

∑
i,j

T a
ij

2T
∑
ωn

∫
q
qμqν(1 + R′

k)2

× Gi(q,iωn)Gj (q,iωn + iωm), (75)

to leading order in the large-N limit. For simplicity we assume
that the order parameter lies along a particular direction,
i.e., 〈ϕi〉 = δi,i0〈ϕi0〉 = δi,i0

√
2ρ0. This way, the propagator is

diagonal with respect to the O(N ) indices and Gii ≡ Gi =
GT + δi,i0 (GL − GT ).

On the other hand there is an additional diamagnetic
contribution to Kab

μν(p),

−1

2

∫
q
〈ϕ(q) · R(2)ab

k,μν (−q,q,p, − p)ϕ(−q)〉. (76)

Using

R(2)ab
k,μν (−q,q,0,0) = −{T a,T b}[δμνR

′
k + 2qμqνR

′′
k ] (77)

(see Appendix D), we obtain the total diamagnetic contribution
to Kab

μν(iωm),

− δμνδab

∑
i,j

T a
ij

2T
∑
ωn

∫
q

(
1 + R′

k + 2

d
q2R′′

k

)

× [Gj (q,iωn) + 〈ϕj (q,iωn)〉〈ϕj (−q, − iωn)〉]. (78)

The momentum integrals in Eqs. (75) and (78) are not con-
vergent and a UV cutoff is necessary, which violates gauge in-
variance. To circumvent this difficulty, we notice that the large-
N expression Kab

k,μν = Hab
k,μν of the response function Kab

μν can
be rewritten as a RG equation ∂kK

ab
k,μν = ∂kH

ab
k,μν , where Hab

k,μν

is defined as the sum of (75) and (78). No upper cutoff is
necessary when computing ∂kH

ab
k,μν since the UV convergence

of the momentum integrals is ensured by the cutoff function
Rk and its derivatives. Integrating the RG equation between
k = 0 and k = 
, we obtain the gauge invariant response
function

Kab
μν(iωm) = Kab


,μν(iωm) + Hab
μν (iωm) − Hab


,μν(iωm), (79)

where Kab

,μν(iωm) = −δμνδabδa∈A2ρ0,
[1 + R′


(0)] if we
assume that the initial (gauge-invariant) condition of the
RG equation is given by the mean-field solution: Kab


,μν =
−δ2(S + �S
)/δAa

μδAb
ν . The term Hab


,μν in (79) is cru-
cial since it guarantees that all momentum integrals are
UV convergent. Equation (79) should be compared to the
gauge-invariant one-loop expression of the effective action
[Eq. (71)].
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This yields the final expression of Kab
μν = δμνδabK

aa in the large-N limit,

Kaa(iωm) =
∑
i,j

T a
ij

2T
∑
ωn

∫
q

{
2

d
q2[Gi(q,iωn)Gj (q,iωn + iωm) − (1 + R′


)2G
,i(q,iωn)G
,j (q,iωn + iωm)]

− Gj (q,iωn) − 〈ϕj (q,iωn)〉〈ϕj (−q, − iωn)〉 +
(

1 + R′

 + 2

d
q2R′′




)
G
,j (q,iωn)

}
, (80)

where q is a d-dimensional vector.

1. Disordered phase

In the disordered phase Kaa(iωm) ≡ K(iωm) does not depend on a,

K(iωm) = 2T
∑
ωn

∫
q

{
2

d
q2[G(q,iωn)G(q,iωn + iωm) − (1 + R′


)2G
(q,iωn)G
(q,iωn + iωm)]

− G(q,iωn) +
(

1 + R′

 + 2

d
q2R′′




)
G
(q,iωn)

}
, (81)

where Gk(q,iωn) = (ω2
n + q2 + Rk + �2

k)−1 is the large-N limit of the propagator [22] (with G ≡ Gk=0) and �2
k = Wk(ρ = 0)

is the square of the excitation gap. Using the relation∫
q

q2(1 + R′
k)2Gk(q,iωn)2 = d

2

∫
q

(
1 + R′

k + 2

d
q2R′′

k

)
Gk(q,iωn) − 2vd |q|d (1 + R′

k)Gk(q,iωn)

∣∣∣∣
|q|=∞

|q|=0

, (82)

which is obtained by an integration by part noting that ∂q2Gk = −(1 + R′
k)G2

k , Eq. (81) becomes

K(iωm) = 4

d
T

∑
ωn

∫
q

q2{G(q,iωn)[G(q,iωn + iωm) − G(q,iωn)] − (1 + R′

)2G
(q,iωn)[G
(q,iωn + iωm) − G
(q,iωn)]},

(83)

since the boundary term

8vd

d

∫ ∞

−∞

dω

2π
|q|d [−G(q,iωn) + (1 + R′


)G
(q,iωn)]

∣∣∣∣
|q|=∞

|q|=0

= 4vd

d
|q|d

[
− 1

(q2 + �2)1/2
+ 1 + R′




(q2 + R
 + �2

)1/2

]∣∣∣∣
|q|=∞

|q|=0

(84)

vanishes [we have set T = 0 in (84)]. The factor vd = 1/[2d+1πd/2�(d/2)] originates from angular integrals. The contribution
of the k = 0 propagator in (83) yields the known result [4]

K(iωm) = −ω2
m

2

∫
q

q2

(q2 + �2)3/2
(
ω2

m + 4q2 + 4�2
) = − ω2

m

24π�
+ O

(
ω4

m

�3

)
(85)

for T = 0 and d = 2, i.e., �B(iωm = 0,ρ = 0) = −1/24π�. The contribution of the propagator G
, of relative order |ωm|/
,
can be ignored in the scaling limit. From (44) we thus obtain

Cdis = �σq

12�
, (86)

restoring physical units.
At the QCP, � → 0. Still ignoring the G
 terms, Eq. (84) yields the universal value K(iωm) = −|ωm|/16, i.e., [39]

σ (iωm) = π

8
σq, (87)

Note that at the QCP, �B(iωm,ρ = 0) behaves as 1/|ωm| and X1(ρ = 0) = −�B(iωm = 0,ρ = 0) diverges.

2. Ordered phase

In the ordered phase, the transverse and longitudinal propagators are given by [40]

Gk,T(q,iωn) = 1

ω2
n + q2 + Rk

, Gk,L(q,iωn) =
3N
u0

+ N
2 �k(q,iωn)(

ω2
n + q2 + Rk

)(
3N
u0

+ N
2 �k(q,iωn)

) + 2ρ0,k

, (88)

where

�k(p,iωm) = T
∑
ωn

∫
q
Gk,T(q,iωn)Gk,T(p + q,iωm + iωn). (89)
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For a class B generator, the calculation of the conductivity is similar to the case of the disordered phase with �k = 0; one
finds Eq. (83) with G replaced by GT, which gives KB(iωm) = −|ωm|/16 and

σB(iωm) = π

8
σq, (90)

in agreement with Ref. [11]. �B(iωm,ρ0) behaves as 1/|ωm| and X1(ρ0) is ill defined in the whole ordered phase.
For a class A generator,

KA(iωm) = − 2ρ0 + T
∑
ωn

∫
q

{
4

d
q2[GL(q,iωn)GT(q,iωn + iωm) − (1 + R′


)2G
,L(q,iωn)G
,T(q,iωn + iωm)]

− GL(q,iωn) − GT(q,iωn) +
(

1 + R′

 + 2

d
q2R′′




)
[G
,L(q,iωn) + G
,T(q,iωn)]

}
. (91)

Since KA(iωm) − KB(iωm) = 2ρ0[ω2
m�C(iωm,ρ0) − �A(iωm,ρ0)], we deduce

2ρ0[�A(iωm,ρ0) − ω2
m�C(iωm,ρ0)]

= 2ρ0 + T
∑
ωn

∫
q

{
[GL(q,iωn) − GT(q,iωn)]

[
1 − 4

d
q2GT(q,iωn + iωm)

]

− [G
,L(q,iωn) − G
,T(q,iωn)]

[
1 + R′


 + 2

d
q2R′′


 − 4

d
q2(1 + R′


)2GT(q,iωn + iωm)

]}
. (92)

Thus, to leading order in the large-N limit, �A(iωm,ρ0) = 1 and �C(iωm,ρ0) = 0. For ωm → 0,KA(iωm) = ρs/ωm with
ρs = 2ρ0, which yields

Cdis

σ 2
q Lord

= π

6

ρs

�
= N

24
, (93)

where the last result in (93) is deduced using ρs/� = N/4π

[41]. It does not seem possible to obtain a simple expression
for �C to order O(1/N). Nevertheless numerical evaluation
of Eq. (91) shows that KA(iωm) has no O(ωm) term [42]
so that σA(ω) = ρs/(ω + i0+) + O(ω), in agreement with
perturbative results at finite N [29].

B. RG equations

In the large-N limit, the effective action � is of order N ,
and the fields φ and A of order

√
N and one, respectively.

Hence Yk is of order 1/N and can be neglected, Wk,Zk , and
X2,k are of order one, and X1,k of order N .

To leading order,

∂tZk = −N

2
Z′

k

∫
q
ṘkG

2
k,T, (94)

where the prime denotes a ρ derivative and we omit to
write the ρ and q dependence of various functions (q is
a D-dimensional vector). Since Z
 = 1, Zk = 1 + O(1/N).
The momentum dependence of the transverse propagator
Gk,T = (q2 + Wk + Rk)−1 is not renormalized in the large-N
limit.

The equation for the potential then becomes

∂tWk = −N

2
W ′

k

∫
q
ṘkG

2
k,T. (95)

To solve this equation we set W = Wk(ρ) and use the variables
(k,W ) instead of (k,ρ) [22,23]. Introducing the function

gk(W ) = ρ and using g′
k(W ) = 1/W ′

k(ρ), one obtains

∂tgk(W ) = − 1

W ′
k(ρ)

∂tWk(ρ) = N

2

∫
q
ṘkG

2
k,T. (96)

Since k and W are independent variables, this equation can be
rewritten as

∂tgk(W ) = −N

2
∂t

∫
q

1

q2 + W + Rk

, (97)

where both sides are total derivatives, and we obtain

gk(W ) − g
(W )

= −N

2

∫
q

(
1

q2 + W + Rk

− 1

q2 + W + R


)
. (98)

For R
(q) → ∞ and with g
(W ) = (3N/u0)(W − r0),

Wk(ρ) = r0 + u0ρ

3N
+ u0

6

∫
q

1

q2 + Wk(ρ) + Rk

, (99)

which reproduces the known result in the large-N limit for
k → 0 [43].

To leading order the flow of X1,k reads

∂tX1,k = −N

2
X′

1,k

∫
q
ṘkG

2
k,T. (100)

Since X1,
 = 0, X1,k is in fact of order one. Thus, to leading
order,

∂tX1,k = −N

2
X′

1,k

∫
q
ṘkG

2
k,T + ∂̃t IX1 , (101)
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where IX1 collects all terms of order one. In Appendix F we
show that

IX1 =
∫

q

Gk,T
(
∂2

q2Gk,T
) − (∂q2Gk,T)2

3G2
k,T

. (102)

With (k,W ) as variables we find

∂tX1,k|W = ∂tX1,k|ρ + X′
1,k∂tgk = ∂t IX1 , (103)

using (96) and ∂̃t IX1 = ∂t IX1 since W is k independent. We
then obtain

X1,k =
∫

q

(
Gk,T

(
∂2

q2Gk,T
) − (∂q2Gk,T)2

3G2
k,T

−
G
,T

(
∂2

q2G
,T
) − (∂q2G
,T)2

3G2

,T

)
. (104)

For k = 0 and R
 → ∞, this gives

X1,k=0(ρ) = 1

3

∫
q
G2

k=0,T = 1

24π
√

Wk=0(ρ)
, (105)

using [GT(∂2
q2GT) − (∂q2GT)2]/3G2

T = G2
T/3 for GT ≡

Gk=0,T = (q2 + W )−1. In the disordered phase, where
Wk=0(0) is equal to the excitation gap �, Eq. (105) yields
�B(iωm = 0,ρ = 0) = −1/24π� in agreement with the di-
rect calculation of Sec. IV A. In the ordered phase, X1,k=0

diverges since Wk(ρ0,k) = 0. This divergence holds for all
values of N and reflects the divergence of �B(p,ρ0) in the limit
p → 0. This prevents us to compute σB(ω) from the derivative
expansion. We shall come back to this issue in Sec. V.

To leading order the flow of X2,k reads

∂tX2,k = −N

2
X′

2,k

∫
q
ṘkG

2
k,T. (106)

Since X2,
 = 0, X2,k is in fact of order 1/N . Unlike the case
of X1,k , no simple expression is obtained for X2,k .

V. NUMERICAL SOLUTION OF THE FLOW EQUATIONS

The QCP manifests itself as a fixed point of the RG
equations provided we use dimensionless equations where
all quantities are expressed in units of the running scale k.
We therefore introduce the following dimensionless variables
(with D = 3)

p̃ = k−1p, ρ̃ = v−1
D Zkk

2−Dρ,

Ãμ = k−1Aμ, F̃μν = k−2Fμν (107)

and functions

Ũk(ρ̃) = v−1
D k−DUk(ρ), W̃k(ρ̃) = Z−1

k k−2Wk(ρ),

Z̃k(ρ̃) = Z−1
k Zk(ρ), Ỹk(ρ̃) = vDZ−2

k kD−2Yk(ρ),

X̃1,k(ρ̃) = v−1
D k4−DX1,k(ρ), X̃2,k(ρ̃) = Z−1

k k2X2,k(ρ),

(108)

where vD is defined after (84) and Zk ≡ Zk(ρ0,k).
The flow equations are solved numerically using the explicit

Euler method. It is convenient to introduce the (negative) RG
time t = ln(k/
). 
 = 1 and u0 is typically equal to 100vD .

Both t and ρ̃ variables are discretized with finite-size steps
�t = −5 × 10−4 and �ρ̃ = 0.1, respectively. We use a fixed
ρ̃ grid with 0 ≤ ρ̃ ≤ ρ̃max = 8N . Momentum integrals are
computed using Simpson’s rule with 60 points and an upper
cutoff q̃max = 6; this cutoff is justified by the presence of
the regulator Rk . Stability of the results with respect to the
various parameters (step size, ρ̃max, numerical accuracy of the
integrals) has been verified.

As for the regulator, we take the exponential cutoff function

Rk(q2) = Zkq2r

(
q2

k2

)
, r(y) = α

ey − 1
, (109)

where α is a constant of order one. In the derivative expansion,
as in any approximation scheme, the results slightly depend
on the shape of the regulator. We minimize this dependence
by using the principle of minimal sensitivity, that is, we
search for a local extremum of the physical quantities taken
as functions of the regulator. In practice, for each physical
quantity Q, this amounts to finding the optimal value αopt such
that dQ/dα|αopt = 0 [44].

In the ordered phase, two issues arise. First, since the
location of the minimum of the potential converges towards a
finite value ρ0 = limk→0 ρ0,k , its dimensionless counterpart
diverges as ρ̃0,k ∼ 1/Zkk when k → 0 (here D = 3). Fur-
thermore, since Wk(ρ) is a monotonously increasing function
and Wk(ρ0,k) = 0,Wk(ρ) is negative for ρ < ρ0,k and there is
no guarantee that the transverse propagator Gk,T (p,ρ = 0) =
[Zk(0)p2 + Wk(0) + Rk(p)]−1 remains positive definite. To
second order of the derivative expansion, the propagator indeed
exhibits a pole for a certain value kc of the running momentum
scale, which prevents to continue the flow for k < kc.

To circumvent these difficulties, we proceed as follows.
When ρ̃0,k comes too close to ρ̃max (e.g., ρ̃0,k > 0.75ρ̃max),
we follow the minimum of the potential while keeping
dimensionless variables. To that effect, we perform the k-
dependent change of variables ρ̃ → δρ̃ = ρ̃ − ρ̃0,k and switch
to a grid [δρ̃min,δρ̃max] with δρ̃min < 0 < δρ̃max such that
the minimum of the potential δρ̃ = 0 is within the grid. In
the original dimensionless variables, this corresponds to a ρ̃

window of fixed width that follows ρ̃0,k as it flows to infinity. In
the dimensionful variables, the grid is centered about ρ0,k with
a k-dependent width vdZ

−1
k kd−2(δρ̃max − δρ̃min) which goes

to zero with k. Our approach is therefore reminiscent of the
usual field expansion about ρ0,k , [18,19] the main difference
being that we retain the full ρ̃ dependence of the functions. In
the new grid, no instability arises; the flow can be continued
to arbitrary small values of k and all dimensionless functions
[e.g., W̃k(δρ̃)] reach the ordered-phase fixed point.

After the change of variables, ρ̃0,k intervenes explicitly in
the flow equations. While in the original grid ρ̃0,k is determined
by the condition W̃k(ρ̃0,k) = 0, in the new grid one has to
keep track of the flow of ρ̃0,k separately. This is obtained by
differentiating with respect to time the identity W̃k(δρ̃ = 0) ≡
W̃k(ρ̃0,k) = 0.

The equations are solved for several sets of initial conditions
(r0,u0). For a given value of u0, the QCP can be reached by
fine tuning r0 to its critical value r0c. The universal regime
near the QCP can then be studied by tuning r0 slightly away
from r0c. Universality of various quantities can be checked by
changing the value of u0.
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FIG. 3. Dimensionless fixed-point solutions of the flow equations
at the QCP (left) and the ordered phase (right) for several values of
N . The quantities are, respectively, expressed as a function of ρ̃ and
δρ̃ = ρ̃ − ρ̃0,k at the critical point and in the ordered phase. In the
latter case, the fixed-point solutions Z̃∗(δρ̃) = 1 and X̃∗

2 (δρ̃) = 0 are
independent of N .

The fixed-point values of the ρ̃-dependent functions W̃ , Z̃,
and Ỹ are shown in Fig. 3. At criticality we reproduce known
results of the derivation expansion to second order [45,46]. To
our knowledge the results in the ordered phase, showing the
fixed-point functions of the δρ̃ variable, are new. Figure 3 also
shows the functions X̃1 and X̃2 that determine the conductivity.

A. Critical exponents and ratio ρs/�

Let us first verify that we reproduce known values of the
critical exponents ν and η. The anomalous dimension η is
directly obtained from limk→0 ηk when r0 = r0c, where ηk =

TABLE I. Critical exponent ν obtained in the NPRG approach
with the derivative expansion (NPRG DE, this work) or the BMW
approximation (NPRG BMW), compared to Monte Carlo (MC)
simulations.

N NPRG DE NPRG BMW [22] MC

2 0.668 0.673 0.6717(1) [47]
3 0.706 0.714 0.7112(5) [48]
4 0.741 0.754 0.749(2) [49]
5 0.774 0.787
6 0.803 0.816
8 0.848 0.860
10 0.879 0.893
100 0.989 0.990
1000 0.999 0.999

−∂t ln Zk . Since ∂tZk can be obtained from ∂t�
(2,0)
k , ∂t�

(1,1)
k ,

or ∂t�
(0,2)
k , we obtain three different equations for ηk . They

all give the same result within numerical accuracy. The
correlation-length exponent ν is deduced from the behavior
of ρ̃0,k � ρ̃∗

0 + Ce−t/ν for long times |t | such that the flow
leaves the critical regime and enters either phase (since the
condition r0 = r0c is never exactly fulfilled the RG trajectories
will always eventually flow away from the fixed point with
an escape rate given by 1/ν). Our results agree with previous
NPRG calculations [22,25] in the BMW approximation and
are in reasonable agreement with Monte Carlo estimates (see
Tables I and II).

The universal ratio ρs/� is shown in Table III. Here �

denotes the excitation gap in the disordered phase at the point
located symmetrically with respect to the point of the ordered
phase where ρs is computed. Our results are in good agreement
with previous results obtained in the BMW approximation
[22].

B. Conductivity

As pointed out in Sec. III B, the derivative expansion allows
one to calculate correlation functions only in the limit |p| � k.
Any correlation function at nonzero momentum p seems there-
fore to be out of reach since it requires to take the limit k → 0
and therefore consider the case k � |p| where the derivative
expansion is not valid. It is however well known that the

TABLE II. Same as Table I but for the anomalous dimension η

(defined by η = limk→0 ηk when r0 = r0c).

N NPRG DE NPRG BMW [22] MC

2 0.0467 0.0423 0.0381(2) [47]
3 0.0463 0.0411 0.0375(5) [48]
4 0.0443 0.0386 0.0365(10) [49]
5 0.0413 0.0354
6 0.0381 0.0321
8 0.0319 0.0264
10 0.0270 0.0220
100 0.00296 0.00233
1000 0.000296 0.000233
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TABLE III. Universal ratio ρs/(N�) obtained from the NPRG in the derivation expansion (NPRG DE, this work). Also shown are the
previous NPRG results obtained from the BMW approximation [22] (NPRG BMW) and from Monte Carlo simulations [7] (MC). The exact
result in the limit N → ∞ is 1/4π � 0.0796.

N 1000 10 8 6 4 3 2

NPRG DE 0.0795 0.0810 0.0846 0.0935 0.118 0.147 0.207
NPRG BMW [22] 0.0796 0.0803 0.0829 0.0903 0.111 0.137 0.193
MC [7] 0.114 0.220

derivative expansion is often valid beyond its apparent domain
of validity and allows one to compute correlation functions
at finite momentum. Consider for example the transverse
two-point vertex �

(2,0)
k,T (p,ρ0,k) = Zkp2 + Wk(ρ0,k) evaluated

at the minimum of the effective potential. In the disordered
phase (ρ0,k = 0), the flow of Zk and Wk(0) stops when k

becomes smaller than the inverse of the correlation length ξ =
[Zk=0/Wk=0(0)]1/2. The excitation gap � ≡ ξ−1 thus acts as an
infrared regulator and the derivative expansion is valid for all
momenta |p| � � regardless of the value of k. In the ordered
phase, where Wk(ρ0,k) = 0, the flow of ρ0,k and Zk stops when
k becomes smaller than the inverse of the Josephson length
ξJ [50,51], with the stiffness defined by ρs = limk→0 2Zkρ0,k .
Hence limk→0 �

(2,0)
k,T (p,ρ0,k) = ρsp2/2ρ0, which turns out to be

the exact result for the transverse vertex to order p2. Thus the
derivative expansion is valid for |p| � ξ−1

J regardless of the
value of k. Quite generally, we expect the derivative expansion
to remain valid for small, but nonzero, momentum whenever
the k-dependent functions relevant for the computation of the
correlation function reach a finite limit when k → 0 [52]. At
criticality, where ρ0,k → 0 and Zk(0) ∼ k−η, the derivative
expansion yields �

(2,0)
k,T (p,0) ∼ k−ηp2 and is valid only for

|p| � k. It is nevertheless possible to retrieve the momentum
dependence of the vertex in the limit k � |p| by setting k ∼ |p|
in the derivative expansion result, noting that p acts as an
effective infrared cutoff, which reproduces the known result
�

(2,0)
k,T (p,0) ∼ |p|2−η for the two-point vertex at criticality (note

however that the overall factor cannot be obtained by this
simple trick). We are now in a position to discuss the derivative
expansion results for the conductivity.

1. Universal ratio Cdis/Lordσ
2
q

Let us start with the conductivities σ (ω) in the disordered
phase and σA(ω) in the ordered phase, in the limit ω → 0.
The former is determined by X1,k(p = 0,ρ = 0), the latter by
ρs,k . Both quantities reach a finite limit when k → 0 so that
we are in the case where the derivative expansion remains
reliable for k → 0 (and ω nonzero). In Table IV we show
the universal ratio �σq/2πCdis� and Cdis/NLordσ

2
q . In the

limit N → ∞ our results agree with the exact results 6/π and
1/24. For N = 2, we find �σq/2πCdis� � 1.98, in reasonable
agreement with the Monte Carlo result 2.1(1) [8].

2. Universal conductivity at QCP

At the QCP, we expect the zero-frequency conductivity σ ∗
to be given (in units of σq) by a universal number [30]. In the
disordered phase, the k-dependent conductivity is given by

σk(iωn) = 2π�σqωnX1,k(ρ0,k), (110)

where X1,k(ρ) = v3X̃1,k(ρ̃)/k. Since both ρ̃0,k and X̃1,k(ρ̃)
reach fixed-point values at the QCP (Fig. 3), X1,k(ρ = 0) ∼
1/k diverges in the limit k → 0. As explained at the beginning
of Sec. V B the derivative expansion does not allow us to obtain
the conductivity at nonzero frequency in such a case [the limit
k → 0 at fixed ωn in (110) is divergent]. Setting k ∼ |ωn|
in Eq. (110), we see that σk(iωn) reaches a ωn-independent
limit σ ∗ if we approximate X̃1,k(ρ̃0,k) by its fixed-point value
X̃∗cr

1 (ρ̃∗
0 ), but the precise value of σ ∗ cannot be obtained.

In the derivative expansion, the function �B,k(p,ρ) is
approximated by −X1,k(ρ) [Eqs. (65)]. The 1/k divergence
of X1,k(ρ = 0) suggests that at the QCP �B,k=0(p,ρ = 0) is in
fact not analytic in p2 but behaves as 1/|p| for p → 0, as can be
shown explicitly in the large-N limit (Sec. IV). [Note however
that �B,k(p,ρ) is an analytic function of p for |p| � k.]

3. Universal conductivity σB

The conductivity tensor in the ordered phase is defined
by σA(ω) and σB(ω) (Sec. II C 2). σA(ω → 0) is entirely
determined by the stiffness ρs . σB(ω → 0) is obtained from
X1,k(ρ0,k) and its expression is the same as that of the
conductivity (110) at the QCP. Since X̃1,k(δρ̃) reaches a
fixed-point value X̃∗ord

1 (δρ̃) in the ordered phase (Fig. 3),
X1,k(ρ0,k) ∼ 1/k diverges in the limit k → 0 and we come
to the conclusion that �B,k=0(p,ρ0) behaves as 1/|p| for
p → 0 (a property that can be explicitly verified in the large-N
limit). Following the same reasoning as in Sec. V B 2 we can
nevertheless infer that σB(ω → 0) takes a universal value σ ∗

B
independent of the distance r0c − r0 to the QCP. Furthermore,
we find numerically that the fixed-point value X̃∗ord

1 (δρ̃ = 0)
is independent of N , unlike the fixed-point value X̃∗cr

1 (ρ̃∗
0 ) at

the QCP.

TABLE IV. Ratio �σq/2πCdis� and Cdis/NLordσ
2
q obtained from

the NPRG approach. The exact results for N → ∞ are 6/π �
1.90986 and 1/24 � 0.041667, respectively.

N �σq/2πCdis� Cdis/NLordσ
2
q

2 1.98 0.105
3 1.98 0.0742
4 1.98 0.0598
5 1.97 0.0520
6 1.97 0.0475
8 1.96 0.0431
10 1.96 0.0415
100 1.92 0.0413
1000 1.91 0.0416
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FIG. 4. Flow of X̃1,k(ρ̃0,k) in the ordered phase for N = 3 and
N = 10, and three different initial conditions, with α = 2.25. The
solid lines show the system at criticality where, after a transient
regime, X̃1,k(ρ̃0,k) becomes very close to its fixed point value X̃∗cr

1,k(ρ̃∗
0 ).

The dashed and dotted lines correspond to the ordered phase:
X̃1,k(ρ̃0,k) is first attracted by the critical fixed point; for k ∼ ξ−1

J

there is a crossover to a regime dominated by the Goldstone modes
and X̃1,k(ρ̃0,k) � X̃∗ord

1,k (ρ̃0,k).

These results are illustrated in Figs. 3 and 4. Since σB

is known in the large-N limit [Eq. (90)], this leads us to
conjecture that σB(ω → 0) takes the N -independent universal
value

σ ∗
B = π

8
σq. (111)

In the limit N → ∞, σ ∗
B and σ ∗ are thus equal (Sec. IV) but

differ for N < ∞ since σ ∗ is N dependent while σB is not.
In the limit N → ∞ we indeed find that X̃∗ord

1 (δρ̃ = 0) =
X̃∗cr

1 (ρ̃∗
0 ). This follows not only from the equality σ ∗

B = σ ∗
but also from the fact that the critical and ordered phase
fixed points are entirely determined by the Goldstone modes
and therefore similar when N → ∞. For N < ∞, it is not
possible to strictly identify σ ∗

B/σ ∗ to X̃∗ord
1 (δρ̃ = 0)/X̃∗cr

1 (ρ̃∗
0 ).

The latter ratio is shown in Table V.

4. Conductivity σA

Perturbative results at finite N as well as the large-N
limit (Sec. IV) show that σA(ω) = ρs/(ω + i0+) + O(ω) in
the ordered phase. The absence of O(ω0) term implies
that the 1/|p| divergence in �B(p,ρ) is canceled by a

TABLE V. Ratio X̃∗ord
1 (δρ̃ = 0)/X̃∗cr

1 (ρ̃∗
0 ) obtained from the

NPRG approach for α = 2.25. (Note that σB is not defined for N = 2.)
The exact result for N → ∞ is 1.

N X̃∗ord
1 (δρ̃ = 0)/X̃∗cr

1 (ρ̃∗
0 )

2 1.1210
3 1.1201
4 1.1146
5 1.1068
6 1.0982
8 1.0821
10 1.0691
100 1.00739
1000 1.00073

similar divergence in 2ρ0�C(p,ρ). To recover this result from
the NPRG approach, we need X̃∗

1(ρ̃0,k) + 2ρ̃0,kX̃
∗
2(ρ̃0,k) = 0

[53]. Although X̃∗
1(ρ̃0,k) and 2ρ̃0,kX̃

∗
2(ρ̃0,k) have opposite

sign, their sum does not vanish and is quite sensitive to
the choice of the parameter α. A proper calculation of
σA(ω) to order ω requires to go beyond the derivative
expansion.

VI. CONCLUSION

The NPRG is well known as an efficient tool to calculate
both universal and nonuniversal (e.g., in lattice models)
quantities of quantum critical systems [1–3,21,22,54–58].
In this paper we have shown, in the framework of the
quantum O(N ) model, that the NPRG approach can be
used to study transport properties. Our results are obtained
from a derivative expansion to second order of the effective
action in the presence of an external non-Abelian gauge
field.

We have calculated the universal ratio Cdis/Lordσ
2
q as a

function of N , where Cdis is the capacitance of the (insulating)
disordered phase and Lord the inductance of the (superfluid)
ordered phase associated with the element σA(ω) of the
conductivity tensor. Our results are in agreement with a recent
QMC calculation in the case N = 2 [8].

Although the derivative expansion used in our work does
not allow us to calculate the conductivity σ (ω → 0) ≡ σ ∗
at the QCP and the element σB(ω → 0) ≡ σ ∗

B of the con-
ductivity tensor in the ordered phase (see the discussion
in Sec. V B), our results strongly suggest that both σ ∗
and σ ∗

B are universal. While the existence of a universal
value for σ ∗/σq is well known [30], to our knowledge
the universal character of σ ∗

B/σq has not been pointed out
before. Our RG analysis leads us to conjecture that σ ∗

B = π
8 σq

takes a N -independent universal value in the whole ordered
phase.

A subject for future research is to show how an improved
derivative-expansion scheme can be used to obtain the full
frequency dependence of correlation functions, thus allowing
us to compute σ ∗ and σ ∗

B and check whether our conjecture
regarding the universal value of σ ∗

B is correct.
Analytical continuation of imaginary-time data to real

time with Padé approximants works well at zero temper-
ature [22,59] but not at finite temperature in the low-
frequency regime |ω| � T . It has recently been pointed
out that the NPRG enables, within some approximation
schemes, to perform exactly both Matsubara-frequency sums
and analytical continuation to real frequencies [60–63].
Other methods to circumvent the difficulties in perform-
ing analytical continuation at finite temperature from nu-
merical data have been proposed [64]. Whether or not
these proposals can be successfully implemented for the
quantum O(N ) model is likely to determine whether the
NPRG is a reliable method to compute finite-temperature
transport properties.
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APPENDIX A: GENERATORS OF THE SO(N) GROUP

Any rotation matrix O ∈ SO(N ) can be written as

O = exp(θaT a), (A1)

where {θa} are real parameters and {T a} N (N − 1)/2 genera-
tors of the SO(N ) group. The latter form a basis of the special
orthogonal Lie algebra so(N ) defined as the set of skew-
symmetric N × N matrices. They satisfy the commutation
relations

[T a,T b] = fabcT
c, (A2)

where the structure constants fabc are real and antisymmetric
under permutation of indices: fabc = −fbac = −fcba , etc. For
an infinitesimal rotation (θa → 0),

O � 1 + θaT a, (A3)

where 1 in the right-hand side stands for the N × N identity
matrix.

A convenient basis of so(N ) is

T IJ
ij = −δI,iδJ,j + δI,j δJ,i , (A4)

where the integers I and J satisfy 1 � I < J � N . For N = 2,
there is a single generator defined by Tij = −δi,1δj,2 + δi,2δj,1,
i.e., Tij = −εij with εij the fully antisymmetric tensor, and any
rotation matrix can be written as

O = exp(θT ) =
(

cos θ − sin θ

sin θ cos θ

)
. (A5)

For N = 3, there are three generators: T 12 = −iS3, T 13 =
iS2, and T 23 = −iS1, where (S1,S2,S3) are spin-one matrices:∑

i(S
i)2 = 2 and [Sj ,Sk] = iεjklS

l .

APPENDIX B: CONDUCTIVITY IN THE EFFECTIVE
ACTION FORMALISM

In this Appendix we generalize the definition of the
response function Kab

μν to an arbitrary uniform field φ and
further discuss the f -sum rule (40).

1. Conductivity from 1PI vertices

In the effective action formalism the conductivity is defined
by (31). Using (32), one finds

δ̄2�[φ[A],A]

δ̄Aa
μ(y)δ̄Ab

ν(y′)
= �(0,2)ab

μν [y,y′; φ[A],A]

+
∫

x
�

(1,1)a
iμ [x,y; φ[A],A]

δφi[x; A]

δAb
ν(y′)

. (B1)

To compute δφ[A]/δA, we take the functional derivative of
Eq. (32) with respect to A, which gives

δφi[x; A]

δAa
μ(y)

= −
∫

x′
�

(2,0)−1
ij [x,x′; φ[A],A]

× �
(1,1)a
jμ [x′,y; φ[A],A], (B2)

where �(2,0)−1 is the propagator. From (B1) and (B2), we
finally deduce Eq. (33).

A similar calculation can be performed in the presence of
the regulator term �Sk[ϕ,A]. The current density then acquires
the additional contribution

�Ja
k,μ(x) = −δ�Sk[ϕ,A]

δAa
μ(x)

= −1

2

∫
y,y′

ϕ(y) · δRk[y,y′; A]

δAa
μ(x)

ϕ(y′) (B3)

but the linear response is still given by (10). In the quantum
model, one finds that Kab

k,μν(iωn) is given by −�
(0,2)ab
k,μν (iωn,φ̄)

with the additional term −δμν(T aφ̄) · (T bφ̄)R′
k(0). Since the

latter vanishes for k = 0, it can be ignored.

2. f -sum rule

Let us consider the system in the absence of gauge field and
external source (J = A = 0) so that 〈J a

μ〉 = 〈ja
μ〉 = 0. After an

infinitesimal gauge transformation O = 1 + θaT a + O(θ2),
the gauge field becomes Aa

μ
′ = ∂μθa [Eq. (5)]. Since a

gauge transformation does not modify the partition function,
Z[A′] = Z[A = 0], the response to the pure gauge field A′
must vanish, i.e.,

0 = 〈
J a

μ(x)
〉 =

∫
x′

Kab
μν(x − x′)∂x ′

ν
θb(x′)

= −
∫

x′

[
∂x ′

ν
Kab

μν(x − x′)
]
θb(x′), (B4)

where the last result is obtained by an integration by part. Since
Eq. (B4) holds for any θa , we obtain

∂x ′
ν
Kab

μν(x − x′) = 0. (B5)

In Fourier space, this yields the f -sum rule (40) relating the
paramagnetic current-current correlation function �ab

‖ to the
diamagnetic term 〈(T aϕ) · (T bϕ)〉.

Equation (40) can be generalized to the case of an arbitrary
uniform source J and therefore to an arbitrary uniform
field φ. Let us first consider the partition function Z[J,A]
[Eq. (15)] where Aμ = (∂μO)OT is a pure gauge field. For an
infinitesimal rotation, Aa

μ = ∂μθa + O(θ2), so that

lnZ[J,A] = lnZ[J,0] + 1

2

∫
x,x′

δ2 lnZ[J,A]

δAa
μ(x)δAb

ν(x′)

∣∣∣∣
A=0

×Aa
μ(x)Ab

ν(x′) (B6)

to leading order. The term linear in Aa
μ, being proportional to

〈J a
μ〉A=0, vanishes when the source J is uniform. Using now

Aa
μ = ∂μθa and Eq. (10), we find

lnZ[J,A] = lnZ[J,0] + 1

2

∫
x,x′

[
∂xμ

∂x ′
ν
Kab

μν(x,x′,J)
]

× θa(x)θb(x′) (B7)

after an integration by part.
Alternatively, one can calculate the O(θ2) term in lnZ[J,A]

by first performing the following gauge transformation,

ϕ′ = OT ϕ,
(B8)

Aμ
′ = OT AμO + (∂μOT )O = ∂μ(OT O) = 0,
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such that the transformed gauge field vanishes. Since this trans-
formation has unit Jacobian and leaves the action invariant, i.e.,
S[ϕ,A] = S[ϕ′,A′] ≡ S[ϕ′], we obtain

Z[J,A] =
∫

D[ϕ′] e−S[ϕ′]+∫
x OT J·ϕ′ ≡ Z[OT J]. (B9)

The θ dependence now comes from the external source

OT J = (
1 − θaT a + 1

2T aT bθaθb
)
J + O(θ3) (B10)

and the O(θ2) contribution to lnZ[J,A] is given by

1

2

∫
x

δ lnZ[J]

δJi(x)

∣∣∣∣
J(x)=J

[T aT bJ(x)]iθ
a(x)θb(x)

+ 1

2

∫
x,x′

δ2 lnZ[J]

δJi(x)δJj (x′)

∣∣∣∣
J(x)=J

× [T aJ(x)]i[T
bJ(x′)]j θa(x)θb(x′), (B11)

i.e.,

1

2

∫
x
φi(x)[T aT bJ(x)]iθ

a(x)θb(x) + 1

2

∫
x,x′

Gij (x − x′,J)

× [T aJ(x)]i[T
bJ(x′)]j θa(x)θb(x′). (B12)

Comparing (B7) and (B12) and using Ji = ∂φi
U = φiU

′ =
φiW (with W = U ′ = ∂ρU ), we obtain

∂xμ
∂x ′

ν
Kab

μν(x,x′,φ)

= 1
2W (ρ)φ · {T a,T b}φδ(x − x′)

+Gij (x − x′,φ)W (ρ)2(T aφ)i(T
bφ)j , (B13)

where G(x − x,φ) ≡ G(x − x′,J) is the propagator for a
uniform external source J (and thus a uniform field φ)
[Eq. (24)] and {T a,T b} = T aT b + T bT a . In Fourier space

p2Kab
‖ (p,φ) = (T aφ) · (T bφ)W (ρ)[W (ρ)GT(p,ρ) − 1].

(B14)

In the equilibrium state, either φ = 0 (disordered phase) or
W (ρ0) = U ′(ρ0) = 0 (ordered phase) and we recover the f -
sum rule (40). From the expression (35) of Kab

‖ , one sees that
the f -sum rule (B14) is a consequence of the Ward identities
(38).

APPENDIX C: WARD IDENTITIES

The functions �A,�B,�C,�̄B,�̄C are not independent
but related by Ward identities. The effective action �[φ,A]
inherits from the symmetries of the microscopic action (3) and
must therefore be invariant in the gauge transformation (5):

�[φ,A] = �[φ′,A′]. For an infinitesimal transformation, i.e.,
O = 1 + θaT a with θa → 0,

φ′ = φ + θaT aφ,
(C1)

Aa
μ

′ = Aa
μ + ∂μθa + fabcθ

bAc
μ,

where the fabc’s are the structure constants of the so(N ) Lie
algebra (Appendix A). Gauge invariance then implies∫

x

{
�

(1,0)
i [x; φ,A](T aφ)iθ

a

+ �(0,1)a
μ [x; φ,A]

[
∂μθa + fabcθ

bAc
μ

]} = 0 (C2)

to lowest order in θ . Since this equation holds for arbitrary
θa(x), we deduce

�
(1,0)
i [x; φ,A](T aφ)i − ∂μ�(0,1)a

μ [x; φ,A]

− fabc�
(0,1)b
μ [x; φ,A]Ac

μ = 0. (C3)

Taking the functional derivative with respect to φj (x′) and then
setting A = 0 and φ uniform, we obtain the Ward identity

�
(2,0)
ij (p,φ)(T aφ)i + 1√

V
�

(1,0)
i (p = 0,φ)T a

ij

− ipμ�
(1,1)a
jμ (−p,φ) = 0. (C4)

A second Ward identity is obtained from (C3) by taking the
functional derivative with respect to Ad

ν (x′),

�
(1,1)d
iν (p,φ)(T aφ)i − ipμ�(0,2)ad

μν (p,φ) = 0, (C5)

where we have used �(0,1)b
ν (p = 0,φ) = 0. Together with (34),

Eqs. (C4) and (C5) imply (38).

APPENDIX D: COMPUTATION OF R(1) AND R(2)

To alleviate the notations we do not write explicitly the k

index in the following. Writing R(1) as

R(1)a
μ (x,x′,y) = δ

δAa
μ(y)

1

2

∞∑
n=0

(−1)nRn(D2)nδ(x − x′)
∣∣∣
A=0

+ (x ↔ x′)T , (D1)

where Rn is defined by R(u) = ∑∞
n=0 Rnu

n, and using

δD(x)2

δAa
μ(y)

= −T a{δ(x − y),∂μ} + {T a,Aμ}δ(x − y) (D2)

with {·,·} the anticommutator, ∂μ ≡ ∂xμ
and ∇ ≡ ∇x, one finds

R(1)a
μ (x,x′,y) = −1

2

∞∑
n=0

(−1)nRn

n−1∑
p=0

(∇2)pT a{δ(x − y),∂μ}(∇2)n−1−pδ(x − x′) + (x ↔ x′)T . (D3)

In Fourier space, this gives

R(1)a
μ (p1,p2,p3) = δp1+p2+p3,0T

a(ip1μ − ip2μ)
R

(
p2

1

) − R
(
p2

2

)
p2

1 − p2
2

(D4)

(we define the Fourier transform so as to eliminate any volume factor).
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Proceeding similarly for R(2), one obtains

R(2)ab
μν (x,x′,y,y′) = 1

2

∞∑
n=0

(−1)nRn

n−1∑
p=0

⎧⎨
⎩{T a,T b}(∇2)pδμνδ(x − y)δ(x′ − y)(∇2)n−p−1δ(x − x′)

+
p−1∑
q=0

(∇2)qT b{δ(x − y′),∂ν}(∇2)p−1−qT a{δ(x − y),∂μ}(∇2)n−1−pδ(x − x′)

+
n−2−p∑

q=0

(∇2)pT a{δ(x − y),∂μ}(∇2)qT b{δ(x − y′),∂ν}(∇2)n−2−p−qδ(x − x′)

⎫⎬
⎭ + (x ↔ x′)T (D5)

and

R(2)ab
μν (p1,p2,p3,p4) = δp1+p2+p3+p4,0

{
− δμν{T a,T b}R

(
p2

1

) − R
(
p2

2

)
p2

1 − p2
2

−
[
T aT b(2p1μ + p3μ)(2p2ν + p4ν)

×R
(
p2

1

)[
(p1 + p3)2 − p2

2

] + R[(p1 + p3)2]
(
p2

2 − p2
1

) + R
(
p2

2

)[
p2

1 − (p1 + p3)2
]

[
(p1 + p3)2 − p2

2

](
p2

2 − p2
1

)[
p2

1 − (p1 + p3)2
]

+ (a ↔ b,μ ↔ ν,p3 ↔ p4)

]}
(D6)

To order p2, we finally find

R(1)a
μ (p + q,−q,−p) = iT a

{
2qμ

[
R′ +

(
p · q + p2

2

)
R′′ + 2

3
(p · q)2R′′′

]
+ pμ[R′ + (p · q)R′′]

}

R(2)ab
μν (q,−q,p,−p) = −

{
{T a,T b}

[
δμνR

′ + 1

2
pμpνR

′′ + 2

3
(qμpν + pμqν)(p · q)R′′′ + 2qμqν

(
R′′ + 1

3
p2R′′′ + 1

3
(p · q)2R′′′′

)]

+ [T a,T b]

[
(qμpν + pμqν)R′′ + 2

3
qμqν(p · q)R′′′

]}
, (D7)

where R ≡ R(q2), R′ ≡ ∂q2R(q2), etc. With Eq. (109), we obtain

∂n
q2R(q2) = Zkk

2(1−n)r̄ (n)(y), ∂t ∂
n
q2R(q2) = −Zkk

2(1−n){[ηk + 2(n − 1)]r̄ (n)(y) + 2yr̄ (n+1)(y)}, (D8)

where y = q2/k2, r̄(y) = yr(y) and r̄ (n)(y) = ∂n
y r̄(y).

APPENDIX E: FLOW EQUATIONS

To alleviate the notations we do not write explicitly the k index in the following.

1. Vertices

In addition to �(2,0), �(1,1) and �(0,2) [Eqs. (23), (63), and (64)], the vertices appearing in the flow equations (67) are

�
(3,0)
i1i2i3

(p1,p2,p3) = δi1i2φi3

(
−Z′p1 · p2 + Y

2
p2

3 + W ′
)

+ φi1φi2φi3

(
−Y ′

2
p2 · p3 + W ′′

)
+ perm(1,2,3),

�
(4,0)
i1i2i3i4

(p1,p2,p3,p4) = δi1i2δi3i4

(
−Z′p1 · p2 + Y

2
(p1 + p2)2 + W ′

)
+ φi1φi2φi3φi4

(
−Y ′′

2
p3 · p4 + W ′′′

)

+ δi1i2φi3φi4

(
−Z′′p1 · p2 − Y ′

2
p3 · p4 + Y ′

2
(p1 + p2)2 + W ′′

)
+ perm(1,2,3,4),

�
(2,1)a
i1i2,μ

(p1,p2,p3) = Z′[(T aφ)i1φi2 ip1μ + (T aφ)i2φi1 ip2μ

] + ZT a
i1i2

(ip1μ − ip2μ),

�
(3,1)a
i1i2i3,μ

(p1,p2,p3,p4) = [
Z′δi1i2 + Z′′φi1φi2

]
(T aφ)i3 ip3μ + Z′φi1T

a
i2i3

i(p2μ − p3μ) + perm(1,2,3),

�
(2,2)ab
i1i2,μν (p1,p2,p3,p4) = δμν

{(
Z′δi1i2 + Z′′φi1φi2

)
(T aφ) · (T bφ) − Z′[φi1 ({T a,T b}φ)i2 + perm(1,2)

] − Z{T a,T b}i1i2

}
− (δμνp4 · p3 − p4μp3ν)

{
δab

(
X′

1δi1i2 + X′′
1φi1φi2

) + (
X′

2δi1i2 + X′′
2φi1φi2

)
(T aφ) · (T bφ)

−X′
2

[
φi1 ({T a,T b}φ)i2 + perm(1,2)

] − X2
{
T a,T b}i1i2

}
, (E1)
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where perm(1, · · · ,n) denotes all (different) terms obtained by permutation of (p1,i1; . . . ; pn,in). In (E1) we write neither the
Kronecker δ expressing the conservation of total momentum nor the volume factors. The vertices in the lhs are functions of the
uniform field φ; W,Z, Y,X1, and X2 depend on ρ, and we use the notation Z′ = ∂ρZ, etc.

2. Flow equations

The flow equations are given by

∂tW = (N − 1)

2
(W ′I0|1|0|0 + Z′I1|1|0|0) + I0|0|1|0

(
ρW ′′ + 3

2
W ′

)
+ 1

2
I1|0|1|0(ρY ′ + Y + Z′), (E2)

∂tZ
(2,0) = −2ρ(W ′)2I1|0,0,1|1|0

D
− 2ρ(W ′)2I1|1|0,0,1|0

D
− 2ρYW ′I2|0,0,1|1|0

D
− 2ρYW ′I2|1|0,0,1|0

D

− ρW ′I1|1|0,1|0[(D + 4)Y − 4Z′]
D

− ρW ′I1|0,1|1|0(DY + 4Z′)
D

− ρY 2I3|0,0,1|1|0
2D

− ρY 2I3|1|0,0,1|0
2D

− ρI1|1|1|0[(D + 2)Y 2 + 2(D − 2)YZ′ + 4(Z′)2]

2D
− ρYI2|1|0,1|0[(D + 8)Y − 8Z′]

4D
− ρYI2|0,1|1|0(DY + 8Z′)

4D

+ 1

2
I0|1|0|0[(N − 1)Z′ + Y ] − ρ(W ′)2I0|0,1|1|0 − ρ(W ′)2I0|1|0,1|0 − ρW ′I0|1|1|0(Y + 2Z′) + I0|0|1|0

(
ρZ′′ + Z′

2

)
,

(E3)

∂tZ
(1,1) = −2W ′I1|0,1|1|0(ρZ′ + Z)

D
+ 2W ′I1|1|0,1|0(ρZ′ + Z)

D
− 2W ′I1|0,1|1|1

D
+ 2W ′I1|1|0,1|1

D

− YI2|0,1|1|0(ρZ′ + Z)

D
+ YI2|1|0,1|0(ρZ′ + Z)

D
+ I1|1|1|1(Y − 2Z′)

D
− YI2|0,1|1|1

D

− I1|1|1|0{Z′[(D − 2)ρY + 4Z] − 2YZ + 4ρ(Z′)2}
2D

+ YI2|1|0,1|1
D

+ 1

2
(N − 1)Z′I0|1|0|0

− ρW ′Z′I0|1|1|0 + I0|0|1|0

(
ρZ′′ + 3Z′

2

)
, (E4)

∂tZ
(0,2) = 4Z2W ′I1|2|1|0

D
+ 8ZW ′I1|2|1|1

D
+ 4W ′I1|2|1|2

D
− 2W ′I1|1|1|0,1

D
+ 2YZ2I2|2|1|0

D
+ 2YI2|2|1|2

D

+ I1|1|1|0

(
−2ρ(Z′)2

D
− 4ZZ′

D
− YZ

2

)
+ I1|1|1|1

(
−4Z′

D
− Y

2

)
+ 4YZI2|2|1|1

D
− YI2|1|1|0,1

D

+ I0|1|0|0
(N − 1)Z′

2
− ZW ′I0|1|1|0 − W ′I0|1|1|1 + I0|0|1|0

(
ρZ′′ + 5Z′

2

)
, (E5)

∂tY = I0|0,1|1|0(W ′)2 + I0|1|0,1|0(W ′)2 − (N − 1)I0|1,1|0|0(W ′)2 + 2I1|0,0,1|1|0(W ′)2

D
+ 2I1|1|0,0,1|0(W ′)2

D

− 2(N − 1)I1|1,0,1|0|0(W ′)2

D
− (N − 1)YI0|2|0|0W ′ + 2YI2|0,0,1|1|0W ′

D
+ 2YI2|1|0,0,1|0W ′

D
+ I1|1|0,1|0[(D + 4)Y − 4Z′]W ′

D

− 2(D + 2)(N − 1)I1|1,1|0|0Z′W ′

D
− 4(N − 1)I2|1,0,1|0|0Z′W ′

D
+ I0|1|1|0(Y + 2Z′)W ′ + I1|0,1|1|0(DY + 4Z′)W ′

D

− (D + 4)(N − 1)I2|1,1|0|0(Z′)2

D
− I0|0|1,1|0(3W ′ + 2ρW ′′)2 − (2D + 1)I1|0|2|0(Y + ρY ′ + Z′)2

D

− (D + 4)I2|0|1,1|0(Y + ρY ′ + Z′)2

D
− 2I1|0|1,0,1|0(3W ′ + 2ρW ′′)2

D
+ I0|1|0|0[(N − 1)ρY ′ − Y ]

2ρ
+ 1

4
YI2|0,1|1|0

(
Y + 8Z′

D

)

+ YI2|1|0,1|0[(D + 8)Y − 8Z′]
4D

− (N − 1)I1|2|0|0Z′(DY + Z′)
D

+ I1|1|1|0[(D + 2)Y 2 + 2(D − 2)Z′Y + 4(Z′)2]

2D

+ I3|0,0,1|1|0
2D

Y 2 + I3|1|0,0,1|0
2D

Y 2 − 2(N − 1)I3|1,0,1|0|0
D

(Z′)2 − 2I3|0|1,0,1|0(Y + ρY ′ + Z′)2

D

− 2I0|0|2|0(Y + ρY ′ + Z′)(3W ′ + 2ρW ′′) − 2(D + 2)I1|0|1,1|0(Y + ρY ′ + Z′)(3W ′ + 2ρW ′′)
D

− 4I2|0|1,0,1|0(Y + ρY ′ + Z′)(3W ′ + 2ρW ′′)
D

+ I0|0|1|0

(
Y

2ρ
+ 5Y ′

2
+ ρY ′′

)
, (E6)
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∂tX1 = − 4Z2I1|1,1|0|0
D

− 8Z2I2|1,0,1|0|0
D(D + 2)

− 4ZI1|2|0|0,1

D
− 8ZI1|1,1|0|1

D
− 16ZI2|2|0|0,0,1

3D(D + 2)
− 16ZI2|1,1|0|0,1

D(D + 2)
− 16ZI2|1,0,1|0|1

D(D + 2)

− 4I1|2|0|1,1

D
− 4I2|2|0|0,2

D(D + 2)
− 4I1|1,1|0|2

D
+ 4I1|1|0|0,0,1

3D
− 16I2|2|0|1,0,1

3D(D + 2)
− 16I2|1,1|0|1,1

D(D + 2)
+ 4I2|1|0|0,0,0,1

3D(D + 2)
− 8I2|1,0,1|0|2

D(D + 2)

+ 1

2
I0|1|0|0[(N − 1)X′

1 + 4X2] + I0|0|1|0

(
ρX′′

1 + X′
1

2

)
, (E7)

∂tX2 = 2I1|1,1|0|0Z2

Dρ
+ 4I2|1,0,1|0|0Z2

D(D + 2)ρ
+ 2I1|2|0|0,1Z

Dρ
+ 4I1|1,1|0|1Z

Dρ
+ 8I2|2|0|0,0,1Z

3D(D + 2)ρ
+ 8I2|1,1|0|0,1Z

D(D + 2)ρ
+ 8I2|1,0,1|0|1Z

D(D + 2)ρ

− I1|0,1|1|0(Z + ρZ′)2

Dρ
− I1|1|0,1|0(Z + ρZ′)2

Dρ
− 2I2|0,0,1|1|0(Z + ρZ′)2

D(D + 2)ρ
− 2I2|1|0,0,1|0(Z + ρZ′)2

D(D + 2)ρ
− 2I1|1|1|1,1

Dρ

+ 2I1|2|0|1,1

Dρ
− 2I2|1|1|0,2

D(D + 2)ρ
+ 2I2|2|0|0,2

D(D + 2)ρ
− I1|0,1|1|2

Dρ
+ I1|0|1|0,0,1

3Dρ
− I1|1|0,1|2

Dρ
+ 2I1|1,1|0|2

Dρ
− I1|1|0|0,0,1

3Dρ

− 8I2|1|1|1,0,1

3D(D + 2)ρ
+ 8I2|2|0|1,0,1

3D(D + 2)ρ
− 4I2|0,1|1|1,1

D(D + 2)ρ
+ I2|0|1|0,0,0,1

3D(D + 2)ρ
− 4I2|1|0,1|1,1

D(D + 2)ρ
+ 8I2|1,1|0|1,1

D(D + 2)ρ
− I2|1|0|0,0,0,1

3D(D + 2)ρ

− 2I2|0,0,1|1|2
D(D + 2)ρ

− 2I2|1|0,0,1|2
D(D + 2)ρ

+ 4I2|1,0,1|0|2
D(D + 2)ρ

+ I0|1|0|0((N − 1)ρX′
2 − X2)

2ρ
− 2I1|1|1|0,1(Z + ρZ′)

Dρ

− 2I1|0,1|1|1(Z + ρZ′)
Dρ

− 2I1|1|0,1|1(Z + ρZ′)
Dρ

− 8I2|1|1|0,0,1(Z + ρZ′)
3D(D + 2)ρ

− 4I2|0,1|1|0,1(Z + ρZ′)
D(D + 2)ρ

− 4I2|1|0,1|0,1(Z + ρZ′)
D(D + 2)ρ

− 4I2|0,0,1|1|1(Z + ρZ′)
D(D + 2)ρ

− 4I2|1|0,0,1|1(Z + ρZ′)
D(D + 2)ρ

+ I0|0|1|0

(
X2

2ρ
+ 5X′

2

2
+ ρX′′

2

)
, (E8)

where D = d + 1. ∂tZ
(2,0), ∂tZ

(1,1), and ∂tZ
(0,2) correspond to the equation ∂tZ obtained from the vertices �(2,0), �(1,1), and

�(0,2), respectively. We have introduced the threshold function

In|αi |βi |γi
(ρ) = ∂̃t

∫
q
(q2)n

∏
i

[
G

(i)
k,T(q,ρ)

]αi
[
G

(i)
k,L(q,ρ)

]βi
[
R

(i)
k (q)

]γi
, (E9)

e.g.,

I1|1|1|0 = ∂̃t

∫
q

q2Gk,T(q,ρ)Gk,L(q,ρ), I2|2|0,0,1|0,1 = ∂̃t

∫
q
(q2)2[Gk,T(q,ρ)]2G

(2)
k,L(q,ρ)R′

k(q), (E10)

where G(n) = ∂n
q2G and ∂̃t = k∂̃k . The initial conditions are determined by �
 = S, which yields

W
(ρ) = r0 + u0

3N
ρ, Z
(ρ) = 1, Y
(ρ) = X1,
(ρ) = X2,
(ρ) = 0. (E11)

In practice, we solve the flow equations using dimensionless variables (see Sec. V).

APPENDIX F: LARGE-N LIMIT: COMPUTATION OF IX1

From Eq. (E7) we deduce that the O(1) contribution to ∂tX1,k in the large-N limit is given by (101) with

IX1 = 1

6D(D + 2)

∫
q

(−24Dq2R′
kR

′′
k G

2
k,T − 24Dq2R′

k
2Gk,TG′

k,T − 48Dq2R′
kGk,TG′

k,T − 24Dq2R′′
k G

2
k,T

+ 8Dq2R
(3)
k Gk,T − 24Dq2Gk,TG′

k,T − 96q4R′′
k Gk,TG′

k,T − 96q4R′
kR

′′
k Gk,TG′

k,T − 48q4R′
k

2Gk,TG′′
k,T

− 96q4R′
kGk,TG′′

k,T − 32q4R
(3)
k R′

kG
2
k,T − 24q4R′′

k
2G2

k,T − 32q4R
(3)
k G2

k,T + 8q4R
(4)
k Gk,T − 48q4Gk,TG′′

k,T

− 48q2R′
kR

′′
k G

2
k,T − 48q2R′

k
2Gk,TG′

k,T − 96q2R′
kGk,TG′

k,T − 48q2R′′
k G

2
k,T + 16q2R

(3)
k Gk,T − 48q2Gk,TG′

k,T

)
. (F1)

In the above integral the primes denote derivatives with respect to q2 = q2, and we omit the dependence on q2 of the functions
for the sake of shortness. Using R′

k = −1 − G′
k,T/G2

k,T, one can remove R′
k and its derivatives from (F1) and obtain the simpler

expression

IX1 = −
∫

q

4q2

3D(D + 2)G4
k,T

{
3Gk,TG′

k,T
2[(D + 2)G′

k,T + 6q2G′′
k,T] − G2

k,T

(
G′

k,T

[
3(D + 2)G′′

k,T + 4q2G
(3)
k,T

] + 3q2G′′
k,T

2
)

+ G3
k,T

[
(D + 2)G(3)

k,T + q2G
(4)
k,T

] − 12q2G′
k,T

4
}
. (F2)

Integrating by parts yields (102).
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APPENDIX G: ONE-LOOP APPROXIMATION

1. �
(2,0)
i j , �

(1,1)a
iμ , and �(0,2)ab

μν

From (71) we deduce

�
(2,0)
ij (x,x′) = S

(2,0)
ij (x,x′) + 1

2 Tr
[
(G − G
)S(4,0)

ij (x,x′) − GS
(3,0)
i (x)GS

(3,0)
i (x′) + G
S

(3,0)
i (x)G
S

(3,0)
i (x′)

]
,

�
(1,1)a
iμ (x,y) = S

(1,1)a
iμ (x,y) − 1

2 Tr
{
GS

(3,0)
i (x)GS(2,1)a

μ (y) − G
S
(3,0)
i (x)G


[
S(2,1)a

μ (y) + R(1)a

,μ(y)

]},
(G1)

�(0,2)ab
μν (y,y′) = S(0,2)ab

μν (y,y′) + 1
2 Tr

{
GS(2,2)ab

μν (y,y′) − G


[
S(2,2)ab

μν (y,y′) + R(2)ab

,μν(y,y′)

] − GS(2,1)a
μ (y)GS(2,1)b

ν (y′)

+G


[
S(2,1)a

μ (y) + R(1)a

,μ(y)

]
G


[
S(2,1)b

ν (y′) + R(1)b

,ν (y′)

]}
,

where Gk = (S(2) + Rk)−1, G ≡ Gk=0 and, for clarity, we do not write the dependence on the uniform field φ.
S(4,0), S(3,0), S(1,1), S(2,1) and S(2,2) are easily deduced from Eqs. (63), (E1); R(1)a

μ and R(2)ab
μν are given in Appendix D.

2. Z(ρ)

From Eqs. (G1), we obtain three expressions of Z(ρ) to one-loop order,

Z(ρ) = 1 − ρW ′



2
∫

q

[
G′

TGL + GTG′
L − G′


,TG
,L − G
,TG′

,L + 2

D
q2(G′′

TGL + GTG′′
L − G′′


,TG
,L − G
,TG′′

,L)

]
,

(G2)

Z(ρ) = 1 − 2

D
W ′




∫
q
q2[(1 + R′


)(GT,
G′
L,
 − G′

T ,
GL,
) − GT G′
L + G′

T GL], (G3)

Z(ρ) = 1 + 1

2ρ

∫
q

[
GL − GT − (G
,L − G
,T)

(
1 + R′ + 2

D
q2R′′

)

− 4

D
q2GT(GL − GT) + 4

D
(1 + R′)2q2GT,
(G
,L − G
,T)

]
. (G4)

Let us show that Eqs. (G2) and (G3) agree. The difference between the two expressions gives

− 2

D
ρW ′



2
∫

q
q2(G′′

TGL + GTG′′
L − G′′


,TG
,L − G
,TG′′

,L) − ρW ′



2
∫

q
(G′

TGL + GTG′
L − G′


,TG
,L − G
,TG′

,L)

+ 2

D
W ′




∫
q
q2[(1 + R′)(G
,TG′


,L − G′

,TG
,L) − GTG′

L + G′

,TG
,L]. (G5)

Using G′

,T = −(1 + R′


)G2

,T and G′′


,T = −R′′

G2


,T + 2(1 + R′

)2G3


,T (and similar relations for G
,L), as well as G
,L −
G
,T = 2ρW ′


G
,TG
,L, we obtain

4

D
ρW ′



2
∫

q
q2(1 + R′


)2(G2

,TG2


,L + G3

,TG
,L + G
,TG3


,L

) − ρW ′



2
∫

q

(
1 + R′


 + 2

D
q2R′′




)(
G2


,TG
,L + G
,TG2

,L

)
(G6)

for the part of (G5) which depends on G
. Noting that

∂q2

(
G2


,TG
,L + G
,TG2

,L

) = −2(1 + R′

)

(
G2


,TG2

,L + G3


,TG
,L + G
,TG3

,L

)
, (G7)

we can integrate (G6) by part (taking q2 as the integration variable), which gives

−4
vD

D
ρW ′



2qD(1 + R′


)
(
G2


,TG
,L + G
,TG2

,L

)∣∣∣∞
0

. (G8)

Adding now the part that depends on G ≡ Gk=0, we obtain

−4
vD

D
ρW ′



2qD

[
(1 + R′


)
(
G2


,TG
,L + G
,TG2

,L

) − G2
TGL − GTG2

L

]∣∣∞
0 = 0 (G9)

for the difference between the two expressions of Z(ρ) given by Eqs. (G2) and (G3). The equivalence between Eqs. (G2) and
(G4) can be shown in a similar way.
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[58] A. Rançon and N. Dupuis, Thermodynamics of a Bose gas
near the superfluid–Mott-insulator transition, Phys. Rev. A 86,
043624 (2012).
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